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Abstract

Obesity and smoking are the two major preventable causes of global mortality associated with a multitude 

of comorbidities, inflicting greater public health and economic burden. Complex interactions between 

genetic and environmental factors influence susceptibility to obesity and smoking. Epigenetic modifications

provide a mechanistic link between genetic and non-genetic factors causing complex diseases or traits. 

Epigenetic modifications also function as an additional layer of gene regulation by modifying the structure 

and accessibility of DNA and chromatin. The fundamental objective of this thesis is to elucidate the role of 

epigenetic and transcriptomic markers in obesity and smoking. Hence, this thesis focuses on identifying 

epigenetic and transcriptomic markers associated with weight loss and smoking behavior using different 

study designs and by applying computational and statistical approaches. Genome-wide transcriptome and 

methylome were assessed in an unbiased, hypothesis-free setting to identify weight-loss and smoking-

associated signals in Study I and II, respectively. Validation of the main findings from the discovery analyses

and integration of transcriptomic and methylation data were performed to assess the validity and biological

significance of the identified markers. A machine learning approach was employed in Study III to develop a

robust smoking status classifier based on DNA methylation profiles. The performance of the classifier was 

tested in three different test datasets and also in comparison with two other existing approaches. Therefore, 

this thesis encompasses both application and method development aspects to achieve the corresponding 

aims of the studies.

In Study I, clinical parameters, genome-wide transcriptome, and methylome analyses were assessed 

longitudinally at three time points during a one-year weight loss intervention study, to understand the 

temporal changes in transcriptome and methylome of subcutaneous adipose tissue (SAT) in response to 

weight-loss. Results from the discovery analyses were validated using monozygotic (MZ) twin pairs

discordant for acquired obesity, to examine whether weight loss and acquired obesity exhibit reciprocal 

transcriptome and methylome profiles. Gene expression and methylation profiles of the SAT at the three 

time points were also integrated to enhance our understanding of their interaction and thereby their 

contribution in weight loss. Based on the weight loss trajectory of the participants, three comparisons were 

performed: short-term (baseline to the fifth month), continuous (fifth to twelfth month), and long-term weight 

loss (baseline to twelfth month). Clinical parameters were improved with the weight loss (e.g. from baseline 

to fifth month, total and low-density lipoprotein cholesterol; triglycerides; and systolic blood pressure 

decreased and insulin sensitivity increased) and several significant transcriptome profiles were identified in 

response to weight loss at the three comparisons. No genome-wide significant methylation profiles were 

identified for the three comparisons. However, several significant correlations were observed between

expression and methylation, indicating a potential regulatory role of DNA methylation in weight loss -
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associated transcriptome profiles. At the pathway level, short-term weight loss was implicated in lipoprotein 

metabolism and long-term weight loss associated with various pathways associated with multiple functions 

of the SAT. Furthermore, several weight loss -associated genes exhibited opposite direction of expression

in acquired obesity in the validation cohort of MZ twins, validating the robustness of identified associations.

In Study II, discovery analyses focused on understanding the widespread effects of smoking on SAT by 

simultaneous assessment of genome-wide transcriptome and methylome of SAT. Discovery analyses 

performed on the current (n=54) and never (n=291) smokers in the TwinsUK cohort identified 42 significantly

differentially methylated signals and 42 significant differentially expressed genes (DEGs) indicating a

substantial impact of smoking on metabolically important SAT. Integration of these results revealed an 

overlap at five genes (AHRR, CYP1A1, CYP1B1, CYTL1, and F2RL3) comprising 14 CpG sites. To further 

characterize the widespread effects of smoking on metabolic disease risk three adiposity phenotypes (total 

fat mass [TFM], android-to-gynoid fat ratio [AGR] and visceral fat mass [VFM]) were assessed with regards

to the identified smoking-associated methylation and expression signals. Three CpG sites in CYP1A1

showed significant associations with VFM and AGR, and an inverse association was identified between

methylation levels of cg14120703 (NOTCH1) and AGR. To validate these associations, a subset of younger 

Finnish twins (n=69, 21 current smokers) was used as a replication cohort. The overall inverse association 

between cg10009577 (CYP1A1) and AGR was replicated and exhibited a similar direction for interaction 

effects between smoking status and AGR. However, this association did not reach the genome-wide 

significance level. Expression levels of F2RL3 showed a significant association with all three adiposity 

phenotypes. While OR51E1 expression levels were significantly associated with AGR and VFM. Our results 

show that smoking affects both the methylome and transcriptome of the SAT with overlapping signals. 

Furthermore, smoking-associated methylation and transcriptome profiles are also associated with adiposity 

phenotypes indicating a broader impact of smoking on human metabolic health.

In Study III, I developed a methylation-based smoking status classifier using a machine learning 

approach to overcome the limitations of cotinine and carbon monoxide biomarkers (i.e. limited to measuring 

recent exposure to smoking due to their short half-lives in body fluids) and the existing DNA methylation 

score-based approaches and to advance the practical applicability of smoking-associated methylation 

signals. I considered three smoking status categories (current, former and never) and used multinomial 

LASSO regression coupled with internal cross-validation to build the classifier. I demonstrated the global 

applicability and robustness of our classifier by evaluation of its performance in three independent test 

datasets from different populations and also compared the performance with two existing approaches. Our 

classifier differs from the existing approaches by curtailing the need to compute a threshold value specific 

to each dataset to predict smoking status. Our classifier showed good discriminative ability in identifying 

current and never smokers compared to other approaches. I also performed an extensive phenotypic 

evaluation to understand the results of our classifier. Accurate classification of former smokers is challenging 
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as their classification is affected by cessation time and smoking intensity prior to quitting. I provide the 

functionalities of our classifier including other the two methods as an R package EpiSmokEr (Epigenetic 

Smoking status Estimator), facilitating prediction of smoking status in future studies.

In conclusion, this doctoral thesis (1) enhances our understanding of obesity and smoking by integrating 

methylation and transcriptome data and identifying several weight-loss and smoking-associated signals, (2)

shows wide-spread impact of smoking on metabolic health risk by evaluating the associations between 

smoking-associated signals and adiposity measures, and (3) demonstrates the role of DNA methylation 

profiles as a robust biomarker to predict smoking status by developing a smoking-status classifier.
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1 Introduction

The ultimate goal of modern genetics research is to develop effective drugs and design efficient prevention 

strategies to treat and prevent diseases. A key challenge associated with this goal is to identify causal 

genetic variants and molecular mechanisms contributing to diseases. The recent explosion of genomic data 

and genome-wide association studies (GWAS) have significantly enhanced our understanding of the 

genetic architecture of several complex diseases and traits. However, a majority of the genetic variants 

identified by GWAS have modest effect sizes explaining only a smaller proportion of genetic predisposition 

(heritability) and are confined to non-coding regions of the genome. In addition to the genetic factors, 

environmental and lifestyle factors also implicate the disease phenotype and etiology. Epigenetic 

mechanisms provide mechanistic links accounting for both missing heritability and non-genetic factors 

influencing the genome. These mechanisms act as an interface between a stably inherited genome and a 

dynamically changing environment by regulating gene expression.

The field of epigenetics is rapidly progressing with a plethora of studies aiming to understand different 

phenomena, specifically the development of complex diseases. DNA methylation is the most widely studied 

epigenetic mark which mediates environmental effects on gene-expression regulation by controlling 

transcriptional machinery. Genome-wide assessment of DNA methylation has become an affordable 

avenue to uncover biomarkers for complex diseases. Moreover, the transient and reversible nature of DNA 

methylation makes it an ideal predictor to estimate the effect of diseases and environmental exposures. 

Combined evaluation of genetics, transcriptomics and epigenetics data provides a greater opportunity to 

obtain a holistic understanding of the disease mechanism. This increased understanding facilitates the 

development of improved drugs and treatments.

The prevalence of obesity and smoking is governed by a combination of genetic, epigenetic and 

environmental factors. Both obesity and smoking inflict metabolic diseases, subsequently posing a major 

risk for mortality and imposing a heavy economic burden worldwide. Losing weight and quitting smoking 

have become high-priority global public health issues, holding a promise of improving the quality and 

duration of life.

The major objective of this thesis is to identify epigenetic and transcriptomic markers associated with 

weight loss/obesity and smoking by applying computational and statistical approaches. This thesis has two 

major parts: (1) application part outlines integrative analysis of DNA methylation and transcriptome data 

using most relevant analysis pipelines to understand the concurrently occurring changes in response to 

weight loss and smoking (2) methods development part presents the development and implementation of 

an epigenetic classifier using a machine learning approach to predict smoking status based on DNA 

methylation profiles.
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Genome-wide transcriptome and methylome analyses of SAT were performed in Study I to identify and 

integrate gene expression and DNA methylation profiles reactive to short- and long-term weight-loss. 

Furthermore, weight-loss associated gene expression profiles were tested for reciprocal effects in acquired 

obesity. Study II focused on comprehensively investigating the impact of smoking on adipose tissue by 

performing transcriptome- and methylome-wide association studies. Identified smoking-associated 

methylation changes were used to characterize the broader impact of smoking on metabolic disease 

phenotypes. In Study III a machine learning methodology was used to train a robust DNA-methylation based 

classifier to predict smoking status. I demonstrated global applicability and higher accuracy of our classifier 

by testing its performance on multiple independent test datasets and by comparing it with two other existing 

methods. I provided the implementation of this classifier as an R package, EpiSmokEr, facilitating smoking 

status prediction in future studies.

Overall, this thesis contributes to enhancing our understanding of the role of DNA methylation in obesity 

and smoking by using several statistical and bioinformatics tools. We comprehensively analyzed 

transcriptome and methylome in Studies I and II to capture the simultaneously occurring changes in 

response to obesity and smoking. In Study III, I have overcome the limitations of existing methods by 

employing a penalized regression coupled with internal cross-validation to identify smoking-associated 

CpGs to build the smoking status classifier. The following chapter presents an overview of the current state 

of epigenetics of obesity and smoking by summarizing key concepts, technologies and analysis strategies, 

followed by aims of the three studies. The next chapter describes the materials and methods employed in 

this thesis along with a new methodology implemented to build the smoking status classifier, followed by 

the results and discussion from all the three studies. Final chapters present implications and future directions 

and conclusions.
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2 Literature Review

This chapter provides an overview of the importance of epigenetic mechanisms in the broader context of 

obesity and smoking. It serves to introduce the key concepts in epigenetics and reviews the literature with 

a focus on the main research goals of this thesis. Table 1 provides a glossary of key terms used in this 

thesis.

