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1. Introduction 

 
In model construction large observation or input variable sets arouse various 

problems and thus we usually attempt to simplify our examinations by applying 
data compression or dimensionality reduction. Then we may operate with fewer 
observations or variables. In statistical multivariate analysis this means that in the 
former case we may compress our data matrices by applying cluster analysis 
(CA), whereas the number of variables is reduced by combining similar original 
variables for variable groups with such methods as the principal component analy-
sis (PCA) and factor analysis (FA) [13].  

Today soft computing (SC) systems have also proven to be useful in statistical 
modeling and model construction in general, and its CA and regression models 
provide good examples of these [1,11,28]. On the other hand, we still face certain 
challenges when applying SC techniques to dimensionality reduction.  

One open problem is how to reduce the dimensionality in our data matrix if the 
traditional PCA and FA approaches are insufficient. Typical limitations of PCA 
and FA are that they are only appropriate for linear models, their data sets should 
be sufficiently large and their variables are expected to be normally distributed 
[13,39]. In many practical cases, however, actual relationships are nonlinear 
and/or sample sizes are small. In such situations, SC techniques have often been 
very successful in data processing. It is therefore reasonable to believe that SC 
techniques will be also efficient in reducing dimensionality 

Below we apply SC models to dimensionality reduction and we aim at a simple 
and an easily understandable method that is also robust and good in practice. This 
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approach thus provides us with a “quick-and-dirty” method in the practice of 
model construction. We also attempt to draw an analogy between our approach 
and the PCA and FA. Some SC approaches to dimensionality reduction are avail-
able already, but they seem to be fuzzified versions of PCA or FA 
[4,7,9,10,16,17,18, 21, 22,24,27,31,33].  

On the other hand, some papers have applied fuzzy similarity measures to this 
problem area, but they do not seem to correspond with the theoretical background 
or the goodness criteria of PCA and FA [21,22]. Our approach, in turn, applies 
fuzzy similarity measures but we also yield and assess our outcomes according to 
PCA and FA and their goodness criteria. We also maintain Lotfi Zadeh’s original 
idea on fuzzy systems, viz. instead of only using fuzzy mathematics or set theory, 
we also apply fuzzy reasoning in an understandable manner [36,37,38]. Thanks for 
the good available fuzzy methods in CA and approximate reasoning, that are well-
known in the fuzzy community already, we adopt a general, a meta-level, ap-
proach, and thus detailed calculations are precluded.  

Section 2 presents basic ideas on PCA and FA. Section 3 introduces our meth-
od. Section 4 provides two real-world examples. Section 5 concludes our exami-
nation. 

 
 

2. Dimensionality Reduction in Statistics 

 
In the explorative studies in human sciences [23] we aim at reducing the num-

ber of the original variables by grouping first the similar variables and then speci-
fying such new variables that constitute these variable groups. These new varia-
bles are often referred to as sum variables because they are usually the (possibly 
weighted) sums the original variables. In this manner we may understand better 
the nature of our data and can perform simpler calculations. We may even attempt 
to find new “latent” variables behind the original variables in which case we can 
also label these new variables according to our interpretations, if necessary. For 
example, if we notice that a certain group of variables in our data matrix actually 
measures the same general feature, such as person’s mathematical skills, from var-
ious standpoints, we may specify the sum variable “mathematical skills” that cap-
tures the meanings of the corresponding original variables. In the confirmatory 
studies, in turn, we may apply the available background theories to our dimen-
sionality reduction. 

In the traditional statistics we may specify our sum variables directly on our in-
tuitive basis by calculating the sums of the selected original variables. We may al-
so apply PCA or FA, in which case the obtained sum variables are referred to as 
principal components or factors, respectively. In fact, these methods operate with 
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the standard scores of the original variables, i.e., for each variable its mean is sub-
tracted from the observations, and then these differences are divided by its stand-
ard deviation, standard score = (observation - mean) / standard deviation. This 
transformation indicates us how the observations are distributed around the mean 
in the units of the standard deviation. Hence, when in PCA and FA we calculate 
the sum variable values for the original observations, viz. the principal component 
or factor scores, we also obtain the standard scores, and this may complicate the 
interpretation of our outcomes. Thus simpler sum variable specifications are also 
available, and these are discussed below. 

We usually proceed as follows with the traditional PCA and FA [13]:  
 

1. We assume that there are sufficiently high linear inter-correlations between 
the original variables, because the similarities between the variables are usual-
ly based on these correlations. 

2. We also assume that the sample size is sufficiently large (e.g., at least five ob-
servations per variable), outliers are excluded, and the variables are measured 
at least at the level of good ordinal scales. In FA the variables should also be 
normally distributed and multicollinearity is not accepted. 

3. We calculate the so-called principal component or factor loadings that are the 
correlations between the original variables and the principal components or 
factors. 

4. We apply rotation to these components or factors in order to better interpret 
our loadings.  

5. We select the appropriate principal components or factors, and these will be 
used in our sum variable specifications.  

 
One distinction between the PCA and FA is that in the former case we always 

obtain the same unique components, whereas in FA the factors may vary accord-
ing to the established number of factors.  

