
 

Accepted Manuscript

Regulated Software Meets DevOps

Teemu Laukkarinen, Kati Kuusinen, Tommi Mikkonen

PII: S0950-5849(18)30014-4
DOI: 10.1016/j.infsof.2018.01.011
Reference: INFSOF 5949

To appear in: Information and Software Technology

Received date: 26 September 2017
Revised date: 20 December 2017
Accepted date: 25 January 2018

Please cite this article as: Teemu Laukkarinen, Kati Kuusinen, Tommi Mikkonen, Regulated Software
Meets DevOps, Information and Software Technology (2018), doi: 10.1016/j.infsof.2018.01.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.01.011
https://doi.org/10.1016/j.infsof.2018.01.011


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Research on DevOps and regulated software development
is scarce.

• Standards for regulated development limit the use of Dev-
Ops practices.

• DevOps tools could help with strict tracing requirements
if further developed.

• DevOps should automate documentation and template
generation where applicable.

• Standards should provide templates that the tools can im-
plement.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Repeat-

ability
Problem

resolution

DevOps

Regulated SW development

Tracing

Risk

Assessment

Release 

Mgmt

Documen

tation

Verifi-

cation

Require-

ments

Version 

Control

Integrat

ion
Deploy

ment

Program-

ming

X

Current workflow:

Requires manual work

Automated / inherent relation

Blocked by standardsX

X

Contai-

ners

Workflow

tool
Issue

Tracker

Continuous

Integra

tion

Deploy

ment

Suggested actions:

• Improve tool integration for tracing

• Provide standard obeying templates

• Update standards where applicable



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Regulated Software Meets DevOps

Teemu Laukkarinen

Tampere University of Technology, Tampere, Finland

Kati Kuusinen

University of Southern Denmark, Odense, Denmark

Tommi Mikkonen

University of Helsinki, Helsinki, Finland

Abstract

Context: Regulatory authorities require proofs from critical systems manufacturers that the software in their products is developed
in accordance to prescribed development practices before accepting the product to the markets. This is challenging when using
DevOps, where continuous integration and deployment are the default practices, which are not a good match with the regulatory
software development standards.

Objective: We aim to bring DevOps and regulated software development closer to each other. First, we want to make it easier
for developers to develop regulated software with tools and practices they are familiar with. Second, we want to allow regulatory
authorities to build confidence on solutions provided by manufacturers by defining a mapping between DevOps and regulatory
software development.

Method: We performed a literature survey and created research suggestions using exploratory research.
Results: Tighter integration between development tools, requirements management, version control and deployment pipeline

would simplify the creation of regulatory compliant development practices.
Conclusions: Regulations could be improved for more agile and incremental method in quality approval, the final step before the

actual deployment of the software. Improved development practices and tool integration, created in cooperation by tool vendors,
system providers, and regulatory authorities, could support developers who are not comfortable with fixed, and rigid practices of
regulated software development.

Keywords: Regulated software, DevOps, Standards

1. Introduction

Numerous industries require reliability, visibility, and trace-
ability of the software project to ensure safety and trustworthi-
ness of the result. These industries have regulatory authorities,
which require proofs from manufacturers that the software run-5

ning in their products is developed in accordance to prescribed
practices before accepting the product to the markets.

Regulatory authorities have requirements for the product de-
velopment process that must be fulfilled, such as proofs of the
software verification and traceability of the software develop-10

ment process. The main challenge in plan-driven methods for
critical systems software development is in requirements man-
agement, particularly in the inability to accommodate changes
once the development has begun [1].

So far, agile and lean methods have been tailored for regu-15

lated development by enriching them with planning practices

Email addresses: teemu.laukkarinen@tut.fi (Teemu Laukkarinen),
kaku@mmmi.sdu.dk (Kati Kuusinen), tommi.mikkonen@helsinki.fi
(Tommi Mikkonen)

[2]. However, there is not yet evidence how DevOps [3] fits
to these regulatory standards. As the term DevOps has ambi-
guity in software industry [4] and our work focuses on prac-
tices and tools, we define DevOps as ”practices that reduce and20

join repetitive tasks with automation in development, integra-
tion, and deployment”.

This paper proposes ways to improve tools and practices used
in DevOps context so that they would better meet regulatory re-
quirements and thus simplify regulatory software development.25

The paper is a sequel to [5], where we identified key inhibitors
of DevOps in the domain of medical software based on a liter-
ature survey and a number of designs.

Our previous work [5] could not identify related research on
DevOps for medical device software development, and, in fact,30

research on DevOps in embedded software domain – which
medical device software essentially is – is also scarce [6]. Ebert
et al. [7] add that continuous deployment to the customer en-
vironment is not a feasible goal for safety-critical software:
failure is not an option, and rapid customer feedback becomes35

largely inapplicable. However, they state that quick and reliable

Preprint submitted to Information and Software Technology January 29, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

delivery is possible also in regulated environments, although
accomplishing this might not be as straightforward as with sim-
pler contexts.

