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1 Abstract

2 Stand management optimization has long been computationally demanding as increasingly detailed 

3 growth and yield models have been developed. Process-based growth models are useful tools for 

4 predicting forest dynamics. However, the difficulty of classic optimization algorithms limited its 

5 applications in forest planning. This study assessed alternative approaches to optimizing thinning 

6 regimes and rotation length using a process-based growth model. We considered (1) population–

7 based algorithms proposed for stand management optimization, including differential evolution 

8 (DE), particle swarm optimization (PSO), evolution strategy (ES), and (2) derivative-free search 

9 algorithms, including the Nelder-Mead method (NM) and Osyczka’s direct and random search 

10 algorithm (DRS). We incorporated population-based algorithms into the simulation-optimization 

11 system OptiFor in which the process-based model PipeQual was the simulator. The results showed 

12 that DE was the most reliable algorithm among those tested. Meanwhile, DRS was also an effective 

13 algorithm for sparse stands with fewer decision variables. PSO resulted in some higher objective 

14 function values, however, the computational time of PSO was the longest. In general, of the 

15 population-based algorithms, DE is superior to the competing ones. The effectiveness of DE for 

16 stand management optimization is promising and manifested. 

17

18 Keywords: Algorithm performance; Optimal thinning; Population-based algorithms; Process-based 

19 model.

20

21
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1

2 Introduction

3 Forest planning is one of the core components in silviculture and forest ecosystem management. To 

4 achieve the management goal set by forest managers, two key elements are needed for forest 

5 planning: forest growth and yield models, and optimization models. Stand management optimization 

6 offers detailed information for optimal thinning regimes (the timing, frequency, type of thinning) and 

7 optimal rotation, to improve the quality of forest management decisions. Such forest management 

8 studies usually combine stand growth models with operations research techniques into simulation-

9 optimization systems (Brodie and Haight 1985). In a stand simulation-optimization system, stand 

10 growth models often play the role of simulator, and optimization algorithms are employed in the 

11 optimizer (Valsta 1992b, Fig. 3). Thus, the quality of optimal solutions depends on optimization 

12 algorithms, and the quality of stand dynamics relies on detailed stand growth models. As the purpose 

13 of forest management has been changed from timber production to multiple functional forest 

14 ecosystem services, the demand of growth and yield models for predicting stand dynamics has also 

15 been shifted from whole-stand to individual-tree models, and from empirical to process-based 

16 models. 

17

18 The combination of empirical whole-stand models and dynamic programming (DP ) was dominant in 

19 the 1980s, because of its accuracy in finding the global optimum. However, the efficiency of an 

20 algorithm depends on the dimensionality of state and decision variables. Hann and Brodie (1980) 

21 reported that DP required more computing hardware capacity or computing time when the amount of 
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1 state variables increased. In fact, the quality of stand-level planning requires detailed growth and 

2 yield models, such as individual-tree models. Such detailed models may lead to an increase of state 

3 and decision variables formulated in stand management optimization. Nonlinear programming (NLP) 

4 turned out to be an effective tool in handling such complicated optimization problems. Roise (1986) 

5 and Valsta (1990) compared DP with direct search algorithms of NLP. Results of both studies 

6 showed that NLP were more effective than those of DP. 

7

8 Most forest management studies assume that stand dynamics can be predicted based on deterministic 

9 empirical growth models. This type of model heavily depends on empirical data. As a matter of fact, 

10 it is often inefficient and difficult to collect long-term re-measured data for modeling impacts of 

11 thinning or climate effects on regeneration, in-growth, and mortality at various stand densities and 

12 site conditions. Applying more detailed succession or process models to explain biological principles 

13 becomes a helpful alternative in contrast to empirical models. Based on physiological theory, the key 

14 growth processes and underlying causes of forest productivity, for example, photosynthesis and 

15 respiration, nitrogen cycles, water balance, carbon balance, and climate effects are included in 

16 mechanistic models. Although the common purpose of process-based models is to explain ecological 

17 phenomena from underlying processes rather than to predict growth for management purposes, 

18 efforts have also been made to build management-oriented hybrid models by linking processed-based 

19 and empirical growth models. Some examples of this model type, for instance, 3-PG (Physiological 

20 Principles for Predicting Growth, Landsberg and Waring 1997), and CROBAS (a growth model 

21 based on CROwn and BASe dynamics) /PipeQual (PIPE model as a basis for wood QUALity 
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5

1 predictions, Mäkelä 1997, 2002; Mäkelä and Mäkinen 2003) have been successfully tested and can 

2 be used as a forest planning tool to mimic both common forest management problems (e.g. thinning 

3 and rotation) and effects of the changing environment. However, in consideration of mechanistic 

4 representation of stand growth, the complexity of process-based growth models would be increased 

5 due to a number of parameters, for example, 48 parameters for 3-PG (Landsberg and Waring 1997), 

6 and 39 parameters for CROBAS (Mäkelä 1997).

7

8 The process-based model PipeQual (Mäkelä 1997, 2002; Mäkelä and Mäkinen 2003) has been linked 

9 with the Hooke and Jevees (1961) direct search (HJ) algorithm for several optimization studies, 

10 which mainly focused on timber quality, carbon sequestration or bioenergy production (e.g., 

11 Hyytiäinen et al. 2004; Cao et al. 2010, 2015; Hurttala et al. 2017). The HJ algorithm applied in these 

12 studies has been well demonstrated earlier with various empirical stand growth models, such as 

13 whole-stand models (e.g., Roise 1986; Zhou 1998; Valsta 1990), and individual-tree models (e.g., 

14 Haight and Monserud 1990; Valsta 1992; Cao et al. 2006). In addition to the HJ algorithm, some 

15 heuristic algorithms were also tested in stand management optimization, such as genetic algorithm 

16 (Lu and Eriksson 2000), tabu search (Wikström and Erikson 2000), and simulated annealing 

17 (Lockwood and Moore 1993). One weakness of these heuristic and the HJ algorithms is that they 

18 might find a local optimum rather than a global optimum. Therefore, these algorithms should be 

19 applied cautiously in stand management optimization. On the other hand, global optimization 

