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Abstract

Obesity is associated with changes in the plasma lipids. Although simple lipid quantification
is routinely used, plasma lipids are rarely investigated at the level of individual molecules.
We aimed at predicting different measures of obesity based on the plasma lipidome in a
large population cohort using advanced machine learning modeling. A total of 1,061 partici-
pants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183
plasma lipid species were measured in a novel mass spectrometric shotgun approach. Mul-
tiple machine intelligence models were trained to predict obesity estimates, i.e., body mass
index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage
(BFP), and validated in 250 randomly chosen participants of the Malmé Diet and Cancer
Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipi-
dome predicted BFP the best (R? = 0.73), based on a Lasso model. In this model, the stron-
gest positive and the strongest negative predictor were sphingomyelin molecules, which
differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-
related aberrations of lipid metabolism. Moreover, we used this regression to probe the clini-
cally relevant information contained in the plasma lipidome and found that the plasma lipi-
dome also contains information about body fat distribution, because WHR (R? = 0.65) was
predicted more accurately than BMI (R? = 0.47). These modeling results required full resolu-
tion of the lipidome to lipid species level, and the predicting set of biomarkers had to be suffi-
ciently large. The power of the lipidomics association was demonstrated by the finding that
the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or
low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation
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analyses of the individual lipid species, controlled for age and separated by sex, under-
scores the multiparametric and lipid species-specific nature of the correlation with the BFP.
Lipidomic measurements in combination with machine intelligence modeling contain rich
information about body fat amount and distribution beyond traditional clinical assays.

Introduction

Obesity, the abnormal or excessive fat accumulation that may impair health [1], is associated
with increased morbidity and mortality from diseases such as type 2 diabetes and cardiovascu-
lar disease [2, 3]. According to World Health Organization, obesity has nearly tripled since
1975, which resulted in 39% of overweight and 13% of obese adults worldwide in 2016 [1].

Obesity can be estimated in a variety of ways: Most commonly, the body mass index (BMI),
a ratio of body weight-for-height [4], is used as an indicator of general adiposity. It is conve-
nient and simple but results in varying cardiovascular and metabolic manifestations across
individuals. Although BMI largely increases as adiposity increases, it does not distinguish
between fat and lean mass, and therefore, individuals with greater muscle mass will also have
higher BMIs [5]. The waist-hip ratio (WHR) is an easily accessible measure of body fat distri-
bution and consists of a comparison of waist and hip circumferences. Larger WHR indicates
more intra-abdominal fat and is associated with higher risk for type 2 diabetes, cardiovascular
disease, and mortality [6]. Similarly, waist circumference (WC) can be used and has been con-
sidered a more straight forward and reliable measure compared with WHR [7]. Furthermore,
body fat percentage (BFP) is a measure of proportion of adipose tissue in the body compared
with lean mass and water [8] and is mostly determined using bioelectrical impedance in field
methods. Bioelectrical impedance analysis is a repeatable, easy-to-use, and low-cost method
for the estimation of BFP; however, its reliability can be influenced by various factors, includ-
ing the equation used and the characteristics of the sample in which they have been validated
in [9]. BFP is associated with increased all-cause mortality independently of BMI and is often
suggested to be a better estimation of adiposity than BMI for prognostic and exploratory pur-
poses [10].

The human genetic predisposition to obesity is rather low. For example, a set of 97 genetic
loci have been found associated with BMI, but they accounted for only 2.7% of BMI variation
[11]. Similarly, a set of 12 loci explained 0.58% of the variance in BFP [12]. Thus, the genotype
may not provide sufficient information for reliable risk assessment of obesity and associated
outcomes, highlighting the need for more direct, phenotypic read-outs.

Lipidomics is an omic science, which comprehensively measures the entirety of lipid mole-
cules in a sample [13-15]—the lipid phenotype—and can be used to identify multiparametric
biomarkers for disease detection, prediction, and patient stratification. For shotgun lipidomics,
this can be obtained in a single mass spectrometric measurement after direct infusion of the
sample. The plasma lipidome offers a plethora of information on lipids, the metabolism, and
biological functions that are currently inaccessible to routine clinical lipid chemistry. This
information can be used to obtain insights into many complex disease processes [16, 17]. The
shotgun lipidomics technique, in which lipids are efficiently obtained from biological material
by automated organic solvent extraction and measured quantitatively and reproducibly in an
automated high throughput approach, allows fast screening of several thousand samples with
high reproducibility [18], rendering this technology a promising tool for clinical risk assess-
ment and precision biomedicine.
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Although first lipidomic biomarkers are entering the clinic [19, 20], certain analytical stan-
dards, such as intersite reproducibility, need to be established in order to make lipidomic mea-
surements generally accepted in clinical settings [21, 22].