In a sense, PCA and FA aim to find variable clusters according to the linear in-
ter-correlations between the variables. The variable groups having inter-
correlations will constitute variable clusters, and thus the obtained components or 
factors are the corresponding cluster centers. The principal component or factor 
loadings may now be regarded as being the “degrees of membership” of the varia-
bles to these clusters. Another approach is to consider that the principal compo-
nents or factors span such vector spaces in which the loadings of the variables de-
note their coordinates. 

On the other hand, we may also assume that in dimensionality reduction we 
aim to find clusters of variables according to their distances, and thus we can ap-
ply CA or multidimensional scaling. Hence, instead of the so-called Q-techniques 
of clustering, we are now applying the R-techniques [29]. In practice, when our 
data set is not too large, we may then operate with the transposed version of the 
original data matrix and then apply CA, and this approach is adopted below. We 
also apply fuzzy rule-based reasoning in our analyses. Thanks for the good fuzzy 
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clustering techniques and usable approximate reasoning methods, the SC approach 
is more robust, applicable and user-friendly than the traditional methods.  

 
 

3. Soft Computing and Dimensionality Reduction 

 
Our SC approach below applies both fuzzy clustering and approximate reason-

ing directly to dimensionality reduction. In this manner we may also apply dimen-
sionality reduction in a nonparametric manner to nonlinear data sets. Since we 
adopted a meta-level approach, i.e., only methods of general nature are considered 
and detailed mathematical analyses are precluded, we apply the prevailing fuzzy 
clustering methods and fuzzy rule-based models, and these have also proved to be 
useful in practice. However, for the sake of consistency, our goodness criteria for 
the outputs are those of PCA and FA. In this respect fuzzy mountain clustering 
[5,32] and fuzzy c-means clustering methods [2,3,6,8,12,15,16,17,20,25,26] are 
analogous to PCA and FA, respectively.  

For example, in mountain clustering and PCA we specify the unique outputs it-
eratively one at a time starting from the densest or largest group of observations or 
variables, whereas within the fuzzy c-means method and FA our outcomes vary 
according to the established number of clusters or factors. We focus on the moun-
tain clustering method and PCA below, because these techniques may bring better 
understanding to our approach. 

Given now the original data matrix with m cases or observations (rows) and n 
variables (columns), if we apply fuzzy clustering method to dimensionality reduc-
tion, we may proceed as follows (Table 3.1): 

 
1. We focus on such groups of variables that are close to each other. In other 

words, the distances between these variables, Xi, are small. In practice, we 
may operate, for example, with their standard scores, ZXi, and our task stems 
from the calculation of the norms, ||ZXi – ZXj|| (i ≠ j). Alternative transfor-
mations may also be used, but in any case the original variables should be 
transformed into similar scales, because otherwise our variables have unequal 
weights. 

2. Our method uses the transpose of the original data matrix (columns become 
rows), and then we apply fuzzy cluster analysis to the variables.  

3. The obtained cluster centers of the variables, Ck, will be our “principal com-
ponents” or “factors”, and our loadings are now the correlations between the 
variables and these centers. We may also use linguistic values in this context. 

4. We assess the goodness of our outcomes by applying such prevailing criteria 
as the communalities and eigenvalues of the variables.  
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Table 3.1. Example of a data matrix 
and its principal components. 
Case nr. Variables and principal compo-

nents 
 X1 X2 … Xn C1 C2 … Cq≤n 
1 x11 x12 x1n c11 c12 c1q 
2 x21 x22 x2n c21 c22 c2q 
… …   …   
m xm1 xm2 xmn cm1 cm2 cmq 

 
When we specify the sum variables according to our loadings, we use functions 

that express sufficiently well the relationships between the variables and the clus-
ter centers. Traditionally we may apply linear regression analysis in order to ob-
tain such corresponding sum variables, Sk ≈ Ck,  

 
Sk = ∑i wik·ZXi , (i=1, 2, …,n),    (3.1) 

 
in which Ck is the dependent variable, the weights, w, are the regression coeffi-
cients and ZX are the standard scores of the original variables [13,14,19,35,39]. 
This method is used for calculating the principal component or factor scores. 

However, (3.1) also includes the irrelevant variables in the sum variables, i.e., 
the variables with low loadings, and thus it may yield more or less misleading out-
comes. Hence, in practice, we quite often simply calculate the sum of the relevant 
variables in each component, i.e., we only select the variables with the high load-
ings. In the case of the similar original scales we prefer the averages of these vari-
ables. This idea is widely used in PCA and FA in the human sciences. We may 
then justify our decisions by applying item analysis with Cronbach’s alpha relia-
bility coeffiecients, which are based on correlation coefficients, even though this 
method is not foolproof for this task [13,39]. Another, sometimes more reliable 
method is based on the factor score covariance matrix [13]. The former usually 
minimizes and the latter maximizes the reliability coefficients.  

Within our SC framework, we may also apply the fuzzy rule-based models, F, 
for all relevant variables in a component, i.e., the cluster center, Ck, is the depend-
ent variable in the model 

 
Sk = Fk(Xq,…,Xr), q ≥ 1,  r ≤ n,                                     (3.2) 

 
Method (3.2) seems better in practice because it is also appropriate for nonlinear 
relationships.  