20 algorithms may require prohibitively large numbers of functional evaluations (NFE). In other words, 

21 more iterations are needed.
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1

2 The dimensionality of decision variables and the convexity of objective function are the key factors 

3 in stand management optimization (Roise 1986, Cao 2010). Pukkala (2009) recently proposed 

4 population-based algorithms in stand management optimization, i.e., differential evolution (Storn and 

5 Price 1997), particle swarm optimization (Kennedy and Eberhart 1995), evolution strategy (Bayer 

6 and Schwefel 2002), Nelder-Mead (Nelder and Mead 1965). Population-based algorithms use 

7 iteration technology beginning with a population of initial solution (referred to as individuals) 

8 randomly generated, the whole population (or a part of it) is replaced by newly generated the best 

9 individuals. The advantage of adopting population-based algorithms is the simplicity of convergence 

10 criteria. For example, initial guesses, differentiability and smoothness of objective function are 

11 unnecessary to be taken into consideration. These population-based algorithms have been 

12 successfully applied to numerical optimization problems in many science and engineering disciplines 

13 (Coello 2002), and have been further tested to solve stand management problems (Pukkala et al. 

14 2010; Arias-Rodil et al. 2015) with empirical growth models. However, the previous studies either 

15 simplified optimization problems, or applied relatively simple stand simulators. With more detailed 

16 process-based models (thousands of state variables), and more complicated optimization problems (a 

17 number of decision variables), the capability of population-based algorithms to optimize thinning 

18 regimes remained unclear.

19

20 This study compared population-based algorithms linked with the process-based growth model 

21 PipeQual (Mäkelä 1997; Mäkelä and Mäkinen 2003) in stand management optimization. The 
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7

1 objectives of this study were: 1) to evaluate the population-based algorithms for optimizing thinning 

2 and rotation based on the process-based model; 2) to analyze effects of the number of thinning 

3 decision variables on the performance of population-based algorithms.

4

5 Materials and methods

6 Materials

7 The biological data of seven simulated Scots pine (Pinus sylvestris L.) stands in Finnish conditions 

8 (e.g., site types and temperature sum) were selected in this study (Table 1). These stands were 

9 applied earlier in background calculations made for silvicultural recommendations in Finland 

10 (Hyytiäinen et al. 2006). The initial age of stands varies from 20-29 years. The site type of the stands 

11 covers Myrtillus (MT, stands 2-3), Vaccinium (VT, stands 4-7), and Calluna (CT, stand 1) sites. The 

12 initial stand states present typical young Scots pine stands in Northern (stands 2, 4) and Southern 

13 (stands 1, 3-6) Finland (Cao et al. 2015). The cost of logging was calculated by a logging model 

14 (Kuitto et al. 1994), that involves more variables, such as productivity of felling, and on-site 

15 transports, in addition to logging volume. This improves the accuracy of logging cost calculations. 

16 The logging cost model consists of felling and transportation cost, as well as a fixed cost. The 

17 average distance of traveling was 200 m. The default felling, transportation, and fixed costs, were 

18 75.67€/h, 53.35€/h, and 100.00€/h, respectively. The discount rate, roadside prices, and costs 

19 were expressed in real terms. A 3% discount rate was constantly used. The roadside prices for 

20 sawlog was 52.98€/m3, and pulpwood 26.24€/m3 (Hyytiäinen et al. 2004). The unit silviculture 

21 cost for soil preparation was 142€/ha, sowing 600€/ha, and other silviculture operation (tending 
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1 and slashing) was 276€/ha (Cao et al. 2010). Soil preparation was carried out in the first year for all 

2 stands, and sowing in the following year except stand 1 which was naturally regenerated. According 

3 to Finnish silvicultural recommendations, depending on temperature sum, site types and regeneration 

4 methods, we assumed that the selected stands were tended at ages 20, 15, 18, 13, and 16 for stands 1, 

5 2, 3, 4, and stands 5-7, respectively (Hyytiäinen et al. 2006). A more detailed description of 

6 silviculture cost in Finnish conditions was presented in Cao et al. (2010).

7

8 The process-based model 

9 The process-based growth model PipeQual (Mäkelä 1997, 2002; Mäkelä and Mäkinen 2003) has 

10 been integrated into the OptiFor simulation-optimization system in which Osyczka’s direct and 

11 random search (DRS) is the optimizer, and the PipeQual model is the simulator (Cao 2010). The 

12 advantage of using PipeQual is that the inputs of PipeQual are common initial stand states, while 

13 most of other process models require more climatic and soil inputs. PipeQual is a dynamic growth 

14 and wood quality model that derives tree growth from carbon acquisition and allocation in a process-

15 based framework. It also contains a detailed semi-empirical description of the development of stem 

16 structure and branchiness that allows for the model to be applied to predictions of wood quality in 

17 individual stems as influenced by forest management. The model is constructed in a modular manner 

18 (Mäkelä 2003), with separate modules for the whole tree (CROBAS, Mäkelä 1997), vertical structure 

19 (WHORL) and branches in whorls (BRANCH). The stand is composed of a number of size classes 

20 (here 10), each of which is simulated by its mean tree in a distance-independent setting. The 

21 description of tree structure in PipeQual largely derives from the pipe model (Shinozaki et al. 1964a, 
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1 b), profile theory (Chiba et al. 1988) and fractal crown allometry (Mäkelä and Sievänen 1992; 

2 Duursma et al. 2010). At the tree level, state variables include the biomasses of foliage, fine roots, 

3 stem, branches, and transport roots, as well as stem and crown dimensional variables. WHORL 

4 includes the height, stem and total branch cross-sectional area and foliage mass of each whorl, while 

5 BRANCH decomposes the branch area into individual branches. Growth is calculated from 

6 photosynthesis and respiration at the tree level. Tree annual growth is used as the input of the whorl 

7 and branch levels to describe the growth and senescence of sapwood and branches. The model 

8 structure of PipeQual was illustrated in Mäkelä and Mäkinen (2003, Fig. 1). The model has been 

9 parameterized for Pinus sylvestris and Picea abies (Kantola et al. 2007; Mäkelä et al. 2016), and it 

10 has been applied to economic optimization in both species (Hyytiäinen et al. 2004; Cao et al. 2010, 

11 2015; Hurttala et al. 2017).