Here, we applied machine learning to model obesity estimates for a lipidomics data set of
the large FINRISK 2012 population cohort comprising 1,061 plasma samples [23]. We identi-
fied a complex lipidomic signature for BFP and validated the model with an independent data
set of the Malmé Diet and Cancer Cardiovascular Cohort (MDC-CC) comprising randomly
selected 250 plasma lipidomes [24, 25] measured on the same platform [18]. We could predict
BFP with an error of 8% of its full range and explain 73% of its variation based on age, sex, and
the lipidome. This lipidomic signature of obesity outperforms classical clinical lipid measures
and provides fine-grained and quantitative molecular phenotype enabling stratification and
identification of different obesity manifestations.

Analyzing the plasma lipidome or the metabolome [26] to estimate obesity is of course
much more complicated than by direct measurement and not what we aimed for. Instead, we
are investigating how the plasma lipids reflect metabolic status and whether the plasma lipi-
dome can be used to predict health and disease. There is already ample evidence that the
plasma lipidome is changing in different disease states [16, 27], and here, we show that the
plasma lipidome indeed gives information beyond obesity measures and classical clinical lipid
parameters, such as triglycerides and cholesterol.

We find that the lipidome gives information about the body fat distribution as measured by
the WHR because a number of lipid species correlate with the WHR, even when controlled for
BMI. Lipidomes show differences between the sexes, concerning lipid levels, lipid coefficients
of variation, and correlations of lipid species with obesity measures. These correlation profiles
were similar between the 3 obesity estimates but very different from those lipids correlating
with high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,
and triglyceride levels indicating that these commonly used lipid markers only insufficiently
capture molecular lipid metabolism. We discuss correlations with obesity measures and find
that highest lipid impact on our modeling algorithm features 4E,14Z-sphingadiene containing
sphingomyelins. Finally, we look the variation not explained by the BMI and BFP regression
and find those related to other clinical parameters, such as HDL and LDL cholesterol.

Results and discussion

We performed lipidomics analysis of 1,061 plasma samples of the FINRISK 2012 cohort (S2
Table shows clinical baseline characteristics). Plasma lipid species vary substantially between
individuals and on a day-to-day basis [28, 29]. Coefficients of variation for each lipid subspe-
cies showed population variations of 23% to 150% (S1A Fig), which is considerably larger than
our 6.0% median technical coefficient of subspecies variation as assessed by reference samples
(method precision). Low biological variation was found in lipid classes such as cholesterol
(26%) and sphingomyelin (SM, median of 26%), whereas high variation was seen in dietary
lipids like triacylglyceride (TAG) and diacylglyceride (DAG) species but also for phosphatidyl-
ethanolamine (PE) species. There are differences in variations between the sexes (S1B Fig),
with TAGs varying more in males and SM varying more in females. Sex-specific differences
are well documented in lipidomics studies [27, 30, 31].

Modeling obesity

Associations of BMI and obesity with lipidomes were investigated before [27, 32], and a more
detailed discussion can be found in the S1 Text. We proceeded to construct models predicting
obesity from the lipidome of the FINRISK data set. Models were trained on lipid subspecies,
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including age and sex (S3 Fig) as covariables. Using a Lasso model [33] trained in a cross-vali-
dation loop, we first used BMI as our obesity measure and reached a mean absolute error
(MAE) of 2.5 + 0.18 and an explained variation of 47% (S7 Table). Then, using the same proce-
dure, we analyzed how the plasma lipidome is predicting other obesity measures compared
with the models we obtained for BMI using a normalized MAE. On this comparable metric,
BMI was outperformed (Fig 1A and S7 Table) by WC (MAE = 6.5 £ 0.59, 64% variation
explained, WHR (MAE = 0.039 + 0.0033, 65% variation explained), and BFP (MAE = 3.6 +
0.33, 73% variation explained). This indicates that the lipidomic information about adiposity,
as measured by WHR, WC, and BFP, is more precise than for BMI. Therefore, lipidomes con-
tain information about the actual amount of body fat (BFP) and its distribution (WHR/WC).
In the case of BFP, the high variation explained by the model is probably due to specific lipids
released by the adipose tissue into the plasma. A similar notion has been reported in the case
of branched-chain and aromatic amino acids [34].