Table 1: Glossary of key terms

BMI-Discordant 

MZ Twin Pairs

BMI-discordant monozygotic twin pairs are discordant for obesity despite the same 

genotype, with one twin being heavy and other being lean (here: a minimum of 3 units of 

BMI (kg/m2) difference).

CpG A CpG site represents cytosine adjacent to a guanine on the same strand of DNA. DNA 

methylation usually occurs at the cytosine in the context of CpGs.

CpG islands are long stretches of non-methylated CpGs with high GC content (>50%) and 

high frequency of CpGs compared to the rest of the genome. CpG islands usually occur at 

gene promoters and increased methylation at CpG islands is conventionally associated with 

gene repression.

DZ twins Dizygotic (DZ) or fraternal twins are derived from two distinct zygotes and share on average 

50% of their segregating genes. DZ twins are non-identical and can be of the same or 

opposite sex, sharing age and common early childhood environment.

Epigenome Collection of chemical modifications overlaying the genome which can profoundly influence 

gene expression without changing the underlying DNA sequence. DNA methylation, histone 

modifications and non-coding RNAs are the most widely known epigenetic modifications.

EWAS Epigenome-Wide Association Study; quantifies statistical association between epigenetic 

variation (DNA methylation in this thesis) and a phenotype (a trait or disease).

Genome The complete set of genetic instructions of an organism inherited from parents, which 

remains (nearly) constant throughout the lifespan.

GWAS Genome-Wide Association Study; quantifies statistical association between genetic variation 

(SNPs) and a phenotype (a trait or disease).

Heritability Heritability measures the proportion of the phenotypic variance that can be explained by 

genotypic differences between individuals. Heritability is a population parameter which can 

differ based on age, sex, geographical regions and time period. Conventionally, twin and 

family studies have been used to yield heritability estimates for various traits [1].
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Linkage 

Disequilibrium

Linkage disequilibrium (LD) refers to the non-random association of alleles at two or more loci 

in a general population. Under LD, alleles occur together on the same haplotype with either 

more frequency (positive LD) or less frequency (negative LD) than the expected frequency 

when the alleles are independent of each other. LD is influenced by the rate of genetic 

recombination, mutation rate, selection, genetic drift, the system of mating, population 

structure, and genetic linkage.

Methylome Complete set of DNA methylation modifications in a particular cell or tissue.

mQTL methylation Quantitative Trait Loci; Genotype (usually genetic variants like SNP) at a specific 

loci influencing methylation pattern. Based on the location of the genetic variant they are 

classified as cis- (≤ 250 kb) and trans- (> 250 kb) mQTLs [2].

MZ twins Monozygotic (MZ) twins arise from a single fertilized egg (zygote) and are hence genetically 

identical.  MZ co-twins are of same sex, age and also share early-life environment. MZ twins 

can be further divided into subtypes based on placentation and amniotic sacs: separate 

placentas and amniotic sacs (dichorionic diamniotic MZ twins), shared placenta with two 

amniotic sacs (monochorionic diamniotic MZ twins), and same placenta and amniotic sac 

(monochorionic monoamniotic MZ twins).

Omics Collective technologies used to characterize and quantify different types of biological 

molecules that determine structure, function and dynamics of the cells of an organism.

Phenotype Measured or observed set of characteristics of an individual caused by a complex interaction 

between genetic and environmental factors.

SNP Single Nucleotide Polymorphism; Variation at a single position in a DNA sequence found in 

at least 1% of population.

2.1 Multi-ome

The genetic constitution of an individual can determine their susceptibility to disease. However, complex 

diseases arise from a combination of genetic and environmental factors. The effects of varying combinations 

of these two factors form the basis of inter-individual variability, making each of us unique to disease 

susceptibility and treatment. The central dogma of molecular biology describes transfer of genetic 

information starting from genes to proteins (Figure 1). This sequential transfer of information involves 

transcription of DNA into messenger ribonucleic acid (mRNA) and subsequent translation into proteins.
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Figure 1: An illustration of the central dogma showing the transfer of information from DNA to proteins. 
Epigenetic mechanisms act as additional layer of control on this transfer of information. This schema shows 
the most widely studied epigenetic mechanism, DNA methylation. 

 

Genomics is the study of the complete genome of an organism, specifically structure and function of 

genes. While transcriptomics deals with entire collection of RNA molecules expressed by an organism. 

Proteomics studies the total set of proteins expressed by an organism. However, the information transfer 

from DNA to proteins is not just linear. All these biological layers interact with one another giving rise to a 

complex and multi-dimensional interactome. In addition to these three layers, epigenetic mechanisms 

mediate developmental and environmental effects on expression and translation by changing the structure 

and conformation of DNA (Figure 1). Therefore, it is integral to comprehensively analyze interactions among 

genetic, epigenetic and transcriptomic mechanisms to understand and treat complex diseases effectively. 

Recent technological developments and collaborative research efforts have enabled us to integrate the 

interactions across these multiple layers revolutionizing biomedical research and medical practice. The next 

three subsections provide an overview of genome, epigenome and transcriptome. 

2.1.1 Genome 

Decoding the causal factors behind complex diseases has been a prime focus of human genetics and has 

been catapulted by the human genome project [3] which unveiled the complete human genome sequence. 

The human genome comprises over 3 billion base pairs of DNA and the genetic information encoded by 

these base pairs are unique for each individual except for monozygotic (identical) twins. This uniqueness 
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arises from less than 0.1% percent of our genome in the form of single-base pair substitutions termed as 

single nucleotide polymorphism (SNPs), insertions or deletions and structural variation. Human genome 

has around 10 million SNPs making it the most common form of genetic variants contributing to inter-

individual variation. SNPs and their associated gene expression levels have been considered as the major 

causal factors for disease susceptibility. For instance, the comprehensive catalogue of genetic variants 

generated by the HapMap project allows for deeper interrogation of genomic variation in human health and 

disease [4].

Genome-wide association studies (GWAS) further enabled the identification of disease-associated 

genetic variants by scanning whole genome of cases and controls in an unbiased and hypothesis-free 

approach. GWASs revolutionized our understanding of complex diseases by identifying several associated 

and causal variants [5,6]. Furthermore, extensive resources and collaborative efforts have made GWAS a

powerful genetic approach [5]. A recent systematic study performed on 4155 GWASs across 2965 unique 

traits demonstrated that ~61% of the genome is covered with trait-associated loci, with 93% loci being 

associated with more than one trait (pleiotropy) [7]. Such widespread pleiotropy can occur due to the same 

gene in a locus being associated with multiple traits or due to different genes or SNPs that are in linkage 

disequilibrium being associated with multiple traits [7]. Interestingly, almost 90% of the identified GWAS 

findings occur in non-coding regions with most of them located in intronic regions [7,8]. Moreover, the 

identified disease-associated SNPs explain lower proportion of genetic variance than twin or family studies

giving rise to the “missing heritability” problem. Some of the prevailing explanations of the missing heritability 

are: common variants with small effects that are not reaching genome-wide significance level, rare variants 

with large effects that are not tagged by SNP arrays, and overestimation of heritability estimates in twin 

studies (due to shared environment) [9]. However, by using whole-genome sequencing, the proportion of 

variance accounted for by measured variants is close to that found in family studies for height and BMI [10].

Non-genetic or environmental influence on gene regulation through epigenetic mechanisms can also

contribute to substantial proportion of missing heritability [11,12]. However, the extent of autonomy of 

epigenetic marks can range from obligatory to pure epigenetic variation, depending on the relationship 

between epigenetic states and their genotypic context [13]. Here obligatory epigenetic variation refers to 

the epigenetic variation that is completely dependent on the genetic variation, whereas pure epigenetic 

variation occurs when the epigenetic variation is largely independent of genetic variation.

2.1.2 Epigenome

The term “epigenetics” meaning “above genetics” was coined by Conrad Waddington [14]. His famous 

“epigenetic landscape” [15] illustrates that the destiny of a pluripotent cell to form a specialized cell is largely 

determined by the path it travels. Epigenetic mechanisms govern this cell specialization by controlling tissue 

and time specific expression [16,17] without modifying the underlying identical DNA sequence present in all 
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the cells of an individual. In addition to the cell development, epigenetic mechanisms have been 

predominantly associated with genomic imprinting [18] and X-inactivation [19–21]. Genomic imprinting leads 

to monoallelic expression of a small subset of genes in a parent-of-origin-specific manner while X-

inactivation is a dosage compensation mechanism of sex chromosome genes occurring in females, where 

each cell randomly silences one of its X chromosomes. These two epigenetically regulated mechanisms 

are vital in ensuring normal mammalian development [18,20]. Since Waddington, epigenetics as a field has 

shown tremendous progress, which is evident from the series of definitions of epigenetics, that evolved with 

advancement in technology and accumulation of evidence [22–27]. Currently, epigenetic modifications are 

considered as stable and heritable changes without changing the underlying DNA sequence. Although 

epigenetic inheritance to daughter cells through mitosis is widely accepted, more conclusive evidence is 

needed to prove transgenerational inheritance via meiosis in humans [28–33].

DNA methylation (DNAm), histone modifications and non-coding RNAs (ncRNAs) are the main 

epigenetic mechanisms (Figure 2). Epigenetic marks are transient and reversible in nature and exhibit tissue 

and cell-type specific profiles. DNAm is the central focus of this thesis and is explained in detail in the 

following section 2.1.2.1.

