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Abstract: We consider universes that are close to Friedmann-Robertson-Walker in

the sense that metric perturbations, their time derivatives and first spatial derivatives

are small, but second spatial derivatives are not constrained. We show that if we in

addition assume that the observer four-velocity is close to its background value and

close to the four-velocity which defines the hypersurface of averaging, the redshift

and the average expansion rate remain close to the FRW case. However, this is not

true for the angular diameter distance. The four-velocity assumption implies certain

conditions on second derivatives of the metric and/or the matter content.
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1. Introduction

The matter-dominated homogeneous and isotropic cosmological model based on gen-

eral relativity disagrees with observations at late times. The observed angular diam-

eter distance to the last scattering surface at redshift 1090 is a factor of 1.4–1.9 longer

(keeping the Hubble constant fixed) [1,2], and the expansion rate is larger by a factor

of 1.2–1.7 (keeping the age of the universe fixed, i.e. H0t0 ≈ 0.8 . . . 1.1) [2,3] or by a

factor of 1.6–2.2 (keeping the matter density fixed, i.e. Ωm0 ≈ 0.2 . . . 0.4) [1,2,4]. The

usual remedy is to either include exotic matter with negative pressure or modify the

law of gravity. However, homogeneous and isotropic models do not include the effect

of non-linear structures on the expansion of the universe and on light propagation,
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and the factor two failure of the predictions of the matter-dominated model could

be related to this shortcoming [5–9].

The effect of inhomogeneities on the average expansion rate is called backreaction

[10–12]; see [13–16] for reviews. It has been shown in toy models that non-linearities

can lead to faster expansion, even acceleration, for dust matter [14,17–21]. In a semi-

realistic model, the observed timescale and the order of magnitude of the change in

the expansion rate emerge from the physics of structure formation [22,23], but there

is no fully realistic calculation yet. If backreaction is significant (and the universe is

statistically homogeneous and isotropic with a homogeneity scale smaller than the

horizon), this has to be due to non-Newtonian aspects of gravity [11, 12, 14, 15, 22,

24–28] which are related to the difference between Newtonian gravity and the weak

field, small velocity limit of general relativity [29–36].

The magnitude of the effect in the real universe remains an open question. It has

been argued that backreaction is small because the universe is close to a homogeneous

and isotropic Friedmann-Robertson-Walker (FRW) model at all times. However, we

should be specific ab out what is meant with the statement that the universe is close

to FRW. Smallness of metric perturbations does not preclude large deviations in the

Riemann tensor, because the latter involves second derivatives of the metric, and the

variation of a function may be rapid (with regard to some relevant scale) even though

its amplitude is small. This is the case in cosmology when density perturbations enter

the non-linear regime.

The argument involves two separate questions. First, can the universe can be

described with a metric which is perturbatively close to the FRW metric even after

density perturbations are non-linear? Second, does smallness of metric perturbations

imply that the average expansion rate, the redshift and the angular diameter distance

remain close to their unperturbed values?

The second question has been studied in many papers with regard to the av-

erage expansion rate [7, 9, 24, 37–43] (see [24] for further discussion and references).

However, almost all studies have been restricted to first or second order perturba-

tion theory and/or have had other shortcomings [24]1. A notable exception is [44],

which considers a new perturbative formalism adapted to the cosmological situation

where ordinary perturbation theory is not applicable; see section 5.4. There is also

a large literature on non-linear effects in light propagation, starting with a paper by

Zel’dovich in 1964 [45] (see [22] for further discussion and references). However, the

question phrased above has rarely been the focus of light propagation studies, and

it has not received a definitive answer.

We assume that metric perturbations remain small, and concentrate on the sec-

ond issue. The expansion rate and the distance both involve second derivatives of

the metric, like the density perturbation. The question is not whether it is possible

1In [43], the average is taken over the background FRW volume as opposed to the physical

volume, so the central issue of the non-commutativity of time derivatives and averaging is missing.
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to have large local deviations: the variation of the local expansion rate between dif-

ferent regions is of order unity in the real universe. The issue is whether it follows

from the smallness of metric perturbations that the distribution of the expansion

rate is such that the fluctuations cancel in the average, and whether corrections to

the distance and redshift are correspondingly small.

We show that if the spacetime is close to FRW in the sense that metric perturba-

tions, their time derivatives and first spatial derivatives are small and if the observer

four-velocity is close to its background value and close to the four-velocity which

defines the hypersurface of averaging, the redshift and the average expansion rate

remain close to the FRW case. Such a result does not hold for the angular diameter

distance.

In section 2 we set up the formalism and state our assumptions and in section 3

we show that the change in the redshift is small and explain why this is not the case

for the angular diameter distance. In section 4 we consider the average expansion

rate. In section 5 we discuss our results, in particular the relation to Newtonian

gravity, and in section 6 we summarise the situation.

2. The spacetime geometry

2.1 Kinematics and the equation of motion

Two frames. We mostly follow the notation of [46]; for reviews of the covariant

formalism, see [29, 47–49]. We denote the four-velocity of the observers by uα. We

consider a spacelike hypersurface N and denote the unit vector orthogonal to N
by nα. We will take averages on this hypersurface; at this stage, N is completely

general. Both vectors are normalised to unity, uαu
α = nαn

α = −1. The tensors

which project on the hypersurface orthogonal to nα and the rest space orthogonal to

uα are, respectively,

hαβ ≡ gαβ + nαnβ

h
(u)
αβ ≡ gαβ + uαuβ , (2.1)

and we denote by ∇̂α the spatial covariant derivative which is completely projected

on N , e.g. ∇̂βfα = h δ
β h

γ
α ∇δfγ . Without loss of generality, we write

uα = γ(nα + vα) , (2.2)

where vαn
α = 0 and γ = −nαu

α = (1− v2)−1/2 with v2 ≡ vαv
α.

It is useful to decompose the gradient of nα as

∇βnα =
1

3
hαβθ + σαβ −Aαnβ , (2.3)
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where θ ≡ ∇αn
α is the volume expansion rate, σαβ ≡ ∇̂(βnα) − 1

3
hαβθ is the shear

tensor and Aα ≡ nβ∇βnα is the acceleration vector. The analogous decomposition

of the gradient of uα is

∇βuα =
1

3
h
(u)
αβ θ

(u) + σ
(u)
αβ + ω

(u)
αβ −A(u)

α uβ , (2.4)

where ω
(u)
αβ ≡ ∇[βuα] + A

(u)
[α uβ] is the vorticity tensor and the other quantities are

defined in the same manner as those in (2.3).