Our SC approach may nevertheless arouse problems if variable clusters are un-
available or we have large observation sets. In the former case it may be difficult 
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to find plausible cluster centers with any method, and the latter case may lead to 
quite heavy computations due to the large number of parameters. 

Below we apply the idea on mountain clustering that is analogous to PCA 
[5,32]. Hence, our method specifies the first cluster center according to the great-
est or densest variable cluster. The second center is assigned to the second densest 
cluster with the restriction that it is not in the neighborhood of the first cluster. The 
next center, in turn, belongs to the third densest cluster, but it should also locate 
far from the previous clusters, and so forth. The number of cluster centers is de-
termined by the user in the manner of PCA.  

From the mathematical standpoint, the general idea for our clustering is that our 
first cluster center, C1, is obtained when we minimize this type of penalty func-
tion,  

 
Σi μC1(ZXi) · ||ZXi – C1|| , i = 1,2, …, n,      (3.3) 

 
in which μ is an appropriate fuzzy triangular or bell-shaped membership function 
with its maximum value at C1. This method finds the vector C1 to be the center of 
the densest variable cluster.  

The second cluster center, C2, should represent the second densest cluster, and 
thus the neighborhood of C1 should be excluded from our analysis. Hence, our 
minimizing penalty function should now also contain the exclusion function, Ex, 
that excludes the first cluster, 

 
Σi ExC2(ZXi) · μC2(ZXi) · ||ZXi – C2||, i = 1,2, …, n,   (3.4) 

 
in which, for example, ExC2(ZXi) = (1 - μC1(ZXi))s (s>1). This means that in the 
second round the variables close to C1 are irrelevant. 

In the third round, the variables close to C1 and C2 are irrelevant, i.e.,  
 

ExC3(ZXi) = min(ExC2(ZXi), (1 - μC2(ZXi))s )                       (3.5) 
 

and the penalty function for C3 is 
 

Σj  (ExC3(ZXi) · μC3(ZXi) · ||ZXi – C3||, i = 1,2, …, n.  (3.6) 
 

We will continue till all the values of ExCi(ZXi) are small, this meaning that we 
have examined all variable clusters. 

These operations may be carried out conveniently with such methods as the ge-
netic algorithms if custom-made models are preferred. We may also apply the 
original mountain clustering method directly, if the number of variables is suffi-
ciently large. Below we will provide examples with the empiric data sets. 
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4. Real-World Examples 

 
We examine below two real-world data sets with both PCA and our SC meth-

od. We aim to demonstrate that our method, that is simpler and more robust than 
PCA and FA, is also plausible for dimensionality reduction. We use Matlab™ ver-
sion 2014b and IBM SPSS™ version 22 in our calculations. 

4.1. The Iris Data 

 
Fisher’s Iris data is the widely-used benchmark data in cluster analysis. Fuzzy 

clustering methods have already proved their usability in this context of grouping 
the objects, but only some indirect methods have been suggested for dimensionali-
ty reduction of variables. This data set is challenging to us because it contains 
problematic clusters. 

The Iris data contains 150 of these flowers and four feature variables that 
measure in millimeters their Sepal lengths (Sl), Sepal widths (Sw), Petal lengths 
(Pl) and Petal widths (Pw; Fig. 4.1). In the cluster analysis for these flowers we 
should find three clusters, and good fuzzy CA methods are able to perform this. 
Since sufficiently high inter-correlations prevail between the variables, we may al-
so attempt to use PCA and our SC method for dimensionality reduction. 

 
 

Fig. 4.1. Scatter plots of flowers in the Iris data. 
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4.1.1. The PCA Approach 

 
In PCA the values of the inter-correlations between our variables may first be 

analyzed with such rules of thumb as the Kaiser-Mayer-Olkin measure and Bart-
lett’s test, and if the former yields values greater than .6 and the latter rejects its 
null hypothesis, our correlations seem to be sufficiently high [13,39]. In our data 
the former yields .54 and the latter rejects the null hypothesis (at the level of sig-
nificance < .05). Hence, the former value is not fully satisfactory, but the latter ful-
fills the conditions.  

On the other hand, the communalities of the variables are higher than .9, and 
hence we assume that PCA is justified with all our feature variables in this con-
text. The communalities are the rsquares in those regression models in which the 
feature variable is the dependent variable and the principal components are the in-
dependent variables. Hence, the communalities indicate how well the selected 
principal components can explain or predict the variances of the variables. 

PCA yields first at the extraction stage the initial component loadings (i.e., the 
correlations between the variables and the components) for the variables in each 
component by starting from the largest variable group. In the first component we 
thus obtain the highest absolute values of the loadings, the second component has 
the second highest values, and so forth. There is also the restriction that the com-
ponents must be orthogonal, i.e., they have no inter-correlations.  

