
entropy

Article

A Reference-Free Lossless Compression Algorithm
for DNA Sequences Using a Competitive Prediction
of Two Classes of Weighted Models

Diogo Pratas 1,2,3,* , Morteza Hosseini 1 , Jorge M. Silva 1 and Armando J. Pinho 1,2

1 Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro,
Portugal; seyedmorteza@ua.pt (M.H.); jorge.miguel.ferreira.silva@ua.pt (J.M.S.); ap@ua.pt (A.J.P.)

2 Department of Electronics, Telecomunications and Informatics, University of Aveiro,
3810-193 Aveiro, Portugal

3 Department of Virology, University of Helsinki, 00100 Helsinki, Finland
* Correspondence: pratas@ua.pt; Tel.: +351-234-370-507

Received: 24 September 2019; Accepted: 31 October 2019; Published: 2 November 2019
����������
�������

Abstract: The development of efficient data compressors for DNA sequences is crucial not only for
reducing the storage and the bandwidth for transmission, but also for analysis purposes. In particular,
the development of improved compression models directly influences the outcome of anthropological
and biomedical compression-based methods. In this paper, we describe a new lossless compressor
with improved compression capabilities for DNA sequences representing different domains and
kingdoms. The reference-free method uses a competitive prediction model to estimate, for each
symbol, the best class of models to be used before applying arithmetic encoding. There are two
classes of models: weighted context models (including substitutional tolerant context models) and
weighted stochastic repeat models. Both classes of models use specific sub-programs to handle
inverted repeats efficiently. The results show that the proposed method attains a higher compression
ratio than state-of-the-art approaches, on a balanced and diverse benchmark, using a competitive
level of computational resources. An efficient implementation of the method is publicly available,
under the GPLv3 license.

Keywords: lossless data compression; DNA sequences; competitive prediction; weighted models;
context models; stochastic repeat models

1. Introduction

The arrival of high throughput DNA sequencing technology has created a deluge of biological
data [1]. With the low sequencing costs of next-generation sequencing [2], metagenomics [3], ancient
genomes [4], and biomedical applications [5], the number of available complete genomes is increasing
widely. Most of the data are discarded and, when classified as crucial, compressed using general or
specific purpose algorithms. Additionally, with the increasing of ancient sequenced genomes, the
quantity of data to be compressed is now achieving a higher magnitude [6,7].

There are many file formats to represent genomic data—for example, FASTA, FASTQ, BAM/SAM,
VCF/BCF, and MSA, and many data compressors to represent specifically these formats [8–23].
All of these file formats have in common the genomic sequence part, although in different phases
or using different representations. The ultimate aim of genomics, before downstream analysis, is to
assemble high-quality genomic sequences, allowing for having high-quality analysis and consistent
scientific findings.

Genomic (or DNA) sequences are codified messages, from an alphabet of four symbols
Θ = {A, C, G, T}, containing instructions, structure, and historical marks of all known cellular

Entropy 2019, 21, 1074; doi:10.3390/e21111074 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1176-552X
https://orcid.org/0000-0001-8962-8985
https://orcid.org/0000-0002-6331-6091
https://orcid.org/0000-0002-9164-0016
http://dx.doi.org/10.3390/e21111074
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/11/1074?type=check_update&version=2

Entropy 2019, 21, 1074 2 of 18

organisms [24]. Initially, genomic sequences were compressed with general-purpose algorithms
or tools, such as gzip (www.gzip.org), bzip2 (http://sourceware.org/bzip2), or LZMA (www.7-zip.
org/sdk.html). Since the emergence of BioCompress [25], the development of specific compression
algorithms for these sequences revolutionized the field.

The development of specific compression algorithms of DNA sequences has now 27 years.
There are many lossless compression algorithms explicitly developed for genomic sequences [26].
These algorithms rely on a trade-off between compressibility and computational resources.
The reasons are the specific need to balance the program with hardware characteristics and the
compression purpose. Industrial-oriented compression purposes, often aiming for ultra-fast and low
memory consumption computations at the expense of poor compressibility, are different from the
scientific-oriented approach of developing novel models, usually aiming for better compressibility at
the expense of higher computational resources.

The nature of the specific data compressors takes advantage of the inclusion of sub-programs
to efficiently handle specific DNA properties, namely a high number of copies, a high level
of substitutional mutations, high heterogeneity, and multiple rearrangements, such as inverted
repeats [27,28]. Additionally, genomic sequences may contain data from other sources—for example,
environmental factors [29,30], exogeneous inclusion [31,32], and unknown sources [33]. Compressing
genomic sequences requires the ability to model heterogeneous, dynamic, incomplete, and imperfect
information [34].

The lossless compression of genomic sequences has been addressed using two approaches:
reference-based and reference-free [35]. The reference-based approach usually achieves substantially
better compression results, mainly because when two sequences are almost identical, a model that
efficiently represents the differences of one according to the other achieves top compression results.
Using variations of this methodology, several reference-based approaches were proposed [8,36–48].

Although the reference-based approach is exceptionally efficient, there is the need to store a
reference sequence. On the other hand, the reference-free approach has the advantage of not needing
any reference. This approach is essential for reducing the storage of reference sequences and, more
importantly, to estimate the quantity of information contained in a DNA sequence, an approximation
of the Kolmogorov complexity [49]. The latter has proven to be able to infer insights into genomic
evolution as well as being suitable to group sequences by nature [50].

Despite the usage of general-purpose algorithms with heavy computational models, such as
neural networks, to compress genomic sequences, the specific compressors that efficiently address
the specific characteristics of genomic sequences show higher compression capabilities (5–10%) using
substantially less computational resources [51].

As depicted in Figure 1, the first specific algorithm is Biocompress. The Biocompress is based on a
Lempel–Ziv dictionary approach [52], exploring repeats and palindromes. The Biocompress2 [53] is an
extension of Biocompress [25], adding arithmetic coding of order-2 as a fallback mechanism.

Figure 1. Timeline with the names of the proposed data compressors specifically for genomic sequences.

The Cfact algorithm [54] uses parsing, where exact repeats are loaded in a suffix tree along with
the positions indexes and encoding. The CDNA [55] was the first algorithm to combine statistical
compression with approximate repeat for DNA compression. The ARM algorithm [56] explores

www.gzip.org
http://sourceware.org/bzip2
www.7-zip.org/sdk.html
www.7-zip.org/sdk.html

Entropy 2019, 21, 1074 3 of 18

the probability of a subsequence by summing the probabilities given the explanations of how a
subsequence is generated. The ARM and CDNA algorithms yield significantly better compression
ratios than older algorithms.

The offline algorithm [57] models repeated regions for compression. Only exact repeats are
considered during each iteration, and the algorithm selects a substring that leads to the contraction
suffix tree used to find the substring with the maximum possible number of non-overlapping
occurrences. The GenCompress algorithm [58] explores the existence of approximate repeats.
The DNACompress [59] finds approximate repeats using the PatternHunter [60] and, then, uses
a Lempel–Ziv approach [52] for encoding. The CTW + LZ algorithm [61] is based on the context
tree weighting method, which uses a weighting of multiple models to determine the next symbol
probabilities. The algorithm detects approximate repeats using dynamic programming and then
encodes long exact and approximate repeats using an LZ77-type encoding. Short repeats and
non-repeats are encoded using a CTW.

The NMLComp algorithm [62] uses the normalized maximum likelihood (NML) model to encode
approximate repeats using discrete regression and, then, combines it with a first-order context model.
The GeNML [63] presents an improvement to NMLComp method, namely restricting the approximate
repeats matches to reduce the cost of search, choosing the block sizes for parsing the target sequence,
and uses scalable forgetting factors for the memory model.

The DNASequitur [64] is a grammar-based compression algorithm which infers a context-free
grammar to represent the input sequence. Besides the exact repeats, it recognizes inverted repeats when
creating rules and during substitutions. The DNA-X algorithm [65] takes advantage of repetitions by
searching and encoding exact and approximate repeats. The approach uses much lower computational
resources than older algorithms while achieving a competitive compression ratio. The DNAC [66] is an
update of the Cfact algorithm working in four phases. It builds a suffix tree to locate exact repeats; all
exact repeats are extended into approximate repeats by dynamic programming; it extracts the optimal
non-overlapping repeats from the overlapping ones; it uses the Fibonacci encoding method to encode
the repeats in a self-delimited way. The DNAPack algorithm [67] works by finding approximate
repeats to encode them optimally. It uses a dynamic programming approach for the selection of the
segments.