Histone proteins are responsible for compaction and packaging of DNA inside the cell nucleus. DNA 

wrapped around the histone proteins forms chromatin, where each unit of the chromatin is called a 

nucleosome. This DNA-protein complex is tightly wound owing to the positive charge of histone proteins 

and negative charge of DNA (from phosphate groups in its phosphate-sugar backbone). Each nucleosome 

has a nucleosome core, composed of histone octamer (two copies of each: H2A, H2B, H3, and H4) serving 

as a spool to wrap ~147 bp of DNA [34,35]. Linker histone proteins (H1 or H5) connect adjacent 

nucleosomes. Histone modifications occurring at the N-terminal tails of histone proteins can alter the 

interactions between histone proteins, DNA and nuclear proteins. They affect DNA condensation and make 

DNA accessible (euchromatin) or inaccessible (heterochromatin) to transcriptional machinery [36]. Specific 

histone modifications are associated with transcriptional activation (e.g. H3 trimethylation at lysine 4 

[H3K4me3]) and repression (e.g. H3 trimethylation at lysine 27 [H3K27me3]) [37]. Heterochromatin can be 

further classified into facultative and constitutive heterochromatin. Constitutive heterochromatin remains 

condensed and transcriptionally silent (e.g. H3 trimethylation at lysine 9 [H3K9me3]), whereas facultative 

heterochromatin (e.g. H3K27me3) has the potential to interconvert between hetero and euchromatin, with 

a possibility to decondense and allow transcription within temporal and spatial contexts [38]. NIH Roadmap 

Epigenomics project has comprehensively characterized various histone modifications across several 

human tissues [39].
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RNAs that are transcribed but not translated to proteins in eukaryotes are termed as non-coding RNAs 

(ncRNAs). ncRNAs perform a wide range of functions, specifically regulation of transcription and translation 

[40,41], and are classified into two major classes based on their length short (e.g. microRNA [miRNA]), and 

long ncRNAs (e.g. Antisense ncRNA). 

 
Figure 2: A schematic representation of genetic and epigenetic architecture. Chromosomes are 
composed of chromatin. DNA wrapped around histone proteins forms chromatin, each unit of chromatin is 
called a nucleosome. Histone modifications like phosphorylation (Ph), methylation (Me), and acetylation 
(Ac) occur on the tails of histone proteins. DNA is methylated by covalent attachment of a methyl group to 
the fifth carbon of a cytosine adjacent to a guanine. Transcription converts DNA to messenger RNA (mRNA) 
which can be repressed by epigenetic modifications. microRNA, a short ncRNA, can repress conversion of 
mRNA into proteins, establish DNA methylation, and may alter chromatin structure by regulating histone 
modifiers. All these three epigenetic marks control gene regulation by altering transcription and/or 
translation. Figure reproduced from Relton, C. L., & Davey Smith, G. (2010)  [42]. 
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2.1.2.1 DNA methylome

In the mammalian genome, DNA methylation (DNAm) usually occurs at the cytosine–phosphate–guanine 

dinucleotides (CpGs) by the covalent attachment of a methyl group to the fifth carbon of a cytosine forming 

5-methylcytosine (5mC) (Figure 2). DNAm also occurs in a non-CG context (such as CpA, CpT and CpC),

and has been observed in embryonic stem cells, neurons, and oocytes [43]. DNAm is catalyzed by a family 

of DNA methyltransferase (DNMT) enzymes using S-adenosylmethionine (SAM) as a methyl donor [44].

DNMT1 targets hemimethylated strands generated through DNA replication and methylates the CpGs on 

the newly synthesized strand [44]. This maintenance methylation by DNMT1 ensures the mitotic heritability 

of pre-existing methylation patterns. DNMT3a and DNMT3b perform genome-wide de novo methylation 

(both at hemi- and unmethylated DNA) after embryo implantation and are also essential for early 

development [45,46]. However, some evidence suggests that all these three DNMTs work in a coordinated 

fashion and are involved in both maintenance and de novo methylation [47].

There are about 28 million CpG sites distributed throughout the human genome, of which 60 to 90% 

are estimated to be methylated [48,49]. However, their occurrence is regarded as a “rarity” as they occur at 

about one-fifth of the expected frequency determined from base composition [48]. This rarity was attributed 

to the spontaneous mutation of 5mC to form thymine [50]. However, there are long stretches of CpGs 

occurring at higher frequency with elevated GC content compared to the rest of the genome defined as CpG 

islands (CGI). Unlike most CpGs in the entire genome, CGIs are typically unmethylated in healthy cells and 

around 56% of the human genes harbor CGIs in their promoter regions [48,51]. The conventional notion of 

DNAm as a gene silencing mark stems from the majority of the initial studies which have focused on the 

methylation of CGIs near transcription start sites (TSS). However, studies have revealed that the function 

of DNAm and its influence on transcription is context-dependent and is largely determined by its genomic 

position [52]. For instance, DNAm in the regions downstream of TSS (e.g. first intron) is also highly 

informative of transcription [53,54]. A clear and consistent inverse correlation between DNAm of the first 

intron and transcription has been demonstrated across tissues and species [54]. The regulatory role of this

inverse relationship can be partially explained by the presence of intronic enhancers interacting with the 

promoters of their corresponding genes [54]. Furthermore, DNAm can have positive and negative effects 

on transcription factor binding, even within promoter loci [55].

In addition to its well-documented role in transcription, constantly increasing evidence from various 

scientific studies established DNAm as a prime epigenetic factor with diverse roles in development and 

disease [56].

DNAm is stable both chemically and genetically compared to other epigenetic marks. However, 5mC 

can be reversed by passive or active demethylation. Passive demethylation occurs in the absence of DNA 

methylation maintenance machinery, resulting in fully unmethylated strands during successive DNA 
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replication cycles. Active demethylation is catalyzed by ten-eleven translocation (TET) enzymes by 

iteratively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 

5-carboxylcytosine (5caC). TET-thymine DNA glycosylase (TDG)-mediated pathway completes DNA 

demethylation by first excising 5hmC, 5fC and 5caC from the genome and then replacing them with 

unmethylated cytosines through base excision repair mechanism [57]. Global DNA demethylation of the 

human zygote is a crucial step of epigenetic reprogramming while aberrant DNA demethylation serves as 

a biomarker for several cancers [57]. DNAm profile can be altered due to genetic [58], disease [59],

developmental (e.g. ageing, embryo development) [16], lifestyle (e.g. smoking, diet, exercise) [60–62],

stochastic and environmental factors [25,42]. In recent years, epigenome-wide association studies (EWAS)

have gained importance in unravelling the DNAm variants associated with several complex diseases and 

traits [59,63,64]. In addition to investigating effects of single epigenetic marks in isolation, their combined 

evaluation will yield a more comprehensive view of epigenome and disease mechanism [65].

2.1.3 Transcriptome

Transcription facilitates the transfer of genetic information in DNA by synthesizing a complementary strand 

of RNA (mRNA) which is later translated into proteins by ribosomes. Transcription occurs in three stages 

initiation, elongation and termination. Transcription factors (TFs) along with RNA polymerase enzymes 

initiate transcription. First, TFs bind to specific DNA regions called enhancer and promoter regions 

facilitating the recruitment of RNA polymerase (RNA polymerase II for transcription of mRNAs) at an 

appropriate transcription site [66]. RNA polymerase unwinds DNA strand and the antisense strand of the 

DNA acts as a template to synthesize complementary pre-mRNA strand. pre-mRNA is elongated until the 

complete synthesis of strand and is followed by the termination of transcription. pre-mRNA is protected from 

exonuclease degradation through capping at 5’ end and polyadenylation at 3’ end [66]. Mature mRNA is 

formed by removing introns from the pre-mRNA through splicing, which then serves as a template for 

translation in ribosomes.

Only ~1.5% of the human genome is translated into proteins through mRNAs [67]. Although the rest of 

the genome is actively transcribed to non-coding RNAs, they are not further translated into proteins. 

Transcriptome usually refers to the total set of all RNAs or gene transcripts expressed in a specific cell or

tissue. Transcriptional profiles are time- and tissue-specific owing to the variable expression of genes in 

different cells and tissues. Transcriptome shows more variation across tissues than individuals [68]. Also, 

inter-individual variation in gene expression can be mainly due to disease candidate genes associated with 

sex, ethnicity, and age [68]. Therefore, it is essential to use the appropriate tissue sample to assess the 

corresponding transcriptome. For instance, in this thesis, Study I used SAT to identify weight-loss 

associated gene expression changes, as SAT is a highly relevant tissue to study obesity. The Genotype-
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Tissue Expression (GTEx) project serves as a comprehensive resource to study tissue-specific expression 

and regulation [69], currently it has 54 non-diseased tissue sites from more than 1000 individuals. 

2.2 Quantifying transcriptome and DNA methylation

DNA methylation and transcriptomic data used in this thesis are generated using microarrays with different 

chemistries and technology. However, they are very similar in their general workflow. The key steps in the 

general workflow of microarray chip technology are sample preparation, array processing and scanning 

followed by data analysis, as outlined in the Figure 3.

Figure 3: A general workflow of microarray chip technology outlining the key steps involved.

2.2.1 Profiling DNA methylation Variation

DNA methylation has been the most interrogated epigenetic mark because of its stability and ease of 

accessibility compared to other epigenetic marks. Methods available to measure DNA methylation can be

grouped into three major classes: enrichment based-methods, methods using bisulfite treatment and 

digestion with methylation sensitive restriction enzymes [70]. Here I will focus on bisulfite treatment 

methods, specifically using microarrays. Bisulfite treatment protects methylated cytosines by converting 

unmethylated cytosines to uracil residues, which are later converted to thymine during PCR amplification. 

This step ensures that only methylated cytosines will remain as cytosines and can be interrogated by 

microarrays or sequencing platforms. Both microarray and sequencing platforms serve as excellent 

platforms to investigate genome-wide DNA methylation modifications with respect to a biological phenotype 

at a single base resolution in a hypothesis free manner. Bisulfite sequencing is currently considered as the 

golden standard to accurately measure genome-wide DNA methylation with a greater coverage [71,72].
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Compared to sequencing-based approaches, microarrays provide limited coverage, however, they are 

affordable enabling to perform studies with larger sample size.

The Illumina Infinium HumanMethylation microarrays are the most widely used microarrays to 

investigate genome-wide DNA methylation and are currently available in three generations: 27k, 450k and 

EPIC. To date IlluminaHumanMethylation450 (450k) array is the widely used platform with 485512 probes 

targeting 99% genes and 96% of CpG island regions [73]. The newest EPIC array contains over 850000

CpGs with more than 90% sites on 450k and an additional 413743 CpGs, of which 333265 CpGs target 

potential enhancer regions [74]. All the studies in this thesis were performed using 450k, hence the rest of 

this section focuses only on 450k array.

