
i
i

“main_short” — 2019/1/18 — 10:02 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Aligning Optical Maps to De Bruijn Graphs
Kingshuk Mukherjee 1, Bahar Alipanahi 1, Tamer Kahveci 1, Leena Salmela 2

and Christina Boucher 1,

1Department of Computer and Information Science and Engineering, College of Engineering, University of Florida, Gainesville, FL.
2Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Optical maps are high resolution restriction maps that give a unique numeric representation
to a genome. Used in concert with sequence reads, they provide a useful tool for genome assembly and
for discovering structural variations and rearrangements. Although they have been a regular feature of
modern genome assembly projects, optical maps have been mainly used in post processing step and not
in the genome assembly process itself. Several methods have been proposed for pairwise alignment of
single molecule optical maps — called Rmaps, or for aligning optical maps to assembled reads. However,
the problem of aligning an Rmap to a graph representing the sequence data of the same genome has not
been studied before. Such an alignment provides a mapping between two sets of data: optical maps and
sequence data which will facilitate the usage of optical maps in the sequence assembly step itself.
Results: We define the problem of aligning an Rmap to a de Bruijn graph and present the first algorithm
for solving this problem which is based on a seed-and-extend approach. We demonstrate that our method
is capable of aligning 73% of Rmaps generated from the E. coli genome to the de Bruijn graph constructed
from short reads generated from the same genome. We validate the alignments and show that our method
achieves an accuracy of 99.6%. We also show that our method scales to larger genomes. In particular,
we show that 76% of Rmaps can be aligned to the de Bruijn graph in the case of human data.
Availability: The software for aligning optical maps to de Bruijn graph, omGraph is written in C++ and is
publicly available under GNU General Public License at https://github.com/kingufl/omGraph
Contact: Kingshuk Mukherjee (kingdpg@ufl.edu)

1 Introduction
Optical mapping is a system for creating an ordered, genome-wide, high-
resolution restriction map of a given organism’s genome. It was developed
by Schwartz et al. (1993), and then later automated in order to produce
optical maps at increasingly-high throughput. The optical mapping system
works as follows (Samad et al., 1995; Dimalanta et al., 2004): DNA mole-
cules are decoiled and elongated, restriction enzymes are applied to break
the DNA into fragments at the loci where the restriction sites occur, the
fragments are highlighted with fluorescent dye and digitally photographed
under a microscope. The images are analyzed to determine the relative
order and size of the fragments (Neely et al., 2011). These ordered lists of
fragment sizes are called restriction maps (Rmaps), and thus, correspond

to the output of this system. High-throughput technologies automate this
process and produce millions of Rmaps simultaneously. Lastly, the Rmaps
are typically assembled to genome wide optical maps, which are then used
for further analysis.

Ever since the generation of the first Rmap datasets, significant atten-
tion has been paid to the development of efficient algorithms for alignment
of the data (Valouev et al., 2006a). Now — almost 20 years later —
there exists methods to find pairwise alignments between Rmaps (Valouev
et al., 2006a), to align in silico digested contigs to a genome wide optical
maps (Nagarajan et al., 2008; Muggli et al., 2014), and to find align-
ments between Rmaps and/or genome wide optical maps (Leung et al.,
2017; Mendelowitz et al., 2016; Muggli et al., 2018). With these align-
ment methods Rmaps can be assembled, and combined with sequence data
for other downstream analysis. After assembly and/or alignment, optical
mapping data have successfully assisted in the reconstruction of several

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“main_short” — 2019/1/18 — 10:02 — page 2 — #2 i
i

i
i

i
i

2 Mukherjee et al.

genomes (Lin et al., 1999), validated the assembly of large eukaryote geno-
mes (Dong et al., 2013; Ganapathy et al., 2014; Vij et al., 2016; Beier et al.,
2017; Daccord et al., 2017; Jarvis et al., 2017), detected structural variati-
ons and rearrangements (Teague et al., 2010), and identified mis-assembled
regions in draft genomes (Muggli et al., 2015).

One of the most computationally challenging aspects of analyzing opti-
cal mapping data is assembly of the Rmap data. Currently, there exists only
a single non-proprietary tool for Rmap assembly (Valouev et al., 2006b),
which is unable to scale to even moderately-large genomes, such as rice.
Bionano Genomics has an assembler, yet its efficiency and scalability has
not been documented in the current literature. Nonetheless, it remains clear
that the complex errors in the data (see Subsection 3) make assembling
the data a difficult problem. A potential alternative to analyzing optical
mapping and sequence data is to first align the Rmaps to a graph constru-
cted from the sequence data. This alternative avoids assembly of the Rmap
data. One of the most common graphical representation of sequence data
is the de Bruijn graph, which is most-easily defined using a construction
algorithm. Given a set of sequences S = [s1, .., sn] and an integer k, a
de Bruijn graph G = (V,E) is built for S by creating a directed edge for
each unique k-length subsequence (k-mer) in S, labelling the outgoing
and incoming nodes with the prefix and suffix of the k-mer, and lastly,
gluing all nodes that have the same label. After constructing the de Bruijn
graph for a set S, the graph is traversed and the sequences corresponding
to the paths are returned. In contrast to Rmap assembly, there has been
a plethora of advancements in assembling genomes from sequence data
(Zerbino and Birney, 2008; Simpson et al., 2009; Bankevich et al., 2012).
The outcome of these advancements is the ability to build the de Bruijn
graph efficiently on even relatively-large genomes (Bradnam et al., 2013;
Boisvert et al., 2012; Butler et al., 2008).

Identifying alignments of Rmaps to a de Bruijn graph constructed on
a set of sequence reads, reference genome, or assembled contigs can then
be used for other downstream analysis. Especially when a high quality
reference genome is not available, it is advantageous to use a de Bruijn
graph rather than a set of contigs for Rmap alignment because the poten-
tial connections between the individual contigs present in the graph can be
leveraged in the alignment. The most obvious analyses that can be accom-
plished with this alignment include the detection of mis-assembled contigs
(Muggli et al., 2015; Lin et al., 2012), reconstruction of the genomes of
the same species (Lin et al., 1999), and identification of structural variants
(Teague et al., 2010). Yet, the problem of aligning Rmaps to a de Bruijn
graph has not been proposed or solved.

Our Contributions. In this paper, we formally define the problem of ali-
gning an Rmap to a de Bruijn graph and present the first algorithm for
solving this problem. Our algorithm is based on a seed-and-extend appro-
ach, where paths (“seeds”) that align to short segments of the Rmap are
found and then extended to create a single path that aligns to the Rmap.
We demonstrate that using our method, we are capable of aligning 73%
of Rmaps generated from the E. coli genome to the de Bruijn graph con-
structed from short reads generated from the same genome. We validate
the alignments and show that our method achieves an accuracy of 99.6%.
Similarly, we show our method is capable of scaling to larger genomes.
In particular, we show that 76% of Rmaps can be aligned to the de Bruijn
graph in the case of human data.

2 Related Work
AGORA (Lin et al., 2012) performs sequence assembly guided by optical
maps. It uses optical maps to guide in the sequence assembly by eliminating
alternate paths that are inconsistent with the optical map. In contrast to our
work, AGORA uses assembled genome wide optical maps. As compared
to Rmaps the genome wide optical map are longer, i.e. a single map covers

most of the genome, and their error level has been significantly reduced.
Thus the alignment algorithm in AGORA and our alignment problem are
not directly comparable. Other tools by Shelton et al. (2015) and Pan et al.
(2018) make use of optical maps in their pipeline for scaffolding.