12

13 The optimization problem 

14 We formulated a bound-constrained optimization problem (eqs. 1-3) for optimizing thinning regimes 

15 of forest stands. The negative bare land value (-BLV) of a stand as the objective function f(t,H|Z(t0)) 

16 was minimized (i.e. maximization of BLV) by changing decision variables t (time of the jth thinning, 

17 yr) and H (proportion of trees harvested in tree size class m at the jth thinning), in the condition of 

18 stand states Z (state variables) at initial age t0. 

19

20 min  f(t,H|Z(t0)) (1)
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1 s.t.  t=(t1,t2,...,tn+1)    tj[1,25]      (2)

2                            H=(hji)n×3        hji[0,1]                           (3)

3

4 where hji is thinning rate defined by linearly interpolating in the ith tree size class at the jth thinning. 

5 The BLV of a thinning regime for timber production can be written as follows (eq. 4):

6

7  BLV= (4)
11
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8

9 where pw denotes the timber prices for timber categories (w=1 pulpwood, w=2 sawlog), v denotes 

10 harvested timber volume, cj is the logging cost at the jth harvest, j=n+1 means final harvest, c0 is the 

11 discounted stand establishment cost, and r denotes discount rate.

12

13 Optimization algorithms

14 The criteria of algorithm evaluation applied in this study were the accuracy, efficiency and 

15 robustness of optimization algorithms. The accuracy of algorithm is how close one objective function 

16 value to the standard value that was defined as the objective function value of direct and random 

17 search in this study. The efficiency of algorithm is the performance of an algorithm based on the 

18 number of computation resources that can be evaluated by using time complexity (time consumption 

19 by running an algorithm). Robustness is another kind of performance of an algorithm evaluated by 
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1 the capacity of tolerating errors of inputs. 

2

3 The optimization algorithms tested in this study were Particle Swarm Optimization (PSO), 

4 Differential Evolution (DE), Evolution Strategy (ES), Nelder-Mead (NM), and Direct and Random 

5 Search (DRS). The optimization algorithms were programmed as candidate solutions of optimal 

6 thinning regimes. The candidate solutions were evaluated with the objective function by calling the 

7 process-based growth model. The DRS algorithm starts with a vector of initial points (a candidate 

8 solution xi). The population-based algorithms (PSO, DE, ES, NM) begin with an initial population of 

9 m individuals (initial solutions), each individual is an n-dimensional vector, in which xij is the jth 

10 decision variable of the ith candidate solution xi. The initial solution xi = (xi1, xi2,…, xin) were 

11 randomly generated from the feasible region [Lj, Uj] of decision variables, where Lj is the lower 

12 bound, and Uj the upper bound of the jth decision variable. The convergence criterion of the DRS 

13 algorithm was the minimum difference ε (difference of two candidate solutions xi+1 and xi) in search 

14 step size (if ||xi+1 - xi||<ε, stop). In contrast, the convergence criteria of population-based algorithms 

15 were either the minimum difference ε in objective function values (if ||f(xi+1) – f(xi)||<ε, stop), or a 

16 maximum iteration number achieved.  

17

18 In this study, the number of individuals of population (npop) and maximum iteration number (nit) 

19 were modified from Pukkala (2009) due to convergence problems raised by using the more 

20 complicated process-based growth model. Therefore, the values of nit were increased to 8000 and 

21 1500 for ES and NM, respectively. The value of npop was 8 number of decision variables (nd). We 
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12

1 repeated 50 times initiating different candidate solutions to find optimal solutions. Decision variables 

2 include timing, frequency, intensity, type of thinning, and the length of rotation. The number of 

3 decision variables were defined by the number of thinning (nthin) and the type of thinning (ntype, the 

4 number of thinning points defining thinning intensity by tree size classes), that is nd = 

5 nthin(ntype+1)+1.  

6

7 Particle Swarm Optimization

8 Particle Swarm Optimization (PSO) is a stochastic global optimization algorithm inspired by swarm 

9 behavior in birds, insects, fish, even human behavior (Kennedy and Eberhart 1995). In PSO, each 

10 particle (individual) adjusts its position and velocity, moves to some global objective through 

11 information exchange between its neighbor particles and the whole swarm (population). PSO carries 

12 out a five-step search: 

13

14 1) Randomly generate initial swarm (population) which consists of npop=10 nd +50 particles 

15 (individuals), each particle xi=(xi1,xi2,…,xin) has velocity vi=(vi1,vi2,…,vin). 2) Evaluate each particle, 

16 store the previous best position for each particle pbesti=(pi1,pi2,…,pin), and find the global best for the 

17 entire population gbest=(g1,g2,…,gn). 3) Update the i+1th generation xi+1=xi+vi+1, where vi+1 is 

18 updated as 

19

20 vi+1=wvi+c1r1(pbesti -xi)+c2r2(gbest -xi), (5)

21

Page 12 of 91

URL: http://mc.manuscriptcentral.com/tandf/sjfr  Email: SJFR@informa.com

Scandinavian Journal of Forest Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

13

1 where w=(0.4+(0.9-0.4)(nit-i)/nit) is the inertia factor decreased linearly from 0.9 to 0.4, nit is number 

2 of iterations, c1=1.5 and c2=1.5 are constants called cognitive and social parameters, respectively, r1, 

3 r2 are random values between [0,1] (eq. 5). 4) Evaluate every new particle, xi = xi+1 if f(xi+1) <f(xi), 

4 otherwise xi+1= xi. Compare the best value f(xi+1) with f(pbesti) and f(gbest), if f(xi+1)<f(pbesti), 

5 pbesti+1 =xi+1, if f(xi+1)<f(gbest), gbest =xi+1. 5) Check whether the number of iterations (nit=50) 

6 reaches up its maximum limit. If not, go to step 3.  