We tested the presence of BFP-specific information in the lipidome by creating linear mod-
els for each lipid subspecies controlled for age and sex. This returned 141 significant lipid spe-
cies after controlling for multiple testing. A similar amount of lipid species remained
significant, even when the model was controlled for BMI (n = 82), WHR (n = 109), or BMI
and WHR together (n = 52, S5 Table). A similar situation is found for WHR, for which linear
models controlled for age and sex still returned similarly high amount of lipid specific for
WHR (n = 134), when additionally controlled for BMI (n = 103), BFP (n = 90), and the combi-
nation of BMI and BFP (n = 93). As the relation of WHR and BFP with BMI seems nonlinear
(52 Fig), we also tested the relation using natural splines with similar results (S5 Table). All
these results argue for a BFP and WHR specific but BMI independent lipid biology captured
by human plasma lipidome, which is still largely unexplored.

Different BFP models and conditions

Six different models predicting BFP were trained and their parameters learned on 796 random
training samples in a cross-validation loop (Fig 1B, Results for WHR and BMI in S7 Table).
Tree-based random forest [35] and stochastic gradient boosting [36] do not perform signifi-
cantly better than an ordinary linear model [37] of all lipid predictors. Partial least squares
[38], which is well suited for the multicollinearity characterizing lipidomic data sets, was per-
forming better but the Lasso [33] and Cubist [39] models showed even better performance.
The simple Lasso model fit the data equally well as the Cubist model, and we used it for all
remaining analyses because of its simplicity and interpretability. We also tested whether nor-
malizing absolute lipid amounts to the total lipid amount in a sample (molar fraction [mol%])
would improve the fit by removing the influence of different lipid levels between samples.
However, we found no evidence of this (Fig 1C).

Description of the BFP model

The best performing BFP Lasso model (MAE = 3.61 + 0.33, variation explained = 73.2 + 5%)
resulted in 58 predictors, but there is also a slightly less performing Lasso model (MAE =
3.65 + 0.33, variation explained = 72.9 + 5.1%) with only 45 predictors within 1 standard
error (54 Fig and S6 Table). The simpler multiparametric model based on 45 predictors is
essentially a subset of the complex multiparametric model based on 58 predictors (Figs 2
and S5).

The Pearson correlation network of the predictors of both Lasso models (Fig 2) shows sev-
eral interesting features. Within the common lipid predictors of both BFP Lasso models, SM
34:1;2 has the greatest negative and SM 34:2;2 the greatest positive lipid S-coefficients by far
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Fig 1. Regression of obesity measures by lipidome, age, and sex. (A) The NMAE (MAE divided by the range from the 5th to 95th percentile; S2 Fig) of different
obesity measures based on Lasso regression of molar amount data. Only subjects were used, for which all obesity measures were available. (B) MAE of BFP comparing
different regression algorithms on molar lipid amount data (S7 Table). (C) Lasso based NMAE of BFP comparing direct molar amounts (pmol) to molar amounts
standardized to the total lipid amount within a sample (mol%). A two-sided, unpaired Mann-Whitney U test resulted in a p-value of 0.99. (A-C) The summary statistics
of a 5x repeated 10-fold cross validation of the FINRISK training data set (80% of the data set) are shown. (D) Quantile-quantile plot of the training residuals of the
Lasso BFP model against a normal distribution. (E) Original BFP values (reference) in the FINRISK training, test, and the MDC-CC validation data set plotted against
the prediction of Lasso regression based FINRISK training set. n signifies the number of samples in each set. (F) Histogram of fasting times of subjects in the FINRISK
data set and scatter plot of the Lasso residuals against fasting time, including a linear model. The slope of the linear model had a p-value of 0.33. BFP, body fat
percentage; BMI, body mass index; gbm, stochastic gradient boosting; Im, linear model; MAE, mean absolute error; MDC-CC, Malmé Diet and Cancer Cardiovascular
Cohort; mol%, molar fraction; NMAE, normalized MAE; pls, partial least squares; pmol, picomol; rf, random forest; WC, waist circumference; WHR, waist-hip ratio.