The most commonly studied alignment problem of optical maps is the
alignment between two single molecule optical maps to detect overlaps.
A slight modification of this problem deals with aligning an Rmap to the
reference optical map to find its placement in the genome. Valouev et al.
(2006a) developed an algorithm that solved both versions of the problem.
They computed the best alignment using a dynamic scoring scheme similar
to the algorithm by Needleman and Wunsch (1970). Their scoring function
is defined as a log likelihood ratio test that takes into account the various
errors prevalent in the optical map data.

Another optical mapping alignment method is SOMA (Nagarajan et al.,
2008), which aligns contigs from a genome assembler to a genome-wide
optical map. SOMA uses a dynamic programming algorithm to perform
the alignment but optimizes a different scoring function which imposes a
fixed cost penalty on missing and additional cut sites and uses a chi-squared
function to penalize for sizing errors.

Over the past few years, new data structures and algorithms have been
applied to the optical map alignment problem to create TWIN (Muggli
et al., 2015), OMBlast (Leung et al., 2017) and Maligner (Mendelowitz
et al., 2016). OMBlast modifies the seed-and-extend approach used in
BLAST (Altschul et al., 1990) for finding alignments in optical mapping
data. Maligner provides two modes of alignment: an efficient, sensi-
tive dynamic programming implementation that scales to large eukaryotic
genomes, and a faster index based implementation for finding alignments
with unmatched sites in the reference but not the query. TWIN (Muggli
et al., 2015) uses an FM-index for aligning in silico digested contigs to a
consensus optical map.

3 Background
Strings. Let S be a string S[1]S[2] . . . S[n] of n symbols drawn from the
alphabet [A, C, G, T, N]. The suffix of S is any string S[i]S[i + 1]..S[n]

1 ≤ i ≤ n. Similarly, the prefix of S is any string S[1]S[2]..S[j] 1 ≤
j ≤ n.

Types of errors in Rmap data. We can view an RmapR = [r1, r2, . . . , rn]

as an ordered list of real numbers, such that each number represents
the size of a fragment, i.e., the number of base-pairs between the
cut-sites. Next, we define the size of an Rmap R as the number of fra-
gments in R, and denote this as |R|. For example, given an enzyme
that fragments DNA at the middle position of AACT, and the geno-
mic sequence, TTTTAACTGGGGGGGAACTTTTTTTTAACTTTTT then
the corresponding Rmap will be R = [6, 11, 11, 6].

The main challenge in analyzing Rmap data is its error-profile. There
are three types of errors that can occur in optical mapping: (1) missing
cut sites which are caused by an enzyme not cleaving at a specific site,
(2) additional cut sites which can occur due to random DNA breakage and
(3) inaccuracy in the fragment size due to the inability of the system to
accurately estimate the fragment size. Continuing again with the example
above, an example of an additional cut site would be when the second
fragment ofR is split into two, e.g.,R′ = [6, 5, 6, 11, 6], and an example
of a missing cut site would be when the last two fragment of R are joined
into a single fragment, e.g., R′ = [6, 11, 17]. Lastly, an example of a
sizing error would be if the size of the first fragment is estimated to be 7
rather than 6.

Error models. The sizing errors of an Rmap fragment depends on its length,
i.e. the sizing error is a function of the fragment size based on some
error model. Valouev et al. (2006a) proposed that the experimental size
of an Rmap fragment follows a normal distribution with its true length

i
i

“main_short” — 2019/1/18 — 10:02 — page 3 — #3 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 3

as mean and standard deviation proportional to its true length. That is,
oi ∼ N(ri, σ

2ri) where oi, ri and σ are the observed experimental size
of a fragment, true size of the fragment and the standard deviation respe-
ctively. This model was found to be inconsistent with data acquired from
latest generation of optical map platforms, namely the Irys System of Bio-
nano Genomics. Li et al. (2016) proposed a Laplace distribution function
to model the sizing error and showed it to be more consistent with the
current technology.

De Bruijn graphs. We denote a de Bruijn graph as G = (V,E), where
V is the set of nodes and E is the set of (directed) edges. Given a set of
sequence reads {S1, S2, . . . } and an integer k, we construct the de Bruijn
graph by creating a directed edge for each unique k-mer in {S1, S2, . . . },
labeling the nodes of that edge as the (k−1)-length prefix, and the (k−1)-
length suffix of that k-mer, and lastly, glue all nodes that have the same
label. Figure 2 in the Supplement shows an example of a de Bruijn graph.

Restriction nodes. We recall that a restriction site is a short pre-defined
sequence of nucleotides, which is recognized by a restriction enzyme.
Throughout this paper, we assume that the length of any restriction site is
less than k, where k is the integer used in the de Bruijn graph construction.
We note that this is a practical assumption since typically restriction sites
are between 6 bp and 8 bp in length and k is greater than 30. We call a
node v in a de Bruijn graph G a restriction node if the first |T | characters
of the (k − 1)-mer corresponding to v are equal to T . We denote the set
of restriction nodes of V as VT .

Paths and simple paths. We define a path p in a de Bruijn graph G as a
list of nodes vp1 , .., v

p
n, where (vpi , v

p
i+1) ∈ E for all i = 1, ..n − 1.

We allow repeated nodes in a path. We define the length of a path as the
number of edges in the path and denote it as |p|. We refer to the first and
last node of a path as the source and destination node.

We call a path simple if it starts at a restriction node, ends at a restriction
node, and does not contain any intermediate restriction nodes.

om-gram of an Rmap. Given a non-negative integer om, we define an
om-gram as a sequence of om successive fragments of an Rmap. We note
that n− om+1 om-grams can be extracted from an Rmap of size n. For
example, the following 3-grams can be extracted from R : (6, 11, 11) and
(11, 11, 6). An om-gram is analogous to k-mer; yet we define a new term
in order to avoid ambiguity with the definition of the de Bruijn graph.

4 Definition of Rmap-de Bruijn Graph Alignment
We formally define the Rmap-de Bruijn Graph (Rmap-DBG) alignment
problem in this section. The input to the Rmap-DBG alignment problem is
a de Bruijn graph G = (V,E), and an Rmap R = [r1, .., rn] generated
using a restriction enzyme with recognizing restriction site T . The output
of the problem is an alignment ofR andG, which we define as a function
ϕ : R → {VT } which maps each ri to a tuple of nodes in VT . In other
words, ϕ maps R to a path in G. Implicit in this definition is that ϕ(ri)
can be equal to ∅, indicating that either end of ri is a wrong additional
cut-site, and thatϕ(ri) can contain more than two nodes in VT , indicating
that ri contains a missing cut-site.