The XM algorithm [68] is still one of the most successful compressors given its compression
capabilities at the expense of more computational resources, both time and memory. It combines three
types of models: repeat models, a low-order context model, and a short memory context model of
512 bytes. The probabilities are encoded using arithmetic coding.

The Differential Direct Coding algorithm (2D) [69] uses side information strategies to
accommodate large data sets using multiple sequences and auxiliary data. 2D is suitable for any
sequence data, including substantial length data sets, such as genomes and meta-genomes. The DNASC
algorithm [70] compresses the DNA sequence horizontally, first by using extended Lempel–Ziv style,
and, then, vertically by taking a block size equal to 6, and a window size equal to 128. The GBC
algorithm [71] assigns binary bits in a preprocessing stage to exact and reverse repeat fragments of
DNA sequences. The DNACompact algorithm [72] uses a preprocessing edition of the bases for after
representation using encoding by word-based tagged code (WBTC) [73]. The POMA tool [74] uses
particle swarm optimization, which makes the algorithm feasible only for tiny sequences.

The DNAEnc3 algorithm [75] uses a competition of context models of several depths (orders up to
sixteen) and, then, redirects the probabilities to an arithmetic encoder. It uses sub-programs embedded
in the context models to handle the inverted repeats. The DNAEnc4v2 algorithm [76], instead of
competition as in DNAEnc3, the context models are combined with a soft-blending mechanism that
uses a particular decaying forgetting factor to give importance to the context models that achieve
better performance.

The LUT algorithm [77] uses a four-step coding rule. It includes the use of a LUT (Look Up
Table), character transformations, tandem repeats handling, and segment decisions. The GenCodex

Entropy 2019, 21, 1074 4 of 18

algorithm [78] yields a better compression ratio at high throughput by using graphical processing
units (GPUs) and multi-core in two phases, namely bit-preprocessing and fragment representation
using either one or two bytes.

The BIND algorithm [79] adopts a unique ’block-length’ encoding for representing binary
data. BIND also handles other symbols than ACGT. The DNA-COMPACT algorithm [80] exploits
complementary contextual models to search for exact repeats and palindromes and represent them
by a compact quadruplet. Then, it uses non-sequential contextual models where the predictions of
these models are synthesized using a logistic regression model. The HighFCM algorithm [81] explores
a pre-analysis of the data before compression to identify regions of low complexity. This strategy
enables the use of deeper context models (context order up to 32), supported by hash-tables, without
requiring huge amounts of memory. The SeqCompress algorithm [82] uses a statistical model and,
then, arithmetic coding to compress DNA sequences.

Transforming genomic sequences into images, where a two-dimensional space substitutes the
one-dimensional space, is an approach that is used in [83,84]. In [83], firstly, the Hilbert space-filling
curve is exploited to map the target sequence into an image. Secondly, a context weighting model
is used for encoding the image. In [84], the CoGI (Compressing Genomes as an Image) algorithm is
presented, which initially transforms the genomic sequence into a binary image (or bitmap), then, uses
a rectangular partition coding method [85] to compress the image and, finally, explores entropy coding
for further compression of the encoded image and side information.

The GeCo algorithm [86] uses a soft-blending cooperation with a specific forgetting factor between
context models and substitutional tolerant context models [87] before employing arithmetic encoding.
It has sub-programs to deal with inverted repeats and uses cache-hashes for deeper context models.
In GeCo2 [88], the mixture of models is enhanced, where each context model or tolerant context model
now has a specific decay factor. Additionally, specific cache-hash sizes and the ability to run only a
context model with inverted repeats are available.

The OCW algorithm [89] uses an optimized context weighting based on the minimum description
length and the least-square algorithm for the optimization of the weights. The OBComp algorithm [90]
uses a single bit to code the two highest occurrence nucleotides. The positions of the two others are
saved. Then, it uses a modified version of an RLE technique and the Huffman coding algorithm.

In this paper, we propose a new algorithm (Jarvis) that uses a competitive prediction based on
two different classes: Weighted context models and Weighted stochastic repeat models. The Weighted
context models use a soft-blending mechanism, with a decaying forgetting factor, of context and
substitutional tolerant context models. The Weighted stochastic repeat models also uses a soft-blending
mechanism, with a decaying forgetting factor, between multiple repeat models of specific word size.
Both classes use sub-programs to handle inverted repeats. The competitive prediction is based on the
highest probability of each class at a precise moment. The model is trained along with the prediction
using a context model. The final probabilities, for each base, are coded using an arithmetic encoder.

This paper is organized as follows. In the next section, we describe the compressor in detail. Then,
we present the comparative results of the proposed compressor against state-of-the-art algorithms in
a fair and consistent benchmark proposed in [91]. The latter includes a discussion of some possible
development lines. Finally, we make some conclusions.

2. Method

The method is based on a competitive prediction between two classes of models: Weighted
context models and Weighted stochastic repeat models. As depicted in Figure 2, for each prediction,
the probabilities are redirected to an arithmetic encoder. The context models (at the left of Figure 2) are
combined through a weighted set of context and substitutional tolerant context models [86,87] using a
specific forgetting factor for each model, while the Weighted stochastic repeat models (at the right of
Figure 2) use a common forgetting factor.

Entropy 2019, 21, 1074 5 of 18

Figure 2. An architecture example of a competitive prediction between five Weighted context models (at
left, represented with prefix C) and three Weighted stochastic repeat models (at right, represented with
prefix R). Each model has a weight (W) and associated probabilities (P) that are calculated according to
the respective memory model (M), where the suffix complements the notation. The tolerant context
model (CW5, CP5) uses the same memory of model four (CW4, CP4), since they have the same context.
Independently, the probabilities of the context models and repeat models are averaged according to the
respective weight and redirected to the competitive prediction model. Finally, the probabilities of the
model class with the highest probability (predicted) are redirected to the arithmetic encoder.

The method enables setting any number of context models and repeat models, as long as at least
one model is used. This setup permits very high flexibility to address different types of DNA sequences
and creates space for further optimization algorithms.

In the following subsections, we describe in detail the Weighted context models, the Weighted
stochastic repeat models, the competitive prediction model, and the implementation of the algorithm.
For the purpose, we assume that there is a source generating symbols from a finite alphabet Θ, where
Θ = {A, C, G, T}. We also assume that the source has already generated the sequence of n symbols
xn = x1x2 . . . xn, xi ∈ Θ. Therefore, a subsequence of xn, from position i to j, is denoted as xj

i .

2.1. Weighted Context Models

Context models are finite statistical models assuming the Markov property. A context
model of an information source assigns probability estimates to the symbols of the alphabet,
according to a conditioning context computed over a finite and fixed number, k, of past
outcomes (order-k context-model) [92]. A substitutional tolerant context model (STCM) [86,87] is
a probabilistic-algorithmic context model. It acts as a short program that enables setting the number
of allowed substitutions in a certain context depth. In practice, it assigns probabilities according
to a conditioning context that considers the last symbol, from the sequence to occur, as the most
probable, given the occurrences stored in the memory instead of the true occurring symbol. An STCM,
besides being probabilistic, is also algorithmic, namely because they can be switched on or off given its
performance, according to a threshold, t, defined before the computation [86]. The threshold enables
or disables the model, according to the number of times that the context has been seen, given l hits or
fails that are constantly stored in memory in a cache array. For both context models and STCMs, the
number of conditioning states of the model is |Θ|k (in our case, 4k).

We assume that the memory model starts with counters all set to zero. Through all the
computation, the memory model is updated according to the outcomes. Therefore, the prediction of
each context model is set along with the training. Notice that, in Figure 2, the models four and five
share the same memory model (CM4) because model five is an STCM with the same k as in model four.