7

8 Differential Evolution

9 Storn and Price (1997) proposed Differential Evolution (DE), a stochastic evolutionary algorithm to 

10 solve global optimization problems. In DE an offspring individual (candidate solution) is generated 

11 through mutation and crossover with the weighted difference of parent solutions. The offspring may 

12 replace its parent through competitive selection. The most applied mutation strategies are rand/1, 

13 best/1, current to best/1, best/2, and rand/2 schemes (for details, see Liu et al. 2010). In this version 

14 we used the mutation strategy of current to best/1 scheme rather than the rand/1 scheme used in 

15 Pukkala (2009). The method of Differential Evolution (DE) performs a six-step search:

16

17 1) Randomly generate initial population whose value is npop =5nd (initial parent individuals) 

18 xi=(xi1,xi2,…,xin). 2) Evaluate the initial population, calculate every individual function value f(xi) , 

19 and record the optimized value and the previous best individual pbesti. 3) Randomly select two 

20 remainder individuals xr1 and xr2, and calculate for the mutant individual yi=(yi1,yi2,…yin) using the 

21 current to best/1 scheme (eq. 6), 

22
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14

1 yi=xi+α(pbesti -xi)+β(xr1-xr2), (6)

2

3 whereα is a random number between [0,1], β=0.8. 4) Generate the offspring individual xi’ by a 

4 crossover operation on xi and yi with a crossover probability parameter CR(in this study CR=0.5) 

5 determining the genes of xi’ are inherited from xi or yi. Let xij’=yij, if a random real number from 

6 [0,1] is smaller than CR, otherwise, xij’=xij. 5) Select the best individual for the next generation xi+1 

7 by the competition between the offspring individual xi’ and the parent individual xi. If f(xi’)≤f(xi), 

8 xi+1=xi’, otherwise, xi+1=xi. 6) Check whether the number of iterations (nit=100) reaches the 

9 maximum limit. If not, go to step 3.

10

11 Evolution Strategy (ES)

12 The Evolution Strategy (ES) uses strategy parameters to determine how a recombinant is mutated. 

13 ES generates an offspring as a mutated recombination from two parents. One of the parents is the 

14 previous best individual, and the other one is randomly drawn from the remaining individuals. The 

15 offspring then compete with the parents. If the offspring is better, the mutated solution replaces the 

16 worst solution of the parent population. The best solution at the last generation is the optimal 

17 solution. ES conducts a five-step search:

18

19 1) Randomly generate initial population xi whose value npop equal to 10 nd +50. The initial strategy 

20 parameters σi was calculated from σi=αxi, where α=0.2. 2) Obtain the previous best individual pbesti 

21 and σbesti strategy parameter values. Recombine the selected parents, the best individual pbesti and 

22 random individual xr, obtain the recombined individual xm=0.5(pbesti +xr), and strategy parameters
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15

1

2 σm=0.5(σbesti +σr)×exp(τg×N(0,1)+τl×N(0,1)), (7)

3

4 where the global study parameter τg is 1/√(2×nd), the local study parameter τl is 1/√(2√nd), N(0,1) is 

5 a normally distributed random number. 3) Mutate an offspring individual x’=xm+σm×N(0,1). 4) 

6 Evaluate the new individual x’. Replace the worst solution of the parent generation if f(x’) is less 

7 than the worst function value. 5) Check whether the number of iterations (nit=8000) reaches its 

8 maximum limit. If not, go to step 2.

9

10 Nelder-Mead

11 Similar to ES, Nelder-Mead (NM) also uses a new candidate solution to replace the worst solution of 

12 all solutions at every iteration. In NM the new candidate solution is calculated based on the centroid 

13 solution and the best solution through reflection, expansion, and contraction operations. In case none 

14 of better new candidate solutions can be found in the reflection, expansion, and contraction 

15 operations, NM carries out an additional shrinking operation for a new iteration by updating all 

16 candidate solutions except the best solution. In NM all operations are calculated without 

17 stochasticity. NM implements a six-step search (Lagarias et al. 1998):

18

19 1) Randomly generate initial population whose value npop equals to 8nd. Select the best, the worst, 

20 the second worst solutions xb, xw, xsw from all candidate solutions by their function values f(xb), f(xw), 

21 f(xsw). 2) Calculate the reflection point xrf=(1+ρ)xm-ρxw, where the reflection parameter ρ=1.4  and 

22 the centroid point (average except the worst point xw) xm =Σi≠w(xi/(nd-1)). If f(xb)<f(xrf)<f(xsw), 
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1 replace xw, with xrf and terminate the iteration. 3) If f(xrf)<f(xb), compute expansion point xe=χxrf+(1-

2 χ)xm, where the expansion parameter χ=2.5. If f(xe)≤f(xb), replace xw with xe and terminate the 

3 iteration; else replace xw, with xrf and terminate the iteration. 4) If f(xrf)>f(xsw), compute inside 

4 contraction point xc=γxw+(1-γ)xm, where the contract parameter γ=0.5. If f(xc)≤f(xw), replace xw with 

5 xc and terminate the iteration, else go to step 5. If f(xsw)≤f(xrf)<f(xw), compute outside contraction 

6 point xc=γxrf+(1-γ)xm. If f(xc)≤f(xrf), replace xw with xc and terminate the iteration, else go to step 5. 

7 5) Compute xi (i≠b) with xb and shrinkage parameter δ=0.8 for the new generation xi’=xb+δ(xi-xb), 

8 and begin a new iteration. 6) Check whether the number of iterations (nit=1500) reaches its 

9 maximum limit. If not, go to step 2.

10

11 Direct and Random Search

12 In this study, Osyczka’s (1984) direct and random search (DRS) was used as a reference algorithm 

13 that is a modified version of Hooke and Jeeves’ method (1961). The Hooke and Jeeves’ method has 

14 been earlier applied in stand management optimization (e.g. Roise 1986, Haight and Monserud 

15 1990). Osyczka (1984) modified the version of discrete steps of the Hooke and Jeeves’ method 

16 (1961) to overcome local optimum problems. The Osyczka’s (1984) direct and random search 

17 algorithm (DRS) is a hybrid algorithm based on neighborhood search, shotgun search and Hooke and 

18 Jeeves’ direct search. By integrating neighborhood search and random search into direct search 

19 phases, DRS has been proved to be a successful method for solving forest management problems 

20 (e.g. Hyytiäinen et al. 2005, Cao et al. 2010, Hurttala et al. 2017). 