We also calculate the sums of squares of these loadings in each component, and 
these sums are referred to as the eigenvalues. We are usually interested in those 
principal components that yield eigenvalues greater than or equal with unity. The 
sums of the eigenvalues of our components divided by the number of the original 
variables, in turn, reveals us how much our components explain of the total vari-
ance of our variables.  

In order to better understand our outputs, rotation is also carried out, and it 
modifies our original principal component loadings. The rotation aims to yield ei-
ther high or low loadings, and in addition to the orthogonal methods, we may now 
apply oblique methods. The latter methods allow inter-correlations between the 
principal components, and this situation is usual in the human sciences. However, 
unlike in orthogonal rotation, in oblique rotation the loadings are not the correla-
tions between the components and variables, but rather the weights that show us 
the importance of the variables in each component. Typical examples of orthogo-
nal and oblique methods are Varimax and Promax, respectively. 

Summing up the foregoing measures, given a table of original or orthogonally 
rotated principal component loadings, the row-wise sums of squares of the load-
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ings yield the communalities, whereas the corresponding column-wise values 
yield the eigenvalues.  

We prefer the oblique “Procrustean” Promax method in rotation below, and 
these principal component loadings are presented in Table 4.1.1.1 and Fig. 4.1.1.1 
(the loadings less than the absolute value of .3 are omitted below because they are 
irrelevant). We select two principal components, because they already explain ap-
proximately 96% of the total variance of the variables (i.e., the sum of these two 
eigenvalues / 4 · 100% = 96%) even though the eigenvalue of the second compo-
nent was slightly less than unity.  

We notice that, according to the first component in our rotated table, we may 
generate a sum variable that includes the variables Sepal length, Petal length and 
Petal width. The second component only includes one high loading, viz. for Sepal 
width. Hence, instead of the original variables, we may use two principal variables 
within the Iris data, if necessary. Table 4.1.1.2 presents the loadings that are also 
the correlations between the variables and the components because in oblique ro-
tation the loadings in Table 4.1.1.1 are not correlations (as in the orthogonal rota-
tion). The latter loadings are better comparable with our SC analyses below. We 
notice that these loadings are slightly more blurred with respect to sum variable 
specification. Both of these loading tables are nevertheless used in the conduct of 
inquiry. 

 
 
 

Table 4.1.1.1. Rotated component matrix of Iris data 

 
Component 
1 2 

Sepal_length 1.000  
Petal_length .933  
Petal_width .929  
Sepal_width  1.000 
Extraction Method: Principal Component Analysis.  
 Rotation Method: Promax with Kaiser Normalization. 
Rotation converged in 3 iterations. 
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Table 4.1.1.2. The intercorrelations between  
the variables and the components in Iris data. 

 
Component 
1 2 

Petal_length .982 -.455 
Petal_width .962 -.407 
Sepal_length .938  
Sepal_width -.307 .995 
Extraction Method: Principal Component Analysis.  
Rotation Method: Promax with Kaiser Normalization. 

 
 
 
 

Fig. 4.1.1.1. Component plot in the rotated space with the Iris data. 
 
According to Table 4.1.1.3, that presents the regression coefficients for the 

component scores, our first sum variable would now be  

S1 = .366·ZSl + .005·ZSw + .339·ZPl + .338·ZPw                  (4.1.1.1) 

if this prevailing method is applied to the standardized feature variables. Since Se-
pal width is irrelevant to S1 and the rest of the loadings are quite similar, in prac-
tice we may use for the original variables their nonweighted sum instead, 

S1 = Sl + Pl + Pw,                                                         (4.1.1.2) 
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or their average, if their standard scores are used. In item analysis Cronbach’s al-
pha is greater than .9 for S1, and this result also corresponds to this sum variable 
construction.  

 
 

Table 4.1.1.3. Component Score Coefficient Matrix for Iris data. 

 
Component 
1 2 

Sepal_length .366 .200 
Sepal_width .005 .923 
Petal_length .339 -.140 
Petal_width .338 -.097 
Extraction Method: Principal Component Analysis.  
Rotation Method: Promax with Kaiser Normalization. 

 
 
Hence, PCA provided us with one plausible sum variable, and this was due to 

the high linear intercorrelations between the feature variables. 
 
 

4.1.2. The Soft Computing Approach 

 
If we apply our SC method, we principally utilize the distances between the 

variables and, in the manner of the PCA, we operate with the standard scores of 
the original variables. Then, within the Iris data, we notice in the dendrogram in 
Fig. 4.1.2.1 that Sepal width is clearly distinct from the others and the rest of the 
feature variables seem to belong to same cluster. The multidimensional scaling 
analysis (SPSS Proxcal), that allocates the variables into a 2-D space according to 
their distances, also seems to support quite well this resolution (Fig. 4.1.2.2). 
Hence, it seems that we may specify one sum variable as above. 

According to our cluster analysis approach, we will proceed as follows: 
 

1. We specify two cluster centers, and these are our principal components, Ci. 
The correlations between the variables and principal components will be our 
component loadings. 

2. The communalities are the rsquares of the fuzzy models Fi: (C1,C2) -> ZXi, i 
= 1, 2,  …, n, i.e., we consider how well our components explain or predict 
the variables.  