The cooperation of both context models and STCM is supervised by a soft blending mechanism [75,93]
that gives importance to the models that had a better performance, given an exponential decaying
memory [75]. Figure 2 depicts an example of the cooperation between four context models and one

Entropy 2019, 21, 1074 6 of 18

substitutional tolerant context model, Ci, i = 1, . . . , 5. Each of these models, Ci, has a probability (CP), a
weight (CW), and a memory model (CM) associated with it.

For a model, the probability of each symbol, xi, is given by

P(xi) = ∑
m∈M

Pm(xi|xi−1
i−k) wm,i, (1)

where Pm(xi|xi−1
i−k) is the probability assigned to the next symbol by a context model or STCM, k is the

order of the corresponding model m, and where wm,i denotes the corresponding weighting factor, with

wm,i ∝ (wm,i−1)
γm Pm(xi|xi−1

i−k), (2)

where the sum of the weights, for each respective model, is constrained to one, and where γm ∈ [0, 1)
acts as a forgetting factor for each model. We found experimentally that models with lower k are
related to lower γm (typically, below 0.9), while higher k, is associated with higher γm (near 0.95).
This means that, in this mixture type, the forgetting intensity should be lower for more complex
models. A curious indication was also found for a context model of order six. This model seems to be
efficient with γm ∈ [0.75, 0.85] and is associated with k = 6, which is the lowest γm among the models.
We hypothesize that this might be related to the period multiplicity found in the DNA [94].

The depth of the model, k, identifies the number of contiguous symbols seen in the past for
predicting the next symbol and, hence, xi−1

i−k [92]. We use an estimator parameter (alpha) that allows
for balancing between the uniform and the frequency distribution (usually the deepest models have
lower alphas [81]).

Inverted repeats are essential to consider because they can give additional compression gain [95].
Therefore, we use a short program that allows mapping for subsequences with similarity to inverted
repeat sequences according to the algorithm of [96].

The cache-hash [97] enables keeping in mind only the latest entries up to a certain number of hash
collisions. This is very important because the memory models of the deepest context models have
very sparse representations and, hence, storing its entries in a table would require 4k+1 entries, which
means that assuming counters of 8 bits for a k = 20 would require 4 TB of RAM. A linear hash would
be feasible, depending on the available RAM and sequence size. In order to remove space constraints,
we set a maximum number of collisions, enabling us to maintain a maximum peak of RAM.

2.2. Weighted Stochastic Repeat Models

The repeat model, also known as a copy expert from the XM compression method [68], is a model
that stores into memory the positions relative to the sequence that has an identical k-mer identified in
the past of the sequence. The positions are stored, using a causal processing paradigm, usually in a
memory model as a hash-table. The model is used after a k-mer match occurs and is switched off after
a certain threshold of performance is reached.

Figure 3 depicts an example of a repeat model with k-mer size of 8 while Figure 2 (at the right
side) represents the architecture. The positions of where the subsequence occurred in the past are
stored in the hash table. In this example, two positions are identified, namely 14,251 and 14,275. If we
used only one position, this would be similar to the GReEn implementation [41]. However, we use the
information at most from RPN models (RPN are the maximum number of repeats models which are
shown in Figure 2). When the RPN is higher than the available number of positions, the number of
actual models is bounded by the maximum.

Entropy 2019, 21, 1074 7 of 18

Figure 3. Repeat model example with k-mer size of 8. The H is a hash function that encapsulates a
k-mer into a natural number on the hash table. Positions 14,251 and 14,275 stand for identical k-mers
seen in the past of the sequence. Number 14,295 stands for the current position of the base being coded.

These repeat models are called stochastic because, to start a new repeat (after a k-mer match), any
position given the same k-mer (in the hash table) has the same probability of being used. If we used
the sequential order, the initial positions of the sequence would be more used, given the number of
repeats being upper bounded by RPN. Therefore, the stochastic nature enables uniform distribution
of the repeats to start in different positions along the sequence. Another advantage is the absence of
indexes to represent the position of the repeat being used under the positions vector. As such, the
stochastic nature allows decreasing the memory inherent to the representation of the hash table.

Along with the hash table of positions, the sequence needs to be continuously preserved in
memory (both in compression and decompression). To minimize its representation in memory, we
pack each DNA symbol into two bits, instead of the common 8 bits. This approach allows for decreasing
to a factor of four the memory associated with the representation of the sequence. Notice that sequences
with length 100 MBases would require 100 MBytes of RAM just to be represented. With the packing
approach, only 24 MB are needed.

The repeat models are combined using the same methodology in the context models. For each
repeat, there is a weight which is adapted according to its performance. In this case, the decaying (γm)
is very small since the weights need to be quickly adapted.

2.3. Competitive Prediction Context Model

The competitive prediction is used to choose the best-predicted class of models between Weighted
context models and Weighted stochastic repeat models. The prediction is modeled using a context
model with a specific order-size defined as a parameter. The context model uses a binary alphabet,
where each symbol corresponds to a different class. The sequence of symbols containing the best
model is represented by Z, where Zi is a symbol of the sequence at a given instant i.

Figure 4 depicts an example of a competitive prediction context model with a context order depth
of five. To predict the best class of models to represent Zi+1, the probability of P(Zi+1 = S|k) needs to
be computed, having S as the next symbol (in this case S = 0) and k as the context order depth with
the previous five symbols.

Figure 4. Competitive prediction context model (CPCM) example with context depth (k) of 5. The next
symbol is S, and Z is the sequence with the best class of models estimated by the CPCM.

The class that has the highest probability of being used is the one which will be used to model a
specific base. Accordingly, the probabilities of the selected class will be forwarded to the arithmetic
encoder. After that, the information of the best class is updated into the context model of the classes.

Entropy 2019, 21, 1074 8 of 18

Since in the CPCM the context order (k) is the crucial parameter, we assessed the impact of the
variation of the context order according to different modes for different genomic sequences. Figure 5
depicts this assessment using the HoSa, EnIn, AeCa, and YeMi sequences (in decreasing order of
sequence length). The remaining plots for the other sequences in the dataset can be found at the
code repository. Generally, there is a relation between the context order of the CPCM and the length
of the sequence (according to the respective redundancy), where longer sequences require a higher
context order, and shorter sequences stand for lower context orders. As an example, the HoSa sequence
(largest) is better compressed (in level 12) with a context order of 16, while the YeMi sequence (shortest)
is better compressed (in level 2) with a context order of 5.

Figure 5. Bits per base (BPS) of compressing four sequences applying a CPCM context order variation
for the first twelve modes of Jarvis. The four datasets are sorted according to different sizes; namely,
the largest is HoSa (left-top), then, EnIn (right-top), AeCa (left-bottom), and YeMi (right-bottom).

The described competitive prediction model runs in high-speed using reasonable accuracy.
The accuracy of the model can improve with the development of a prediction based on multiple
models, namely through Weighted context models. However, this creates a trade-off between accuracy
and computational time, which may be very high for the gains that it may produce.

2.4. Decompression

For a compression method to be considered lossless, all the compressed sequences must be
decompressed exactly to the original sequences. The current compression and decompression
methodologies are symmetric. This symmetry means that both Weighted context models, Weighted
stochastic repeat models, and competitive prediction model are synchronized in the same order
using the same characteristics. Additional side information is included in the compressed file (in
the beginning) in order for the decompressor to use the same characteristics. For example, in the
Weighted stochastic repeat models, the seed is passed in the header to ensure the exact beginning in
the stochastic process.

Accordingly, all the files used in this article have been losslessly decompressed using the same
machine and OS (Linux Ubuntu). Regarding different floating-point hardware implementations,

Entropy 2019, 21, 1074 9 of 18

we have only tested one sequence compression–decompression (DrMe) between different hardware
and OS version, namely compressing with one (server) machine and with a specific OS and, then,
decompress with a different (Desktop) machine and OS version. Although it has worked in this
example, we can not guarantee that it stays synchronized on machines if they have different
floating-point hardware implementations.

2.5. Implementation

The tool (Jarvis), written in C language, is available at https://github.com/cobilab/jarvis, under
the GPL-v3 license, and can be applied to compress/decompress any genomic sequence. The alphabet
of the sequences is truncated to ACGT symbols. We use a slightly modified implementation of an
Arithmetic Encoder provided by Moffat et al. [98].