Next, we define the induced Rmap ofR asR′ = [rπ1 , ..., rπy] where
all ri such thatϕ(ri) = ∅ have been merged to a neighboring fragment rj
such that ϕ(rj) 6= ∅. In addition, we denote ai and mi as the number of
additional or missing cut-sites corresponding to rπi ∈ R′. We note that
ai equals the number of fragments merged into the i:th fragment of R′

and mi = |ϕ(rπi)| − 2.
Therefore, the alignment function ϕ() yields a sequence of tuples of

restriction nodes {ϕ(rπ1), .., ϕ(rπy)}. these nodes. Let the set of paths
in G that pass through each of the nodes in ϕ(rπk) be Pk . Therefore, for

Read1 : G C A T G G T G C A T T A G C A T A G A C A T C G T
Read2 : G C A T G G T G C A A T A G A C A T C G T
Rmap : 7, 6, 6

GCATGCATGGATGGT

TGGTG

GGTGC GTGCA TGCAT GCATT CATTA ATTAG TAGCATTAGC GCATAAGCAT ATAGACATAG AGACATAGAC

ACATC

GACAT

ATCGT CATCG

TGCAA GCAAT CAATA AATAG ATAGA

7

6

615

Fig. 1. Illustration of optical maps and de Bruijn graph alignment. The read sequence is
in silico digested using an enzyme which nicks at restriction site CAT. First, all restriction
nodes (starting with CAT) are located (colored in red), then for every restriction node as
the source of a single path, using the dynamic programming algorithm, the destination
restriction node(s) and length of the path(s) is found. The simple paths are shown as dotted
connections between restriction nodes and the optimal path according to the de Bruijn graph
is shown in blue.

each fragment of the induced Rmap (i.e. when 1 ≤ k ≤ y), we define
the score of an alignment between a path p ∈ Pk and fragment rπi be
proportional to the difference in the length of p and the size of fragment
rπi . Further, we add penalties to the score for additional and missing cut
sites in rπi . Formally the score S(p, rπk) is defined as:

S(p, rπk) =
∣∣|p| − rπk

∣∣+ ηaak + ηmmk (1)

where ηa and ηm are penalties for an additional and missing cut site,
respectively. Also, in order to preserve the continuity of alignment, for
2 ≤ k ≤ y the first node in p has to be the same as the final node of
ϕ(rπk−1) (i.e. the final node of the path corresponding to the previous
fragment, rπk−1).

Then it follows that the score of an alignment ϕ(R) is:

S(ϕ(R)) =

y∑
k=1

min
p∈Pk

S(p, rπk)

.
Lastly, we define the optimal alignment of R and G as:

argmin
ϕ
{S(ϕ(R))}

.

5 Methods
We present a solution for the Rmap-DBG alignment that follows a seed-
and-extend paradigm. The input to the algorithm is a set of Rmaps
{R1, .., Rm} and a de Bruijn graph G = (V,E). The output is a path in
G for each Rmap in {R1, .., Rm}. The algorithm has four main steps: pre-
processing, seeding, extending, and optimization. The seeding step finds
partial alignments for a Rmap by finding paths in the graph for one or more
of the om-grams in the Rmap. The extending step then aims to join these
paths and find a single path corresponding to the alignment of the Rmap.
Since it is possible that more than one path is discovered, the path that
maximizes the alignment score (see Section 4) is returned. Algorithm 1 in
the Supplement gives an overview of our approach.

5.1 Preprocessing

Error Correction of Rmaps. We error correct Rmaps {R1, .., Rm} using
cOMet (Mukherjee et al., 2018), and extract all om-grams for a given
value of om.

Find Restriction Nodes. We find and store all restriction nodes in the de
Bruijn graph. Again, we denote the set of restriction nodes as VT . We note
that for the remainder of this section, the explanation of the alignment
algorithm is restricted to the alignment of a single Rmap in {R1, .., Rm}.
We denote this Rmap as R = [r1, .., r|R|].

i
i

“main_short” — 2019/1/18 — 10:02 — page 4 — #4 i
i

i
i

i
i

4 Mukherjee et al.

Find and Store Simple Paths. Lastly, we find and store all simple paths in
G that have length at most D using a dynamic programming algorithm
which is similar to the gap filling algorithm by Salmela et al. (2016) and
the algorithm for the exact path length problem by Nykänen and Ukkonen
(2002).

For each restriction node vs, we define a |V | × D binary matrix
Avs where Avs (u, `) = 1 if there exists a path from vs to node u of
length `, and Avs (u, `) = 0 otherwise. We first initialize Avs as follows:
Avs (vs, 0) = 1, Avs (u, 0) = 0 for all u ∈ V − {vs}, Avs (u, 1) = 1

for all u such that there exists an edge between vs and u, and lastly,
Avs (u, 1) = 0 otherwise. Then we compute Avs (u, `) for all u ∈ V and
2 ≤ ` ≤ D based on the following recurrence:

A(u, `) =
∨

{w∈V−VT :(w,u)∈E}
Avs (w, `− 1).

In addition to Avs , we store an integer vector Bvs of length |V | for each
restriction vertex vs, where Bvs [u] stores the length of the longest path
from vs to a node u inG. To compute Bvs , we first initialize Bvs [u] = 0

for all u ∈ V and then update Bvs [u] = ` when Avs (u, `) = 1. After
computing Avs and Bvs , we use these matrices to identify and store all
simple paths starting at vs as follows. We iterate through each column
of Avs and find the nodes reachable from vs using a path of length `
(i.e. Avs (u, `) = 1) which also satisfy the condition |j − Bvs [u]| >
500. We note that this second condition is required since the set of nodes
reachable from vs can grow extremely large if there exists directed cycles
of length ≤ 500 bp in G. If u is in Vt then we store vs, u, and ` in a list
sorted by length, which we denote as L.

5.2 Seeding Step

Given a de Bruijn graph G, integer se, and an om-gram [r1, .., rom], we
define a seed of [r1, .., rom] to be a path containing om + 1 restriction
nodes, where the path in G between the x-th pair of restriction nodes has
length at most rx ± se. We note that a seed of an om-gram is a simple
path representing an alignment that can contain sizing error but no added
or missing cut-sites, and se is the parameter that gives an upper bound on
the sizing error. In this step, we aim to find a seed for the om-grams in R
but note it is unlikely that there exists a seed for all om-grams due to the
prevalence of added and/or missing cut-sites.

For finding seeds of an om-gram [r1, .., rom] we initiate an om-level
breadth first search in L, which was computed in the previous step. In the
first iteration of this algorithm, we find all simple paths that have length in
the range [r1−se, r1+se]. Next,we find all simple paths that have length
in the range [r2 − se, r2 + se] and whose source node is the destination
node of the simple paths found in the previous iteration. We repeat this
step om times, and store a seed for each sequence of om simple paths
whose lengths satisfy the bounds on the sizing error. For each seed, we
store the source and destination nodes of each om simple path. Lastly, we
consider each om-gram in R for which there exists at least one seed; if
there exists more than one seed then we choose the seed that minimizes
the sizing error, breaking ties arbitrarily.

5.3 Extending Step

We assume R has a seed for two or more of its non-overlapping om-
grams since otherwise we halt the algorithm and return that we cannot
find an alignment for R. The following extending and optimizing steps
are repeated for each pair of consecutive seeded om-grams. We let
[ri, . . . , ri+om−1] and [rj , . . . , rj+om−1] be two such consecutive
om-grams, and ϕ([ri, . . . , ri+om−1]) and ϕ([rj , . . . , rj+om−1]) be
the respective seeds found in the previous step. It follows that Re =

[ri+om, . . . , rj−1] is the portion of R between that is unaligned. In this

step, we find all sequences of simple paths {sp1, . . . , spn} where

ϕ([ri, . . . , ri+om−1]) ∪ sp1 ∪ .. ∪ spn ∪ ϕ([rj , . . . , rj+om−1]

is a path inG. We note that we restrict interest to sequences of simple paths
where: (1) the total length is bounded by |t± se|, where t be the sum of
all the fragment lengths in Re, i.e. t = ri+om + .. + rj−1; and (2) the
number of simple paths is at most 2|Re|1. The first constraint accounts
for possible sizing error, and the latter constraint implies the fragments of
Re can be aligned to one or more simple paths in G, which enables the
consideration of added or missing cut-sites.