We assume that the relation between the geometry and the matter content is

given by the Einstein equation (we use units in which 8πGN = 1, GN being Newton’s

constant),

Gαβ = Tαβ = ρuαuβ + ph
(u)
αβ + 2q(αuβ) + παβ , (2.5)

where we have without loss of generality decomposed the energy-momentum tensor

Tαβ with respect to uα. Here ρ ≡ uαuβTαβ is the energy density, p ≡ 1
3
hαβTαβ is the

pressure, qα ≡ −h β
α uγTβγ is the energy flux and παβ ≡ h γ

α h δ
β Tγδ − 1

3
hαβh

γδTγδ is the

anisotropic stress.

2.2 The near-FRW assumption

The metric. We write the metric as

ds2 = −(1 + 2Φ)dt̄2 + 2αidt̄dx
i + ([1− 2Ψ]fij + χij) a(t̄)

2dxidxj , (2.6)

where fij ≡ (1 + Kδklx
kxl/4)−2δij ≡ fδij is the metric of a three-dimensional

homogeneous and isotropic space with constant curvature 6K/a2. The scale fac-

tor is normalised to unity today, a(t̄0) = 1. We have δijχij = 0. We define

H ≡ ȧ/a, where dot means derivative with respect to the coordinate time t̄. This

form of the metric is completely general. We refer to the spacetime obtained when

Φ = Ψ = 0, αi = 0, χij = 0 as the background, and refer to these functions as pertur-

bations. We choose the Poisson gauge, which is defined by δijαi|j = 0, δjkχij|k = 0,

where | indicates covariant derivative with respect to fij.

We want the spacetime to be close to FRW and the coordinate system to be

close to the coordinates where the background looks homogeneous and isotropic, so

we assume that the metric perturbations are small. For the scalar functions Φ and

Ψ, we can simply demand that their values are small everywhere. The magnitude of

αi and χij depends on the coordinate system, so we have to be a bit more careful.

If the background space is negatively curved, f diverges at r = 2/
√
−K, and f

approaches zero as r goes to infinity for either negative or positive spatial curvature.

Correspondingly, if a field Ai has finite norm with regard to the background space,

ḡijA
iAj = a2fδijA

iAj (where ḡij is the spatial background metric), the components

Ai will vanish or diverge as f diverges or vanishes, respectively. We define the
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background-normalised spatial components of any field as Aî ≡ a
√
fAi and Aî ≡

(a
√
f)−1Ai (and correspondingly for fields with more than one spatial index) to

avoid this coordinate divergence. The requirement that the perturbations are small

can now be stated as ǫ(x) ≡ max(|Φ|, |Ψ|, |αî|, |χîĵ|) ≪ 1. For αi and χij we can

equivalently say δijαîαĵ = ḡijαiαj . ǫ2, δikδjlχîĵχk̂l̂ = ḡikḡjlχijχkl . ǫ2. In summary,

we assume that the spacetime metric is everywhere perturbatively near the same

global background. We further assume that the background spatial curvature is not

significantly larger than the background expansion rate, |K|/a2 . H2, i.e. we do not

consider near-static spacetimes.

We are interested in modes whose wavelengths are not long, that is to say modes

for which first spatial derivatives are large compared to (or of the same order as)

the perturbations, but still smaller than unity, given a|H| as the comparison scale,

1 ≫ |∂̃îǫ| & ǫ, where we have defined ∂̃î ≡ (a
√
f)−1∂i/|H|.2 We also assume that

time evolution is slow compared to spatial changes, more precisely that |ǫ̇| . |H|ǫ, i.e.
time derivatives are at most of the same order of magnitude as the background time

scale. We make no assumptions about second derivatives of the metric perturbations,

they can be comparable to the background quantities or larger.

The Einstein tensor. The components of the Einstein tensor for the near-FRW

metric (2.6) are

G00 ≃ 3H2 + 3
K

a2
+ 2Ψ

|k
|k +O(ǫ∂2ǫ, ∂ǫ∂ǫ, Γ̄ǫ∂ǫ, ∂Γ̄ǫ, Γ̄2ǫ, Γ̄Hǫ,H2ǫ) (2.7)

G0̂i ≃ −1

2
α

|k

î |k
+

K

2f
1
2a2

xk∂kαî + 2∂î(Ψ̇ +HΦ) +O(ǫ∂2ǫ, ∂Γ̄ǫ, Γ̄2ǫ, Γ̄Hǫ,H2ǫ)(2.8)

Gîĵ ≃ −
(

2
ä

a
+H2 +

K

a2

)

δij + (Ψ− Φ)
|i
|j − (Ψ− Φ)

|k
|kδij − ∂(̂iα̇ĵ) − 2H∂(̂iαĵ)

−1

2
a2χ

|k

îĵ |k
+

K

f
1
2

xk∂kχîĵ +O(ǫ∂2ǫ, ∂ǫ∂ǫ, Γ̄ǫ∂ǫ, ∂Γ̄ǫ, Γ̄2ǫ, Γ̄Hǫ,H2ǫ) , (2.9)

where ≃ indicates dropping subleading terms in metric perturbations and their

derivatives; in the remainder terms we have not kept track of the indices. We use the

symbol Γ̄ to refer to the background spatial Christoffel symbols; ∂ indicates ∂î and ∂2

indicates a combination of two spatial derivatives (likewise for ∂̃ and ∂̃2). To simplify

the bookkeeping, we take in what follows Γ̄ . |H|, in line with the assumption that

we do not consider near-static universes.

Because the Einstein equation is second order, there are at most two derivatives

acting on a metric perturbation, so the structure remains close to linear theory.

2If the background expansion is expanding and decelerating, this condition becomes stronger over

time, since 1/(a|H |) increases. Conversely, in an accelerating expanding background the condition

becomes weaker. For a collapsing background the situation is reversed. This is assuming that the

time-dependence of ǫ does not overcome that of a|H |.
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Note that this not an expansion in powers of the metric perturbation: in that case

perturbations and their derivatives would be considered to be of the same order [50].

When derivatives are large, this is inconsistent, as the first and second derivatives of

the metric perturbations are effectively new expansion parameters [24] (see also [44]).

The four-velocity. Observables such as the redshift, the angular diameter distance

and the local expansion rate depend on the observer four-velocity uα. According to

observations, deviations of galaxies from the mean flow are small over large scales.

These local deviations often go by the name peculiar velocities. In linear theory and

in the Poisson gauge, it is simple to identify ui as the physical velocity around the

mean flow. However, defining the peculiar velocity in a more general context and

translating the observational constraint into a well-defined mathematical statement

is not straightforward [49, 51].