The tool is accompanied with the appropriate decompressor, which uses slightly less time to
decompress than to compress, and approximately the same RAM. The decompressor is approximately
symmetric. All the sequences that we tested have been losslessly decompressed.

The tool includes several default running modes from 1 to 15. Apart from some exceptions, lower
levels use less computational resources (time and RAM) and are more prone to shorter sequences,
while higher levels work better in larger sequences. Nevertheless, specific model configurations can be
manually set as parameters to the program.

3. Results

In this section, we benchmark the proposed compressor against state-of-the-art data compressors.
The dataset proposed for this benchmark contains 15 genomic sequences [91], with a consistent balance
between the number of sequences and sizes. Moreover, it reflects the main domains and kingdoms
of biological organisms, enabling a comprehensive and balanced comparison. The dataset contains a
total DNA sequence lenght of 534,263,017 bases (approximately half a GigaByte).

Ranking the algorithms mentioned in the Introduction is a complex task. For example, some
of these algorithms have been a contribution to other extensions or applications, while others are
specialized for specific types of genomic sequences, such as bacteria, collections of genomes, and
alignment data. There are also algorithms to cope with low computational resources. From our
experience, we would highlight XM [68] and GeCo/GeCo2 [86,88] given their ability to compress
genomic sequences with high compression ratios. On average, XM is slightly better concerning
compression ratio (approximately 0.4% and 0.2% over GeCo and GeCo2, respectively). However,
XM uses substantially higher RAM and time than GeCo and GeCo2 [88,91]. An algorithm that uses
substantially lower computational resources is CoGI [84]; however, it is less efficient in the compaction.
From a large number of available specific genomic data compressors, we choose XM, GeCo, GeCo2,
and CoGI for a benchmark with Jarvis. In addition, we include two general-purpose compressors,
namely LZMA and PAQ8 (both using the best compression parameters).

The results presented in this paper can be reproduced, under a Linux OS, using the scripts
provided at the repository https://github.com/cobilab/jarvis, specifically scripts/Run.sh. The results
of GeCo2 have been imported from [88].

We present the comparative results of the proposed compressor (Jarvis) against state-of-the-art
algorithms. Table 1 depicts the number of bytes needed to compress each DNA sequence for each
compressor and Table 2 the computational time. As can be seen, on average, Jarvis compressed the
dataset to the lowest number of bytes. In some sequences, GeCo2 and XM were able to achieve better
compression, although with a minimal difference. Jarvis uses pre-set levels to compute and, hence,
these values may be improved with higher levels and optimization.

https://github.com/cobilab/jarvis
https://github.com/cobilab/jarvis
scripts/Run.sh

Entropy 2019, 21, 1074 10 of 18

Table 1. Number of bytes needed to represent each DNA sequence given the respective data compressor
(LZMA -9, PAQ8 -8, CoGi, GeCo, XM and Jarvis). We ran LZMA with the -9 flag (best option), PAQ8
with the -8 (best option), GeCo using “-tm 1:1:0:0/0 -tm 3:1:0:0/0 -tm 6:1:0:0/0 -tm 9:10:0:0/0 -tm
11:10:0:0/0 -tm 13:50:1:0/0 -tm 18:100:1:3/10 -c 30 -g 0.9”, GeCo2 with parameters from [88], and XM
using 50 copy experts. The compression level used in Jarvis is depicted between parentheses, and it
has been set according to the size of the sequence. The length of the sequences is present in Table 2.

ID LZMA-9 PAQ8-8 CoGI GeCo GeCo2 XM Jarvis (level)

HoSa 42,292,440 40,517,624 51,967,817 38,877,294 38,845,642 38,940,458 38,660,851 (7)
GaGa 36,179,650 34,490,967 40,846,177 33,925,250 33,877,671 33,879,211 33,699,821 (6)
DaRe 12,515,717 12,628,104 17,084,450 11,520,064 11,488,819 11,302,620 11,173,905 (5)
OrSa 9,348,183 9,280,037 11,999,580 8,671,732 8,646,543 8,470,212 8,448,959 (5)
DrMe 8,016,544 7,577,068 8,939,690 7,498,808 7,481,093 7,538,662 7,490,418 (5)
EnIn 5,785,343 5,761,090 7,210,867 5,196,083 5,170,889 5,150,309 5,087,286 (4)
ScPo 2,722,233 2,557,988 2,921,247 2,536,457 2,518,963 2,524,147 2,517,535 (4)
PlFa 2,097,979 1,959,623 2,411,342 1,944,036 1,925,726 1,925,841 1,924,430 (4)
EsCo 1,185,704 1,107,929 1,307,943 1,109,823 1,098,552 1,110,092 1,095,606 (4)
HaHi 985,096 904,074 1,124,483 906,991 902,831 913,346 899,464 (3)
AeCa 413,886 380,273 454,357 385,640 380,115 387,030 380,507 (3)
HePy 415,161 385,096 457,859 381,545 375,481 384,071 374,362 (3)
YeMi 19,262 16,835 19,805 17,167 16,798 16,861 16,861 (2)
AgPh 12,183 10,754 12,243 10,882 10,708 10,711 10,745 (2)
BuEb 5441 4668 5291 4774 4686 4642 4690 (1)

Total 121,994,822 117,582,130 146,763,151 112,986,546 112,744,517 112,558,213 111,785,440

Table 2. Computational time (in seconds) needed to represent each DNA sequence given the respective
data compressor (LZMA, PAQ8, CoGi, GeCo, GeCo2, XM, and Jarvis). We ran LZMA with the -9 flag
(best option), PAQ8 with the -8 (best option), GeCo using “-tm 1:1:0:0/0 -tm 3:1:0:0/0 -tm 6:1:0:0/0
-tm 9:10:0:0/0 -tm 11:10:0:0/0 -tm 13:50:1:0/0 -tm 18:100:1:3/10 -c 30 -g 0.9”, GeCo2 with parameters
from [88], and XM using 50 copy experts. The compression level used in Jarvis is depicted between
parentheses and it has been set according to the size of the sequence. The length scale of the sequences
is in bases.

ID Length LZMA PAQ8 CoGI GeCo GeCo2 XM Jarvis

HoSa 189,752,667 552.5 85,269.1 25.2 648.6 652.4 5,589.8 814.8 (7)
GaGa 148,532,294 468.7 64,898.9 19.9 503.2 494.7 3,633.9 412.3 (6)
DaRe 62,565,020 170.0 29,907.7 8.2 215.9 198.8 785.2 284.9 (5)
OrSa 43,262,523 112.9 20,745.1 5.8 192.4 138.3 489.7 234.5 (5)
DrMe 32,181,429 85.6 14,665.8 4.3 114.6 102.4 362.6 66.7 (5)
EnIn 26,403,087 66.0 11,183.6 3.7 95.8 82.5 279.8 101.1 (4)
ScPo 10,652,155 23.0 4,619.1 1.5 45.2 34.2 96.5 28.7 (4)
PlFa 8,986,712 18.3 4,133.9 1.2 39.7 35.3 84.4 25.4 (4)
EsCo 4,641,652 8.1 1,973.9 0.6 26.4 5.1 36.8 10.9 (4)
HaHi 3,890,005 6.9 1,738.1 0.5 23.7 4.4 39.1 7.1 (3)
AeCa 1,591,049 2.2 675.3 0.2 17.0 1.9 10.3 2.2 (3)
HePy 1,667,825 2.3 715.1 0.2 17.2 1.9 11.2 2.7 (3)
YeMi 73,689 0.1 32.6 0.0 12.3 0.1 0.9 0.2 (2)
AgPh 43,970 0.0 20.1 0.0 12.1 0.1 0.9 0.1 (2)
BuEb 18,940 0.0 9.1 0.0 12.2 0.1 0.7 0.1 (1)

Total 534,263,017 1516.6 240,587.4 71.3 1976.3 1742.2 11,421.8 1991.7

Regarding PAQ8 (in its best compression option), Jarvis achieves a compression improvement of
5.2%, approximately. This comparison is according to the measures in [51]. In addition, on average,
Jarvis is faster 140 times than PAQ8.