Probes on the Illumina arrays are attached to silica beads deposited on the surface of Sentrix BeadChip 

[75]. 27k array is based on Infinium I assay and was biased towards promoter regions [76]. To improve the 

genomic coverage, 450k array was designed by including additional probes based on Infinium II chemistry 

to the existing 27k array (Figure 4) [73,77]. Owing to this extension 450k array has probes with two different 

assays. Infinium I has two bead types for each CpG to measure methylation and unmethylation using the 

same color channel. While Infinium II uses single bead type with two color channels (red and green) and 

detects methylation by single base extension (Figure 4) [73]. Because of the dual-channel readout, Infinium 

II probes show larger variance and are less sensitive to detect extreme methylation values [78].

Comparatively, Infinium assay I is more robust and hence considered as a better estimator of methylation 

state [78]. Several pre-processing and normalization methods have been developed to account for the two 

different assays on the 450k array [79–88]. Specific preprocessing and normalization methods used in this 

thesis are discussed in detail in the Materials and methods section. 



Literature Review 

13 
 

 
Figure 4: The Illumina Infinium HumanMethylation450 BeadChip (450k) uses probes with two different 
assays. Inifinium I assay uses two bead types for each CpG locus corresponding to Methylated and 
Unmethylated state of the CpG site and detected in the same color channel. Infinium II assay employs single 
bead type for each CpG locus, with two color channels. Methylation state is determined by single base 
extension. Reproduced from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga/using-tcga/technology/illumina-humanmethylation450-data-sheet 

 

Unlike the human genome, epigenome is tissue-specific and is dynamically changing in response to 

internal and/or external stimuli. Thus, epigenetic changes can be causal or consequential. Therefore, utmost 

care should be taken while designing an epigenetic study and the required considerations have been 

comprehensively reviewed [26,70,89–91]. Most importantly, both phenotype and sample collection must be 

measured concurrently to appropriately assess the impact of biological phenomenon on the epigenetic mark 

in the specific tissue of interest. A brief overview of important considerations while analyzing DNA 

methylation data is presented in the following paragraphs. 
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Affordability of Illumina arrays coupled with their ability to perform genome-wide interrogation of the 

DNA methylation lead to explosion of EWASs. However, the computational and statistical analysis methods 

are still evolving to appropriately analyze methylation data and integrate it with other omics data. As 

discussed above using specific tissue sample is paramount for understanding DNAm variation in association 

with a phenotype. In addition to using the appropriate tissue for performing EWAS, adjustment for cell type 

confounding is essential. That is, the compositions of cells in a tissue could vary with phenotype/disease or 

tissue sampling. Hence, adjustment for cell type confounding is essential to ensure that measured 

epigenetic difference is reflecting true DNAm variation and not reflecting differences in cell-type composition

of the tissue. Most of the EWASs performed so far used whole blood because of its ease of accessibility 

and can also serve as proxy for tissues like brain which are difficult to obtain non-invasively. Houseman’s 

reference-based algorithm is the most widely used method to adjust for confounding by blood cell types

[92]. Reference-free methods have also been designed allowing for cell-type correction in other tissues 

[93,94]. Although cell-type correction is an important consideration in the analysis of DNAm data obtained 

from complex tissues, it should also be noted that the cell-type variation could be a hallmark for certain 

phenotypes and hence, can in some cases, still be useful as a biomarker.

Because of their dynamic nature, it is difficult to establish causal, consequential or confounding role of 

epigenetic variation with respect to a disease or phenotype [91]. Furthermore, environmental factors like 

smoking, and developmental factors like age, impact DNAm and can lead to spurious associations in EWAS. 

Hence, confounding from these known sources of variation need to be adjusted in EWAS. Additionally, 

unmeasured confounders can be adjusted by methods such as principal components analysis (PCA), by

using principal components correlated with the phenotype of interest as covariates. However, by using 

informative study designs in EWAS (described below) we can mitigate these problems to some extent and 

infer the role of DNAm in the phenotype. Finally, to ensure the credibility and reproducibility of the identified 

associations, EWAS hits need to be replicated, ideally in an independent dataset. 

Longitudinal cohorts, following unrelated healthy individuals from birth, by recording phenotypic 

changes and samples at regular time intervals could serve to differentiate causal and consequential DNAm 

variation. Monozygotic (MZ) co-twins share the same genotype, age and sex as well as early-life 

environment, allowing to dissect the genetic and environmental contributions to a disease phenotype [95].

Notably, epigenetic variability within MZ co-twins has been observed with respect to the intrauterine 

environment and time of splitting of the zygote (see Table 1 for subtypes of MZ twin pairs) [95,96].

Nevertheless, more evidence from larger samples is needed to determine the impact of prenatal develop

ment during twinning on the epigenetic similarity of MZ twin pairs. Discordant MZ twin pair design is based 

on the hypothesis that the observed phenotypic discordance within MZ twin pairs is likely a response to 

non-genetic (environmental and stochastic) factors. Thus, the underlying phenotypic discordance is likely 

mediated by epigenetic mechanisms, whether causal or consequential to the respective phenotype. In this 



Literature Review

15

thesis, BMI-discordant MZ twin pairs were used as a validation cohort in Study I. Inter-individual variation in 

DNAm at specific CpG sites can be attributed to underlying genetic variations (i.e. genetic differences 

between individuals) [58,97]. Also, genetic and environmental effects on complex trait variation can be 

estimated by comparing the phenotypic similarity between MZ and DZ twins using twin heritability estimates. 

By comparing genome-wide epigenetic profiles of twins, regions with high epigenetic heritability estimates 

can be identified, where DNA methylation could be affected by genetic variation [98]. Loci harboring these 

genetic variants (usually SNPs) influencing methylation are termed as methylation quantitative trait loci 

(mQTL). DNAm variation associated with mQTLs can be considered as consequential to the SNP. 

However, statistical approaches like Mendelian randomization can be used to assess causality and direction 

of effect of DNAm variants, by testing whether DNAm mediates the effect from genetic variant to phenotype 

through the same biological pathway [99].

Potential functional consequences of disease-associated DNAm variants can be inferred by integrating 

DNAm data with transcriptome data. However, to confirm the regulatory role of DNAm in gene transcription, 

functional studies are required [100]. Integrating DNAm data with other epigenetic marks and other omic 

layers will probably provide a holistic overview of underlying biological mechanism. However, this would 

require large datasets with multi omics data and statistical methods for integration and interpretation of data. 

Thankfully several resources and international consortiums are already striving to achieve this goal.

ENCODE [101], NIH Roadmap Epigenomics [102], BLUEPRINT [103], and International Human Epigenome 

Consortium (IHEC) [104] are some of the excellent available resources facilitating epigenetic research.

Additionally, to enable scientific progress datasets are being made publicly available in repositories such as 

the Gene Expression Omnibus (GEO).

2.2.2 Transcriptome profiling

Transcriptome analysis using microarrays provides a snapshot of transcriptional activity and expression 

levels of thousands of genes (mRNA transcripts) in a specific cell or tissue. Microarray investigates labelled 

DNA sequences (targets), using a collection of probes. Probe is a short stretch of DNA representing a 

specific sequence within a gene. Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix, Vienna, 

Austria) was used to assess transcriptome in Study I of this thesis. This is a high-density microarray, with 

multiple short oligonucleotide probes (25 base pair; bp) per target, synthesized directly on its surface. It has 

~ 1300000 unique oligonucleotide probes covering over 47000 transcripts and variants 

(https://www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf). To ensure accurate 

quantification and to account for nonspecific hybridization, probes are provided as probesets (~ 54 000 

probesets) [105]. Typically each probeset corresponds to a gene with one perfect-match probe and one 

mismatch probe which differ at the 13th position of the 25 bp probe [105]. Perfect-match probe is designed 

to exactly match the sequence of interest. 
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To study transcriptome, mRNA is first converted to complementary DNA (cDNA) and labelled with 

fluorescent dyes. This labelled target is then hybridized to the microarray with bound probes. The successful 

hybridization of target and probe results in increased fluorescence intensity compared to background, which 

is captured by a scanner [75,105]. Expression values are then derived by summarizing probe intensities of 

each probeset [106]. Unlike microarrays, Ribonucleic acid-sequencing (RNA-seq) allows high-throughput

sequencing of cDNA, enabling characterization of the transcriptome with higher coverage and greater 

resolution [107]. Although RNA-seq is relatively expensive compared to microarrays, it provides higher 

accuracy and is not limited to the detection of annotated gene transcripts and thus can be used to discover 

novel transcripts [108]. A general RNA-seq workflow includes sample preparation, library construction, 

sequencing and data analysis.

Similar to the epigenome, transcriptome is also time- and tissue-specific, and dynamically changes with 

internal and external stimuli. Also, transcriptome represents a snapshot of gene transcription from a mixture 

of cells (cellular heterogeneity). As outlined in the section 2.2.1, study design and concurrent collection of 

phenotype and tissue samples are also crucial in designing transcriptome studies.

2.3 Obesity and Smoking: Complex Interplay of Genetic and Epigenetic 
factors

2.3.1 Obesity

Obesity is a complex disease associated with several comorbidities and chronic diseases and is also one 

of the leading risk factors for mortality. Obesity is generally defined as a pathological condition caused by 

excess accumulation of body fat [109]. It primarily occurs due to the long-term imbalance between energy 

intake and energy expenditure. However, the underlying causes leading to the development of this 

imbalance are not fully understood. A rapid increase in the obese population and health risks incurred due 

to obesity made obesity as a pandemic.

Body mass index (BMI), calculated by dividing weight in kilograms by height in meters squared (kg/m2), 

is typically used to classify individuals as: underweight (< 18.5), normal (18.5- 24.9), overweight (25–29.9) 

and obese (>30). More than 1.9 billion adults were estimated to be overweight in 2016, with a global 

prevalence of obesity nearly tripled since 1975 [110]. With the increase in BMI relative risk for type 2 

diabetes (T2D), hypertension cardiovascular diseases and certain cancers also increase [111]. A recent 

study reported that maintaining a normal BMI could prevent 1 in 7 premature deaths occurring in Europe 

[112]. Even more alarming is the prevalence of childhood obesity with 41 million children (below age 5) 

classified as overweight or obese [110]. Childhood obesity is associated with T2D in adolescents [113,114]

and premature mortality in adulthood [115]. Moreover, obesity imposes huge clinical and public health 

burden, in Finland alone the estimated annual costs of obesity are around 300 million euros [116].
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Although BMI serves as a crude estimate of overall adiposity, it does not reflect the variation in body fat 

distribution. Waist circumference provides a measure of abdominal fat distribution, while waist-to-hip ratio 

(WHR) also assesses different aspects of body composition in addition to fat distribution [117]. Assessment 

of body composition provides accurate estimation of fat and muscle mass composition, enabling improved 

clinical evaluation of obesity and weight loss [118]. Bioelectrical impedance analysis (BIA) and dual-energy 

X-ray absorptiometry (DEXA) can accurately measure body fat and skeletal muscle (comprehensively 

compared in [118]).  