https://doi.org/10.1371/journal.pbio.3000443.g001

(S5 Fig and S6 Table), whereas both are correlated with each other in the correlation network
within a cluster of other SM species. The additional double bond in SM 34:2;2 is likely due to
an 18;2;2 long-chain base [40, 41], which is present in human plasma [41] and has been shown
to be a 4E,14Z-sphingadiene [42], thus suggesting SM 18:2;2/16:0;0 as the subspecies for SM
34:2;2 in plasma [31]. SM 34:2;2 and further doubly unsaturated SMs correlate positively with
BEP, i.e., SM 36:2;2 and SM 38:2;2 especially in females (S11 Table), in which they also show
higher levels (S3 Fig and S4 Table, [27, 31]). The 4E,14Z-sphingadiene is suggested to be pro-
duced by an unknown desaturase, which also creates the single 14Z double bond in 1-deoxy-
sphingolipids [43]. Its supposed higher activity in females results in higher levels of the
respective ceramides (Cers) and SMs [27]. As SM 34:1;2 has been reported to be >96% SM
18:1;2/16:0;0 in plasma [31], it is the occurrence of 4E,14Z-sphingadiene in specifically SMs
with a 16:0;0 fatty acid, which is the major correlation with BFP picked up by the Lasso models.
Their significance is supported by the reduction in prediction power if the SM class is removed
from the model (S8 Fig), the fact the SMs are a particularly stable lipid class in plasma (S1 Fig),
and that long-chain base effects of plasma sphingolipids have been recently reported to corre-
late with BMI [31]. How the balance between sphingosine and 4E,14Z-sphingadiene is
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Fig 2. Lasso model predictors. Pearson correlation network of the lipid predictors of the best Lasso model predicting
BFP with the lowest MAE and the model at 1 standard error distance (as in S4 Fig). A network cutoff of |r|>0.5 was
used. Nodes are shaped as diamonds for predictors in both models and as circles if the predictor appears only in one
model. Nodes are filled according to the -coefficients of the model with the lowest MAE, with a gradient from blue to
white for negative S-coefficients and a gradient from white to red for positive S-coefficients. Lipid labels are colored
blue for negative f-coefficients and red for positive -coefficients. Edge weights indicates the value of the correlation
coefficient (r). All values of r are positive in this network. The data are reported in S6 Table, and S-coefficients are
plotted in S5 Fig. BFP, body fat percentage; CE, cholesteryl ester; Chol, cholesterol; DAG, diacylglyceride; LPC,
lysophosphatidylcholine; MAE, mean absolute error; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI,
phosphatidylinositol; SM, sphingomyelin; TAG, triacylglyceride.

https://doi.org/10.1371/journal.pbio.3000443.9002

mechanistically related to the overall metabolic status and its usefulness as a general BFP bio-
marker needs to be further investigated.

Associated with the SM cluster are multiple lipid predictors (cholesteryl ester [CE] 15:0;0,
CE 17:0;0, and PC O-17:0;0/17:1;0) with odd chain fatty acids (Fig 2), which could be due to
dairy consumption [44] or dietary fiber intake [45]. However, their association with SM and
Cer species (Fig 2) might also indicate that these fatty acids are derived from hydroxylated
fatty acids in glycosphingolipids or phytosphingosine [46] and therefore link the model to
sphingolipids not measured in this study. Furthermore, we find a cluster of correlated lyso-lip-
ids and of TAG species (Fig 2). TAGs with positive -coefficients are largely consistent with
common fatty markers [47]. A more detailed discussion of this observation and the association
of product-to-precursor ratios of lipid metabolism enzymes to obesity measures is provided in
the S1 Text.