3. The eigenvalues are the squared column-wise sums of the loadings as above. 
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4. The final sum variable, S1, only constitutes the relevant variables of the first 
principal component, and its specification is similar to that of the PCA meth-
od. We may apply the fuzzy model S1 = F1(ZX1,ZX3,ZX4) by using C1 as the 
dependent variable instead, if necessary.  

 
Our mountain clustering method for the feature variables seems to yield two 

plausible cluster centers, and the corresponding principal components contain suf-
ficiently high loadings. We used Matlab’s Fuzzy Logic Toolbox and Takagi-
Sugeno reasoning for these tasks [30]. Table 4.1.2.1 presents these correlations, or 
loadings (the absolute values less than .3 are omitted as above). This Table is 
analogous to Table 4.1.1.2 within the PCA. For the illustrative purposes, we also 
calculated the corresponding rmse values, and naturally they were consistent with 
our loadings. (Table 4.1.2.2). 

 
 
 
 
 

Fig. 4.1.2.1. Dendrogram based on the average linkage method and distances between four 
standard score variables in the Iris data. 
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Fig. 4.1.2.2. The locations of the standardized variables according to the multidimensional 

scaling. 
 
Table 4.1.2.1 also presents the communalities and eigenvalues, and fuzzy rule-

based systems with seven rules and Takagi-Sugeno reasoning were used in an 
above-mentioned manner in this context. Our eigenvalues and communalities in-
dicate that two components yield high loadings and all the variables are relevant in 
this context. These values also correspond to the PCA outcomes above. There is a 
slight negative correlation between C1 and C2, and in this respect we have an 
oblique resolution.  

 
Table 4.1.2.1. Intercorrelations between the  
standardized variables and principal components 
in the Iris data. 
Variable C1 C2 Communalities 
ZSepal length .999  1.000 
ZSepal width  1.000 1.000 
ZPetal length .888  .944 
ZPetal width .838  .873 
Eigenvalues 2.49  1.000  
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Figure 4.1.2.3 depicts the locations of our variables in the principal component 
space and it also corresponds quite well to the PCA approach. Figure 4.1.2.4 de-
picts the locations of the variables as well as the principal components based on 
the PCA and our method when the multidimensional scaling is applied.  We notice 
that our outcomes are slightly dissimilar to those of the PCA. In fact, our compo-
nents are closer to singular variables and thus we should possibly fine-tune our 
model. This procedure is nevertheless precluded here because we have adopted the 
meta-level approach and our outcomes are already sufficiently plausible. 

If we will generate the linear sum variable, S1 ≈ C1, it would be similar to that 
of (4.1.1.1). The corresponding fuzzy-model approach, in turn, will base on the 
rule-based system, F1,  

 
S1 = F1(Sl,Pl,Pw)                                                (4.1.2.1) 

  
when C1 is used as the dependent variable in the model construction.  

 
 
 

Fig. 4.1.2.3. The loadings of the standardized variables in the principal component space with 
Iris data. 
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Table 4.1.2.2. Rmse val-
ues of the fuzzy models  
Fij: Cj  ! ZXi 
  C1 C2 
ZX1 .042 .342 
ZX2 .282 .001 
ZX3 .099 .503 
ZX4 .134 .522 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1.2.4. The locations of the standardized variables as well as the PCA components (Pca) 
and SC components (Fc) according to the multidimensional scaling. 

 
 
The intercorrelations between the PCA and our components are depicted in Fig. 

4.1.2.5, and, as expected, they indicate high positive correlations.  
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Fig. 4.1.2.5. Scatterplots of the PCA (Pca) and SC (Fc) components in the Iris data. 

 
 
Since fuzzy systems are now applied, we could also establish that the closer the 

variables are to the components, the higher their degrees of membership, and vice 
versa. We could even replace our loadings with these memberships, if necessary. 
However, then the comparison between the distinct component extractions would 
be more difficult than in the case of correlations.  

 

4.2. The World95 Data 

 
Our second example deals with the benchmark data collected within the inter-

national world survey from 109 countries in 1995 (World95 data), and this is in-
cluded in the SPSS example data sets, inter alia [34]. We focus on seven variables, 
Average female life expectancy, Average male life expectancy, People who read 
(%), Population increase (% per year), Daily calorie intake, Log (base 10) of 
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GDP per capita and Birth to death ratio. Fig. 4.2.1 depicts the inter-correlations 
between our variables. 

 
 

 
Fig. 4.2.1. Scatter plots of variables in the World95 data. 

 
 
 
4.2.1. The PCA Approach 
 
We used again PCA with Promax oblique rotation. Both the Kaiser-Mayer-

Olkin measure and Bartlett’s test now fulfilled the conditions on the satisfactory 
inter-correlations. The communalities were at least .91 and thus all the original 
variables seemed relevant in our analysis. We selected three components, even 
though only two components had eigenvalues higher than unity, because our deci-
sion seemed to reflect better the variable groups. These components explained ap-
proximately 95% of the total variance of the variables. The first two components 
have a quite high correlation (.753), and thus oblique rotation is justified. 