The difference between the actual value of uα and its background value is gauge-

dependent, so the physical meaning of it being small is not obvious. (Requiring

metric perturbations to remain small is open to the same criticism.) For example,

it is always possible to adopt the comoving gauge where ui = 0, though then metric

perturbations become large at the same time as density perturbations. On the other

hand, |uî| ∼ 1 does not necessarily contradict any observations, any more than

metric perturbations of order unity do. The physical peculiar velocity would need

to be defined with respect to a physically defined velocity field describing the mean

flow. We will simply look at the difference from the background in the Poisson gauge,

like we do with the metric perturbations. For the background we have ūα = δα0,

so we are interested in whether the conditions |u0 − 1|, |uî| ≪ 1 hold. Given the

normalisation gαβu
αuβ = −1 and the smallness of metric perturbations, the first

condition follows from the second, so we only need to check whether |uî| ≪ 1. From

the 0i component of (2.5), we have

uî =
G0̂i − αîp− u0qî − π0̂i

(ρ+ p)u0 + q0
, (2.10)

The relation (2.10) shows what is required in terms of metric perturbations and

the matter content to keep uî small. According to (2.8) the leading contribution to

G0̂i is α
|k

î |k
≃ (a

√
f)−3/2∇2αi, so smallness of metric perturbations and their first

derivatives is not enough to guarantee that uî would remain small3. We could make

the additional assumption |α |k

î |k
/H2| . |∂̃ǫ| for the metric, and assume for the matter

content that |qî/(ρ + p)| . |∂̃ǫ|, |π0̂i/(ρ + p)| . |∂̃ǫ|, and that there is no negative

pressure so large that we would have |ρ+ p| ≪ ρ. (Note that the magnitude of πîĵ is

unconstrained.) Under these conditions, (2.10) gives |uî| ≪ 1. These conditions are

sufficient, but not necessary, as there can be cancellations among the different terms

3It is important that time derivatives of metric perturbations remain small, otherwise uî is in

general large, as G
0̂i always involves second derivatives of the metric.
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in (2.10). We will therefore simply assume that uî ∼ O(∂̃ǫ) without specifying which

of these conditions hold.

If the observer motion is geodesic, A
(u)
α = 0, it follows from the geodesic equation

that |uî| ∼ |∂̃ǫ| ≪ 1. In particular, this is the case if the matter is dust (as viewed

by the observer). The condition |α |k

î |k
/H2| ≪ 1 then also follows automatically.

3. Light propagation

3.1 The redshift

Most cosmological observations probe redshifts and distances. Let us first consider

the redshift. The redshift measured by the observer is given by the change in photon

energy between emission and observation, 1 + z = Ee/Eo. In the geometrical optics

approximation, light travels on null geodesics [52] (page 93), [53], and the energy is

E = −uαk
α

≃ k0[1 +O(∂̃ǫ)] , (3.1)

where kα is the photon momentum, tangent to a null geodesic. It is useful to split

kα as

kα = E(uα + eα) , (3.2)

where uαe
α = 0, eαe

α = 1. We define d
dη

≡ (uα + eα)∂α. The component k0 is

determined by the null geodesic equation

0 = kα∇αk
0

= kα∂αk
0 + Γ0

αβk
αkβ

≃ kα∂αk
0 +Hfijk

ikj +O(Hk0k0∂̃ǫ)

≃ kα∂αk
0 +Hk0k0 +O(Hk0k0∂̃ǫ) , (3.3)

where we have on the last line used the null condition gαβk
αkβ = 0. From (3.1) and

(3.3) we have

1 + z ≃ exp

(
∫ o

e

dη
[

H +O(H∂̃ǫ)
]

)

≃
(

ae
ao

)−1

[1 +O(∂̃ǫ)] . (3.4)

The redshift is to first approximation given by the inverse of the background scale

factor. In other words, as long as metric perturbations are small (and the other

assumptions hold), emission which is nearly isotropic at the source looks nearly

isotropic to the observer. The converse is not true: near-isotropy of the redshift of

the cosmic microwave background does not imply that the metric would be close to

FRW [54].
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3.2 The distance

While the relation between the redshift and the background scale factor remains to

leading order unchanged from the FRW case, we cannot say whether changes in the

redshift are small or large unless we know how the background scale factor is related

to observables. More generally, the redshift is only observationally meaningful if

expressed in relation to other observable quantities, such as the angular diameter

distance or the age of the universe. In particular, the redshift-distance relation can

change significantly, because the change in the angular diameter distance DA can

be large4. The reason why the redshift remains close to its background value is

that the photon momentum is given by a first order differential equation where first

derivatives of the metric enter via the Christoffel symbols, and second derivatives do

not make an appearance. In contrast, the equation for the angular diameter distance

is second order. We have

d2DA

dλ2
= −

[

4πGN(ρ+ p− 2qαe
α + παβe

αeβ)E2 + σ̃2
]

DA , (3.5)

where d
dλ

≡ kα∇α and σ̃2 is the null shear scalar; see [46, 52, 53] for details.

When converting the derivative with respect to the affine parameter λ to deriva-

tive with respect to the observable redshift, we have5

dDA

dλ
= ∂zDA

dz

dλ
= ∂zDAE(uα∂α + eα∂α)z

≃ ∂zDAE
[

∂0z + ei∂iz +O(∂̃ǫ∂αz)
]

. (3.6)

Because the redshift receives corrections of order ∂̃ǫ, the conversion factor (3.6) in-

volves second derivatives of the metric. While the perturbations do not substantially

change the redshift, they change the relation between the redshift and the affine

parameter. This corresponds to changing the local expansion rate, shear and/or

acceleration [46, 56].

The work [57] provides an example where metric perturbations around a matter-

dominated spatially flat FRW background are small, and their time derivatives and

first spatial derivatives are also small, and the four-velocity perturbation is small, but

the angular diameter distance is very different from the background, and is designed

to exactly reproduce the best-fit ΛCDM FRW model. The model studied in [57]

is spherically symmetric. If the universe is statistically homogeneous and isotropic

(and has a finite homogeneity scale) and the distribution evolves slowly, it can be

4Recall that the luminosity distance DL is related to the angular diameter distance via DL =

(1 + z)2DA in a general spacetime [29], [52] (page 111), [55].
5In general, this change of variables does not make sense, because the redshift is not always

monotonic along the null geodesic, so there is no function DA(z) [46, 56].
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argued that the change due to the spatial derivatives in (3.6) cancels in the integrals

along the null geodesic over distances longer than the homogeneity scale. In that

case the distance is for typical light rays to leading order determined by the average

energy density, pressure and expansion rate [46,56]. If the pressure can be neglected,

the angular diameter distance is determined by the average expansion rate and the

value of the average density today. If the average expansion rate is close to the

background, the distance is expected to be close to the FRW case, in agreement with

Swiss Cheese studies of light propagation [58]. The argument should be studied in

more detail and made more rigorous.