In this thesis, Study I and II use SAT to investigate impact of weight loss and smoking, respectively. 

The following section provides a comprehensive overview of adipose tissue before reaching a detailed 

discussion of epigenetic studies in obesity and smoking. 

 

2.3.1.1 Adipose Tissue 

Adipose tissue (AT), commonly called as “fat”, is the primary energy reservoir in the human body. It stores 

excess energy in the form of triglycerides, a type of lipids, through lipogenesis. AT is also the largest 

endocrine tissue secreting various hormones, growth factors and adipokines regulating several 

physiological and pathological processes. AT is mainly composed of adipocytes, preadipocytes, 

macrophages, and fibroblasts (Figure 5). Triglycerides are stored as a single large droplet contributing to 

~85% weight of an adipocyte [119]. Based on its color, AT can be classified as brown adipose tissue (BAT)  

 

 

Figure 5: Overview of structural and functional differences in normal and obese adipose tissue. 



Literature Review

18

and white adipose tissue (WAT). BAT predominantly occurs from fetal to adolescence phase and is found 

in a smaller proportion in the adult body [120]. BAT dissipates energy as heat through thermogenesis via 

uncoupled protein 1-containing mitochondria [120]. WAT can be further classified based on its location as 

subcutaneous adipose tissue (SAT, located beneath the skin) and visceral adipose tissue (VAT, associated 

with internal organs). SAT is the largest body fat reserve accounting for 80% of the total body fat and is 

distributed across the upper and lower body [121]. SAT and VAT differ in their development, structure, 

function and are associated with different health risks [122]. Beige or brown-to-white adipocytes are recently 

identified adipocytes, exhibiting characteristics of both WAT and BAT. They are structurally similar to WAT 

(formed via browning of WAT) and are capable of thermogenesis like BAT [120].

Beige cells can contribute to heat production when exposed to stimuli such as cold and exercise [120].

Emerging evidence suggests a central role of beige adipocyte thermogenesis in whole-body energy 

metabolism and thereby obesity [123]. An obesity-associated FTO allele (rs1421085 T-to-C single-

nucleotide variant) has been shown to repress mitochondrial thermogenesis in adipocyte precursor cells, 

resulting in a cell-autonomous developmental shift from energy-dissipating beige adipocytes to energy-

storing white adipocytes [123].

Leptin, adiponectin and tumour necrosis factor-alpha (TNF-α) are the prominent hormones secreted by 

AT which perform diverse functions. Leptin is mainly secreted by AT and leptin signalling from adipocytes 

to hypothalamus is crucial for appetite control and energy balance. Discovery of this specific role of leptin 

deeply enhanced our understanding of AT as an endocrine organ and its role in obesity [124–127]. Total 

absence of functional leptin in ob/ob mutant mice generates obesity phenotype and injecting leptin has 

shown to induce weight loss in these mice [128]. Morbidly obese individuals with leptin deficiency showed 

huge weight loss on leptin therapy [129–131]. Adiponectin, exclusively secreted by adipocytes is known to 

regulate insulin sensitivity, vascular function and has anti-inflammatory properties [119,126]. TNF-α is a pro-

inflammatory adipokine associated with dysregulation of carbohydrate and lipid metabolism through AT 

dysfunction [132].

To facilitate whole-body energy balance AT undergoes dynamic remodelling based on nutrient supply

[133]. In the starvation mode, triglycerides in adipocytes are converted to free fatty acids (FFA) and glycerol 

through the lipolytic pathway [134]. FFA and glycerol are then distributed throughout the body via blood 

restoring the energy balance. During excess calorie intake, adipocytes accommodate lipids either by 

increasing their size (hypertrophy) or number (hyperplasia). Concurrently, hypertrophic adipocytes recruit 

preadipocytes which are then differentiated into mature adipocytes to store excess energy. However, 

prolonged periods of AT expansion coupled with chronic excess energy intake leads to AT dysfunction

[135]. Adipocytes become overloaded with lipids and can no longer accommodate excess energy after 

reaching a critical size. This leads to lipid spillover resulting in the storage of lipids in the liver, pancreas, 

and muscle causing insulin resistance in these organs [134]. Furthermore, hypertrophy of adipocytes 
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dysregulates secretion of adipokines resulting in a low-grade inflammatory state (Figure 5). Increased 

adipokine secretion promotes macrophage infiltration into AT and subsequent impairment of preadipocyte 

recruitment and differentiation. Altogether, increased inflammation, elevated adipokine levels and disrupted 

lipid metabolism leads to insulin resistance of AT [132]. Insulin resistance is a prominent feature in obesity, 

metabolic syndrome, and type 2 diabetes (T2D) [136]. Most importantly obesity results in increased AT

mass and impaired secretion of adipokines, making AT a direct link to understand pathologies associated 

with obesity [119,132,135,137].

2.3.1.2 Epigenetics and Transcriptomics of obesity 

Genetic predisposition is considered as the primary factor contributing to obesity. Heritability estimates from 

twin studies estimated that around 45 to 85% variance in BMI could be attributed to genetic variance [138–

140]. Fat mass and obesity associated (FTO) gene was the first obesity-associated gene identified by 

GWASs in 2007 [141,142]. A series of GWASs since then identified several hundreds of obesity-associated 

variants, and explain ~3% variance in BMI [143–146] and ~40% of variance in BMI was explained with 

whole-genome sequencing [10].

In addition to genetic susceptibility, the dramatic increase in the prevalence of obesity can also be 

attributed to obesogenic environment with abundant availability of calorie-rich food [147], increased portion 

size, and reduced physical activity [148]. However, there is a huge variability in the susceptibility of obesity, 

and not all individuals exposed to obesogenic environment develop obesity [149]. This variability can be 

attributed to the complex interplay of genetic, behavioral and environmental factors making obesity a 

multifactorial disorder.

Emerging evidence suggests that epigenetic modifications can be considered as the obvious 

mechanism that connects the effects of obesogenic environment and genetic susceptibility of obesity [150–

155]. Alteration of gene expression by epigenetic mechanisms could partly account for both missing 

heritability and inter-individual variation of obesity. 

DNAm, as one of the epigenetic marks, has been extensively studied to understand its contribution to 

obesity and associated metabolic complications, like T2D [150]. Especially MZ twin pairs discordant for BMI 

has served as an ideal design setting to unravel the impact of environment on the epigenome and obesity 

[58,95,156]. Furthermore, studies performed on the Dutch Hunger Winter showed that adverse intrauterine 

environment like insufficient maternal diet can cause persistent changes in DNAm along with increased 

disease risks during later life, including increased risk for obesity and glucose intolerance [157–159]. A

recent stepwise genome-wide mediation analysis using the Dutch Hunger Winter data revealed that whole 

blood DNAm at specific CpGs mediates a significant proportion of the association between prenatal famine 

exposure and later-life metabolic health i.e. body mass index (BMI), serum triglycerides (TG) [160].
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Extensive research has been ongoing to unravel DNAm variants associated with obesity and has been 

comprehensively reviewed [150,152,154,161–166].  No clear global methylation direction has been 

established in association with obesity, as studies reported both hyper- and hypomethylation with increase 

in obesity-related measures [152]. CpG sites located within or near HIF3A, CPT1A, and ABCG1 have been 

consistently reported in association with BMI and/or waist circumference [150]. HIF3A, (hypoxia-inducible 

factor 3 subunit alpha) is involved in hypoxia (low levels of oxygen) regulation and CPT1A encodes carnitine 

palmitoyltransferase 1A enzyme essential for fatty acid oxidation, while ABCG1 (ATP-binding cassette sub-

family G member 1) mediates cholesterol efflux to prevent cellular lipid accumulation. Sayols-Baixeras and 

colleagues identified 94 CpG sites associated with BMI and 49 CpG sites associated with waist 

circumference which could explain 26% and 29% of heritability of these traits, respectively [167]. The largest 

EWAS on BMI till date identified 187 CpGs associated with BMI and most of these identified CpGs were 

consequential to obesity [168]. This observation was also confirmed by Mendelson and colleagues who 

further showed that  18% of inter-individual variation in BMI could be explained by methylation of 83 BMI-

associated CpGs [169]. Furthermore, they identified differential methylation and expression of SREBF1

(sterol regulatory element binding transcription factor 1), a key regulator of lipid synthesis, associated with 

adiposity and cardiometabolic disease.

Results from transcriptome profiling of SAT during obesity showed upregulation of  inflammation [170–

173], immune response [170], and downregulation of mitochondrial functions [171,174], insulin signalling

[172] and lipogenic genes [173,175]. Most of the EWASs so far used whole blood to assess the impact of 

obesity. Assessing more relevant tissues like SAT, would reveal the role of methylome in pathogenesis of 

obesity. Rönn and colleagues identified 2825 BMI-associated genes in SAT, showing both differential 

expression and methylation, including FTO and IRS1 genes [176]. IRS1 (Insulin receptor substrate 1) 

initiates stimulation of glucose transport in SAT and muscle tissue. Three HIF3A CpG sites identified by an 

earlier study [177] were also replicated in the female cohort of this study. On overall, obesity is associated 

with epigenetic dysregulation resulting in DNAm variability and the obesity-associated CpG methylation

show modest effect sizes. 

2.3.1.3 Epigenetics and Transcriptomics of Weight loss

A modest, sustained weight loss around 5% is estimated to achieve clinically meaningful reductions in blood 

glucose, triglycerides and the risk of T2D [178]. Despite our greater understanding of obesity-associated 

changes in SAT functionality, it is still necessary to elucidate distinctive impacts of weight loss on SAT.