21

22 In this study we initiated initial points 30 times and then calculated for each optimal solution. We 
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1 analyzed the speed of convergence, the time complexity of algorithms, the rate of successful search, 

2 and the sensitivity of decision variables for population-based algorithms. The capital O notation 

3 expresses the time complexity of an algorithm excluding coefficients and lower order terms, nit is 

4 maximum iteration numbers, npop is number of individuals of population (generation), and nd is 

5 number of decision variables. The time complexity T(n) of ES was T(n) = O(nit×nd), the time 

6 complexity of DE and PSO was T(n) = O(nit×npop×nd). The worse-case (defined as the maximum 

7 amount of spent time) time complexity of NM was T(n) = O(nit×npop×nd), and the best-case time 

8 complexity of NM was T(n) = O(nit×nd) . The rate of successful search was defined using (nsuc/nrun)

9 ×100%, where nrun is the number of runs, nsuc is the number of successful search. A successful 

10 search is achieved when the relative errors of optimal values between population-based algorithms 

11 and the reference algorithm DRS is less than 0.01. In this study we conducted sensitivity analysis by 

12 increasing the number of decision variables to analyze the effects of the number of decision variables 

13 on the objective function value, the number of functional evaluations, and the amount of central 

14 processing unit time. The sensitivity analysis of decision variables was therefore designed based on 

15 the equation nd = nthin(ntype+1)+1, as 2(2+1)+1=7, 3(2+1)+1=10, 3(3+1)+1=13, 5(2+1)+1=16, 

16 6(2+1)+1=19, 5(3+1)+1=21, and 6(3+1)+1=25 variables.

17

18 Results

19 Optimal solutions

20 The results showed that both DE and PSO can successfully discover the highest objective function 

21 values from our data. For instance, DE was superior in stands 1, 4, and 7, and PSO was superior in 
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1 stands 1-3, and 7 to the competing algorithms. ES and DRS also obtained the highest objective 

2 function values in stands 6, and 5, respectively. Nevertheless, NM found none of the highest 

3 objective function values. DE and DRS never resulted in the lowest objective function values. 

4 However, PSO (stand 4), ES (stand 2), and NM (stands 1, 3, 5-7) led to the lowest objective function 

5 values (Table 2). 

6

7 Our results showed that the variation of optimal rotation was 1-15 years. The shortest rotations for 

8 selected stands were obtained by PSO (stands 2, 5, 7), ES (stands 4, 6), DE (stands 2, 5), NM (stands 

9 1-3), and DRS (stand 5). PSO and DE were equally good at searching the highest objective function 

10 value for stand 7 (2110 €/ha). However, DE resulted in a little longer rotation (93 yrs). Although all 

11 the objective function values by NM were lower than the other algorithms, NM resulted in shorter 

12 rotations except stand 4 (Table 2). 

13

14 The results showed that basal area development increased at the beginning, and then decreased after 

15 one or two early thinnings for the Scots Pine stands examined. The highest basal area was 22.5-28.0 

16 m2/ha, and the lowest basal area before clearcut was 7.2-16.7 m2/ha depending on the initial stand 

17 states (Fig. 1). The more fertile the site (H100 index) was, the earlier the first thinning (Fig. 1a), and 

18 the denser the stand was, the earlier the first thinning (Fig. 1b). The timing of the first thinnings 

19 varied from 33 to 54 yrs, while the basal area before the first thinnings was in the range of 23.4-27.3 

20 m2/ha (Fig. 1). 
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1

2 The results revealed that thinning frequency was quite consistent. The optimal number of thinnings 

3 was three or four for all tested stands (Table 2). For sparse stands with initial density1500 trees/ha, 

4 the optimal number of thinnings was three for stands 1, 2, 5, and four for stands 3-4. For denser 

5 stands with initial density 2000 trees/ha (stand 6) and 3000 trees/ha (stand 7), however, the optimal 

6 number of thinnings was always four.

7

8 According to our results, the type of thinning significantly changed in selecting different tree size 

9 classes to be removed from early precommercial thinnings to later rotation thinnings. For early 

10 thinnings most small and medium size trees were remained, and only some large size trees were 

11 thinned. For later thinnings large and medium size trees were mostly removed, and some of small 

12 size trees were selectively thinned. However, the optimal thinning type varied depending on the 

13 algorithms. Figure 2 shows an exception of optimal solutions for stand 6 by thinning type. For 

14 instance, ES resulted in thinning from medium size classes at the 4th thinning (Fig. 2d).

15

16 Accuracy of algorithms

17 With maximum 17 decision variables (nthin=4, ntype=3, nd=17), the optimal solutions of all the 

18 algorithms were satisfactory in accuracy for sparse stands with initial density 1500 trees/ha. 

19 However, the differences became somewhat serious for denser stands with initial density 2000-3000 

20 trees/ha (Table 2). The differences of the optimized objective function values found by all the 
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1 algorithms were less than 1% (0.17-0.82%) for stands 1-5 with initial density 1500 trees/ha. For 

2 stand 6 with initial density 2000 trees/ha, and stand 7 with initial density 3000 trees/ha, the errors 

3 were enlarged to 1.86%, and 2.13%, respectively (Table 3). From the perspective of accuracy, PSO 

4 was the most accurate algorithm that resulted in only 0.00-0.82% differences of optimized objective 

5 function values for all stands examined. For sparse stands (stands 1-5), the most accurate one was 

6 DRS which led to 0.00-0.29% errors only (Table 3).

7

8 Efficiency of algorithms

9 Because of the high level of detail in forest stand projection in our study, the vast majority of 

10 computation time was spent in computing stand projections (0.14 seconds were spent on calculating 

11 the objective function value for one time using Compaq Visual Fortran (version 6.6), an Intel (R) 

12 Core (TM) i5-3470 processor at 3.2Ghz and 4.00 GB of RAM memory). Therefore, the number of 

13 functional evaluations is a direct measure of overall computing time. The speed of convergence 

14 measured by the number of functional evaluations indicated that NM (Fig. 3, solid line) was the 

15 fastest algorithm to converge, followed by PSO and ES, while DE was the slowest one (Fig. 3). 