An alternative to the integral approach considered here is to expand DA as a

series in z (leaving aside that in the real universe there is no function DA(z)), or vice

versa [59, 60], as recently discussed in [61]. It would seem that significant variations

in different directions in the distance are expected when second derivatives of the

perturbations are large. Such an expansion is only useful for small redshifts or

distances, and the cancellations for the distance are expected to occur only over

large scales, so the two pictures are not in contradiction.

4. The expansion rate

4.1 The local expansion rate

In addition to the redshift and the distance, we can observe the expansion rate. Let

us now consider the average expansion rate, its relation to the background scale

factor a and the effect of perturbations on the evolution of a. The volume expansion

rate measured by the observer is

θ(u) = ∇αu
α

= ∂αu
α + Γα

αβu
β

≃ 3H + ∂iu
i +O(H∂̃ǫ) , (4.1)

where we on the last line applied the metric (2.6). As ∂iu
i ∼ O(H∂̃2ǫ), the local

expansion rate can have large variations in different regions. However, the presence

of large local variations does not necessarily mean that the average expansion rate

would change significantly; that depends on the distribution of the fluctuations.

We assume that the observers are moving non-relativistically with respect to the

averaging frame, v ≪ 1; to simplify the bookkeeping, we assume that v . O(∂̃ǫ).

When considering averages, it is useful to decompose vectors and tensors in the

direction orthogonal to and directions parallel to the averaging hypersurface N ,

instead of the background time and space directions. To this end, we split nα into a

vector mα whose gradient gives (approximately) the background expansion rate 3H

and a vector pα which lies along N . We define the former by setting mα = δα0 in
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the coordinates (2.6), and the latter by

pα ≡ nα +
mα

mβnβ

, (4.2)

with the components p0 ≃ O(ǫ, ∂̃ǫ∂̃ǫ), pi = ni ≃ O(∂̃ǫ). With these definitions, we

have

θ(u) = gαβ∇βuα

= γ(∇̂αn
α + ∇̂αv

α + Aαv
α) + γ3(vαvβ∇̂βvα + vαnβ∇βvα)

≃ ∇̂αn
α + ∇̂αv

α +O(H∂̃ǫ∂̃ǫ∂̃2ǫ)

= − 1

mβnβ

∇̂αm
α +

1

(mβnβ)2
mα∇̂α(m

γnγ) + ∇̂α(p
α + vα) +O(H∂̃ǫ∂̃ǫ∂̃2ǫ)

≃ 3H + ∇̂αs
α +O(H∂̃ǫ∂̃ǫ∂̃2ǫ) , (4.3)

where we have defined sα ≡ pa + vα. Like pα and vα (but unlike ui), sα is a vector

along N . For the shear we have similarly

σ
(u)
αβ = h

(u)
α(µh

(u)
ν)β∇νuµ − 1

3
h
(u)
αβ θ

(u)

≃ ∇̂βsα − 1

3
hαβ∇̂γs

γ +O(H∂̃ǫ∂̃2ǫ) . (4.4)

4.2 The average expansion rate

As we want to average θ(u) over N , we need the relation between the background

time t̄ and the time which is constant on N , which we denote by t (note that unless

Aα = 0, t is not a proper time). We have

∂t t̄ = nα∂αt̄

= n0

≃ 1 +O(∂̃ǫ∂̃ǫ) (4.5)

and ∇̂αt̄ ∼ O(∂̃ǫ), so the difference between the times t̄ and t is small. Nevertheless,

the difference in the volume element between the hypersurfaces of constant t̄ and

constant t can be large. If the spatial coordinates differ by O(H−1∂̃ǫ), the Jacobian

of the coordinate transformation is O(∂̃2ǫ), which is of the same order as the density

perturbations. (For dust this is rather obvious: because mass is conserved, the

density is inversely proportional to the volume element.) For an explicit example in

a case where the hypersurface of averaging is taken to be the hypersurface of constant

proper time measured by observers, see [40]. The average of the expansion rate (4.3)

on N is

〈θ(u)〉 ≃ 〈3H(t̄) + ∇̂αs
α +O(H∂̃ǫ∂̃ǫ∂̃2ǫ)〉

≃ 3H(t) + 〈∇̂αs
α〉+O(H∂̃ǫ∂̃ǫ∂̃2ǫ)

≃ 3H(t) +O(H∂̃ǫ/(HL), H∂̃ǫ∂̃ǫ∂̃2ǫ) , (4.6)
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where 〈∇̂αs
α〉 reduces to a boundary term which is suppressed by O(∂ǫ) and en-

hanced by 1/(HL), where L3 is the proper volume of the averaging region. As long

as the region is not so much smaller than the background Hubble scale that it would

overcome the smallness of sα ∼ O(∂̃ǫ), the boundary term remains subdominant.

There can be large local fluctuations, but they cancel over large volumes. For this

argument it is crucial that ∇̂α is a derivative along N and sα is a vector on N . The

assumption that time derivatives of perturbations are not large is also essential; with-

out it, all large second derivative terms would not reduce to suppressed boundary

terms.

If the distribution on N is statistically homogeneous and isotropic and the aver-

aging region is at least as large as the homogeneity scale, any total derivative would

give a small contribution, even if the amplitude of the vector field were not small.

The reason is that a total derivative corresponds to flux through the boundary, and

without a preferred direction this should be equal in both directions across the bound-

ary, up to statistical fluctuations [22, 25, 46]. Boundary terms vanish identically for

periodic boundary conditions, which are used in simulations and implicitly assumed

in Fourier series decomposition.

We have established that the average expansion rate is close to the background

quantity H . The averaging hypersurface N has been kept general, up to the condition

that the difference between the four-velocity nα orthogonal to N and the observer

four-velocity uα is small. In general, different hypersurfaces of averaging give dif-

ferent results [62, 63], and relevant averages are those which give an approximate

description of observable quantities. Arguments about cancellations in integrals re-

lated to the redshift and the distance indicate that these are the averages taken on

the hypersurface of statistical homogeneity and isotropy [14,22,46,56]. However, we

see that varying the choice of hypersurface does not change the leading order result

as long as the difference between the two frames is non-relativistic [46]. It was argued

in [46] that the observationally relevant expansion rate is ∇αn
α, which is related to

the hypersurface of statistical homogeneity and isotropy, while we have considered

∇αu
α. Nevertheless, their averages are close, because the difference between the two

frames is non-relativistic.