2. DevOps and Regulations: Sample of two Standards40

Previously [5], we examined two medical device and health
software IEC/ISO standards, which were suggested by an in-
dustrial partner working on medical device software. The stan-
dards are IEC 62304 – Medical Device Software – Software
Life Cycle Processes [8] and IEC 82304-1 – Health Software45

– Part 1: General Requirements for Product Safety [9]. These
standards are related; IEC 82304-1 uses the software life-cycle
model of IEC 62304 while giving eases in verification activities,
as it is not applicable for life threatening medical devices. The
intended medical use of the end product determines the appli-50

cable standard: IEC 62304 is for any medical device that con-
tains hardware provided by the device manufacturer whereas
IEC 82304-1 is for health software that runs on general pur-
pose hardware that may be acquired and controlled by the cus-
tomer. IEC 62304 is also applicable for medical software used55

for medical treatment or diagnosis, even if the software runs on
general purpose hardware.

IEC 62304 defines a software life-cycle model that consists
of planning, requirement gathering, design, implementation,
verification, integration testing, system testing, and releasing60

activities as separate phases. Moreover, risk management, con-
figuration management, and problem tracing are expanded over
the whole life-cycle. In IEC 62304, the configuration manage-
ment means tracing all the phases of all the identifiable deliver-
able of the software, including software units, documentations,65

test cases, and test reports to the initial software requirements.
Risk management should follow ISO 14971 risk management
for medical devices standard. Furthermore, ISO 13485 – an ex-
tended version of ISO 9001 quality management standard for
medical devices – should be used for quality management.70

While adopting the software life-cycle model of IEC 62304,
IEC 82304-1 adds extra processes and activities before and after
the life-cycle model to satisfy all the regulatory requirements.
Such additional parts include user instructions’ contents and
post-market activities.75

Neither of the standards specify the practical execution of
their processes and activities. Thus, they allow the use of any
tools and methods as long as the required activities are com-
pleted in accordance to the standards.

Regulatory software development may demand that the de-80

velopment tools, frameworks, libraries and operating system
software are regulated too. IEC 62304 defines Software of Un-
known Provenance (SOUP) for any included software that is not
implemented according to the standard. All the SOUP items
must be considered in the risk assessment. The implemented85

software must then contain risk control measures to reduce pos-
sible consequences of any risk realization to acceptable level.
IEC 62304 does not require development tools to be regulated,
but it does require documentation and tracing of them and their
versions to ensure repeatability of the life-cycle afterwards.90

3. A Call to Action

Today, software development has split on two major tracks.
One is based on lean and agile methods, where fast develop-
ment and deployment are the key focus through practices such
as DevOps. The other track that relies on documentation-heavy95

development for regulated software to ensure the correctness,
reliability, and safety of the software before the deployment.
The lean and agile methods may be more prone to errors that
end up into the final product, but it is also faster to find and
fix those errors. Thus, there is clear motivation to fuse the best100

practices of these tracks together. As result, the lean and ag-
ile methods might produce higher quality, and the documenta-
tion heavy regulated software development might become eas-
ier and faster. In following, we discuss fusing these tracks in
point-of-views of DevOps and regulated software development105

practices.

3.1. Improving Tools

Put briefly, DevOps is about automated tool chain, and regu-
lated software is about ensuring the correctness of the software.
There is no inherent conflict between these two, but at the mo-110

ment the DevOps tool chains do not realize the precision of the
tracing requirements of regulated software development. We
argue that the value of using DevOps could be increased for
the regulated software development with practices introduced
in the following list, which was gathered by studying JIRA,115

GIT, Jenkins and Docker in relation to IEC 62304:

• Item tracking across tools should be a standard practice.
Traces of items are needed, starting from the requirements
and ending with the final product. Today, items must often
be connected together manually. As an example, Figure 1120

presents simplified traceability requirements for software
items of IEC 63204. Any item related to Requirement B
must be traceable over whole version history and at every
point of the life-cycle inside the workflow tool. We argue
that the workflow, version history, and continuous integra-125

tion tools should form connections automatically to reduce
non-productive development work. To the best knowledge
of the authors, presently there is no de-facto tool chain to
support that.

• Tools should include standard templates that comply with130

regulatory requirements. These templates should be avail-
able for all the traced items and the workflows that the
items must follow.

• The tools should work hierarchically. In the best scenario,
the developer can create, link, and version control require-135

ments, consequential software items, test items, test re-
ports, and so forth starting from the workflow tool and
moving down to the corresponding implementation and
testing tools, without connecting any items manually. On
the other direction, any changes to the items should propa-140

gate back upwards so that a change can invalidate accepted
test runs, for instance. Figure 2 illustrates this.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Requirement A

Requirement B
Requirement *

SW item 1
SW item 2
SW item *

Requirement B

SW item 2

Verification

Integration

System testing

Audition

Risk Assessment

Problem
Resolutions

Implementation

Requires version history

Design 

Life-cycle items tracked in the workflow

Risk control

Release 

Figure 1: An illustration of the traceability requirements of IEC 63204 life-cycle between Requirement B and software (SW) Item 2. The sub-processes and their
items are omitted for presentation clarity.