Next, we describe an iterative algorithm for finding all sequences of
simple paths that satisfy these constraints. Our algorithm can be seen
as a version of breadth first search with added constraints. We let vs to
be the last node of ϕ([ri, . . . , ri+om−1]) and vd be the first node of
ϕ([rj , . . . , rj+om−1]). Hence, the first step of this algorithm is to ini-
tialize the set of all sequences of such simple paths, denoted as P , to be
the empty set, and initialize the set of source nodes, denoted as Vs, to be
equal to {vs}. At each iteration of the algorithm, we find all simple paths
that start with a node v that is in Vs such that v 6= vd. For each such
simple path sp, we determine if the addition to the sequence of simple
paths in P that end at v is such that the total length is at most t + se. If
this is true then we add the corresponding set of sequences of simple paths
to P and update Vs to contain the destination node of sp. After 2|Re|
iterations, we consider each sequence in P and eliminate any sequence
where the destination node is not equal to vd and the length is less than
t− se. Figure 3 in the Supplement illustrates this algorithm.

Upon termination of this algorithm, P contains all possible sequences
of simple paths that connects [ri, . . . , ri+om−1] and [rj , . . . , rj+om−1].

5.4 Optimizing Step

Lastly, we choose an optimal sequence of extending paths for each pair of
consecutive seeded om-grams. To do this we use a dynamic programming
algorithm — similar to Valouev et al. (2006a) and Nagarajan et al. (2008)
— which minimizes the alignment score. For eachP ∈ P , we compute the
optimal score of aligning P with Re = [r1, .., r|Re|]. For this alignment
we use a DP matrix C, whose dimensions are |P | by |Re|. The block
C[x][y] contains the optimal score of aligning the first x simple paths ofP
with the first y fragments of Re. The process of filling up C is explained
in details in the Supplement section 1.1. After completing the DP matrix,
the optimal alignment score is found at C[|P |][|Re|].

After computing the optimal score for each P ∈ P we return the set
of simple paths that achieves the best score overall.

5.5 Computational Complexity

In this section we discuss the computational complexity of aligning one
Rmap containing |R| fragments to the de Bruijn graph with |V | nodes and
|E| edges and |VT | restriction nodes. Further discussion on the complexity
analysis is included in Supplement section 1.2.

For each source restriction node, finding all simple paths, for given
value of D is solved in time O(|E|D log|VT |) using the dynamic pro-
gramming formulation described in Section 5.2. Therefore, the total time
for finding simple paths is O(|VT ||E|D log|VT |). This time complexity
is pseudopolynomial in D. However, assuming D = O(|E|) the com-
plexity is polynomial in the input size. After finding simple paths, the
complexity of finding seeds is given by O(om2 log(nsp)) where om is
the value of om-gram used and nsp denotes the number of simple paths

1 The upper bound of 2|Re| is a practical assumption. Considering the
average digestion rate of an Rmap fragment is 0.8 Li et al. (2016), the
probability of exceeding this bound is less than 0.016% when |Re| ≥ 3.

i
i

“main_short” — 2019/1/18 — 10:02 — page 5 — #5 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 5

found. This comes from the fact that for each om-gram we do an om-level
search in the simple path table which is sorted according to path paths.

The extension step has two parts. The complexity of finding sets of
simple paths which joins seeds of the Rmap isO(nsp log(nsp)) for each
pair of seeds, since at each simple path we look up the next one in log(nsp)
due to the binary search in sorted list of simple paths, and there are at most
nsp simple paths. The second step of extension is evaluating the cost
of aligning each connecting path against the unaligned fragments of the
Rmap. For each connecting path containing n simple paths and aligned to
m Rmap fragments, the complexity of alignment is O(mn). Now, n is
bounded by 2m andm is bounded by the total number of Rmap fragments.
Therefore the complexity of alignment isO(|R|2). The overall complexity
of our method is dominated by finding simple paths step, hence the overall
complexity is O(|VT ||E|D log|VT |).

6 Experiments

6.1 Datasets

We ran experiments on the following two datasets of optical maps: (1) a
simulated Rmap dataset generated using E. coli K-12 substr. MG 1655, and
(2) an Rmap dataset generated for the human genome using the Bionano
platform. In the Supplement section 1.3, we explain each dataset in more
detail.

All experiments were ran on Intel E5-2698v3 processors with 192 GB
of RAM running 64-bit Linux. The wall time was determined by running
the alignment in parallel on 500 CPUs. The CPU time and wall time are
reported in hours (h), minutes (m), and seconds (s). The peak memory
usage is reported in gigabytes (GB) and megabytes (MB).

6.2 Experiments on Simulated Data

We constructed the de Bruijn graph by error correcting the sequence reads
using the error correction module in SPAdes (Bankevich et al., 2012),
extracting all k-mers from the resulting reads using the KMC tool (Deo-
rowicz et al., 2014), and constructing the graph from the resulting k-mers
using the method of Bowe et al. (2012).

6.2.1 Evaluation of the Effect of the Maximum Length
The value ofD puts an upper bound on the maximum fragment size that can
be aligned to the de Bruijn graph. Table 4 in the Supplement demonstrates
the impact ofD on the CPU time, wall time, memory usage, and number of
simple paths found in the seeding step. Figures 6 and 7 (in the Supplement)
illustrate the distribution of fragment sizes in the E. coli and human optical
map datasets, respectively. As seen in the figure, whenD = 70, 000 then
over 99% of the E. coli fragments have size at most D.

Higher values of D lead to an overall increase in the CPU time, wall
time and memory usage. Choosing D to be equal to the size of the lar-
gest fragment, is inefficient since the largest fragment in an optical map
dataset is usually much larger than the value of D which covers 99% of
the fragments. For instance, D = 70, 000 covers 99.22% of the Rmap
fragments and the running time is 4.11 hrs whereasD = 100, 000 covers
100% of the Rmap fragments but the running time increases by 88.80% to
7.76 hrs. Therefore we set D = 70, 000 for the E. coli dataset.

6.2.2 Evaluation of the Effect of Sizing Error
We considered various values of the maximum sizing error se and deter-
mined the percentage of om-grams in which at least one seed (path) was
identified and also noted the running times for each value of se. We con-
sidered five values for se, 100, 250, 500, 750 and 1000 where k = 64,
D = 50, 000 and om varied from 3 to 6. Table 2 illustrates the results
of these experiments. We see that as se increases, a greater percentage
of the seeds were found for each om-gram with the highest performance

k=31 k=43 k=55 k=63

Percentage of seeded 3-grams 100% 96% 76% 72%
% of Rmaps with ≥ 2 seeded 3-grams 100% 100% 86% 81%

Mean Rmap overlay 100% 94% 92% 90%

Percentage of seeded 4-grams 100% 80% 36% 40%
% of Rmaps with ≥ 2 seeded 4-grams 100% 100% 83% 81%

Mean Rmap overlay 100% 93% 81% 80%

Percentage of seeded 5-grams 100% 69% 48% 26%
% of Rmaps with ≥ 2 seeded 5-grams 100% 100% 80% 80%

Mean Rmap overlay 100% 93% 70% 73%
Table 1. The performance of the seeding step when om and k were varied.
Rmap overlay is the percent of an Rmap that is contained in between the two
furthest seeded om-grams of that Rmap. We describe it in details in Section
6.2.3. We define the mean Rmap overlay as the average Rmap overlay of all
Rmaps in the dataset.