4.3 The background expansion rate

We have established that the redshift and the expansion rate are given in terms of

the background scale factor in the same way as in FRW universes. However, this

does not necessarily mean that their relation to time would be the same as in the

FRW case, because the evolution of the scale factor a (or equivalently the background

expansion rate H = ȧ/a) could be different. In usual perturbation theory, equations

are split up in powers of the metric perturbations, and equations at each order are

assumed to be satisfied separately [50]. In particular, the evolution of background

quantities is taken to be independent of the perturbations. However, this is an extra
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assumption which does not follow from the equations of motion. At linear order, the

equations for background quantities are the same as in the FRW case (as long as the

average of the linear perturbations vanishes). Beyond linear order, the average of

the perturbations does not vanish, and when derivatives of the perturbations become

large, higher order terms could have a significant impact on the average.

Let us see what happens in the present case, when second derivatives of the

perturbations can be even larger than the background quantities, and we do not

assume that the equations are satisfied order by order. From (2.5) and (2.7)–(2.9),

we have

ρ ≃ 3H2 + 3
K

a2
+ 2Ψ

|k
|k +O(∂̃ǫ∇2αî, ∂̃ǫ∂̃ǫ∂

2ǫ, ǫ∂2ǫ, ∂̄Γǫ) (4.7)

− p ≃ 2
ä

a
+H2 +

K

a2
+

2

3
(Ψ− Φ)

|k
|k +O(∂̃ǫ∇2αî, ∂̃ǫ∂̃ǫ∂

2ǫ, ǫ∂2ǫ, ∂Γ̄ǫ) . (4.8)

Let us first average (4.7) on N . The first two terms depend only on the back-

ground time t̄, which is close to the time t, so we get simply 〈3H(t̄)2 + 3 K
a(t̄)2

〉 ≃
3H(t)2 + 3 K

a(t)2
+O(H2∂̃ǫ). For the third term we have

2〈Ψ|k
|k〉 ≃ 2〈∇̂α∇̂αΨ〉+O(∂̃ǫ∂̃ǫ∂2ǫ) . (4.9)

This is a total derivative of a vector that has a small amplitude, so it is suppressed

on the same grounds as before. The average of (4.8) is analogous, and we obtain

〈ρ〉 ≃ 3H(t)2 + 3
K

a(t)2
+O(H∂ǫ/(HL), ∂̃ǫ∇2αî, ∂̃ǫ∂̃ǫ∂

2ǫ, ǫ∂2ǫ, ∂Γ̄ǫ) (4.10)

〈p〉 ≃ −2
∂2
t a(t)

a(t)
−H(t)2 − K

a(t)2
+O(H∂ǫ/(HL), ∂̃ǫ∇2αî, ∂̃ǫ∂̃ǫ∂

2ǫ, ǫ∂2ǫ, ∂Γ̄ǫ) . (4.11)

In other words, to leading order the evolution of a is given by the FRW equations

(note that here a and H are functions of the physical time t, not the background

time t̄). The average expansion rate and the redshift are therefore related to the

time t in the same way as the background quantities are related to t̄, up to small

corrections.

In [24], it was argued that the magnitude of the corrections to the average expan-

sion rate cannot be resolved in usual perturbation theory once the density perturba-

tions become non-linear. The reason was that when the expansion rate is written as a

series in powers of the metric perturbation, the contribution of higher order terms is

not suppressed, and the series expansion becomes useless when second derivatives of

the perturbations become large. The feature of the present treatment which makes it

possible to establish the amplitude of the corrections is that second derivatives of the

perturbations are not treated perturbatively. The infinite series discussed in section

2.1 of [24] arises from expanding the denominator of uî in (2.10) in a power series,

though this is not obvious in a perturbative treatment. Here we utilise the feature

– 12 –



that the average of ∂iu
i reduces (approximately) to a boundary term at any order

in perturbation theory. This fact has not been recognised in previous perturbation

theory studies [7, 9, 24–27, 37–43, 61] (for further references and discussion, see [24]).

5. Discussion

5.1 The Buchert equations

The Buchert equations show the effect of deviations from homogeneity and isotropy

on the average expansion rate in general terms [11,12,64]. Let us see how the above

result for the average expansion rate emerges from them. We consider the expansion

rate θ = ∇αn
α; as noted above, the difference between the average of θ and the

average of θ(u) is small. The average of the expansion rate θ evolves according to the

equations [46]

∂t〈θ〉+
1

3
〈θ〉2 ≃ −1

2
(〈ρ〉+ 3〈p〉) +Q

+O(∂̃ǫ∂2ǫ/(LH), ∂̃ǫ∇2αî, ∂̃ǫ∂̃ǫ∂̃
2ǫ∂2ǫ) (5.1)

1

3
〈θ〉2 ≃ 〈ρ〉 − 1

2
〈(3)R〉 − 1

2
Q+O(∂̃ǫ∂̃ǫ∂̃2ǫ∂2ǫ) (5.2)

∂t〈ρ〉+ 〈θ〉(〈ρ〉+ 〈p〉) ≃ −〈θp〉+ 〈θ〉〈p〉 − 〈σαβπ
αβ〉

+O(H∇2αî/(LH), ∂ǫ∇2αî, H
3∂̃ǫ∂̃ǫ∂̃2ǫ∂̃2ǫ) , (5.3)

where we have taken into account that Aα ∼ O(∂ǫ) and that the related time dilation

(i.e. deviation of t from proper time) is small. (Note that ∇2αî makes an appearance

as a boundary term, which is suppressed for large averaging volumes if we assume

statistical homogeneity and isotropy, or if we assume that |qî| . H2.) Here (3)R is

the spatial curvature scalar on N , and the backreaction variable Q is

Q ≡ 2

3

(

〈θ2〉 − 〈θ〉2
)

− 〈σαβσ
αβ〉

= 〈∇̂αn
α∇̂βn

β − ∇̂βnα∇̂βnα〉 − 2

3
〈∇̂αn

α〉2

≃ 〈∇̂αp
α∇̂βp

β − ∇̂βpα∇̂βpα〉 − 2

3
〈∇̂αp

α〉2 +O(∂̃ǫ∂̃2ǫ∂2ǫ)

= 〈∇̂α(p
α∇̂βp

β − pβ∇̂βp
α) + pβ[∇̂α, ∇̂β]p

α〉 − 2

3
〈∇̂αp

α〉2 +O(∂̃ǫ∂̃2ǫ∂2ǫ)

= 〈∇̂α(p
α∇̂βp

β − pβ∇̂βp
α)〉 − 〈(3)Rαβp

αpβ〉 − 2

3
〈∇̂αp

α〉2 +O(∂̃ǫ∂̃2ǫ∂2ǫ) ,(5.4)

where we have on the second line used the definitions of θ and σαβ given in (2.3), and
(3)Rαβ is the spatial curvature tensor. (We have also used the fact that to leading

order ∇̂βpα = ∇̂(βpα).) The boundary terms are small for the same reasons as before

and the spatial curvature contribution is suppressed by two powers of pα ∼ O(∂̃ǫ).
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This structure where Q is almost a boundary term is close to the Newtonian case,

as we discuss in section 5.3.