Presumably, weight loss should reverse the adverse effects of obesity, including pathological expansion of 

SAT, inflammation and insulin resistance. Therefore, it is crucial to understand how weight loss affects SAT 

structure, functionality and associated inflammatory profiles.
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Table 2 outlines the genome-wide transcriptomic and/or methylome analyses performed in SAT during 

weight loss by diet and/or exercise (excluding surgical procedures). Findings from these studies show little 

overlap, likely due to discrepancy in their study designs, duration of the study, sample size, participants 

considered for the study (overweight to morbidly obese) and sex of participants. Results from the 

transcriptomic studies indicated that weight loss influences expression levels of genes associated with 

polyunsaturated fatty acids production [179], improved high-density lipoprotein (HDL)-mediated cholesterol 

transport [180], insulin secretion from pancreatic beta cells [181], reduced inflammation [180,182] and 

insulin-like growth factor signalling [183]. In studies with both transcriptome and methylation analyses, 

weight loss attained through exercise showed differential expression and methylation of genes associated 

with adipocyte metabolism [60]. Whereas calorie restriction modified expression levels of genes associated 

with angiogenesis and methylation levels of genes involved in insulin secretion pathways [184]. A recent 

review on 25 prospective studies comparing DNA methylation in various tissues (including surgical and 

candidate gene approach studies) concluded that small but widespread changes occur across genome in 

response to weight loss [185]. This review also suggested that limited reproducibility of results could be 

partly due to dynamic nature of DNAm, and that inter-individual variation in DNAm at several genomic loci 

can impact weight loss. In summary, our understanding of SAT transcriptome and methylome and their 

interplay in response to long-term weight loss still remains limited. 

Table 2: Table summarizing the findings from genome-wide weight loss transcriptome and/or 
methylome studies performed on SAT (in chronological order).

Research 
Objectives Study Design Assay* Main Findings┼ Ref.

Gene Expression Studies: diet and /or exercise interventions

To investigate the 
consequence of 
calorie deficit on 
the inflammation-
related genes in 
SAT.

Twenty nine obese 
premenopausal women 
followed VLCD for 28 days 
and were compared with 17 
non-obese subjects.

Stanford cDNA 
microarray and RT-
PCR

Weight loss improved 
inflammatory profile of adipose 
tissue by simultaneously 
decreasing expression of 
proinflammatory factors and 
increasing expression of anti-
inflammatory molecules. 

[182]

To investigate the 
impact of two 
LCDs with same 
energy content 
but different 
compositions of 
fat and 
carbohydrate on 
SAT gene 
expression.

Ten week intervention of 40 
post and pre-menopausal 
obese women who were 
randomly assigned to either 
a low-fat, high-carbohydrate 
diet (n=20) or a moderate-
fat, moderate-carbohydrate 
diet (n=20).

Affymetrix Human 
Genome Focus array
and RT-PCR

Genes regulating 
polyunsaturated fatty acids were 
affected by energy deficit. 
Although no effect was 
observed due to varying 
compositions of carbohydrates 
and fats. 

[179]

1. To identify SAT 
gene expression 
profiles differing 
between weight 
responders and 
non-responders to 
a low-fat diet.
2. To use these 

Obese women were 
grouped into weight 
responders (n=27) and non-
responders (n=26), based 
on the weight loss following 
a low-fat diet for 10 weeks. 
SAT biopsies before the 
intervention were used to 

Agilent 44K whole 
human genome 
microarrays

Nine common genes identified 
from different statistical methods 
were used to predict weight 
loss. However, the prediction 
accuracy was low and couldn't 
clearly distinguish respondents 
from non-respondents.

[186]
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identified 
expression 
profiles to predict 
whether an 
individual will lose 
weight during diet 
intervention.

identify differential 
expression profiles.

To investigate the 
effects of two 
LCDs with same 
energy content 
but different 
compositions of 
fat and 
carbohydrate on 
SAT gene 
expression.

Obese women were 
randomly assigned to a 10 
week low-fat (n=47) or 
moderate-fat (n=47) diet. 
Two sets of women 
combined from both the 
diets were assessed using a 
candidate gene approach 
(n=46) or microarrays 
(n=48).

Stanford cDNA 
microarray and RT-
PCR

Energy limitation had a 
predominant impact on the SAT 
expression profiles compared to 
the composition of fats and 
carbohydrates in the diets. 
Although macronutrient 
composition may influence SAT 
function and metabolic 
response.

[187]

To
comprehensively 
identify gene 
expression 
changes 
occurring in SAT 
during three 
stages of a 
dietary 
intervention 
program and to 
investigate the 
link with insulin 
sensitivity.

Twenty two obese women 
participated in a dietary 
intervention program with 
three consecutive phases: a 
1-month VLCD, a 2-month 
LCD and a 3-4-months of a 
weight maintenance diet. 
Only 8 biopsies were 
available for generating 
microarray data.

Agilent 44K whole 
human genome 
microarrays

Distinct molecular mechanisms 
were observed during VLCD 
and weight stabilization phase 
including opposite regulation of 
genes in adipocytes and 
macrophages. Also, different 
genes were responsible for the 
improvement of insulin 
sensitivity in both phases.

[188]

To investigate 
SAT expression 
profiles of obese 
women who 
initially lost weight 
and then showed 
different weight 
trajectories after 
following diets 
with varying 
protein and 
glycemic index 
content.

After an initial VLCD of 8 
weeks, obese women were 
randomly assigned to 4 
diets with varying protein 
and glycemic index content 
for 6 months. SAT 
expression profiles were 
compared between women 
with continuous weight loss 
(n=22) and women who 
regained weight (n=22) 
across the 4 diets.

Agilent 44K whole 
human genome 
microarrays

Differences observed in SAT 
expression profiles of two 
groups of women were primarily 
due to weight variations rather 
than diet compositions. 
Continuous weight loss was 
associated with mitochondrial 
oxidative phosphorylation 
whereas weight regain was 
associated with cellular growth 
and proliferation.

[189]

To investigate if 
SAT gene 
expression 
profiles during a 
LCD can be used 
to distinguish 
subjects with 
successful weight 
maintenance from 
weight regainers.

Forty white women followed 
an 8 week LCD phase 
followed by a 6-month 
weight-maintenance phase. 
SAT profiles were 
compared between weight 
maintainers (WMs, n=20) 
and weight regainers (WRs, 
n=20).

Agilent 44K whole 
human genome 
microarrays

Although both WMs and WRs 
lost considerable weight during 
LCD, their SAT profiles revealed 
differential regulation of genes 
associated with fatty acid 
metabolism, citric acid cycle, 
oxidative phosphorylation, and 
apoptosis.

[181]

To identify 
differentially 
expressed genes 
during weight loss 
and weight 
maintenance 

Nine of twelve obese 
subjects who followed an 
initial LCD phase for 3 
months and a weight 
maintenance phase for six 
months were used to 
assess SAT expression 
profiles.

HG-U133 Plus 2.0 
array and reverse 
transcription 
quantitative PCR

Weight loss and weight 
maintenance reveal distinct 
biological mechanisms with 
reciprocal regulation at several 
genes. Both CETP and ABCG1, 
participants of HDL-mediated 
reverse cholesterol transport, 
were most upregulated after 
both processes. 

[180]
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To investigate the 
effect of a six-
month 
intervention using 
calorie restriction, 
exercise or both 
on SAT 
expression 
profiles.

Forty five obese 
postmenopausal women 
were randomly allocated to 
diet, exercise and diet plus 
exercise groups. After the 
six month intervention, all 
the women including
controls were classified 
based on the extent of 
weight loss to compare their 
SAT gene expression 
profiles.

Illumina Human HT-12
v3 Expression 
Beadchips

Significant changes in SAT 
expression profile were 
identified, particularly in genes 
associated with sex hormone 
steroid synthesis, leptin and 
insulin signaling. Interestingly, 
no pathways associated with 
inflammation were implicated in 
this study.

[183]

Both Transcriptome and Epigenome-wide association studies: diet or exercise interventions

To determine the 
contribution of 
DNAm and gene 
expression 
changes to weight 
loss 
responsiveness.

Fourteen overweight and 
obese postmenopausal 
women followed LCD for six 
months and were classified 
as high responders (HR) or 
low responders (LR) based 
on their body fat loss 
percentage. Differential 
methylation and expression 
analyses were performed 
comparing HR and LR 
before and after LCD. 

Affymetrix HG U133 
plus 2.0 GeneChip 
microarray and 
Human CpG-island 
8.1 K
array 

Significant DNAm changes 
between HRs and LRs were 
identified at baseline and after 
LCD. While differences in gene 
expression profiles were seen 
only after LCD. DNAm changes 
were related to weight control 
and insulin secretion pathways 
whereas gene expression 
changes were associated with 
angiogenesis and cerebellar 
long-term depression pathways.

[184]

To examine 
changes in SAT 
DNAm and gene 
expression 
patterns after a 
six-month 
exercise 
intervention.

SAT DNAm and expression 
profiles were compared in 
23 healthy but sedentary 
men before and after a six-
month intervention.

Affymetrix GeneChip 
Human Gene 1.0 ST 
whole transcript based 
array and Infinium 
HumanMethylation450 
BeadChip assay

Differential methylation patterns 
were observed at both global 
and individual CpG site level in 
response to exercise including 
candidate genes for obesity and 
type 2 diabetes. Genes 
exhibiting both differential 
methylation and expression in 
response to exercise were 
shown to influence adipocyte 
metabolism.

[60]

DNAm: DNA methylation
RT-PCR: Reverse Transcriptase polymerase chain reaction
SAT: subcutaneous adipose tissue
LCD: low calorie diet
VLCD: very low calorie diet
Assay*: Microarray platform and techniques used to assess gene expression or DNAm
Main Findings┼: Majority of the findings in this table are from early studies in the field, so results have not been 
adjusted for cell type confounding.

2.3.2 Smoking

Smoking is a major causal risk factor for several chronic diseases and is a prominent cause of preventable 

mortality accounting for ~7 million deaths annually [190]. In addition to the well-established negative impact 

of smoking on lung cancer, chronic obstructive pulmonary disease (COPD) and heart disease, smoking also 

inflicts comorbidities like tuberculosis, alcohol use and worsens mental illness and HIV infection [191]. The 

total economic cost of smoking in Finland is around 2589 million euros [191].

Smoking is a complex behavior which progresses through multiple stages, mainly smoking initiation, 

development of nicotine dependence (among most but not all smokers), nicotine withdrawal when 

attempting to quit smoking, cessation and relapse [192]. Several factors contribute to smoking initiation such 

as peer pressure during adolescence [193–195], positive image of smoking, socioeconomic status, parental 

smoking, sex, ethnicity and other substance use [196–198]. Despite the knowledge of smoking-associated 
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health risks more than a billion people are still smoking. In Finland, more than 731000 adults (aged above 

15 years) use tobacco each day [191]. This highlights the addictive or dependence nature associated with

smoking and nicotine intake.