om se = 100 se = 250 se = 500 se = 750 se = 1000

3 20.35% 46.98% 71.94% 73.27% 73.84%
4 9.48% 24.87% 39.07% 43.54% 44.63%
5 4.91% 15.87% 24.61% 25.72% 25.81%
6 2.83% 10.98% 17.64% 19.43% 20.01%

Table 2. The percentage of seeded om-grams for different values of om and se.
In this experiment, k and D were kept constant at 64 and 70,000, respectively.

witnessed when om = 3. We also consider that increasing se increases
the running time since with higher se, more seeds are discovered (many
of which are erroneous) which results in more processing in the extension
step. The running times (in hours) for the different se settings for om = 3

are as follows: 2.7, 3.12, 4.18, 6.28 and 10.21 for se, 100, 250, 500,
750 and 1000 respectively. We also note that while a higher percentage of
seeded om-grams is more desirable than a very low percentage, a small
increase in the number of seeded om-grams do not necessarily translate
to better overall alignment results. Therefore, we set se = 500 since then
seeds were identified for close to 72% of the om-grams. For higher values
of se there is a negligible increase in the percentage of seeded om-grams
but they incur a significance increase in the running time. For se = 750

and se = 1000, the running times increase by 50.24% and 144.25%
respectively compared to se = 500

6.2.3 Evaluation of the Effect of k and om
The selection of om-gram size is based on the frequency of additional cut
site and missing cut site errors in the Rmap data. For an om-gram seed to
be discovered, a necessary criteria is that the om consecutive fragments
of the Rmaps that do not contain an additional or missing cut-site. We
performed experiments on the following values of k-mers : 31, 43, 55
and 63. Table 1 shows the results of seeding step on these values using
om-gram sizes 3, 4 and 5.

For an Rmap, we define the Rmap overlay as the maximum number of
Rmap fragments which can be aligned with the seed and extend method, i.e.
the number of Rmap fragments between the two furthest seeded om-grams
plus (2 × om) (to account for the fragments of the seeded om-grams).
This value is expressed as a percentage of the total number of fragments
of the Rmap. For example consider Figure 5 in the Supplement. The 3-
grams {13, 4, 6} and {8, 17, 4} are seeded, therefore the Rmap overlay is
(6+2× 3)/15 which equals to 80%. In Table 1, we report the percent of
seeded om-grams, the percent of Rmaps with at least 2 seeded om-grams
and the mean Rmap overlay for each value of k.

For k = 31, the de Bruijn graph is very dense, hence a large number
of simple paths are found — which results in extensive seeding. Seeds

i
i

“main_short” — 2019/1/18 — 10:02 — page 6 — #6 i
i

i
i

i
i

6 Mukherjee et al.

No. of Aligned Rmaps Cumulative % of Aligned Rmaps CPU Time Peak Memory Wall time

k = 63 803 (32.05%) 32.05% 5.89 h 1.3 GB 24.21 m
k = 55 680 (27.14%) 59.19% 15.60 h 1.87 GB 68.49 m
k = 43 241 (9.6%) 68.79% 189.21 h 2.22 GB 103.04 m
k = 31 101 (4.03%) 72.82% 296.52 h 2.56 GB 126.27 m

k = 63 511,613 64.5% 426.11 h 10.86 GB 43.68 h
k = 55 92,011 76.2% 412.64 h 14.70 GB 41.91 h

Table 3. The alignment results, the CPU time, and wall time with default parameter settings for Top: the simulated Rmaps and Bottom : human optical map data.
The de Bruijn graphs are built using different values of k, i.e., 63, 55, 43 and 31. We first aligned all Rmaps to the de Bruijn graph constructed for k = 63. Then
all Rmaps that did not align were aligned to the de Bruijn graph built on k = 55. In case of simulated data, we repeated this process for k = 43 and k = 31. We
define the cumulative % of aligned Rmaps as the percentage of Rmaps that aligned to one of the de Bruijn graphs.

are discovered for every om-gram — even for ones with additional or
missing cut sites (which are obviously erroneous and misleading). This is
not desirable and ultimately leads to poor alignment and longer run time.
Hence, the figures for k = 31 are not very informative with respect to
choosing an optimal value for om. Considering the remaining results, we
find om = 3 gives the best result on seeding since it achieves the highest
percentage of seeded om-grams and mean Rmap overlay across all graphs.
With om-gram sizes 4 and 5, the percentage of seeded om-grams drops
significantly in higher order de Bruijn graphs.
6.2.4 Performance with Default Settings
Based on the experiments above, we determined the following default
values for the input parameters: se = 500 and om = 3. In our dataset, the
maximum sized fragment is 91.35 kbp long. However, we fixD = 70, 000

which covers 99% of fragment sizes (as explained in Section 6.2.1). We
constructed the de Bruijn graph for the following values of k: 31, 43, 55,
and 63. We first aligned all Rmaps to the graph constructed for k = 63,
and for those that did not align we then attempted to align them to the
graph constructed for k = 55. We continue this procedure, lowering the
value of k at each iteration. We deem any Rmap as unaligned if it did not
align to one of these graphs.

Table 3 summarizes the results of these experiments. We aligned 803
(32.05%) of the Rmaps to the de Bruijn graph constructed with k = 63.
Another 680 (27.14%), 241 (9.6%) and 101 (4.03%) Rmaps were aligned
to de Bruijn graph constructed with k = 55, k = 43 and k = 31

respectively. Therefore, we aligned 72.82% of the Rmaps in total. We could
not align the remaining 27.18% of Rmaps to any of the de Bruijn graphs.
We performed the following experiment to investigate the relative quality
of the Rmaps which were aligned versus those which were not. First, we
performed in silico digestion of the reference genome using the enzyme
Rsrll which produces the reference optical map of the genome. Then we
use the dynamic aligner from Valouev et al. (2006a), to align each Rmap
in the dataset with the reference optical map. Each alignment produced an
alignment score called the S-score which denotes the quality of alignment.
Since the reference optical map is error-free, the S-score gives a measure
of the quality of the Rmap. That is, the S-score is higher if the Rmap has
fewer errors. The S-score is proportional to the number of fragments in the
Rmaps. Therefore for each Rmap, we normalize the S-score by dividing
by the number of Rmap fragments. Figure 8 in the Supplement show the
distribution of the normalized S-scores. We see from the graph that the
Rmaps which could not be aligned have a lower distribution of S-scores.
The mean and standard deviation of the normalized S-score for the aligned
Rmaps is 4.2 and 0.71 respectively whereas for the unaligned Rmaps it is
2.9 and 0.56, respectively.

6.3 Validation of Alignments

To validate our alignments, we simulated the Rmap data and stored the
location in the reference genome from where the Rmap originated. In par-
ticular, we kept the start and end positions of the Rmap in the reference

genome of each simulated Rmap. Next, we constructed the de Bruijn graph
on the sequence reads and aligned the Rmaps to the resulting graph using
the default parameters. Then for each Rmap, we considered the path in the
de Bruijn graph to which the Rmap aligned, and constructed the correspon-
ding contig by traversing the path and constructing the respective (DNA)
sequence. We then aligned the resulting contig to the reference genome of
E. coli K-12 substr. MG 1655 using BLAT (Kent, 2002). The start and end
positions of this alignment in the reference genome are compared with the
known start and end positions of the Rmap in the same reference genome.
This comparison was completed for all Rmaps. Using our method, we
found that 99.6 % of the Rmap alignments (1,818 out of the 1,825 total
number of alignments) corresponded to the known alignments, meaning
the location of the Rmap in the genome intersected with the location of the
sequence corresponding to the aligned nodes in the de Bruijn graph. This
demonstrates the accuracy of our method in finding correct alignments.