The integrability condition between (5.1) and (5.2) reads

∂t〈(3)R〉+ 2

3
〈θ〉〈(3)R〉 = −∂tQ− 2〈θ〉Q − 2〈θp〉+ 2〈θ〉〈p〉 − 2〈σαβπ

αβ〉

+O(H∇2αî/(LH), ∂ǫ∂2ǫ/(LH), ∂ǫ∇2αî, H
3∂̃ǫ∂̃ǫ∂̃2ǫ∂̃2ǫ) , (5.5)

so if Q is small and the other terms are small (which would have to be looked at

separately), the average spatial curvature evolves in the same manner as in the FRW

case. The local spatial curvature scalar is

(3)R = 2Gαβn
αnβ − 2

3
θ2 + σαβσ

αβ

≃ 6
K

a2
+ 4Ψ

|k
|k − 4H∇̂αp

α − ∇̂α(p
α∇̂βp

β − pβ∇̂βp
α) +O(∂̃ǫ∂̃2ǫ∂2ǫ)

≃ 6
K

a2
+ 4

1

a2f
∇2Ψ− 4H∇̂αp

α − ∇̂α(p
α∇̂βp

β − pβ∇̂βp
α) +O(∂̃ǫ∂̃2ǫ∂2ǫ) . (5.6)

When the density contrast is non-linear, there are typically large local variations in

the spatial curvature, like in the expansion rate. In the average, these large deviations

cancel up to boundary terms, and the leading behaviour is the same as in the FRW

case, 〈(3)R〉 ≃ 6K/a(t)2+O(∂̃ǫ∂̃2ǫ∂2ǫ). If Ψ is constant in time, the time-dependence

of the first term in (5.6) is also a−2, and it can be viewed as a “renormalisation” of

the background spatial curvature constant K [26]. In general, Ψ depends on time,

and such an interpretation is not valid.

5.2 The redshift and the average expansion rate

In a general spacetime, the redshift measured by an observer is

1 + z = exp

(
∫ o

e

dη

[

1

3
θ(u) + A(u)

α eα + σ
(u)
αβ e

αeβ
])

. (5.7)

It might appear that the change in the redshift due to perturbations would be of

the order of the change in the average expansion rate. As we have seen, the latter

reduces to a boundary term which, while small for sufficiently large regions, may

be important for small domains. However, according to section 3.1, the change in

redshift is always small under our assumptions, irrespective of the distance travelled

by the light. Let us see how these facts are reconciled. We have

∫ o

e

dη

(

1

3
θ(u) + A(u)

α eα + σ
(u)
αβ e

αeβ
)

≃
∫ o

e

dη

[

H +
1

3
∇̂αs

α + uβ∇βuαe
α +

(

∇̂βsα − 1

3
hαβ∇̂γs

γ

)

eαeβ +O(H∂̃ǫ∂̃2ǫ)

]
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≃ ln
ao
ae

+

∫ o

e

dη
[

∇̂βsαe
αeβ +O(H∂̃ǫ∂̃2ǫ)

]

= ln
ao
ae

+

∫ o

e

dη
[

eβ∇̂β(sαe
α)− sαe

β∇̂βe
α +O(H∂̃ǫ∂̃2ǫ)

]

= ln
ao
ae

+

∫ o

e

dη

[

d(sαe
α)

dη
− uβ∇β(sαe

α) +O(H∂̃ǫ∂̃2ǫ)

]

≃ ln
ao
ae

+

∣

∣

∣

∣

o

e

sαe
α +O(∂̃ǫ∂̃2ǫ)

≃ ln
ao
ae

+O(∂̃ǫ∂̃2ǫ) . (5.8)

The leading order deviation in the local expansion rate cancels with a term in the

projected shear. The remaining part eαeβ∇̂βsα is locally large, but at leading order

it reduces to a total derivative in η and thus to a small boundary term. In [56] it was

noted that while the cancellation (up to a boundary term) between the expansion

rate and the shear in Q can be understood in terms of the Newtonian limit, it is

not clear whether their cancellation in the redshift could be understood in a similar

manner. We now see that it follows from the smallness of uî and the smallness of

perturbations of the Christoffel symbols.

It is only the sum of the contributions of θ−3H and σ
(u)
αβ e

αeβ which is small, not

either term individually. In a statistically homogeneous and isotropic space where

the distribution evolves slowly, the integral of σ
(u)
αβ e

αeβ alone should be strongly

suppressed for typical light rays over long distances (because σ
(u)
αβ has no preferred

directions while eα varies only slowly) [46,56]6. It then follows that the contribution

of θ− 3H is also small, in agreement with the argument that the contribution of the

expansion rate is given by the spatial average (which is close to 3H) if the space is

statistically homogeneous and isotropic and the distribution evolves slowly [46, 56].

If matter consists of discrete clumps instead of a continuous fluid, it has been

argued that there could be a large effect on the redshift [65]. Given the above results,

this would imply that the spacetime cannot be written in terms of a near-FRWmetric

and a small uî, or that the geometrical optics approximation is not valid [46]

5.3 Relation to Newtonian gravity

In Newtonian cosmology, the Raychaudhuri equation (5.1) is identical to its general

relativity counterpart [29, 66]. In contrast, the counterpart of the Hamiltonian con-

straint (5.2) emerges only as the first integral of the Raychaudhuri equation, whereas

in general relativity it is an independent equation. This difference corresponds to

the absence of spatial curvature in Newtonian gravity [29]. This is related to the fact

that there are no covariant derivatives, only ordinary derivatives, which commute; as

6To be precise, the argument should be formulated in the nα frame in terms of the decomposition

(2.3) of ∇βnα [46].
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a result, the backreaction variable Q contains only boundary terms [11]. When the

system is isolated, i.e. boundary terms vanish, the first integral of (5.1) gives (5.2)

with Q = 0 and a conserved energy term proportional to a−2. For this reason the

evolution of the scale factor in the Newtonian theory is always the same as in the

FRW case, regardless of the amplitude of perturbations: in particular, accelerating

expansion due to inhomogeneities is not possible7.

In contrast, in general relativity the Hamiltonian constraint (5.2) involves the

average spatial curvature term, which can have non-trivial evolution [16,22,24,28,67].