16

17 On average, the number of functional evaluations for NM was 4500, DE 6500 and ES 8000. The 

18 number of functional evaluations for PSO was 9000, which is about twice that of NM (Fig. 3). The 

19 most efficient algorithm was NM, which required about 600 seconds with the best-time complexity 

20 O(nit×nd). DE and ES both required about 250 and 500 seconds more than NM, respectively. From 
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1 the perspective of convergence, four algorithms were all efficient (Fig. 4). DE (npop=65) converged 

2 to the optimum with 70 iterations (Fig. 4a), PSO (npop=180) converged with 25 iterations (Fig. 4b), 

3 ES (npop=180) converged with 3000 iterations (Fig. 4c), and NM (npop=104) converged with 800 

4 iterations (Fig. 4d). 

5

6 Robustness of algorithms

7 Our results showed that DE was clearly dominant in terms of robustness (Fig.5). The rate of 

8 successful search of DE in 50 runs was 100%, followed by NM 90% and PSO 90% but, ES achieved 

9 82% successful search only. The optimal solutions of population-based algorithm varied with 

10 different random numbers in 50 runs of optimization calculations. The optimal solutions of DE and 

11 DRS were clearly converged with small variations (Fig. 5). In contrast, ES resulted in larger 

12 variations. In other words, PSO, NM and ES led to local optima in 50 runs. Nevertheless, the 

13 difference between minimum and mean values for ES and NM were smaller than that of DE and 

14 PSO (Fig. 4c, d). 

15

16 According to our results, variations enlarged with increasing the number of decision variables (Table 

17 4, Fig. 6). With five decision variables (nthin=1, ntype=3, nd=5) the difference in relative objective 

18 function values was insignificant (0.0%). Increasing decision variables to 25 (nthin=6, ntype=3, nd=25) 

19 led to changes in the relative objective function values that were significantly greater (2.7%) than 

20 that of five decision variables (Table 4). Among five algorithms, DE, PSO, ES and DRS generated 
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1 higher objective function values with increasing number of decision variables. Especially, PSO was 

2 able to find the highest objective value even with 25 decision variables (Fig. 6). Nevertheless, it 

3 seems that NM suffered difficulties in escaping local optima when the number of decision variables 

4 increased above 16 (nthin=5, ntype=2, nd=16). For example, NM only found three thinnings for stand 3, 

5 but the other four algorithms (PSO, DE, ES, and DRS) obtained four thinnings to be optimal.

6

7 Discussion

8 In general, PSO was clearly dominant in searching ability compared to the other algorithms in this 

9 study. Including DRS, all the algorithms we tested were fairly successful in searching optimal 

10 solutions. The differences in optimal solutions were caused by the search capability of algorithms in 

11 terms of decision variables, such as the timing, frequency, and type of thinning, as well as the length 

12 of rotation. For example, NM only found three thinnings to be optimal, and this led to a shorter 

13 rotation length for stand 3. Both ES and DRS found four thinnings to be optimal. However, ES led to 

14 earlier thinnings and a shorter rotation (83 yrs) than those of DRS (92 yrs) for stand 6. Meanwhile, 

15 the type of thinning by ES tended to leave more trees in sawlog tree classes for later harvesting (Fig. 

16 2c, d). This was especially true at the fourth thinning: the type of thinning was thinning from middle 

17 tree size classes by ES (Fig. 2d). This implies that more sawlog trees were expected at final harvest. 

18 It should be noted that, a 3% discount rate was constantly used in this study. A higher discount rate 

19 may lead to shorter rotations, and vice versa.

20
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1 It is hard to say that one optimization algorithm is clearly superior over other algorithms in any 

2 situations for forest management problems (Roise 1986, Pukkala 2009), or for applications in other 

3 fields (Lv et al. 2015). DE, PSO and ES obtained the highest objective values in some stands, while 

4 NM never found the highest objective values. However, there were only slight differences among 

5 DE, PSO and ES in terms of accuracy (Table 2). Sofge et al. (2002) compared seven evolutionary 

6 algorithms for a two-level optimization problem. They also found the differences in accuracy 

7 between evolutionary algorithms were quite small. This is in line with Pukkala (2009) for stand 

8 management optimization that differences between HJ and the population-based algorithms were 

9 rather small.

10

11 The conventional NM was still the fastest algorithm in this study. By contrast, DE and PSO were 

12 somewhat disappointing in terms of convergence speed (DE) and time consumption (PSO). Our 

13 results confirmed Fan and Zahara (2007) that the convergence of NM was faster than that of PSO 

14 based on Powell badly scaled function. The results were different from Sofge et al. (2002) that the 

15 convergence of ES was faster than that of PSO. Nevertheless, the parameters and operation of PSO 

16 and ES used in their multiple travelling salesman problem were different from this study. This was in 

17 line with Vesterstrøm and Thomsen (2004), especially for those optimization problems where the 

18 number of dimensions for the search space is relatively low.

19

20 In this study, the time consumption of NM was less than that of PSO, which was in line with Pukkala 

21 (2009) and Arial-Rodil (2015). The time consumption of PSO on average was about two times more 
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1 than that of NM, because the number of function evaluations (NFE) of PSO was much more than 

2 that of NM. In PSO the maximum number of iterations was set as 50 with the number of population 

3 individuals 180. All individuals were evaluated at each iteration, therefore, the optimizer called the 

4 stand simulator about 9000 (50*180) times. In NM the initialization step selected the best, the worst, 

5 and the second worst individuals by evaluating all initial population individuals (56-136). Then only 

6 the previous worst one should be replaced by evaluating 1-4 individuals (reflection, expansion, 

7 inside contraction or outside contraction points) at iterations. The maximum number of iterations 

8 was set as 1500 in NM. Therefore, the optimizer would call the stand simulator 1556-6136 times. 