Regarding CoGI, the method provides a small factor of compressibility, better than gzip 2.3%
(although not present in the table, gzip in the best option achieve 150,794,589 bytes). Nevertheless,

Entropy 2019, 21, 1074 11 of 18

CoGI is the fastest method. On average, CoGi is faster than Jarvis 28 times, although Jarvis achieved
31% higher compression ratio. CoGI is more suitable for industry-orientation purposes.

Jarvis shows and improvement of 1.1% and 0.9% to GeCo and GeCo2, respectively.
The computational time is competitive with GeCo and slighty more than GeCo2. Regarding the
second-best tool in compression ratio (XM), Jarvis improves the compression to approximately 0.6%.
In addition, it is faster 5.7 times more than XM. Regarding RAM, Jarvis used a maximum peak of 7.12
GB in the largest sequence. These are competitive memory values with GeCo/GeCo2 and, at least, half
of the RAM needed by XM.

Figure 6 shows the compressed size and speed, where the mean of speed values for all datasets is
calculated to obtain the average speed for each method. As depicted, Jarvis shows the best compression
rate since the compressed size is the lowest. On the other hand, GeCo, GeCo2, and XM seem to have
very similar performance, while PAQ8 and LZMA are not so efficient in genomic data. Regarding the
speed, Jarvis is approximately at the level of LZMA and GeCo2, showing that the trade-off between
computational resources and precision is minimal.

Figure 6. Benchmark with size (a) and speed (b). For each sequence, the value of speed is calculated as
compressed size (KB) divided by compression time (s). The mean of speed values for all datasets is
calculated to obtain the average speed for each method. The CoGI compressor is not included because
it is an outlier concerning this dataset.

Additionally, Jarvis can run with other modes. In Figure 7, we include a comparison of all the
fifteen modes in Jarvis for the three largest sequences. For example, running Jarvis with level 12 in
HoSa sequence achieves 38,280,246 bytes (1.6139 BPS). This result is an improvement of 1% over Jarvis
in mode 7. The trade-off is computational time and RAM, however still less than XM. Therefore, Jarvis
is flexible and can be optimized to achieve considerably better compression ratios. The optimization,
besides the choice of the best model, can be applied in a specific combination of the number of models,
depths, estimator parameters, among many others.

Entropy 2019, 21, 1074 12 of 18

Figure 7. Comparison of the fifteen compression modes available in Jarvis for the three largest
sequences in the dataset (HoSa, GaGa, and DaRe). Compression ratios are in Bits Per Symbol (BPS) and
Time in seconds. Times may not agree precisely with Table 2 because we rerun the tool. Each number,
corresponding to the blue dots, stands for the mode/level used in Jarvis. We recall that additional
levels or specific configurations can be set.

One of the main achievements of this paper is to combine Weighted context models with Weighted
stochastic repeat models using a competitive prediction model. In order to test the impact of the
inclusion of both repeat models and competitive prediction model, we include a very repetitive
sequence (exogenous from the benchmarking dataset). This test has the underlying idea that repetitive
regions are better modeled with Weighted stochastic repeat models than by Weighted context models.
The test sequence is the assembled human Y-chromosome downloaded from the NCBI.

As depicted in Figure 8, all the modes from Jarvis compress better than the best mode from GeCo2.
Jarvis (mode 12) achieves a compression 5.413% better than GeCo2 (mode 15) using approximately
the same computational time. This example shows a substantial improvement using both Weighted
stochastic repeat models and the competitive prediction model.

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1.15 	1.2 	1.25 	1.3 	1.35 	1.4

Se
co
nd

s

BPS

GeCo2
Jarvis

Figure 8. Comparison of the fifteen compression modes available in Jarvis and GeCo2 for the human
chromosome Y sequence. Compression ratios are in Bits Per Symbol (BPS) and Time in seconds.
Each number, corresponding to the blue dots, stands for the mode/level used in the respective compressor.

4. Conclusions

The development of efficient DNA sequence compressors is fundamental for reducing the storage
allocated to projects. The importance is also reflected for analysis purposes, given the search for
optimized and new tools for anthropological and biomedical applications.

In this paper, we presented a reference-free lossless data compressor with improved compression
capabilities for DNA sequences. The method uses a competitive prediction model to estimate, for each

Entropy 2019, 21, 1074 13 of 18

symbol, the best class of models to be used before applying arithmetic encoding. The method uses
two classes of models: Weighted context models (including substitutional tolerant context models)
and Weighted stochastic repeat models. Both classes of models use specific sub-programs to handle
inverted repeat subsequences efficiently.

The results show that the proposed method attains a higher compression ratio than state-of-the-art
approaches using a fair and diverse benchmark. The computational resources needed by the
proposed approach are competitive. The decompression process uses approximately the same
computational resources.

Author Contributions: D.P. and A.J.P. conceived and designed the experiments; D.P., M.H., and J.M.S. performed
the experiments; D.P., M.H., J.M.S., and A.J.P. analyzed the data; D.P., M.H., J.M.S., and A.J.P. wrote the paper.

Funding: This research was funded by the National Funds Grant No. UID/CEC/00127/2014,
PTCD/EEI-SII/6608/2014, UID/CEC/00127/2019.

Acknowledgments: This work was partially funded by FEDER (Programa Operacional Factores de
Competitividade—COMPETE) and by National Funds through the FCT—Foundation for Science and
Technology, in the context of the projects UID/CEC/00127/2014, PTCD/EEI-SII/6608/2014. M.H. acknowledges
UID/CEC/00127/2019.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AeCa Aeropyrum camini—archaea
AgPh Aggregatibacter phage S1249—phage virus
BPS Bits per symbol
BuEb Bundibugyo ebolavirus—virus
CPCM Competitive prediction context model
CTW Context tree weighting
DaRe Danio rerio—fish
DrMe Drosophila miranda—fly
EnIn Entamoeba invadens—amoebozoa
EsCo Escherichia coli—bacteria
GaGa Gallus gallus—chicken
GeCo Genomic Compressor (tool)
GPU Graphical Processing Unit
HaHi Haloarcula hispanica—archaea
HePy Helicobacter pylori—bacteria
HoSa Homo sapiens—human
LUT Look Up Table
NC Normalized Compression
OrSa Oriza sativa—plant
OS Operating System
PlFa Plasmodium falciparum–protozoan
RAM Random Access Memory
RLE Run Length Encoding
ScPo Schizosaccharomyces pombe—fungi
TB TeraByte
XM eXpert-Model
YeMi Yellowstone lake—mimivirus

References

1. Schatz, M.C.; Langmead, B. The DNA data deluge. IEEE Spectrum 2013, 50, 28–33. [CrossRef] [PubMed]
2. Mardis, E.R. DNA sequencing technologies: 2006–2016. Nat. Protocols 2017, 12, 213. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/MSPEC.2013.6545119
http://www.ncbi.nlm.nih.gov/pubmed/24920863
http://dx.doi.org/10.1038/nprot.2016.182
http://www.ncbi.nlm.nih.gov/pubmed/28055035

Entropy 2019, 21, 1074 14 of 18

3. Marco, D. Metagenomics: Theory, Methods and Applications; Horizon Scientific Press: Poole, UK, 2010.
4. Duggan, A.T.; Perdomo, M.F.; Piombino-Mascali, D.; Marciniak, S.; Poinar, D.; Emery, M.V.; Buchmann, J.P.;

Duchêne, S.; Jankauskas, R.; Humphreys, M.; et al. 17th century variola virus reveals the recent history of
smallpox. Curr. Biol. 2016, 26, 3407–3412. [CrossRef] [PubMed]

5. Weber, W.; Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 2012,
13, 21. [CrossRef] [PubMed]

6. Marciniak, S.; Perry, G.H. Harnessing ancient genomes to study the history of human adaptation.
Nat. Rev. Genet. 2017, 18, 659. [CrossRef] [PubMed]

7. Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.;
Robinson, G.E. Big data: Astronomical or genomical? PLoS Biol. 2015, 13, e1002195. [CrossRef]

8. Deorowicz, S.; Grabowski, S. Compression of DNA sequence reads in FASTQ format. Bioinformatics 2011,
27, 860–862. [CrossRef]