However, if perturbations of the Christoffel symbols are small, the spatial structure

remains close to Newtonian theory (apart from possible background curvature). Ab-

sence of spatial curvature is related to the Newtonian constraint that the magnetic

component of the Weyl tensor vanishes, Hαβ = 0 [29,31,68–70]. In general relativity,

the magnetic part of the Weyl tensor decomposed with respect to nα is

Hαβ = ǫγδ(α∇̂γσδ
β) , (5.9)

where ǫαβγ ≡ ηαβγδn
δ is the volume element on N , with ηαβγδ being the spacetime

volume element. In the Newtonian limit, the shear can be written as σαβ = ∇̂α∇̂βφ−
1
3
hαβ∇̂γ∇̂γφ, where φ is a scalar function identified with the gravitational potential

[29, 68, 69]. We then have

Hαβ = ǫγδ(α∇̂γ∇̂δ∇̂β)φ =
1

2
ǫγδ(α[∇̂γ, ∇̂δ]∇̂β)φ =

1

2
ǫγδ(α

(3)R
γδ ǫ

β) ∇̂ǫφ . (5.10)

The three-dimensional Riemann tensor (3)Rαβγδ vanishes if and only if (3)Rαβ does,

because the Weyl tensor is zero in three dimensions. This relates the absence of

spatial curvature and backreaction in Newtonian gravity to the lack of propagating

degrees of freedom8. For the metric (2.6) and our approximation of treating metric

perturbations and their first derivatives as small, Φ,Ψ and χij and their derivatives

do not contribute to Hαβ at leading order, while second derivatives of αi do en-

ter and take the system far from the Newtonian behaviour, as also happens with

G0i. (In general relativity, for an irrotational dust fluid, Hαβ is trivially zero in

usual perturbation theory at first order, implying that the theory has a linearisation

instability [71]; see also [72]. We have not assumed that the matter is dust.)

In the usual post-Newtonian formalism [73] (page 86), [74] it is assumed that

Φ,Ψ ∼ ǫ, αi ∼ ǫ3/2 and χij ∼ ǫ2. If in the present context we were to similarly assume

that αi is smaller than Φ and Ψ so that its second derivatives are small, the situation

would be closer to the usual post-Newtonian formulation. If we start with only scalar

7In Newtonian gravity, it is also impossible to get acceleration by introducing exotic matter with

negative pressure, because pressure does not gravitate.
8In general relativity, the magnetic componentHαβ and the electric component Eαβ have coupled

evolution equations, which have wave solutions. In the Newtonian theory, Hαβ is zero and Eαβ

does not have an evolution equation.
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perturbations at linear order and solve the equations of motion order by order, then

at second order we have αî ∼ ǫ∂̃ǫ and χij ∼ ǫ2 [75]. However, it is not clear whether

this hierarchy persists once second derivatives of perturbations become large and

the equations cannot be solved order by order. In the post-Newtonian formalism,

each time derivative further reduces the order of magnitude by ǫ, whereas spatial

derivatives do not change it. In contrast, in the present approach we assume that time

derivatives are (at most) of the same order of magnitude as the background, while

spatial derivatives increase the order of magnitude. (The post-Newtonian formalism

is constructed around Minkowski space, so the background does not involve a scale.)

It might seem promising to study backreaction in a post-Newtonian approxima-

tion. However, an essential feature of the usual post-Newtonian scheme is that

the system is finite and isolated, which is not the case in cosmology. In fact,

Newtonian gravity has a well-defined initial value problem only for isolated sys-

tems, periodic boundary conditions or fractal distributions with vanishing mean

density [31, 35, 36, 76–78]. Related to this, the non-relativistic limit of taking the

speed of light to infinity is singular, so solutions of the limiting Newtonian equations

are in general not limits of solutions of the relativistic equations [32,36]. Nevertheless,

there has been work on post-Newtonian formulations of cosmology [36,69,79–81], all

in contexts where metric perturbations are assumed to remain small. A compari-

son of Newtonian cosmological simulations and relativistic analytical treatment was

made in [82] for a specific spherically symmetric dust configuration. Good agreement

was found between the two theories in this highly symmetric case.

5.4 Local and global backgrounds

As long as the metric and the four-velocity remain close to FRW, there is no signif-

icant backreaction (with the caveats we have mentioned). The Christoffel symbols

are given by first derivatives of the metric, and we assume that first derivatives

of perturbations are small. Therefore powers of the perturbed Christoffel symbols

higher than the first are negligible, and the structure remains close to linear theory.

Even though variation in the Riemann tensor can be large, the geodesic equation

involves only the Christoffel symbols, so the effect of curvature is locally small for

light propagation and for timelike geodesic motion.

The result does not imply that in order for backreaction to be significant, there

would have to be large local deviations in the Christoffel symbols. It simply means

that all regions should not be close to the same global background [83]. Metric

perturbations and their first spatial derivatives can still remain small with regard

to a local background, which is different in different regions. With reference to a

global background, the metric perturbations or their first spatial derivatives in some

regions would then be large.

For example, consider a stabilised region with a constant non-zero density, such

as a dark matter halo, in an expanding spatially flat dust background. From (4.7) it
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follows that∇2Ψ has a decaying part proportional to a−1 (corresponding to the falling

background expansion rate) and a growing a part proportional to a2 (corresponding to

the constant density). In terms of the background coordinate time t̄, the perturbation

Ψ will become larger than unity as the universe expands. This does not mean that

there would be locally strong gravitational effects: metric perturbations remain small

(away from regions of high mass concentration) if the metric is expanded around

Minkowski space in the local region. It is only the difference between the global

background and the appropriate local background which is diverging. Of course,

the evolution of the metric perturbations should be determined in detail from the

equations of motion, and this argument only shows that the metric perturbation Ψ

of a stabilised region grows initially like a2 if the perturbations and their derivatives

are initially small. There is a complication in that it would be more appropriate

to consider the proper time measured by observers (or at least the time t which

is constant on N ) and not the unphysical background time t̄. Even if the two

times are near each other, the difference in the corresponding spatial derivatives is

of order unity once second derivatives of the metric become large. It is therefore not

straightforward to extract the proper time dependence of Ψ from the background

time dependence of ∇2Ψ.

Possibly ordinary perturbation could be used as a null test: by calculating quan-

tities such as the variance of the expansion rate [84]9 in perturbation theory and

comparing to observations we might try to rule out the assumption that perturba-

tion theory holds. However, to obtain predictions, it is usually not enough to know

that the amplitude of the metric perturbations is small, their evolution has to be

known as well.