6.4 Branching resolution by alignment

We perform and report on the following experiment to find out how effe-
ctive an optical map - de Bruijn graph alignment is for resolving branching
during traversal of the de Bruijn graph for sequence assembly. For each
simple path found in each de Bruijn graph, we evaluate if the path contains
any branching along its way i.e. if at least one of its nodes has an out
degree greater than one. The percentage of branching simple-paths in the
graphs built on k= 63, 55, 43 and 31 are 86.3%, 89.6%, 91.3% and 92.7%
respectively. Since any successful alignment contains a minimum of two
seeds i.e. ≥ 2 × om number of simple paths, all optical map - de Bruijn
graph alignments contain one or more branching nodes and therefore can
be used to resolve them.

6.5 Performance on Human Data

For this experiment, we built de Bruijn graphs on k-mer sizes 63 and 55
and used the default parameters. The maximum sized fragment in this
dataset is 240 kbp but based on the distribution of fragment sizes, we
fix D = 70, 000 which covers 99.9% of fragment sizes. Figure 7 in
the Supplement show the distribution of fragment sizes of this dataset.
Since the de Bruijn graph is built from the reference genome, the graph
is connected even with higher values of k-mer size. Furthermore for a
complex and large genome such as the human genome, the de Bruijn graph
will get tangled for small values of k. Therefore, we align the Rmaps to
the graphs built on k = 63 and 55 and do not use lower order de Bruijn
graphs. Table 3 summarizes the results of these experiments.

In order to contextualize these results, we align all the Rmaps to an opti-
cal map generated from the human reference genome. To accomplish this,
we first in silico digest the human reference genome (GenBank assembly
accession: GCA_000001405.15) using BspQI, and align each Rmap using
the method of Valouev et al. (2006a) with default parameters. We found
that 98.4% of the Rmaps aligned to the simulated optical map. Figure 9 in

i
i

“main_short” — 2019/1/18 — 10:02 — page 7 — #7 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 7

the Supplement shows the distribution of alignment scores of these align-
ments. These numbers validate the percentage of Rmaps that align to the
de Bruijn graph.

7 Conclusion
We define and solve a new problem: aligning optical maps to de Bruijn
graphs constructed on sequence data of the same genome. We described
a seed-and-extend algorithm for solving the problem of aligning optical
maps to de Bruijn graphs, and aligned 72.82% of Rmaps simulated from
the E. coli genome to the de Bruijn graph constructed from short reads
generated from the same genome. For each aligned Rmap, we validate the
correctness of the alignment by comparing the location of the Rmap in the
genome with the location of the aligned sequence in the same genome.
For 99.6% of the aligned Rmaps, the locations intersected with each other
which shows the high accuracy of our method. We also show our method
is capable of scaling to larger genomes. In particular, we show that 76.2%
Rmaps can be aligned to the de Bruijn graph in the case of human data.

Funding
KM, BA, LS, and CB were funded by the National Science Foundation
(1618814) and LS was funded by Academy of Finland (grants 308030,
and 314170).

References
Altschul, S. et al. (1990). Basic local alignment search tool. Journal of

Molecular Biology, 215(3):403–410.
Bankevich, A. et al. (2012). SPAdes: a new Genome assembly algo-

rithm and its applications to single-cell sequencing. Journal of
Computational Biology, 19(5):455–477.

Beier, S. et al. (2017). Construction of a map-based reference genome
sequence for barley, hordeum vulgare l. Scientific Data, 4:170044–
170044.

Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., and Corbeil,
J. (2012). Ray Meta: Scalable De Novo Metagenome Assembly and
Profiling. Genome Biol., 13(12):R122+.

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). Succinct
de bruijn graphs. In Proc of WABI, pages 225–235.

Bradnam, K. R. et al. (2013). Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. GigaScience, 2(1):1–
31.

Butler, J. et al. (2008). ALLPATHS: De novo Assembly of Whole-Genome
Shotgun Microreads. Genome Research, 18(5):810–820.

Daccord, N. et al. (2017). High-quality de novo assembly of the apple
genome and methylome dynamics of early fruit development. Nature
Genetics, 49:1099–1106.

Deorowicz, S., Kokot, M., Grabowski, S., and Debudaj-Grabysz, A.
(2014). KMC 2: Fast and resource-frugal k-mer counting. CoRR.

Dimalanta, E. et al. (2004). A microfluidic system for large dna molecule
arrays. Analytical Chemistry, 76(18):5293–5301.

Dong, Y. et al. (2013). Sequencing and automated whole-genome optical
mapping of the genome of a domestic goat. Nature Biotechnology,
31(2):136–141.

Ganapathy, G. et al. (2014). De novo high-coverage sequencing and anno-
tated assemblies of the budgerigar genome. GigaScience, 3(1):1–9.

Jarvis, D. E. et al. (2017). The genome of chenopodium quinoa. Nature,
542:307 EP –.

Kent, J. (2002). BLAT–The BLAST-Like Alignment Tool. Genome
Research, 12(4):656–664.

Leung, A. et al. (2017). Omblast: alignment tool for optical mapping using
a seed-and-extend approach. Bioinformatics, 33(3):311–319.

Li, M. et al. (2016). Towards a more accurate error model for bionano
optical maps. In Proc of ISBRA, pages 67–79.

Lin, H. et al. (2012). Agora: assembly guided by optical restriction
alignment. BMC Bioinformatics, 13(1):189.

Lin, J. et al. (1999). Whole-genome shotgun optical mapping of
deinococcus radiodurans. Science, 285(5433):1558–1562.

Mendelowitz, L. et al. (2016). Maligner: a fast ordered restriction map
aligner. Bioinformatics, 32(7):1016–1022.

Muggli, M., Puglisi, S., and Boucher, C. (2014). Efficient indexed
alignment of contigs to optical maps. In Proc of WABI, pages 68–81.

Muggli, M., Puglisi, S., Ronen, R., and Boucher, C. (2015). Misassembly
detection using paired-end sequence reads and optical mapping data.
Bioinformatics, 31(12):i80–i88.

Muggli, M. D., Puglisi, S. J., and Boucher, C. (2018). A Succinct Solution
to Rmap Alignment. In WABI 2018, volume 113, pages 12:1–12:16.

Mukherjee, K., Washimkar, D., Muggli, M., Salmela, L., and Bou-
cher, C. (2018). Error correcting optical mapping data. GigaScience,
7(6):giy061.

Nagarajan, N., Read, T., and Pop, M. (2008). Scaffolding and valida-
tion of bacterial genome assemblies using optical restriction maps.
Bioinformatics, 24(10):1229–1235.

Needleman, S. and Wunsch, C. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48:443–453.

Neely, R. K., Deen, J., and Hofkens, J. (2011). Optical mapping of DNA:
single-molecule-based methods for mapping genome. Biopolymers,
95(5):298–311.

Nykänen, M. and Ukkonen, E. (2002). The exact path length problem. J.
Algorithms, 42(1):41–53.

Pan, W. et al. (2018). Novo & stitch: accurate reconciliation of genome
assemblies via optical maps. Bioinformatics, 34(13):i43–i51.