Tobacco contains about 7000 toxic chemicals and 70 carcinogens [191], of which nicotine is the most 

addictive substance. Nicotine promotes compulsive smoking by creating positive reinforcement in smokers

by altering dopamine and adrenaline in the brain. On inhaling smoke from burning tobacco, distilled nicotine 

enters lungs, where it is rapidly absorbed and then transported to brain via blood stream in less than 20 

seconds [199]. Nicotine then binds to nicotine acetylcholine receptors (nAChRs) in the brain tissue releasing 

adrenaline and dopamine. This rapid spike in the levels of nicotine followed by release of neurotransmitters 

elicits feeling of pleasure and calmness making smokers nicotine dependent [200], leading to 

neuroadaptation and a positive feedback leading to greater intake. However, the extent of dependency or 

addiction varies and smokers who exhibit high nicotine dependence have extreme difficulty in quitting 

smoking. Furthermore, nicotine withdrawal symptoms such as insomnia, depressed mood, anxiety, 

restlessness and loss of appetite increases the likelihood of relapse [201–203].

2.3.2.1 Epigenetics of smoking

In addition to behavioral, physiological and environmental factors, genetic factors [204], and perhaps 

epigenetic factors, also strongly influence smoking behavior. Heritability estimates from twin studies 

revealed that genetic differences among individuals have a substantial impact on multiple aspects of 

smoking behavior, including smoking initiation and nicotine dependence [205,206]. Several loci associated 

with various stages of smoking have been identified by candidate gene approaches and GWASs. The 

nicotinic receptor genes CHRNA5–CHRNA3–CHRNB4 at 15q25 [207–213] and the primary nicotine 

metabolism gene CYP2A6 at 19q13 [214,215] are the most significant and consistently replicated 

associations with nicotine dependence, cigarettes per day and smoking cessation.

Smoking is the most widely studied lifestyle factor which substantially influences DNA methylation, with 

current and never smokers exhibiting different methylation profiles [61,64,216–222]. It has been consistently 

reported that majority of the smoking-associated CpGs are hypomethylated in current smokers compared 

to never smokers. It was also shown that methylation levels of former smokers partially reverse upon 

cessation, towards the levels of never smokers [61,216,219,220,222,223]. However, the extent of reversal 

is site-specific, determined by the magnitude of smoking-induced methylation alterations at the specific CpG 

site [216,219]. Interestingly, CpGs with persistent methylation alterations after decades of cessation have

been reported, indicating a broader and long-lasting impact of smoking on methylome [216,219,224].

Smoking is a well-established risk factor for several diseases. Differential DNA methylation due to 

smoking has also been observed in relation to smoking-related diseases (e.g. cancers) [225–227],

suggesting a potential role of DNA methylation in the pathway from smoking to disease development. 
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Furthermore, this also makes DNA methylation as a suitable biomarker to predict both smoking and 

smoking-associated disease risk.

2.3.2.2 Epigenetic signatures of disease: DNAm-based predictors

Lately, disease-associated genetic and epigenetic signals are being computed into a usable score to predict 

disease risk. For instance, polygenic risk scores computed using trait-associated genetic loci and their 

associated weights have been used to predict genetic susceptibility for a trait (e.g. progression of smoking 

behavior [192]). DNAm serves as an ideal biomarker owing to its dynamic and reversible nature in response 

to external and internal stimuli. Recently, there has been a growing interest in the development of DNAm-

based predictors to predict onset or progression of a disease or phenotype (Table 3).

The following section provides a brief introduction to machine learning concepts to help understand the 

overview on DNAm-based predictors.

Basic concepts in machine learning

Machine learning (ML) is a branch of artificial intelligence which uses computational algorithms and 

statistical methods to enable computers to perform a specific task without the need for explicit instructions.

ML differs from statistical modelling, as ML primarily focuses on prediction than inferring relationships 

between variables. The basic premise is that ML learns underlying patterns in the training data which are 

then used to make predictions on the unseen data. ML involves application of mathematical rules and 

statistical assumptions. Supervised and unsupervised learning are the main types of ML. Classification is 

the most commonly used supervised learning algorithm, where the training is performed on a well labelled 

dataset and learned patterns are then used to map unseen data to labels. Generalization of a model, that

is applying a model on unseen data to make reliable predictions needs to avoid both overfitting and 

underfitting. Overfitting occurs when the model learns the noise in the training data along with underlying 

structure, making it less generalizable to new data. Underfitting occurs when model is unable to capture the 

underlying patterns in the data structure and therefore cannot make accurate predictions. 

Penalized regression offers a practical alternative to subset the variables in linear regression by 

applying a penalty constraint which shrinks the coefficients of variables [228]. Ridge, Least Absolute 

Shrinkage and Selection Operator (LASSO), and elastic net regression are the most widely used penalized 

regression methods. Ridge regression applies L2 norm (sum of the squared coefficients) and shrinks the 

coefficients close to zero. LASSO applies L1 norm (sum of absolute values of the coefficients) and shrinks 

most of the coefficients to exactly zero thereby performing variable selection [229]. Elastic net regression 

applies a convex combination of ridge and LASSO. Amount of shrinkage can be regulated by a tuning 

parameter (lambda). Cross-validation can be used to identify an optimal lambda to find the model´s best fit 

and avoid overfitting. Table 3 below provides a brief overview of different DNA methylation-based predictors 
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developed using one of the penalized regression methods or using other statistical approaches or a 

combination of both.

Table 3: An overview of recent studies with focus on development of DNA methylation-based predictors 
developed for a diverse range of purposes. This is not an exhaustive list and is shown to provide an 
overview of available DNA methylation-based predictors.

Purpose Methodology Ref.

A multi-tissue predictor to estimate the DNAm age

trained on DNAm data from 51 healthy tissues and 

cell types.
Elastic net regression [16]

To identify heavy smokers from non-smokers 

(former and never), using smoking score based on 

187 smoking-associated CpGs identified in whole 

blood.

Computed  a weighted DNAm score 

using methylation values of CpGs 

identified by an earlier EWAS [220]

as reference values.

[217]

To distinguish current from never smokers, and 

former from never smokers, based on methylation 

score obtained from 4 smoking-associated CpGs 

in whole blood.

EWAS followed by stepwise logistic 

regression with forward selection
[221]

To estimate gestational age using DNAm in cord 

blood.

EWAS followed by elastic net 

regression
[230]

To estimate gestational age at birth using DNAm in 

cord blood.
Elastic net regression [231]

Whole blood-based DNAm score to predict 

prenatal exposure to maternal smoking.

Computed a weighted DNAm score 

using methylation values of CpGs 

identified by an earlier  genome-wide 

consortium meta-analysis  [232].

[233]

To predict fetal alcohol spectrum disorder (FASD) 

using DNAm
Stochastic gradient boosting [234]

To detect heavy alcohol drinking using alcohol 

associated CpGs in whole blood.

EWAS followed by LASSO 

regression
[235]

Three placental clocks estimating gestational age 

based on placental tissue.
Elastic net regression [236]
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Epigenetic smoking status estimation 

The precise knowledge of smoking history facilitates in designing appropriate treatments ranging from 

preventive interventions for occasional smokers to cessation therapies for heavy current smokers. Further, 

accurate smoking history can serve as a basis to predict long-term health risks associated with smoking 

(e.g. lung cancer). Traditionally, smoking exposure is ascertained using self-administered questionnaires. 

Diagnostic and Statistical Manual of Mental Disorders (DSM) [237] and the Fagerström Test of Nicotine 

Dependence (FTND) [238] are the most commonly used self-report questionnaires to capture nicotine 

dependence. However, self-reported smoking status is prone to errors due to under-reporting [239] and

poor recall of long-term smoking history. Also, it fails to account for the passive exposure to smoking. 

Biomarkers like cotinine, can quantify the extent of absorbed nicotine in the body fluids [239]. Nonetheless, 

its efficacy is limited to measuring recent exposure, as cotinine can be detected only for a few days at most 

after smoking, given the half-life of 16 hours [240]. Moreover, usage of nicotine replacement therapy,

smokeless tobacco and e-cigarettes might also result in high levels of cotinine, resulting in inaccurate 

evidence of smoking. This clearly demonstrates a requirement for a robust indicator of smoking exposure 

that overcomes these limitations and can accurately measure current and past smoking.

Numerous independent studies performed on different populations have identified several smoking-

associated CpGs [61,64,216–222]. The so-far largest EWAS of ~16000 individuals has identified 18760 

significantly differentially methylated CpGs across 7000 genes between current and never smokers [64].

Interestingly, many of these studies consistently reported the same top significant CpGs associated with 

smoking, demonstrating the robustness of smoking-associated methylation signatures [61,64,216–222].

Methylation status of genes AHRR [241,242] and F2RL3 [222] have been suggested as potential 

biomarkers to estimate smoking. Notably, two studies attempted to translate EWAS findings to scores that 

reflect the extent of smoking [217,221]. Although quantifying cumulative methylation exposure into a score 

is an interesting approach, the key challenges of applicability and interpretation remain. For instance, the 

smoking score of Elliott et al [217] has an ethnic-specific threshold to differentiate smokers from never 

smokers, limiting its universal applicability and necessitating threshold for each ethnicity. Methylation score 

of Zhang et al [221] can only tackle binary comparisons i.e. current vs never and former vs never 

smokers. To overcome these existing limitations, Study III in this thesis focused on developing a robust 

smoking status classifier to estimate smoking status based on DNAm profiles of individuals. A detailed 

description of the classifier development is provided in the section 4.5.3.

2.3.3 Smoking meets obesity: double jeopardy and a dual challenge

Smoking and obesity are the two leading preventable causes of death associated with a multitude of 

comorbidities and health risks, with widespread effects across multiple tissues. The Framingham Heart 

Study estimated that compared to normal-weight non-smokers, obese men and women smokers lost on 



Literature Review

28

average 14 and 13 years of life, respectively [243]. However, their inter-relationship is highly complex and 

unclear.