9. Hanus, P.; Dingel, J.; Chalkidis, G.; Hagenauer, J. Compression of whole genome alignments. IEEE Trans.
Inf. Theory 2010, 56, 696–705. [CrossRef]

10. Matos, L.M.O.; Pratas, D.; Pinho, A.J. A compression model for DNA multiple sequence alignment blocks.
IEEE Trans. Inf. Theory 2013, 59, 3189–3198. [CrossRef]

11. Mohammed, M.H.; Dutta, A.; Bose, T.; Chadaram, S.; Mande, S.S. DELIMINATE—A fast and efficient
method for loss-less compression of genomic sequences. Bioinformatics 2012, 28, 2527–2529. [CrossRef]

12. Pinho, A.J.; Pratas, D. MFCompress: A compression tool for fasta and multi-fasta data. Bioinformatics 2013,
30, 117–118. [CrossRef] [PubMed]

13. Grabowski, S.; Deorowicz, S.; Roguski, Ł. Disk-based compression of data from genome sequencing.
Bioinformatics 2015, 31, 1389–1395. [CrossRef] [PubMed]

14. Hach, F.; Numanagić, I.; Alkan, C.; Sahinalp, S.C. SCALCE: Boosting sequence compression algorithms
using locally consistent encoding. Bioinformatics 2012, 28, 3051–3057. [CrossRef] [PubMed]

15. Layer, R.M.; Kindlon, N.; Karczewski, K.J.; Consortium, E.A.; Quinlan, A.R.; Efficient genotype compression
and analysis of large genetic-variation data sets. Nat. Methods 2016, 13, 63. [CrossRef]

16. Bonfield, J.K.; Mahoney, M.V. Compression of FASTQ and SAM format sequencing data. PLoS ONE 2013,
8, e59190. [CrossRef]

17. Wang, R.; Bai, Y.; Chu, Y.S.; Wang, Z.; Wang, Y.; Sun, M.; Li, J.; Zang, T.; Wang, Y. DeepDNA: A hybrid
convolutional and recurrent neural network for compressing human mitochondrial genomes. In Proceedings
of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain,
3–6 December 2018; pp. 270–274.

18. Benoit, G.; Lemaitre, C.; Lavenier, D.; Drezen, E.; Dayris, T.; Uricaru, R.; Rizk, G. Reference-free compression of
high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinform. 2015, 16, 288. [CrossRef]

19. Ochoa, I.; Li, H.; Baumgarte, F.; Hergenrother, C.; Voges, J.; Hernaez, M. AliCo: A new efficient representation
for SAM files. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA,
26–29 March 2019; pp. 93–102.

20. Zhang, C.; Ochoa, I. VEF: A Variant Filtering tool based on Ensemble methods. bioRxiv 2019, 540286. [CrossRef]
21. Chandak, S.; Tatwawadi, K.; Ochoa, I.; Hernaez, M.; Weissman, T. SPRING: A next-generation compressor

for FASTQ data. Bioinformatics 2018, 35, 2674–2676 [CrossRef]
22. Holley, G.; Wittler, R.; Stoye, J.; Hach, F. Dynamic alignment-free and reference-free read compression.

J. Comput. Biol. 2018, 25, 825–836. [CrossRef]
23. Kumar, S.; Agarwal, S. WBMFC: Efficient and Secure Storage of Genomic Data. Pertanika J. Sci. Technol. 2018,

26, 4.
24. Dougherty, E.R.; Shmulevich, I.; Chen, J.; Wang, Z.J. (Eds.) Genomic Signal Processing and Statistics; Hindawi

Publishing Corporation: London, UK, 2005.
25. Grumbach, S.; Tahi, F. Compression of DNA sequences. In Proceedings of the Data Compression Conference

(DCC 1993), Snowbird, UT, USA, 30 March–2 April 1993; pp. 340–350.
26. Hernaez, M.; Pavlichin, D.; Weissman, T.; Ochoa, I. Genomic Data Compression. Annu. Rev. Biomed. Data Sci.

2019, 2, 19–37. [CrossRef]
27. Rieseberg, L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001, 16, 351–358. [CrossRef]

http://dx.doi.org/10.1016/j.cub.2016.10.061
http://www.ncbi.nlm.nih.gov/pubmed/27939314
http://dx.doi.org/10.1038/nrg3094
http://www.ncbi.nlm.nih.gov/pubmed/22124480
http://dx.doi.org/10.1038/nrg.2017.65
http://www.ncbi.nlm.nih.gov/pubmed/28890534
http://dx.doi.org/10.1371/journal.pbio.1002195
http://dx.doi.org/10.1093/bioinformatics/btr014
http://dx.doi.org/10.1109/TIT.2009.2037052
http://dx.doi.org/10.1109/TIT.2012.2236605
http://dx.doi.org/10.1093/bioinformatics/bts467
http://dx.doi.org/10.1093/bioinformatics/btt594
http://www.ncbi.nlm.nih.gov/pubmed/24132931
http://dx.doi.org/10.1093/bioinformatics/btu844
http://www.ncbi.nlm.nih.gov/pubmed/25536966
http://dx.doi.org/10.1093/bioinformatics/bts593
http://www.ncbi.nlm.nih.gov/pubmed/23047557
http://dx.doi.org/10.1038/nmeth.3654
http://dx.doi.org/10.1371/journal.pone.0059190
http://dx.doi.org/10.1186/s12859-015-0709-7
http://dx.doi.org/10.1101/540286
http://dx.doi.org/10.1093/bioinformatics/bty1015
http://dx.doi.org/10.1089/cmb.2018.0068
http://dx.doi.org/10.1146/annurev-biodatasci-072018-021229
http://dx.doi.org/10.1016/S0169-5347(01)02187-5

Entropy 2019, 21, 1074 15 of 18

28. Roeder, G.S.; Fink, G.R. DNA rearrangements associated with a transposable element in yeast. Cell 1980,
21, 239–249. [CrossRef]

29. Harris, K. Evidence for recent, population-specific evolution of the human mutation rate. Proc. Natl. Acad.
Sci. USA 2015, 112, 3439–3444. [CrossRef] [PubMed]

30. Jeong, C.; di Rienzo, A. Adaptations to local environments in modern human populations. Curr. Opin. Genet.
Dev. 2014, 29, 1–8. [CrossRef] [PubMed]

31. Beres, S.; Kachroo, P.; Nasser, W.; Olsen, R.; Zhu, L.; Flores, A.; de la Riva, I.; Paez-Mayorga, J.; Jimenez, F.;
Cantu, C.; et al. Transcriptome remodeling contributes to epidemic disease caused by the human pathogen
Streptococcus pyogenes. mBio 2016, 7, e00403-16. [CrossRef]

32. Fumagalli, M.; Sironi, M. Human genome variability, natural selection and infectious diseases. Curr. Opin.
Immunol. 2014, 30, 9–16. [CrossRef]

33. Long, H.; Sung, W.; Kucukyildirim, S.; Williams, E.; Miller, S.F.; Guo, W.; Patterson, C.; Gregory, C.;
Strauss, C.; Stone, C.; et al. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol.
Evol. 2018, 2, 237. [CrossRef]

34. Golan, A. Foundations of Info-Metrics: Modeling and Inference with Imperfect Information; Oxford University
Press: Oxford, UK, 2017.

35. Hosseini, M.; Pratas, D.; Pinho, A.J. A survey on data compression methods for biological sequences.
Information 2016, 7, 56. [CrossRef]

36. Wang, C.; Zhang, D. A novel compression tool for efficient storage of genome resequencing data. Nucleic
Acids Res. 2011, 39, e45. [CrossRef]

37. Kuruppu, S.; Puglisi, S.J.; Zobel, J. Optimized relative Lempel–Ziv compression of genomes. In Proceedings
of the 34th Australian Computer Science Conference (ACSC-2011), Perth, Australia, 17–20 January 2011;
Volume 11, pp. 91–98.