Table 4.2.1.1 and Fig. 4.2.1.1 indicate that three variables have high loadings in 
the first principal component (the loadings less than .3 are omitted). The second 
and the third components seem to include two variables with high loadings. In our 
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outcome Population increase is not having a clear membership to any component. 
Since the foregoing table will not yield the correlations in oblique rotation, Table 
4.2.1.2 presents the corresponding loading matrix based on the correlations be-
tween the variables and components. We notice that if we relied on this, the sum 
variable specification would be more problematic, but on the other hand, these 
values are better comparable to our SC-method outputs below.  

 
 

Table 4.2.1.1. Rotated component matrix of Word95 data. 

 
Component 
1 2  3 

Average female life expectancy .849   
Average male life expectancy .830   
People who read (%) 1.000   
Population increase (% per year) -.432   .759 
Daily calorie intake  .951  
Log (base 10) of GDP/CAP  .767  
Birth to death ratio    1.000 
Extraction Method: Principal Component Analysis.  
Rotation Method: Promax with Kaiser Normalization. 

 
 

Table 4.2.1.2. The inter-correlations between the variables  
and the components in the World95 data. 

 
Component 
1 2 3 

Average female life expectancy .973 .815  
Average male life expectancy .955 .807  
People who read (%) .955 .672 -.396 
Population increase (% per year) -.668 -.569  .892 
Daily calorie intake .733 .968 -.349 
Log (base 10) of GDP/CAP .800 .941 -.373 
Birth to death ratio    .970 
Extraction Method: Principal Component Analysis.  
Rotation Method: Promax with Kaiser Normalization. 
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Fig. 4.2.1.1. Component plot in the rotated space with the World95 data. 

 
If we specify now three sum variables, we may proceed as above by merely 

calculating the sums of those variables that have high loadings in the principal 
components. For example,  

 
S2 = Daily calorie intake + Log (base 10) of GDP per CAP,     (4.2.1.1) 

 
or their averages, if the standard scores are used. 

Hence, it seems plausible to specify sum variables among this data set even 
though now this task is more challenging than with the Iris data. Next we apply 
our SC method to this task. 

4.2.2. The Soft Computing Approach 

 
When our SC method is applied to three components, the correlation between 

the first two components is -.565, and thus in this respect we also apply an 
“oblique” method. According to multidimensional scaling, three cluster centers al-
so seem plausible, even though clear clusters are now unavailable (Fig. 4.2.2.1). 
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Fig. 4.2.2.1. The locations of the standardized variables according to the multidimensional 
scaling. 

 
Our inter-correlations between the variables and the components seem some-

what distinct from the PCA outcomes with oblique loadings (Table 4.2.2.1, Figg. 
4.2.2.2 and 4.2.2.3). Now the first component seems to comprise three variables 
common to both the PCA and SC approaches. In the SC model ZLog (base 10) of 
GDP per CAP is also having a high loading in the first component, and the same 
outcome is found in the correlation Table 4.2.1.2 above, and we must bear in mind 
that this table presents the correlations between the variables and the components 
in the manner of our SC method. The third component in PCA and the second 
component in the SC approach, in turn, provide quite similar outcomes.  

Hence, the variables ZLog (base 10) of GDP per CAP and ZDaily calorie in-
take seem to yield distinct outcomes, but even in this case the correlation Table 
4.2.1.2 corresponds quite well to our results. Fig. 4.2.2.4 depicts the scatter plots 
of our components. As regards our communalities (that were calculated according 
to the fuzzy models) and eigenvalues, they seem to fulfill the given conditions. 
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Table 4.2.2.1. Intercorrelations between the standardized 
variables and principal components in the World95 data. 

Variable C1 C2 C3 Communalities 
ZAverage femal 
life expectancy 

.999   .999 

ZAverage male life 
expectancy 

.982   .982 

ZPeople who read 
(%) 

.771   .795 

ZPopulation in-
crease (% per year) 

 .999  1.000 

ZDaily calorie in-
take 

  1.000 1.000 

ZLog (base 10) of 
GDP per CAP 

.837   .876 

ZBirth to death ra-
tio 

 .816  .939 

Eigenvalues 3.261 1.665 1.000  
 
 
 
 

Fig. 4.2.2.2. The loadings of the standardized variables in the principal component space with 
World95 data. 
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Fig. 4.2.2.3. The locations of the standardized variables as well as the PCA components (Pca) 
and SC components (Fc) according to the multidimensional scaling. 
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Fig. 4.2.2.4. Scatter plots of the PCA (Pca) and SC (Fc) components in World95 data. 

 
Our sum variables, again, are the sums of the relevant variables in each compo-

nent, for example, 
 

S2 = Population increase (% per year) + Birth to death ratio,    (4.2.2.1) 
 

or, by applying the corresponding fuzzy model, 
 

S2 = F2(Population increase (% per year),Birth to death ratio), (4.2.2.2) 
 

with the dependent variable C2 (Fig. 4.2.2.5). 
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Fig. 4.2.2.5. A fuzzy model fitting to sum variable S2 = F(Population increase (% per 

year),Birth to death ratio). 
 