Although the Lasso models are dominated by 2 coefficients of the sphingadiene SMs, the
error of the model increases significantly, when less than 20 lipid predictors are used (54 Fig),
arguing that a single biomarker, or a small set of biomarkers, are not sufficient to predict and
to faithfully capture the complex molecular scenario associated with obesity. In the FINRISK
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data set, fasting duration for subjects peak around 5 hours (semifasting); however, we saw no
trend in the model residuals with fasting length (Fig 1F), indicating that differences in fasting
time do not have an impact on the accuracy of the prediction of BFP. This is likely due to the
fact that our model is not only based on diet-derived lipids, the levels of which are acutely vary-
ing in the blood plasma, but that the predictors of the model are spread across all lipid classes
except the one HexCer species (S12A Fig). For example, changes in the diet are reflected in
serum TAGs within the first few hours, whereas serum CE and phospholipids reflect the last 3
to 6 weeks [48].

Independent validation of the obesity model

Training of the BFP model on the FINRISK test set resulted in a cross-validation MAE of
3.61 £ 0.33 BFP units, which is about 8% of the BFP range (S2C Fig). The training error of the
model was found at a MAE of 3.33 BFP units, and the mean error of the hold out FINRISK test
data was at 3.84 (Fig 1E & Table 1). We validated the FINRISK based BFP model in a second,
independent data set (MDC-CC), the clinical baseline characteristics of which differ from the
FINRISK data set (S2 Table).

This validation resulted in a MAE of 3.67, which is only slightly above the cross-validation
error obtained with the FINRISK data set. The validation also confirms that the models
obtained were independent of the fasting duration, because the participants from the
MDC-CC cohort were fasted over night.

The MDC-CC validation data set was measured 2 years later than the FINRISK data set on
the same platform, arguing for our shotgun lipidomic approach to be highly reproducible.
Taken together, these results show that we have identified a robust BFP lipidomic signature
(Fig 2 and S6 Table), which was validated in an entirely independent data set. It would be
interesting to see whether the model is transferable to subjects from other geographic regions
with different population structures and lifestyle habits, because both data sets used originate
from northern European countries.

Comparison to a metabolomic obesity model

Recently, a metabolomic data set was used to model BMI using 49 selected metabolites. This
study found that this set of metabolites explained 43% of BMI variation when age and sex were
included [26]. If the model was extended to the full set of 650 metabolites measured in the
study, 47% to 49% of the BMI variation could be explained. In both cases, a major fraction of
the metabolites (47% and 40%, respectively) were associated with the lipid superpathway. Our

Table 1. Reproducibility of the model. Models were trained on the FINRISK training data set in a cross-validation
loop, which results in a BFP cross validation MAE. Fitting the model on all the training data, using the best performing
parameter set, results in a training MAE, testing the model on the hold out test data gives the testing error, and apply-
ing the model to the independent MDC-CC data set results in the validation error. See S7 Table for results of all
models.

MAE (BFP) Data set n MAE
Cross validation FINRISK 796 3.61 +0.33
Training FINRISK 796 3.33

Testing FINRISK 206 3.84

Validation MDC-CC 250 3.67

Abbreviations: BFP, body fat percentage; MAE, mean absolute error; MDC-CC, Malmg Diet and Cancer

Cardiovascular Cohort

https://doi.org/10.1371/journal.pbio.3000443.t001
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BMI model, although similar in many modeling aspects, is exclusively based on shotgun lipi-
domics. With 75 predictors in a Lasso model, it explains 47% of the BMI variation, and a
model with only 50 predictors resulted in 46.5% of the variation explained. Although the popu-
lation, experimental set-up, and computational modeling in the metabolomic study and in our
study are not directly comparable, this suggests that the data generated with our lipidome shot-
gun method provide predictions of comparable quality as liquid chromatography-mass spec-
trometry (LC-MS) metabolomic data used in the above-mentioned study. However, the goal
was achieved with a single measurement in a fully high-throughput assay. Therefore, shotgun
mass spectrometry lipidomics, with its quantitative and straight-forward approach, together
with fast measurements, is reproducible, robust [18], and well prepared to be used in a routine
clinical setting.