38. Tembe, W.; Lowey, J.; Suh, E. G-SQZ: Compact encoding of genomic sequence and quality data. Bioinformatics
2010, 26, 2192–2194. [CrossRef] [PubMed]

39. Fritz, M.H.Y.; Leinonen, R.; Cochrane, G.; Birney, E. Efficient storage of high throughput DNA sequencing
data using reference-based compression. Genome Res. 2011, 21, 734–740. [CrossRef] [PubMed]

40. Kozanitis, C.; Saunders, C.; Kruglyak, S.; Bafna, V.; Varghese, G. Compressing genomic sequence fragments
using SlimGene. J. Comput. Biol. 2011, 18, 401–413. [CrossRef] [PubMed]

41. Pinho, A.J.; Pratas, D.; Garcia, S.P. GReEn: A tool for efficient compression of genome resequencing data.
Nucleic Acids Res. 2012, 40, e27. [CrossRef] [PubMed]

42. Wandelt, S.; Leser, U. FRESCO: Referential compression of highly similar sequences. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2013, 10, 1275–1288. [CrossRef]

43. Deorowicz, S.; Danek, A.; Niemiec, M. GDC 2: Compression of large collections of genomes. Sci. Rep. 2015,
5, 1–12. [CrossRef]

44. Ochoa, I.; Hernaez, M.; Weissman, T. iDoComp: A compression scheme for assembled genomes.
Bioinformatics 2014, 31, 626–633. [CrossRef]

45. Liu, Y.; Peng, H.; Wong, L.; Li, J. High-speed and high-ratio referential genome compression. Bioinformatics
2017, 33, 3364–3372. [CrossRef]

46. Shi, W.; Chen, J.; Luo, M.; Chen, M. High efficiency referential genome compression algorithm. Bioinformatics
2018, 35, 2058–2065. [CrossRef]

47. Saha, S.; Rajasekaran, S. NRGC: A novel referential genome compression algorithm. Bioinformatics 2016,
32, 3405–3412. [CrossRef]

48. Tang, Y.; Li, M.; Sun, J.; Zhang, T.; Zhang, J.; Zheng, P. TRCMGene: A two-step referential compression
method for the efficient storage of genetic data. PLoS ONE 2018, 13, e0206521. [CrossRef] [PubMed]

49. Kolmogorov, A.N. Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1965,
1, 1–7. [CrossRef]

50. Pratas, D.; Pinho, A.J. On the Approximation of the Kolmogorov Complexity for DNA Sequences. In Iberian
Conference on Pattern Recognition and Image Analysis; Springer: Cham, Switzerland, 2017; pp. 259–266.

51. Goyal, M.; Tatwawadi, K.; Chandak, S.; Ochoa, I. DeepZip: Lossless Data Compression using Recurrent
Neural Networks. arXiv 2018, arXiv:1811.08162.

http://dx.doi.org/10.1016/0092-8674(80)90131-2
http://dx.doi.org/10.1073/pnas.1418652112
http://www.ncbi.nlm.nih.gov/pubmed/25733855
http://dx.doi.org/10.1016/j.gde.2014.06.011
http://www.ncbi.nlm.nih.gov/pubmed/25129844
http://dx.doi.org/10.1128/mBio.00403-16
http://dx.doi.org/10.1016/j.coi.2014.05.001
http://dx.doi.org/10.1038/s41559-017-0425-y
http://dx.doi.org/10.3390/info7040056
http://dx.doi.org/10.1093/nar/gkr009
http://dx.doi.org/10.1093/bioinformatics/btq346
http://www.ncbi.nlm.nih.gov/pubmed/20605925
http://dx.doi.org/10.1101/gr.114819.110
http://www.ncbi.nlm.nih.gov/pubmed/21245279
http://dx.doi.org/10.1089/cmb.2010.0253
http://www.ncbi.nlm.nih.gov/pubmed/21385043
http://dx.doi.org/10.1093/nar/gkr1124
http://www.ncbi.nlm.nih.gov/pubmed/22139935
http://dx.doi.org/10.1109/TCBB.2013.122
http://dx.doi.org/10.1038/srep11565
http://dx.doi.org/10.1093/bioinformatics/btu698
http://dx.doi.org/10.1093/bioinformatics/btx412
http://dx.doi.org/10.1093/bioinformatics/bty934
http://dx.doi.org/10.1093/bioinformatics/btw505
http://dx.doi.org/10.1371/journal.pone.0206521
http://www.ncbi.nlm.nih.gov/pubmed/30395579
http://dx.doi.org/10.1080/00207166808803030

Entropy 2019, 21, 1074 16 of 18

52. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977,
23, 337–343. [CrossRef]

53. Grumbach, S.; Tahi, F. A new challenge for compression algorithms: Genetic sequences. Inf. Process. Manag.
1994, 30, 875–886. [CrossRef]

54. Rivals, E.; Delahaye, J.P.; Dauchet, M.; Delgrange, O. A guaranteed compression scheme for repetitive
DNA sequences. In Proceedings of the Data Compression Conference (DCC ’96), Snowbird, UT, USA,
31 March–3 April 1996; p. 453.

55. Loewenstern, D.; Yianilos, P.N. Significantly lower entropy estimates for natural DNA sequences. In Proceedings
of the Data Compression Conference (DCC ’97), Snowbird, UT, USA, 25–27 March 1997; pp. 151–160.

56. Allison, L.; Edgoose, T.; Dix, T.I. Compression of strings with approximate repeats. In Proceedings of the
Intelligent Systems in Molecular Biology (ISMB ’98); Montréal, QC, Canada, 28 June–1 July 1998; pp. 8–16.

57. Apostolico, A.; Lonardi, S. Compression of biological sequences by greedy offline textual substitution.
In Proceedings of the Data Compression Conference (DCC 2000), Snowbird, UT, USA, 28–30 March 2000;
pp. 143–152.

58. Chen, T.; Sullivan, G.J.; Puri, A. H.263 (including H.263+) and other ITU-T video coding standards.
In Multimedia Systems, Standards, and Networks; Puri, A., Chen, T., Eds.; Marcel Dekker: New York, NY, USA,
2000; pp. 55–85.

59. Chen, X.; Li, M.; Ma, B.; Tromp, J. DNACompress: Fast and effective DNA sequence compression.
Bioinformatics 2002, 18, 1696–1698. [CrossRef]

60. Ma, B.; Tromp, J.; Li, M. PatternHunter: Faster and more sensitive homology search. Bioinformatics 2002,
18, 440–445. [CrossRef]

61. Matsumoto, T.; Sadakane, K.; Imai, H. Biological sequence compression algorithms. Genome Inform. 2000, 11,
43–52.

62. Tabus, I.; Korodi, G.; Rissanen, J. DNA sequence compression using the normalized maximum likelihood
model for discrete regression. In Proceedings of the Data Compression Conference (DCC 2003), Snowbird,
UT, USA, 25–27 March 2003; pp. 253–262.

63. Korodi, G.; Tabus, I. An efficient normalized maximum likelihood algorithm for DNA sequence compression.
ACM Trans. Inf. Sys. 2005, 23, 3–34. [CrossRef]

64. Cherniavsky, N.; Ladner, R. Grammar-Based Compression of DNA Sequences; Technical Report; University of
Washington: Seattle, WA, USA, 2004.

65. Manzini, G.; Rastero, M. A simple and fast DNA compressor. Softw. Pract. Exp. 2004, 34, 1397–1411.
[CrossRef]

66. Lee, A.J.T.; Chen, C. DNAC: An Efficient Compression Algorithm for DNA Sequences; National Taiwan
University: Taipei, Taiwan, 2004; Volume 1.

67. Behzadi, B.; Le Fessant, F. DNA compression challenge revisited. In Combinatorial Pattern Matching:
Proceedings of CPM-2005; Springer: Jeju Island, Korea, 2005; Volume 3537, pp. 190–200.

68. Cao, M.D.; Dix, T.I.; Allison, L.; Mears, C. A simple statistical algorithm for biological sequence compression.
In Proceedings of the 2007 Data Compression Conference (DCC ’07), Snowbird, UT, USA, 27–29 March 2007;
pp. 43–52.