Hence, in this context the SC method yields somewhat distinct outcomes, and 

this is due to our clustering approach and merely tentative calculations based on 
our general approach. In addition, the three-component approach seemed not fully 
justified in this context. On the other hand, in the human sciences the variables in 
the real world data often contain quite much noise and borderline cases.  

 
 

5. Conclusions 

 
We have considered above how the dimensionality reduction analogous to PCA 

may be carried out with fuzzy clustering method and fuzzy reasoning in an under-
standable manner, and two real-world data sets were also used as examples. Such 
prevailing traditional methods as PCA and FA are only appropriate to fairly lim-
ited usage because they presuppose linear correlations between the variables and 
normally distributed data sets, inter alia. Our SC approach, in turn, also seems us-
able to nonlinear and nonparametric data sets. The central idea in our approach is 
that we use fuzzy clustering method for finding the appropriate cluster centers to 
our variables, and these centers provide a basis for our sum variable construction.  

In order to draw comparisons to the traditional approaches, our component 
loadings and goodness criteria based on various intercorrelations and rsquares be-
tween the variables and the principal components, and in this context we also ap-



25 

plied fuzzy reasoning. However, in the long term we could replace the loadings 
with the degrees membership, as well as use even more fuzzy reasoning models. 
The loadings could also be linguistic values, if necessary. In this manner we could 
even better attain Lotfi Zadeh’s recent idea on the fuzzy extended logic.  

Since the SC community can already provide us with good model construction 
methods, we did not formulate any novel calculation technics but rather we fo-
cused at meta-level on constructing a tentative and an analogous system to PCA. 
Our contribution was to apply the fuzzy R-technique to data matrix and then con-
struct fuzzy models for assessing the goodness of our outcomes with the loadings, 
communalities and eigenvalues. We also used fuzzy models for sum variable spec-
ifications because they are also appropriate to nonlinear cases. 

We still have some open questions. First, due to the clustering approach, we 
encounter such their prevailing problems as the nonspherical clusters, selection of 
the correct metrics or the appropriate number of clusters. The lack of variable 
clusters or the great number of observations and original variables may also arouse 
problems.  

Second, we still expect such standard goodness criteria for our dimensionality 
reduction within SC that may replace those of the PCA and FA. Examples of these 
are communalities and eigenvalues. Finally, if the degrees of membership are used 
for loadings, we still have various alternatives for specifying them.  

One new frontier is to apply the fuzzy c-means clustering to this problem area, 
and this method would be analogous to FA. This is an interesting topic for the fu-
ture studies and now it was mainly precluded due to the lack of space. 

Despite the foregoing open problems, our SC approach seems nevertheless 
promising in practice as a “quick-and-dirty” method for the dimensionality reduc-
tion. However, further studies are still expected in this problem area. 

 
 

 
References 
 
[1]. H. Bandemer, H. and W. Näther, W, “Fuzzy Data Analysis”, Kluwer, Dordrecht, 1992. 
[2]. J. Bezdek, J. and S. Pal, “Fuzzy Models for Pattern Recognition”, IEEE Press, New York, 

1992. 
[3]. J. Bezdek & al., “Visual Assessment of Clustering Tendency for Rectangular Dissimilarity 

Matrices”, IEEE Transactions on Fuzzy Systems, vol. 15/5, 2007, pp. 890-903. 
[4]. H. -M. Lee & al., “An Efficient Fuzzy Classifier with Feature Selection Based on Fuzzy 

Entropy”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, 
pp. 426-432. 

[5]. S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”, Journal of Intelligent 
and Fuzzy Systems vol. 2, 1994, 267-278. 

[6]. A. Celikyilmaz, and B. Turksen, “Enhanced Fuzzy System Models with Improved Fuzzy 
Clustering Algorithm”, IEEE Transactions on Fuzzy Systems 16/3, 2008, pp. 779-794. 

[7]. T. Denoeux and M. Masson, “Principal Component Analysis of Fuzzy Data Using Auto-
associative Neural Networks”, IEEE Transactions on Fuzzy Systems, vol. 12/3, pp. 336-
349, 2004. 



26  

[8]. H. Frigui and C. Hwang, “Fuzzy Clustering and Aggregation of Relational Data with In-
stance-Level Constraints”, IEEE Transactions on Fuzzy Systems, vol. 16/6, 2008, pp. 1565-
1581. 

[9]. P. Giordani and H. Giers, “A Comparison of Three Methods for Principal Component 
Analysis of Fuzzy Interval Data”, Computational Statistics & Data Analysis, vol. 51, 2006, 
pp. 379-397. 

[10]. A. Gonzales and R. Perez, “Selection of Relevant Features in a Fuzzy Genetic Learning Al-
gorithm”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, 
pp. 417-425. 

[11]. P. Grzegorzewski, & al. (Eds.),  “Soft Methods in Probability, Statistics and Data Analy-
sis”, Physica Verlag, Heidelberg, 2002. 

[12]. J. Handl, and J. Knowles, “An Evolutionary Approach to Multiobjective Clustering”, IEEE 
Transactions on Evolutionary Computation, vol. 11/1, 2007, pp. 56-76. 