Straightforward perturbation theory with regard to the metric is not suited to the

case when metric perturbations are not small around a global background, but are

instead small only with regard to local backgrounds which are different in different

regions. A full analytical treatment is unfeasible, but it might be possible to obtain a

simplified system of equations which could be treated via statistical methods [22,23]

or numerical simulations. One possibility could be to use the covariant formulation

of the evolution and constraint equations [29,47–49], which deals directly with phys-

ical degrees of freedom, so that the problem can be discussed without assumptions

about perturbativity of the metric around some background. However, it is not clear

whether there is a tractable approximation which would include the cosmologically

relevant degrees of freedom.

Let us emphasise how the present treatment differs from previous work [7,9,24,

37–43] (see [24] for more references and discussion). Most previous studies apply ei-

ther usual or post-Newtonian perturbation theory, where all quantities are expanded

9The study [84] was mistakenly criticised in [22, 24] for misestimating the magnitude of the

boundary term. However, the analysis is still constrained by the applicability of second order

perturbation theory.
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in a series of either the metric perturbation or peculiar velocity, and solved order

by order. However, when second derivatives of metric perturbations become large

in cosmology, this procedure is inconsistent, because second order quantities can be

larger than first order quantities, ∂̃2ǫ∂̃2ǫ ≫ ǫ. In contrast, we have not assumed that

second derivatives of metric perturbations are small or split the quantities order by

order. Therefore our result applies beyond usual perturbation theory. Also, we have

defined the averaging hypersurface using physical criteria, taken the volume element

into account, and correctly identified the local expansion rate measured by the ob-

server, unlike in some previous work. We have also studied the observable redshift

and angular diameter distance directly.

Recently, an interesting approach has been introduced to tackle the backreaction

problem without having to assume that second derivatives are small [44]. The idea

is to consider a family of metrics gαβ(λ) which depend on some small parameter λ.

The background is identified as the metric gαβ(0), and perturbation theory is devel-

oped in terms of λ. A novelty of the formalism is that space and time derivatives

of the metric are not assumed to be analytic in λ, and they have a well-defined

limit as λ → 0 only when smeared over a local region of the background spacetime.

It is then shown (with some other assumptions) that if the metric is close to the

background, the background satisfies the Einstein equation with only an additional

effective radiation term, and corrections due to perturbations are small. The for-

malism is interesting in that the notion of a homogeneity scale is incorporated into

the analysis in a natural manner, and the calculations are mathematically rigorous.

However, the connection to the real universe is somewhat unclear. The physical in-

terpretation of the parameter λ and the adopted scaling of various quantities with λ

is not obvious. In the present case, we use standard general relativity, and there are

no extra assumptions to be made. (However, in [44], it is not assumed that the first

derivatives of metric perturbations would be small.) Note that it is important to

consider correctly defined observables, as smoothing and calculating observables do

not in general commute: in [44], the redshift and the angular diameter distance are

not considered. The cautionary example [57] shows that small metric perturbations

and small peculiar velocities do not guarantee that changes to the angular diameter

distance are small. Also, as noted in [83], the local smoothing considered in [44] is a

different procedure from averaging over large scales. (The smoothing in [44] is done

with respect to the background space, not the physical space.) To the extent one

can make a comparison, the results of [44] and the present work do not appear to be

in disagreement. Both studies share the weakness that their starting point is that

the spacetime is close to FRW, an assumption which should be carefully looked at.

6. Conclusion

It has been claimed that the effect of non-linear structures on the average expansion
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rate and on light propagation is small in the real universe, because the metric remains

close to FRW at all times. The argument has two parts: that the metric remains

close to FRW, and that this implies that the change in the average expansion rate

and light propagation is small. We have considered the second part of the argument.

The relevant quantities depend not only on the metric, but also on its first and second

derivatives. Second derivatives of metric perturbations have variations of order unity

after structures become non-linear, so smallness of the metric perturbations alone is

not a sufficient condition for backreaction to be small. We have made the assumptions

that time derivatives and first spatial derivatives of metric perturbations are small

and the perturbation of the observer four-velocity is small. (The last assumption

implies certain conditions on second derivatives of the metric and/or the matter

content.) It then follows that the redshift is to leading order given by the background

scale factor. We further assume that the difference between the observer four-velocity

and the four-velocity which defines the hypersurface of averaging is small. The

difference between the average expansion rate and the background expansion rate

then reduces to a boundary term which is small as long as the averaging domain is

not much smaller than the Hubble scale, and the background expansion rate evolves

in the same manner as in the FRW case. This can be understood from the fact that

perturbations of the Christoffel symbols remain small, so the structure is close to

Newtonian cosmology, where backreaction reduces to a boundary term [11].

However, even with these assumptions, perturbations can have a large effect on

the angular diameter distance, as demonstrated in [57]. It has been argued that if the

space is statistically homogeneous and isotropic and the distribution evolves slowly,

then the distance is determined by the average expansion rate, and the change in the

distance is small, too [46, 56]. The issue should be studied in more detail.

The assumptions needed for the proof show that smallness of metric perturba-

tions and their time derivatives and first spatial derivatives is not sufficient for the

effect on the redshift and the average expansion rate to be small. The assump-

tion about the smallness of the deviation of the observer four-velocity uα from the

background is crucial. In general, the deviation of uα from the background is a

gauge-dependent quantity which cannot be straightforwardly identified as the devia-

tion from the physical mean flow determined from observations. Nevertheless, if we

assume that the observer moves along a geodesic (which is the realistic case in the late

universe), the smallness of the deviation of uα follows from the assumptions about

metric perturbations and their derivatives. It would be useful to have a definition

of the peculiar velocity that would be valid in a general cosmological spacetime [51]

and that would correspond to the observational use of the term, so that the observed

smallness of this quantity could be used as an input.

If backreaction is significant, its effect cannot be expressed in terms of a changed

FRW background nor small perturbations around a FRW universe [14, 16, 22, 24, 46,

56]. Rather, perturbations can remain small only with respect to a local region, and

– 20 –



if we insist on a global background metric instead of a patchwork of backgrounds,

then metric perturbations or perturbations of the four-velocity have to be large. The

important issue is the behaviour of physical quantities, not in which form the metric

or four-velocity can be written. In the real universe, fluctuations of the Riemann

tensor and the expansion rate are not small: local variations of the expansion rate

are of the same order as the measured deviation of the average expansion rate from

the matter-dominated FRW value. The question is whether the distribution of local

values is such that variations cancel when considering the average expansion rate,

the redshift and the distance. Further focusing on perturbativity, perhaps in the

context of a patchwork of regions, might be a useful way towards reliably quantifying

backreaction.
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