69. Vey, G. Differential direct coding: A compression algorithm for nucleotide sequence data. Database 2009,
2009. [CrossRef] [PubMed]

70. Mishra, K.N.; Aaggarwal, A.; Abdelhadi, E.; Srivastava, D. An efficient horizontal and vertical method for
online dna sequence compression. Int. J. Comput. Appl. 2010, 3, 39–46. [CrossRef]

71. Rajeswari, P.R.; Apparao, A. GENBIT Compress-Algorithm for repetitive and non repetitive DNA sequences.
Int. J. Comput. Sci. Inf. Technol. 2010, 2, 25–29.

72. Gupta, A.; Agarwal, S. A novel approach for compressing DNA sequences using semi-statistical compressor.
Int. J. Comput. Appl. 2011, 33, 245–251. [CrossRef]

73. Gupta, A.; Agarwal, S. A scheme that facilitates searching and partial decompression of textual documents.
Int. J. Adv. Comput. Eng. 2008, 1, 99–109.

74. Zhu, Z.; Zhou, J.; Ji, Z.; Shi, Y. DNA sequence compression using adaptive particle swarm optimization-based
memetic algorithm. IEEE Trans. Evol. Comput. 2011, 15, 643–658. [CrossRef]

http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1016/0306-4573(94)90014-0
http://dx.doi.org/10.1093/bioinformatics/18.12.1696
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1145/1055709.1055711
http://dx.doi.org/10.1002/spe.619
http://dx.doi.org/10.1093/database/bap013
http://www.ncbi.nlm.nih.gov/pubmed/20157486
http://dx.doi.org/10.5120/757-954
http://dx.doi.org/10.2316/Journal.202.2011.3.202-3114
http://dx.doi.org/10.1109/TEVC.2011.2160399

Entropy 2019, 21, 1074 17 of 18

75. Pinho, A.J.; Pratas, D.; Ferreira, P.J.S.G. Bacteria DNA sequence compression using a mixture of finite-context
models. In Proceedings of the 2011 IEEE Statistical Signal Processing Workshop (SSP), Nice, France,
28–30 June 2011.

76. Pinho, A.J.; Ferreira, P.J.S.G.; Neves, A.J.R.; Bastos, C.A.C. On the representability of complete genomes by
multiple competing finite-context (Markov) models. PLoS ONE 2011, 6, e21588. [CrossRef]

77. Roy, S.; Khatua, S.; Roy, S.; Bandyopadhyay, S.K. An efficient biological sequence compression technique
using lut and repeat in the sequence. arXiv 2012, arXiv:1209.5905.

78. Satyanvesh, D.; Balleda, K.; Padyana, A.; Baruah, P. GenCodex—A Novel Algorithm for Compressing DNA
sequences on Multi-cores and GPUs. In Proceedings of the IEEE 19th International Conference on High
Performance Computing (HiPC), Pune, India, 18–22 December 2012.

79. Bose, T.; Mohammed, M.H.; Dutta, A.; Mande, S.S. BIND—An algorithm for loss-less compression of
nucleotide sequence data. J. Biosci. 2012, 37, 785–789. [CrossRef]

80. Li, P.; Wang, S.; Kim, J.; Xiong, H.; Ohno-Machado, L.; Jiang, X. DNA-COMPACT: DNA Compression Based
on a Pattern-Aware Contextual Modeling Technique. PLoS ONE 2013, 8, e80377. [CrossRef]

81. Pratas, D.; Pinho, A.J. Exploring deep Markov models in genomic data compression using sequence
pre-analysis. In Proceedings of the 22th European Signal Processing Conference (EUSIPCO 2014), Lisbon,
Portugal, 1–5 September 2014; pp. 2395–2399.

82. Sardaraz, M.; Tahir, M.; Ikram, A.A.; Bajwa, H. SeqCompress: An algorithm for biological sequence
compression. Genomics 2014, 104, 225–228. [CrossRef] [PubMed]

83. Guo, H.; Chen, M.; Liu, X.; Xie, M. Genome compression based on Hilbert space filling curve. In Proceedings
of the 3rd International Conference on Management, Education, Information and Control (MEICI 2015),
Shenyang, China, 29–31 May 2015; pp. 29–31.

84. Xie, X.; Zhou, S.; Guan, J. CoGI: Towards compressing genomes as an image. IEEE/ACM Trans. Comput.
Biol. Bioinform. 2015, 12, 1275–1285. [CrossRef] [PubMed]

85. Mohamed, S.A.; Fahmy, M.M. Binary image compression using efficient partitioning into rectanglar regions.
IEEE Trans. Commun. 1995, 43, 1888–1893. [CrossRef]

86. Pratas, D.; Pinho, A.J.; Ferreira, P.J.S.G. Efficient compression of genomic sequences. In Proceedings of the
2016 Data Compression Conference (DCC 2016), Snowbird, UT, USA, 30 March–1 April 2016; pp. 231–240.

87. Pratas, D.; Hosseini, M.; Pinho, A.J. Substitutional Tolerant Markov Models for Relative Compression
of DNA Sequences. In 11th International Conference on Practical Applications of Computational Biology &
Bioinformatics; Springer: Cham, Switzerland, 2017; pp. 265–272.

88. Pratas, D.; Hosseini, M.; Pinho, A.J. GeCo2: An optimized tool for lossless compression and analysis of DNA
sequences. In 13th International Conference on Practical Applications of Computational Biology and Bioinformatics;
Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Zaki, N., Castellanos-Garzón, J.A., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 137–145.

89. Chen, M.; Shao, J.; Jia, X. Genome sequence compression based on optimized context weighting. Genet. Mol.
Res. GMR 2017, 16. [CrossRef]

90. Mansouri, D.; Yuan, X. One-Bit DNA Compression Algorithm. In International Conference on Neural
Information Processing; Springer: Berlin, Germany, 2018; pp. 378–386.

91. Pratas, D.; Pinho, A.J. A DNA Sequence Corpus for Compression Benchmark. In International Conference on
Practical Applications of Computational Biology & Bioinformatics; Springer: Cham, Switzerland, 2018; pp. 208–215.

92. Sayood, K. Introduction to Data Compression; Morgan Kaufmann: Burlington, MA, USA, 2017.
93. Bell, T.C.; Cleary, J.G.; Witten, I.H. Text Compression; Prentice Hall: Upper Saddle River, NJ, USA, 1990.
94. Pinho, A.J.; Neves, A.J.R.; Afreixo, V.; Bastos, C.A.C.; Ferreira, P.J.S.G. A three-state model for DNA

protein-coding regions. IEEE Trans. Biomed. Eng. 2006, 53, 2148–2155. [CrossRef]
95. Hosseini, M.; Pratas, D.; Pinho, A.J. On the role of inverted repeats in DNA sequence similarity.

In International Conference on Practical Applications of Computational Biology & Bioinformatics; Springer: Cham,
Switzerland, 2017; pp. 228–236.

96. Pinho, A.J.; Neves, A.J.R.; Martins, D.A.; Bastos, C.A.C.; Ferreira, P.J.S.G. Finite-context models for DNA
coding. In Signal Processing; Miron, S., Ed.; INTECH: Rijeka, Croatia, 2010; pp. 117–130.

http://dx.doi.org/10.1371/journal.pone.0021588
http://dx.doi.org/10.1007/s12038-012-9230-6
http://dx.doi.org/10.1371/journal.pone.0080377
http://dx.doi.org/10.1016/j.ygeno.2014.08.007
http://www.ncbi.nlm.nih.gov/pubmed/25173568
http://dx.doi.org/10.1109/TCBB.2015.2430331
http://www.ncbi.nlm.nih.gov/pubmed/26671800
http://dx.doi.org/10.1109/26.387415
http://dx.doi.org/10.4238/gmr16026784
http://dx.doi.org/10.1109/TBME.2006.879477

Entropy 2019, 21, 1074 18 of 18

97. Ferreira, P.J.S.G.; Pinho, A.J. Compression-based normal similarity measures for DNA sequences.
In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2014), Florence, Italy, 4–9 May 2014; pp. 419–423.

98. Moffat, A.; Neal, R.M.; Witten, I.H. Arithmetic coding revisited. ACM Trans. Inf. Syst. 1998, 16, 256–294.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/290159.290162
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Weighted Context Models
	Weighted Stochastic Repeat Models
	Competitive Prediction Context Model
	Decompression
	Implementation

	Results
	Conclusions
	References