• The tools should guide the developer to follow the work-
flow in a fashion that complies with the regulatory require-
ments. This would make it easier for new developers to145

work on regulated software development, which in turn
would reduce training costs and eliminate errors in follow-
ing the process.

3.2. Pushing the Envelope

We also argue for further usage of DevOps in the regulated150

software development. The development team could use con-
tinuous delivery internally, and the workflow tool could visual-
ize how close the development is to a release and what is yet to
be done. Documentation and its generation could be integrated
in the delivery pipeline to increase regulatory authorities’ con-155

fidence to the software and help developers to create all the re-
quired documentation items. Staging environments could use
real-life, potentially live data in testing, and compare it to the
previous version of the system. Finally, with virtualization, the
whole development process and deployment could be archived160

so that it can be brought back to alive, replayed, and examined
later to investigate what went wrong if the software fails after
deployment.

3.3. Redefining Regulatory Requirements

Regulations and accompanied standards could be improved165

to better relate the regulated software development with Dev-
Ops practices. In particular, standardized documentation, test,
and audition reports that tools generate for the authorities would
be a low-hanging fruit. Furthermore, the tool chain could pre-
vent generating such before the required steps are completed,170

and the uncertainty of the developers towards ”what is enough
documentation” would definitely be reduced.

We completed this study without considering requirements
for regulated development tools, as IEC 62304 does not require
such. Consequently, such requirement would limit the available175

tools considerably. Related to this, we find two suggestions.
Firstly, regulatory authorities should consider adopting the way
of IEC 62304, where possible flaws of the tools are considered
in the risk assessment. After all, the tool chain at its finest starts
from the correctness of the CPU. Secondly, the suggested im-180

provements to the tools would also make it easier to implement
regulated development tools.

4. Summary and Conclusions

In this paper, we have discussed adopting DevOps practices
and tools in regulated software development; more subjective185

aspects like developer and company cultures are overlooked
here, but we plan to study them in the future work. We propose
developing DevOps inspired methods that help developers deal
with requirements of tracing, documentation, repeatability, and
deployment, and automating tedious but necessary activities.190

Creating practices that are applicable across multiple standards
may be difficult, but close discussion should be established be-
tween the regulatory authorities, standardization, and develop-
ers over the needs of software development for future editions
of the standards.195

References

[1] M. Mc Hugh, O. Cawley, F. McCaffcry, I. Richardson, X. Wang, An agile
v-model for medical device software development to overcome the chal-
lenges with plan-driven software development lifecycles, in: Software En-
gineering in Health Care (SEHC), 2013 5th International Workshop on,200

IEEE, 2013, pp. 12–19.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TRequirement B:
• Description
• Version #

Word Processor SW

To
o

ls
It

em
s

Write requirement

Source code editor
/ IDE

SW Item 2:
• Implementation
• Version #

Word Processor SW

Test Case:
• Description
• Version #

Source code editor
/ IDE

Test Case Item:
• Implementation
• Version #

Write code file

Workflow Tracking

Write code file Write test case

Create requirement Create SW item Create test case

Add, create, link, update, and follow items

Create test case item

Link Link Link

Continuous Integration

Version Control

Figure 2: An example of hierarchical use of tools. The shaded boxes indicate actions that the tools could help perform through automation during the workflow.
For example, creating a software item would link it to a requirement, create a stub file, version control it, and open the preferred editor for writing the code. The
workflow steps are reduced and simplified for presentation clarity.

[2] O. Cawley, X. Wang, I. Richardson, Lean/Agile Software Development
Methodologies in Regulated Environments – State of the Art, Springer
Berlin Heidelberg, 2010, Ch. Proc. Lean Enterprise Software and Sys-
tems: First International Conference, LESS 2010., pp. 31–36. doi:205

10.1007/978-3-642-16416-3_4.
[3] P. Debois, DevOps: A software revolution in the making, Journal of Infor-

mation Technology Management 24 (8) (2011) 3–39.
[4] J. Smeds, K. Nybom, I. Porres, DevOps: a definition and perceived adop-

tion impediments, in: International Conference on Agile Software Devel-210

opment, Springer, 2015, pp. 166–177.
[5] T. Laukkarinen, K. Kuusinen, T. Mikkonen, Devops in regulated software

development: case medical devices, in: Proceedings of the 39th Interna-
tional Conference on Software Engineering: New Ideas and Emerging Re-
sults Track, IEEE Press, 2017, pp. 15–18.215

[6] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H. Olsson,
J. Bosch, M. Oivo, Towards DevOps in the embedded systems domain:
Why is it so hard?, in: System Sciences (HICSS), 2016 49th Hawaii Inter-
national Conference on, IEEE, 2016, pp. 5437–5446.

[7] C. Ebert, G. Gallardo, J. Hernantes, N. Serrano, Devops, IEEE Software220

33 (3) (2016) 94–100.
[8] IEC, 62304: 2006 medical device software – software life cycle processes,

International Electrotechnical Commission, Geneva, Switzerland.
[9] IEC, 82304-1: Health software – part 1: General requirements for product

safety, International Electrotechnical Commission, Geneva, Switzerland.225

pp. 30.

6