Although the metabolome-derived model [26] explained only about 50% of the actual BMI
variation, the metabolome-predicted BMI had improved features, such as better correlations
with other clinically important variables, e.g., insulin resistance and HDL cholesterol levels. In
addition, if the metabolome predicted a substantially higher BMI than the actual BMI of the
subject, these subjects scored worse on a set of clinical health measures. If, however, the meta-
bolome predicted a lower BMI than their actual BMI, the subjects scored better on the respec-
tive health measures. Because of uneven distribution of outliers in our models, we were not
able to fully show the just described outlier characteristics as in Cirulli and colleagues [26].
However, when we restrict our models to a range of the FINRISK data set, in which both over-
and underestimated outliers are present, we observe similar effects (S9 Fig). Still, the overpre-
dicted outliers are in the range of low observed BMI and the underpredicted outliers in a range
of high observed BMI. Therefore, the mean BMI of overpredicted samples (24.3 + 2.0) is much
lower than the mean BMI of underpredicted samples (26.9 + 2.1). Despite this adverse setting,
we could validate that individuals who had a lower BMI than predicted from the plasma lipi-
dome had worse routine clinical laboratory values, e.g., HDL and LDL cholesterol, than those
individuals whose actual BMI was higher than predicted (S9 Fig). Similar results were obtained
for our BFP regression of female subjects (S10 Fig), and weaker trends were observed for male
subjects (S11 Fig). Therefore, our results confirm the earlier outlier findings [26] but extend
them to a lipidomic setting and also to BFP as an obesity measure. They support the conclu-
sion that a multiparametric lipidomic estimate has a stronger predictive value on obesity than
the classical predictors, improving on shortcomings in terms of total fat amount and distribu-
tion. They further show that lipidomics captures obesity-related metabolic aberrations more
accurately than classical clinical parameters. The fact that outliers of the obesity predictions
align with better or worse clinical laboratory values suggests overlapping markers of obesity
and other diseases, e.g., a dysregulated lipid metabolism, which not only align with obesity but
arange of diseases [47]. Although the lipid metabolism measured by the lipidome would be
interpreted by the model as, e.g., a higher BFP, these markers might actually be hinting at
other diseases. This unaccounted variation should be further explored.

Effect of input variables and level of lipidome resolution on BFP

To test the quality of the lipidomic predictions, we compared our results with predictions of
BFP based on clinical parameters (Fig 3 and S8 Table). As a zero model, we used the mean of
the BFP distribution with a MAE of 7.3 (Fig 3B, —Age, —Sex, No Lipids [L]) or 0% of variation
explained (S7 Fig and S9 Table). Addition of routine clinical laboratory values (e.g., total cho-
lesterol, triglycerides, LDL cholesterol, HDL cholesterol) to the model hardly improved the
BEP prediction (Fig 3B [C], MAE = 7.1 or 8.0% of variation explained). Inclusion of additional
variables, e.g., smoking status or blood pressure treatment alone (Fig 3B [A], MAE =7.2 or
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Fig 3. Effect of different input variables and lipidome detail on the BFP regression. (A) Lipidome hierarchy. The FINRISK lipidome, used for modeling, can be
aggregated into 4 categories, 14 lipid classes, 143 species, and 183 lipid species and subspecies (S6 Fig). (B) MAE cross-validation mean and standard deviation (n = 50)
based on lipidomes of the FINRISK training data set (n = 796) are shown on the y-axis. Modeling was either done without age and sex as covariables (—Age —Sex) or
with (+Age +Sex). Results are colored according to lipidome detail. Either no lipid information was used (No Lipids), or lipidome information was aggregated into lipid
categories (Categories), lipid classes (Classes), and lipid species (Species). Subspecies denotes the highest structural resolution possible on the platform with a mix of
species and subspecies. Variables in addition to the lipidome are shown on the x-axis: No additional input [L]; routine clinical laboratory variables [C]: total cholesterol,
HDL cholesterol, LDL cholesterol, triglycerides, HDL to LDL ratio, total cholesterol to HDL ratio, triglycerides to HDL ratio; additional variables [A]: blood pressure
treatment, lipid treatment, smoker, pregnant, fasting, prevalent diabetes, prevalent CVD, prevalent liver disease, prevalent coronary heart disease, prevalent stroke,
systolic blood pressure, diastolic blood pressure; or the combination of clinical and additional variables [C + A]. Special points are the zero model (L, No Lipids, —Age
—Sex), which does not use any predictors but returns the mean of the BFP variable, and the regression only based on age and sex, (L, No Lipids, +Age +Sex), both of
which are used as references for BFP predictability without regression based on L, C, or A input (S8 Table). BFP, body fat percentage; CVD, Cardiovascular disease;
HDL, high-density lipoprotein; LDL, low-density lipoprotein; MAE, mean absolute error.

https://doi.org/10.1371/journal.pbio.3000443.9003

5.8% variation explained) or together with the routine clinical laboratory values (Fig 3B [C
+ A], MAE = 7.0 or 11% of variation explained) also did not improve prediction of BFP.