Salmela, L., Sahlin, K., Mäkinen, V., and Tomescu, A. (2016). Gap filling
as exact path length problem. J. Comp. Biol., 23(5):347–361.

Samad, A., Huff, E., Cai, W., and Schwartz, D. (1995). Optical map-
ping: a novel, single-molecule approach to genomic analysis. Genome
Research, 5:1–4.

Schwartz, D. et al. (1993). Ordered restriction maps of saccharomyces
cerevisiae chromosomes constructed by optical mapping. Science,
262:110–114.

Shelton, J. M. et al. (2015). Tools and pipelines for bionano data: molecule
assembly pipeline and fasta super scaffolding tool. BMC Genomics,
16(1):734.

Shi, L. et al. (2016). Long-read sequencing and de novo assembly of a
chinese genome. Nature Communications, 7.

Simpson, J. et al. (2009). ABySS: A Parallel Assembler for Short Read
Sequence Data. Genome Research, 19(6):1117–1123.

Teague, B. et al. (2010). High-resolution human genome structure by
single-molecule analysis. Proceedings of the National Academy of
Sciences, 107(24):10848–10853.

Valouev, A. et al. (2006a). Alignment of optical maps. Journal of
Computational Biology, 13(2):442–462.

Valouev, A., Schwartz, D., Zhou, S., and Waterman, M. (2006b).
An algorithm for assembly of ordered restriction maps from single
dna molecules. Proceedings of the National Academy of Sciences,
103(43):15770–15775.

Vij, S. et al. (2016). Chromosomal-level assembly of the asian sea-
bass genome using long sequence reads and multi-layered scaffolding.
PLoS Genet, 12(4):e1005954–e1005954.

Zerbino, D. and Birney, E. (2008). Velvet: Algorithms for De Novo
Short Read Assembly using De Bruijn Graphs. Genome Research,
18(5):821–829.

i
i

“main_short” — 2019/1/18 — 10:02 — page 1 — #8 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 1

1 Supplement

1.1 Optimizing step

In the optimizing step, for each P ∈ P , such that P = {sp1, .., sp|P |}, we compute the optimal score of aligning P with Re = [r1, .., r|Re|] as
follows. We let C be a |P | by |Re| matrix, where C[x][y] is the optimal score of aligning the first x simple paths of P with the first y fragments of Re.
We initialize C[0][y] and C[x][0] to be equal to∞ for all x = 1, .., |P | and y = 1, .., |Re|, and C[0][0] = 0. Then, we let C[x][y] to be equal to the
minimum of:

• C[x− 1][y − 1] + ||spx| − ry | (in this particular case we do not have any added or missing cut sites),
• C[x− 2][y − 1] + ||spx−1|+ |spx| − ry |+ ηa or C[x− 3][y − 1] + ||spx−2|+ |spx−1|+ |spx| − ry |+ 2ηa (in this particular case we have

one or two added cut-sites, respectively),
• C[x − 1][y − 2] + ||spx| − (ry−1 + ry)| + ηm or C[x − 1][y − 3] + ||spx| − (ry−2 + ry−1 + ry)| + 2ηm, (in this particular case we have

one or two missed cut sites, respectively),
• C[x− 2][y− 2]+ ||spx−1|+ |spx| − (ry−1 + ry)|+ ηa+ ηm or C[x− 3][y− 2]+ ||spx−2|+ |spx−1|+ |spx| − (ry−1 + ry)|+2ηa+ ηm

(in this particular case we have one additional cut-site and one or two missed cut-sites, respectively),
• C[x− 2][y− 3]+ ||spx−1|+ |spx| − (ry−2 + ry−1 + ry)|+ ηm+2ηa or C[x− 3][y− 3]+ ||spx−2|+ |spx−1|+ |spx| − (ry−2 + ry−1 +

ry)|+ 2ηm + 2ηa (in this particular case we have two additional cut-sites and one or two missed cut-sites, respectively),

for all 0 ≤ x ≤ |P | and 0 ≤ y ≤ |Re|. We note that ηa and ηm are defined in section 4. The optimal alignment score for P and Re is found at
C[|P |][|Re|]. In addition to the scoring matrix C, we also store a matrix that allows us to obtain the actual alignment of P to Re.

1.2 More on complexity

We note that finding simple paths between restriction nodes closely resembles the gap filling problem (Salmela et al., 2016) and the exact path length
problem (Nykänen and Ukkonen, 2002). Both of these problems have been shown to be NP-complete. However, the NP-completeness proofs for these
problems are for a more general case of weighted graphs and the weights are essential in keeping the reduction polynomial. These proofs are thus not
directly applicable to our problem because de Bruijn graphs are not weighted. Furthermore, algorithms pseudopolynomial in the path length, which
corresponds to our maximum distance D, exist for both of these problems. Therefore if the path length is assumed to be polynomial in the size of the
graph, then the gap filling problem and the exact path length problem in fact have polynomial time solutions.

1.3 Datasets

We simulated the Rmap data from the E. coli reference genome as follows. First, we made 200x copies of the reference genome, and then selected loci
uniformly at random for each of these copies—these loci form the ends of single molecules that would undergo in silico digestion. These loci represent
the start and end locations of the simulated Rmaps and are later used to validate the alignments. We discarded molecules that were smaller than 150 Kbp,
and identified the restriction sites for the RsrII enzyme in the remaining molecules. We note that we used this error-free Rmap data for validation. Lastly,
we added errors into the Rmaps according to the error model given in Li et al. (2016). We refer the reader to Section 3 for a description of this model.
This simulation resulted in 2,505 Rmaps, containing 7,485 missing cut-sites and 554 additional cut-site. We built the de Bruijn graph dataset consisting
of approximately 27 million paired-end 100 bp reads from E. coli (substr. K-12) (ERA000206, EMBL-EBI Sequence Read Archive).

The second dataset consists of 793,199 Rmaps generated from the Irys Bionano platform for the human genome using the enzyme BspQI. We obtained
this dataset from the de novo assembly of a Chinese genome by Shi et al. (2016). We built the de Bruijn graph from the human reference genome (GenBank
assembly accession: GCA_000001405.15, Genome Reference Consortium Human Build 38).

D
Rmap

fragments
covered

CPU
time Memory Wall

time
No. of simple
paths found

5,000 35.51% 12.41 m 449 MB 12 s 338
10,000 57.70% 16.85 m 450 MB 30 s 1,214
25,000 87.88% 49.33 m 510 MB 3.53 m 8,152
50,000 98.17% 2.61 h 629 MB 8.66 m 29,709
70,000 99.22% 4.11 h 755 MB 13.29 m 53,199
100,000 100% 7.76 h 959 MB 21.38 m 89,852

Table 4. Impact of D on finding and storing simple paths. The graph is built with k = 63 on E.coli short read data, and consists of 12,478,516 nodes and 12,560,111
edges. There are 777 restriction nodes. The percent of Rmap fragments from the simulated optical map dataset whose size is less than or equal to D is referred to
as Rmap fragments covered.

i
i

“main_short” — 2019/1/18 — 10:02 — page 2 — #9 i
i

i
i

i
i

2 Mukherjee et al.

Algorithm 1 Seed-and-extend Rmap-DBG alignment

% Input: a set of Rmaps {R1, .., Rm} and a de Bruijn graph G = (V,E).
% Output: a path in G for each Rmap in {R1, .., Rm}.
Preprocessing Step:
Error correct the Rmaps {R1, .., Rm}.
Find and store the restriction nodes VT in G.
Initialize L to be an empty list.
For each vs in VT do