9 This explains the performance of algorithms in terms of time consumption. 

10

11 Our results demonstrated that DE was clearly the most robust algorithm (Fig. 5). This is in agreement 

12 with Arial-Rodil (2015) and Vesterstrøm and Thomsen (2004) who found that DE was more robust 

13 in comparison to PSO and other evolutionary algorithms, because PSO was more dependent on the 

14 random numbers than DE. The number of dimensions for the search space in this study, i.e., the 

15 number of decision variables, may also affect the robustness of algorithms. As illustrated in Figure 6, 

16 NM was rather sensitive to the number of decision variables. This implies that PSO, DE and ES 

17 might be more suitable for such optimization problems where the number of dimensions for the 

18 search space is relatively high (Table 4).

19

20 Various versions of the original population-based algorithms have been developed or modified for 

21 numerical optimization studies. In this study we applied different operation methods for DE, PSO, 
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1 ES and NM from Pukkala (2009) to improve the optimal solutions. The way to generate initial 

2 populations in NM was the same as in Pukkala (2009). However, in NM we set different parameters 

3 of reflection, expansion, and shrink operations rather than those suggested parameter values in 

4 Nelder and Mead (1965), Lagarais et al. (1998), as well as Wang and Shoup (2011). As a result, for 

5 example, the objective value increased 1% for stand 5 when the number of decision variables was 13. 

6

7 Compared to Evolutionary Algorithms and PSO, DE has shown superior performance in several real-

8 world applications as well (Vesterstrøm and Thomsen 2004). In the applications of stand 

9 management optimization, DE was found superior for even-aged stand management problems 

10 (Pukkala 2009; Airas-Radil et al. 2015), but PSO might be superior when diameter structures were 

11 used as a penalty function for uneven-aged stand management (Pukkala et al. 2010). Therefore, the 

12 complexity of optimization problems might affect the performance of optimization algorithms. The 

13 accuracy, efficiency, and robustness of these algorithms vary, depending on the complexity of 

14 optimization problems and stand simulators. Because the process-based model computes tree growth 

15 as biomass accumulation in trees by photosynthesis and respiration depending on the development of 

16 tree crowns and foliage mass, the process-based model is computationally demanding compared to 

17 empirical growth models. The total variable number of a stand in the process-based model PipeQual 

18 (Mäkelä and Mäkinen 2003) used in this study is 7920-18320 state variables (Hyytiäinen et al. 2004). 

19 This is enormous compared with the individual-tree model with 37-65 state variables (Cao 2003) 

20 tested by Pukkala (2009), and the whole-stand model applied in Airas-Radil et al. (2015) with three 

21 state variables only. In fact, dynamic programming is efficient enough for whole-stand models when 
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1 the number of state variables is small. Therefore, the dimensionality of optimization problem based 

2 on a whole-stand model in Airas-Radil et al. (2015) might be too simple for the population-based 

3 algorithms.

4

5 In this study we only tested five site types with initial density 1500 trees/ha (stands 1-5), and one site 

6 type with initial density 1500, 2000, and 3000 trees/ha (stands 5-7). The denser the initial stand 

7 density is, the more frequent thinnings are needed (Cao et al. 2006). It would be interesting to study 

8 the effects of initial stand states by testing different site types with various stand densities. However, 

9 this is out of the scope of this study. In addition, a modified hybrid algorithm may significantly 

10 improve search efficiency and the quality of resulting solutions. For instance, Fan and Zahara (2007) 

11 suggested that the slow convergence of PSO could be improved by combining NM to the hybrid 

12 NM-PSO algorithm in unconstrained optimization problems. In constrained numerical and 

13 engineering optimization problems, Liu et al. (2010) also found that the traditional PSO easily fell 

14 into local optima whereas this could be improved by the hybrid algorithm PSO-DE they proposed as 

15 well. Recently, similar hybrid algorithms have also been proposed in ecological modelling studies, 

16 for example, applying back propagation-genetic algorithm to predict soil temperature (Kazemi 2018), 

17 and support vector machine-firefly algorithm to predict water balance (Moazenzadeh 2018), These 

18 hybrid algorithms might be useful to improve the convergence speed, and to overcome local optima 

19 in stand management optimization. Therefore, the application of hybrid algorithms for stand 

20 management optimization would be a promising study as well.

21
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1 In conclusion, DE (Differential Evolution), PSO (Particle Swarm Optimization) and ES (Evolution 

2 Strategy) were mostly superior to NM (Nelder-Mead) in stand management optimization when stand 

3 development was simulated using a process-based growth model. Among these tested algorithms, 

4 PSO was the most accurate algorithm, DE was the most robust, and NM was the most efficient. DE 

5 would be an effective algorithm as an alternative in stand management optimization.
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1 Tables and Figures

2 Table 1. Initial stand states of seven Scots pine stands at CT (Calluna), MT (Myrtillus), and VT 

3 (Vaccinium) sites.

4 Table 2. Optimal rotations (yrs), number of thinnings (with dash) and objective function values (€ha-

5 1, in parentheses) for seven Scots pine stands by Osyczka’s direct and random search algorithm 

6 (DRS), Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy (ES), 

7 Nelder-Mead(NM).

8 Table 3. Relative errors (%) of optimized and the highest objective function values for seven Scots 

9 pine stands by Osyczka’s direct and random search algorithm (DRS), Differential Evolution (DE), 

10 Particle Swarm Optimization (PSO), Evolution Strategy (ES), Nelder-Mead(NM).

11 Table 4. Performance comparison of the bare land value (BLV, €/ha), the number of functional 

12 evaluations (NFE) and the amount of central processing unit time (CPU, seconds) required to 

13 converge for Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy 

14 (ES), and Nelder-Mead (NM). 

15 Fig. 1. Basal area development by optimal solutions for stands 1-4 (a) and stands 5-7 (b).

16 Fig. 2. Thinning type at the 1st (a), 2nd (b), 3rd (c), 4th (d) thinning by ES and DRS for stand 6.

17 Fig. 3. Bare Land Value (BLV) as a function of Number of Functional Evaluations (NFE) by 

18 Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy (ES), and 

19 Nelder-Mead (NM) for stand 5.

20 Fig. 4. The minimum (dash-dot line), mean (solid line), maximum (dash line) objective function 

21 values by population-based algorithms. (a) Differential Evolution (DE), (b) Particle Swarm 

22 Optimization (PSO), (c) Evolution Strategy (ES), (d) Nelder-Mead (NM) for stand 5.
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1 Fig. 5. Comparison of robustness by Differential Evolution (DE), Particle Swarm Optimization 

2 (PSO), Evolution Strategy (ES), Nelder-Mead (NM), Osyczka’s direct and random search algorithm 

3 (DRS) for stand 5.