We then assessed how increased structural resolution of the lipidome influenced the predic-
tive outcome (Figs 3A and S6). Already including the total molar amounts of 4 plasma lipid
categories [49], glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids, improved
prediction outcomes to a MAE of 6.7 to 7.1 (7.0%—-18% variation explained; Categories).
Because this enhancement is adding to the improvement obtained by clinical parameters
alone, it shows that lipid category amounts add information not contained in the other vari-
ables. The next level of structural detail is that of plasma lipid classes (e.g., PC or PE). Addition
of the total molar amounts of 14 lipid classes to the BFP model further improved the prediction
t0 6.0 to 6.1 or 27% to 32% variation explained (Classes). The biggest improvement of the
model was obtained when information of molar amounts of individual lipid molecules (143
species or a mixture of 183 species and subspecies) was used, reaching a MAE of 4.8 + 0.43 or
55% to 57% variation explained (Species/Subspecies). Therefore, molecular lipid information
is clearly superior in predicting BFP over more aggregated measures, such as HDL cholesterol,
LDL cholesterol, total cholesterol, lipid categories, or lipid classes. We confirmed that the pre-
diction based on lipid subspecies was not improved by including information on classical clini-
cal parameters. This is expected, since LDL cholesterol, HDL cholesterol, and triglycerides
have very distinct correlation patterns with the lipid subspecies profile (S16 Fig) and are, there-
fore, already represented in the lipidome. The correlations are in line with reported relative
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amounts of lipids found in these lipoproteins [50]. We also observed multiple interesting lipid
species-specific differences in these correlations, e.g., sex-specific signs for correlations of PE
species with HDL cholesterol. In the case of the clinical triglycerides measurement, the major
correlating lipid classes are expectedly TAG and DAG (S16 Fig). However, some highly unsat-
urated TAGs do not correlate strongly with the triglycerides value. Furthermore, sex-specific
correlations of triglycerides are observed for cholesterol and ceramides, both of which show
greater correlation coefficients in males than in females. This is in agreement with the results
provided in previous studies [30, 51].

Contrary to BMI, BFP is strongly influenced by gender (S2 Fig), which is reflected by the
improved prediction outcome after including age and sex variables into the model (S7 Fig).
BEP predictions based on age and sex variables alone already have a MAE of 4.5 to 5.2 or 45%
to 57% variation explained (Fig 3, +Age +Sex). When age and sex are considered, also routine
clinical laboratory values result in improved BFP prediction (Fig 3, +Age +Sex: C, C+A). How-
ever, when the structural detail of lipid information is increased, predictions of BFP improved
even further. For the model containing age, sex, and lipid subspecies, a MAE as low as
3.6 £ 0.33 or 73% variation explained was achieved. In this case, 62% of the variation not
explained by age and sex is explained by the lipidome (S10 Table). These subspecies models
are also not improved by the addition of clinical parameters or additional variables, which
again shows that these parameters provide no additional information for BFP prediction. Simi-
lar models for BMI, WC, and WHR show comparable results (57 Fig and S8 Table) with some
variation on the magnitude of dependency on age and sex or classical clinical parameters.

We also tested whether a lipid class was necessary for prediction or could be compensated
for by the other lipid classes. The most important lipid class for predicting BFP was SM. Apart
from PC, the only lipid class, the removal of which reduces model performance is SM (S8 Fig).
This is in agreement with complex correlation patterns observed for SM species. As mentioned
above, SM 34:1;2 is inversely correlated with BFP in males, whereas SM 34:2;2 is directly corre-
lated in females (Fig 4), both with a similar correlation estimate and the greatest positive (SM
34:1;2) and negative (SM 34:2;2) B-coefficients in the Lasso models (S5 Fig).

We conclude that the plasma lipidomes, measured by a single shotgun mass spectrometric
analysis, have significantly more predictive power predicting obesity than classically used clini-
cal parameters and that it is the resolution to molecular detail at the subspecies level that pro-
vides the relevant in