[13]. H. Harman, “Modern Factor Analysis”, Univ. of Chigago Press, Chigago, 1976. 
[14]. R. Hathaway and J. Bezdek, “Switching Regression Models and Fuzzy Clustering”, IEEE 

Transactions on Fuzzy Systems, vol. 1/3, 1993, pp. 195-204. 
[15]. R. Hathaway and Y. Hu, “Density-Weighted Fuzzy C-Means Clustering”, IEEE Transac-

tions on Fuzzy Systems, vol. 17/1, 2009, pp. 243-253. 
[16]. T. -P. Hong and J. -P. Chen, “Finding Relevant Attributes and Membership Values”, Fuzzy 

Sets and Systems 103/3, 1999, pp. 389-404. 
[17]. E. Hruschka, & al., “A Survey of Evolutionary Algorithms for Clustering”, IEEE Transac-

tions on Systems, Man and Cybernetics, Part C, 39/2, 2009, pp. 133-155. 
[18]. Y. Jin, “Fuzzy Modelling of High-Dimensional Systems: Complexity Reduction and Inter-

pretability Improvement, IEEE Transactions on Fuzzy Systems, vol. 8/2, 2000, pp. 212-
221. 

[19]. J. Kacprzyk and M. Fedrizzi, “Fuzzy regression analysis”, Physica Verlag, Heidelberg, 
1992. 

[20]. J. Kacprzyk, J. Owsinski, and D. Viattchenin, “A New Heuristic Possibilistic Clustering 
Algorithm for Feature Selection”, Journal of Automation, Mobile Robotics & Intelligent 
Systems vol. 8, 2,  2014, pp. 40-46. 

[21]. F. Klawonn and J. Castro, J, “Similarity in Fuzzy Reasoning” Mathware & Soft Computing, 
2/3, 1995, pp. 197-228. 

[22]. P. Luukka, “A New Nonlinear Fuzzy Robust PCA Algorithm and Similarity Classifier in 
Classification of Medical Data Sets”, Fuzzy Systems, vol. 13/3, 2011, pp. 153-162.  

[23]. V. A. Niskanen, “Soft Computing Methods in Human Sciences”, Studies in Fuzziness and 
Soft Computing, 134, Springer Verlag, Berlin, 2004. 

[24]. C. -H. Oh & al., “Fuzzy Clustering Algorithm Extracting Principal Components Independ-
ent of Subsidiary Variables”, Proceedings of the IEEE-INNS-ENNS, vol. 3, 2000, pp. 377-
380. 

[25]. N. R. Pal & al., “A Possibilistic Fuzzy C-Means Clustering Algorithm”, IEEE Transactions 
on Fuzzy Systems, vol. 13/4, 2005, pp. 517-530. 

[26]. W. Pedrycz & al., “P-FCM: a Proximity-Based Fuzzy Clustering”, Fuzzy Sets and Systems 
146/1, 2004, pp. 21-42. 

[27]. M. Rezaee and A. Moini, “Reduction Method Based on Fuzzy Principal Component Analy-
sis in Multi-Objective Possibilistic Programming”, The International Journal of Advanced 
Manufacturing Technology vol. 67, 1-4, 2013, pp. 823-831. 

[28]. M. Smithson, “Fuzzy Set Analysis for Behavioral and Social Sciences”, Springer, New 
York, 1986. 

[29]. P. Sneath, and R. Sokal, “Numerical Taxonomy”, Freeman, San Francisco, 1973. 
[30]. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Model-

ing and Control”, IEEE Transactions on Systems, Man and Cybernetics, 15/1, 1986, pp. 
116-132. 



27 

[31]. Y. Yaeibuuchi and J. Watada, “Fuzzy Principal Component Analysis for Fuzzy Data”, Pro-
ceedings of the Sixth IEEE International Conference, 1997, pp. 1127 – 1132.  

[32]. R. Yager, and D. Filev, “Generation of Fuzzy Rules by Mountain Clustering”, Journal of 
Intelligent and Fuzzy Systems, vol. 2, 1994, pp. 209-219. 

[33]. T. Yang and S. Wang, “Robust algorithms for Principal Component Analysis”, Pattern 
Recognition Letters, vol. 20, 1999, pp. 927-933.  

[34]. World95 data: http://19-577-spring-2012.wiki.uml.edu/file/detail/World95.sav 
[35]. M. -S. Yang & al., “Alpha-Cut Implemented Fuzzy Algorithms and Switching Regression”, 

IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 38/3, 2008, pp. 588-603. 
[36]. L. Zadeh, “Fuzzy Logic = Computing with Words”, IEEE Transactions on Fuzzy Systems, 

vol. 2, 1996, pp. 103-111. 
[37]. L. Zadeh, “Similarity Relations and Fuzzy Orderings”, Information Sciences, vol. 3, 1971, 

pp. 177-200. 
[38]. L. Zadeh, “Toward Extended Fuzzy Logic – A First Step”, Fuzzy Sets and Systems, vol. 

160, 2009, pp. 3175-3181. 
[39]. J. Zar,  “Biostatistical Analysis”, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 

 
 
 
 
 