1. Find all simple paths starting at vs, and ending at vt,
where vt ∈ VT .

2. Store each simple path in L.
For each R in {R1, .., Rm} do

Seeding Step:
For each om-gram o in R do

1. Find and store each seed for o;
2. If more than one seed exists, store the one that minimizes

the sizing error.
Extending Step:
If R has less than two seeds then

Return: No alignment for R.
Else

For each pair of consecutive seeds:do
1. Use L to find and store sequences of simple paths that

create a single path connecting the seeds found for R;
2. Store each sequence of simple paths in P
3. Add the sequence of P that optimizes

the alignment score to the final alignment.
Return final alignment of R

AAGTA, AGTAC, GTACG, TACGT, TGTAC

S1 = AAGTACGT
S2 = TGTACGA
k = 5

(a)

(b)

(c) AAGT AGTA AGTA GTAC GTAC TACG

TACG ACGT TGTA GTAC

(d) AAGT AGTAAGTA GTAC TACG ACGT

TGTA

Fig. 2. Illustration of a de Bruijn Graph build from two sequences S1 and S2 with k = 5. (b) Set of all distinctive k-mers from S1 and S2 . (c) Each k-mer becomes an edge in the graph
which connects two nodes whose labels are the (k − 1)-length prefix and the (k − 1)-length suffix of the edge label. The nodes with same labels have the same color. (d) The completed
de Bruijn graph after merging of nodes with the same label.

No. of Aligned Rmaps Cumulative % of Aligned Rmaps CPU Time Peak Memory Wall time
k = 63 506,485 63.8% 429.29 h 10.95 GB 44.03 h
k = 55 93,724 75.6% 418.77 h 14.81 GB 42.75 h

Table 5. The alignment results, the CPU time, and wall time for uncorrected human optical map data with default parameter settings (Table 3 presented the results
for error corrected human optical maps). The de Bruijn graphs are built using two different values of k, i.e., 63 and 55. Again, we aligned all Rmaps to the de Bruijn
graph constructed for k = 63 and then aligned the remaining Rmaps (ones which did not align) to the de Bruijn graph built on k = 55. We define the cumulative
% of aligned Rmaps as the percentage of Rmaps that aligned to one of the graphs currently considered.

i
i

“main_short” — 2019/1/18 — 10:02 — page 3 — #10 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 3

t = 15000
se = 500
|Re| = 2

iteration 1

Va , 3500
Va , 6500
Vb , 9500

Vs Va3500

6500

Vb
9500

Vc

Ve

Vf

5000

7000

3500

7000

Vg

1500

Vh

9000

2000

3500

Vd

6000

5000

3500

iteration 2 iteration 3 iteration 4

Vc , 8500
Vc , 10500
Vc , 11500
Vc , 13500
Ve , 13000

Vd , 14500
Vg , 10000
Vg , 12000
Vg , 15000
Vh , 15000

Vd , 15000

2000

Vs Va3500 Vc5000 Vd6000

Vs Va3500 Vc5000 Vd1500 Vd5000

Fig. 3. Illustration of the extension algorithm. The dotted arrows represent simple paths in the graph. The extension step finds paths that align to the segment of an Rmap in between two
seeded om-grams. t denotes the total length of the segment of the Rmap, |Re| represents the number of fragments in the Rmap segment and se represents the sizing error allowance. Nodes
vs and vd are the source and destination nodes of the extension. We find paths whose total length is t± se and has at most 2|Re| number of simple paths. The final extension paths which
satisfy the conditions are shown below.

 0 1 2 3 4 5 6 7 8

v1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v2 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

v3 0 0 0 0 1 2 0 2 0 2 0 2 0 2 0 2 0 2

v4 0 0 0 0 0 0 1 3 0 3 0 3 0 3 0 3 0 3

v5 0 0 0 0 0 0 0 0 1 4 0 4 0 4 0 4 0 4

v6 0 0 0 0 0 0 0 0 0 0 1 5 0 5 0 5 0 5

v7 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 6 0 6

v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 0 7

v9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8

v10 0 0 0 0 0 0 1 3 0 3 0 3 0 3 0 3 0 3

v11 0 0 0 0 0 0 0 0 1 4 0 4 0 4 0 4 0 4

Fig. 4. Top: Example of a cycle in a de Bruijn graph — illustrated in green. The restriction nodes, vs and vt are shown in red. Without any refactoring of cycles, there are two simple paths
of length 8 from vs to vt and an infinite number of additional simple paths of lengths 11,14,17 …and so on (because of the cycle). However, after refactoring, we get a single simple path
of length 8. Bottom: Illustration of finding simple paths using the binary matrixAvs (the white cells of the table) and integer vectorBvs (shown in gray). Note that at each iteration,Bvs

is updated and the previous states are not stored.

i
i

“main_short” — 2019/1/18 — 10:02 — page 4 — #11 i
i

i
i

i
i

4 Mukherjee et al.

Rmap fragments 10 11 12 5 3 9 21 11 1913 14 6 8 17 4

CATAC CATGA

13 14 6
CATTT CATGA CATGG CATTA

8 17 4
CATTG CATCG

EP1

EP2

EP3

11 12 5 3 9 21

17 3 4 5

12 21

EP1

EP2

EP3

Target

34 8 166

11

11

21

12 5

(a)

(b)

(c)

Fig. 5. An illustration of the extension and optimization steps. The read sequence is in silico digested using the enzyme CAT. (a) Two seeded 3-grams are shown in boxes, which will be
connected by running the extension algorithms on red fragments. (b) Representation of two seeds and three extension paths between them: EP1, EP2 and EP3. All nodes are restriction nodes
(starting with CAT), and the number on each arrow shows the path length between two restriction nodes. The nodes CATGA and CATGG are the source and destination of each extension
path respectively which are colored as dark red. (c) The red fragments in (a) are now considered as the target, which all extension paths will be aligned to. In this graph, EP1 is aligned to the
target, with one additional (17) and one missing (4,5) cut sites. EP2 is aligned to the target with one additional (12) cut site, and EP3 does not align to target (also EP3 is longer than EP1
and EP2).

Fig. 6. The distribution of fragment sizes of E. coli when digested with restriction enzyme
RsrII.

Fig. 7. The distribution of fragment sizes of human optical map data when digested with
restriction enzyme BspQI.

i
i

“main_short” — 2019/1/18 — 10:02 — page 5 — #12 i
i

i
i

i
i

Aligning Optical Maps to De Bruijn Graphs 5

Fig. 8. The distribution of S-scores of the E. coli Rmaps. To construct this graph we performed the following experiment. We aligned each of the Rmaps to the in silico digested reference
genome to create a single optical map, and then aligned each of the Rmaps to this optical map. The light bars depict the distribution of S-scores for Rmaps that were not aligned to the de
Bruijn graph, while the dark bars depicts the distribution of S-scores for Rmaps that were aligned to the de Bruijn graph using our method. The mean and standard deviation of the normalized
S-score for the aligned Rmaps is 4.2 and 0.71, respectively; whereas, the mean and standard deviation for the unaligned Rmaps is 2.9 and 0.56, respectively.

Fig. 9. Distribution of S-scores of real human Rmaps when aligned to the human reference optical map. Each Rmap was aligned to the reference using the aligner by Valouev et al. (2006a).