4 Fig. 6. Sensitivity of number of decision variables on objection function value by Osyczka’s direct 

5 and random search algorithm (DRS), Differential Evolution (DE), Particle Swarm Optimization 

6 (PSO), Evolution Strategy (ES), Nelder-Mead (NM) for stand 6.
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1 Table 1. Initial stand states of seven Scots pine stands at CT (Calluna), MT (Myrtillus), and VT 
2 (Vaccinium) sites.
3

Stand Age #tree BA Hdom H100 ST TS
1 29 1500 6.4 7.9 17.3 CT 1300
2 23 1500 7.6 7.9 22.1 MT 1100
3 20 1500 7.4 8.0 28.3 MT 1300
4 27 1500 8.2 7.7 18.2 VT 1100
5 23 1500 7.0 7.9 25.7 VT 1300
6 23 2000 8.1 7.8 25.4 VT 1300
7 23 3000 10.0 7.8 24.8 VT 1300

4 Note: Age is initial age (yr), #tree denotes the number of trees per hectare, BA basal area (m2 ha−1), Hdom dominant 
5 height (m), H100 dominant height (m) at age 100, ST site type, TS temperature sum (d.d.).
6
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1

2 Table 2. Optimal rotations (yrs), number of thinnings (with dash) and objective function values 
3 (€/ha, in parentheses) for seven Scots pine stands by Osyczka’s direct and random search algorithm 
4 (DRS), Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy (ES), 
5 Nelder-Mead(NM). 
6

Stand DRS DE PSO ES NM
1 99-3(883) 99-3(884) 99-3(884) 101-3(883) 98-3(880)
2 90-3(1557) 89-3(1557) 89-3(1558) 90-3(1555) 89-3(1556)
3 75-4(3718) 75-4(3715) 77-4(3729) 78-4(3713) 71-3(3699)
4 108-4(484) 109-4(485) 108-4(481) 105-4(483) 113-4(481)
5 84-3(2419) 84-3(2417) 84-3(2418) 86-3(2416) 85-3(2415)
6 92-4(2283) 98-4(2279) 87-4(2295) 83-4(2309) 91-4(2266)
7 96-4(2078) 93-4(2110) 89-4(2110) 96-4(2078) 91-4(2065)

7 Note: Bold font means the optimal solutions with the highest objective function values.
8
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1
2 Table 3. Relative errors (%) of optimized and the highest objective function values for seven Scots 
3 pine stands by Osyczka’s direct and random search algorithm (DRS), Differential Evolution (DE), 
4 Particle Swarm Optimization (PSO), Evolution Strategy (ES), Nelder-Mead(NM).
5

Stand DRS DE PSO ES NM
1 0.11 0.00 0.00 0.11 0.45
2 0.06 0.06 0.00 0.19 0.13
3 0.29 0.38 0.00 0.43 0.80
4 0.21 0.00 0.82 0.41 0.82
5 0.00 0.08 0.04 0.12 0.17
6 1.13 1.30 0.61 0.00 1.86
7 1.52 0.00 0.00 1.52 2.13

6

7
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1

2 Table 4. Performance comparison of the bare land value (BLV, €/ha), the number of functional 
3 evaluations (NFE) and the amount of central processing unit time (CPU, seconds) required to converge 
4 for Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy (ES), and 
5 Nelder-Mead (NM). 
6

DE PSO ES NM

nthin nd BLV NFE CPU BLV NFE CPU BLV NFE CPU BLV NFE CPU

1 5 2034 2526 353 2034 3131 438 2034 3101 434 2034 2178 304

2 9 2179 4546 636 2185 5781 809 2164 4141 579 2161 4469 625

3 13 2257 6566 919 2262 9231 1292 2253 8181 1145 2237 4697 657

4 17 2279 17086 2392 2295 26741 3743 2309 18221 2550 2260 4760 666

5 21 2299 21106 2954 2296 31581 4421 2300 18261 2556 2260 9019 1262

6 25 2298 25126 3517 2323 36421 5098 2299 18301 2562 2262 28025 3923

7 Note: nthin denotes the number of thinnings, nd the number of decision variables.

8
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 1 

 2 

Fig. 1. Basal area development by optimal solutions for stands 1-4 (a) and stands 5-7 (b). 3 

 4 
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Fig. 2. Thinning type at the 1
st
 (a), 2

nd
 (b), 3

rd
 (c), 4

th
 (d) thinning by ES and DRS for stand 6. ��
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Page 41 of 91

URL: http://mc.manuscriptcentral.com/tandf/sjfr  Email: SJFR@informa.com

Scandinavian Journal of Forest Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

1

1

2

3 Fig. 3. Bare Land Value (BLV) as a function of Number of Functional Evaluations (NFE) by 

4 Differential Evolution (DE), Particle Swarm Optimization (PSO), Evolution Strategy (ES), and 

5 Nelder-Mead (NM) for stand 5.
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Fig. 4. The minimum (dash-dot line), mean (solid line), maximum (dash line) objective function ��

values by population-based algorithms. (a) Differential Evolution (DE), (b) Particle Swarm ��

Optimization (PSO), (c) Evolution Strategy (ES), (d) Nelder-Mead (NM) for stand 5. ��
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���

Fig. 5. Comparison of robustness by Differential Evolution (DE), Particle Swarm Optimization ��

(PSO), Evolution Strategy (ES), Nelder-Mead (NM), Osyczka’s direct and random search algorithm ��

(DRS) for stand 5. ��

���
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Fig. 6. Sensitivity of number of decision variables on objection function value by Osyxzka’s direct 3 

and random search algorithm (DRS), Differential Evolution (DE), Particle Swarm Optimization 4 

(PSO), Evolution Strategy (ES), Nelder-Mead (NM) for stand 6. 5 
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