Several epidemiological studies concluded that current smokers have lower body weight compared to 

never smokers and smoking cessation results in weight gain [244–248]. Causal role of smoking on BMI 

reduction in current smokers has been demonstrated by two Mendelian randomization studies using a SNP 

in the CHRNA5-A3-B4 gene cluster as proxy for heavy smoking [249,250]. In contrast to findings from BMI 

studies, current smokers tend to have more abdominal obesity than never smokers [251]. A recent genome-

wide meta-analysis suggested that smoking alters genetic susceptibility to overall adiposity and body fat 

distribution, showing a preference towards central adiposity with increased cigarette consumption [252].

Conversely, a recent Mendelian randomization study performed on UK Biobank cohort (n=372791) strongly 

suggested that obesity and higher adiposity may influence smoking behavior and with each standard 

deviation increase in BMI there is a chance of smoking one additional cigarette per day [253]. This 

contradictory evidence on causal relationship between obesity and smoking highlights the complexity in the 

underlying biological mechanisms.  

Decreased BMI in current smokers has been associated with increased metabolic rate and reduced 

appetite caused by nicotine [254]. Increased BMI after smoking cessation could be a result of increased 

calorie intake and changes in fatty acid catabolism [255]. Regulation of appetite for tobacco and food has 

been suggested as a possible common biological basis for nicotine addiction and obesity [256].

Furthermore, both nicotine dependence and obesity revealed common neuronal and behavioral circuits 

triggering regions associated with reward, satiety and self-control within the brain [257,258]. In summary, 

given the detrimental effects of smoking and obesity, and the associated comorbidities, it is crucial to 

investigate the impact of their co-occurrence on mortality.
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3 Aims 

The primary objective of this thesis was to advance our understanding of obesity and smoking by identifying 

and integrating DNA methylation variants with transcriptomics data by applying statistical methods and 

bioinformatics tools. This thesis also focused on developing a robust classifier to predict smoking status 

using DNA methylation profiles. 

Rationale and aims specific to each study are listed below:
1. Little is known about the crosstalk between gene expression and DNA methylation in SAT during weight 

loss. Moreover, using a study design controlled for genetic variation serves as an ideal setting to unravel 
weight loss-associated expression and methylation changes independent of genetic influence. 
Concurrent evaluation of weight-loss associated expression and methylation changes in obesity can 
provide crucial insights into mechanisms governing both weight loss and weight gain.

Study I aimed to identify and integrate gene expression and DNA methylation changes in SAT during a 
one-year weight loss intervention. We used a validation cohort of BMI-discordant MZ twin pairs to 
examine the directionality of the identified changes in acquired obesity. We employed a longitudinal and 
BMI-discordant MZ twin approach to investigate effects of weight loss and obesity independent of genetic 
background.

2. Smoking is a well-established risk factor for several cancers including cardiovascular disease and 
diabetes. Several studies identified smoking-associated methylation signals in blood methylome, 
however, the broader impact of smoking on other metabolically relevant tissues and obesity remains 
unclear. SAT is a key metabolic organ with a crucial role in metabolic health and accumulation of adipose 
tissue has been associated with smoking behavior. Therefore, investigating smoking-associated 
changes in transcriptome and methylome of SAT provides valuable insights into effects of smoking on 
metabolic health phenotypes.

Study II aimed at comprehensively characterizing the impact of smoking on metabolically relevant SAT 
by simultaneously performing transcriptome- and methylome-wide association studies. We further aimed 
to link the identified smoking-associated signals with adiposity phenotypes to understand the impact of 
smoking on metabolic health.

3. Methylation-based smoking status prediction has been shown to be more robust than self-reported 
smoking status and biomarkers like cotinine which can only measure short-term exposure. Existing DNA 
methylation-based smoking status estimation methods use scores calculated from cumulative 
methylation levels at smoking-associated CpGs to identify smoking status. However, these approaches 
have limited applicability as a score threshold value needs to be computed for each dataset and can only 
perform binary classifications.

Study III aimed at overcoming the limitations of existing nicotine biomarker and DNAm score-based 
approaches by developing a robust smoking status classifier using a machine learning approach to predict 
the smoking status of individuals based on methylation signatures. To test the prediction performance 
and global applicability of the classifier three independent whole-blood test datasets and two existing 
methods were used. Additionally, we aimed to provide our classifier as an R package to facilitate the
implementation of the classifier in future studies to predict smoking status.
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4 Materials and Methods 

This chapter presents the datasets, phenotypes and statistical methods used in the Studies I to III.

4.1 Cohorts/Datasets 

This section gives a brief overview of all the datasets used in this thesis. Multiple cohorts originating from 

the Finnish population were used in the Studies I to III. Also, datasets from public repositories were used to 

test or replicate the findings. More detailed descriptions of the cohorts can be found in the original 

publications and references therein. Study-wise sample characteristics of all the datasets used in the thesis 

are presented in Tables 4 and 5.

4.1.1 The Finnish Twin Cohort (Study I-III)

The Finnish Twin Cohort (FTC), was established in 1974 to investigate genetic and environmental factors 

contributing to complex diseases and associated behavioral risks (www.twinstudy.helsinki.fi) [259,260]. The 

three main longitudinal datasets of the FTC are reviewed below:

The Older Finnish Twin Cohort was formed in 1975 by ascertaining same-sex twin pairs (both

monozygotic and dizygotic) born before 1958 from the Central Population Registry of Finland [261]. This 

cohort was further expanded in 1996 by the inclusion of opposite-sex pairs born during 1938-1949. An

additional three waves of follow-up data were collected in 1981, 1990 and 2011-2012 through mailed 

questionnaires [259,260].

Essential Hypertension Epigenetics (EH-Epi) is a sub-study of the Older Finnish Twin Cohort

launched in 2011 to study hypertension. Twins were recruited based on the responses to the 2011-12 

comprehensive questionnaire assessing diagnosed hypertension, history of hypertension and usage of 

anti-hypertensive medication [262]. Participants in this study went through a comprehensive physical 

examination, interview and blood sample collection during 2012-2015. A subset of 408 twins with 

extensive smoking information from this study was used as a test dataset in the Study III.

FinnTwin16 study was initiated in 1991 by recruiting twins born during 1975-1979 [259,263]. The first wave 

of assessments was performed on twins at the age of 16 along with their parents and siblings. Intensive 

follow-up assessments were performed on the twins at ages 17, 18.5 and at young adulthood (age 22-25)

through mailed questionnaires.

FinnTwin12 study established in 1994 comprises twins born during 1983- 1987 [259,264]. At the baseline, 

11 to 12 year old twins were assessed along with their parents and teachers. Twins were then followed up 

at ages 14, 17.5 and 22.
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TwinFat (n =109) [265], a sub-study formed from the FinnTwin16 and FinnTwin12 cohorts to 

extensively investigate obesity in twins. A rare and deeply phenotyped dataset of 26 BMI-discordant MZ 

twin pairs (intra-pair difference in BMI 3-10 kg/m2, males n = 9, females n = 17, aged 29.55 ± 4.61

years) from TwinFat was used as a validation cohort in Study I, to assess the expression and methylation 

of weight responsive genes in acquired obesity. In Study II, 69 individuals (34 full MZ twin pairs, mean 

age 31.1 ± 4.43 years, mean BMI 27.5 ± 4.72, 44.9% male) from the TwinFat with complete covariate 

data as per the discovery cohort TwinsUK [266] (e.g. alcohol intake), were used to replicate methylation 

associations with metabolic health traits.

4.1.2 Weight Loss Study (WLS) (Study I) 

Nineteen obese volunteers (mean BMI 34.65 kg/m2) constituting 12 females and 7 males (Table 4) were 

recruited for a 12-month weight loss program through a newspaper advertisement [118,267]. All participants 

were healthy non-smoking weight-stable adults without any clinical complications and regular medications. 

The intervention started with a very-low-energy diet (800–1000 kcal per day) for first 6 weeks, followed by 

a normal weight loss diet in conjunction with exercise plans. Participants were given customized diet plans 

at 0, 2 and 5 months.

4.1.3 DILGOM (Study III)

FINRISK study [268] comprises of nationwide surveys of the Finnish adult population on risk factors related 

to chronic diseases performed every five years since 1972. DILGOM (Dietary, Lifestyle and Genetic 

determinants of Obesity and Metabolic syndrome) (n=5024) [269,270] is a cross-sectional study originated 

from the FINRISK 2007 study (n=6258), designed to investigate the impact of genetics, environment and 

Table 4: Characteristics of the datasets used in the Studies I and II

Study Dataset Age
(Mean ± SD)

M/F BMI
(Mean ± SD)

Smokers Transcriptome 
Data

Methylation 
Data

I WLS 35.21± 7.79 7/12 34.65±2.67a - 19 19

TwinFat 29.55± 4.61 18/34 Heavy twins
31.25±5.18

Lean twins
25.28 ±4.52

only one co-
twin smokes: 6

both twins 
smoke: 4 pairs

26 pairs 24 pairs

II TwinsUK* 58.40±9.56 0/345 26.82±4.81 54 345 345

TwinFat 31.05±4.43 31/38 27.47±4.72 21 - 69

aAt the baseline in weight loss study. 
*Methylation and transcriptome dataset from the TwinsUK cohort with only current and never smokers, used in 
discovery analyses to identify smoking-associated methylation and expression signals.
SD: Standard deviation
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lifestyle factors on obesity and metabolic syndrome. Comprehensive phenotypic data and blood samples 

were collected from the participants. Genome-wide DNA methylation data and extensive smoking 

information available from 514 individuals was used in Study III (Tables 5 and 6). We have also used plasma 

cotinine measurements determined by gas chromatography-mass spectrometry available from 86 current, 

31 former and 3 never smokers [271].

4.1.4 Public Datasets (Study III)

In Study III in addition to the FTC dataset (n=408), we have used two publicly available whole-blood datasets 

[59,61], a buccal tissue [272] and a PBMC dataset [273] quantified on 450k array to test the performance 

of the classifier (Tables 5 and 6). The first whole-blood dataset is from the EIRA study [59], a population-

based rheumatoid arthritis (RA) case-control study conducted in Sweden. We have used methylation data 

and smoking status information from 687 participants, including 354 RA cases and 333 cases matched for 

age, sex and smoking status. The second whole-blood dataset consisted of 464 participants from the 

CARDIOGENICS consortium [61], a European descent case-control study of coronary artery disease, 

including 238 patients. We have used 80 individuals (after excluding 40 moist-snuff users) with buccal tissue 

methylation data (n=120) [272] composed of healthy Caucasian and African-American men from North 

Carolina. The PBMC methylation data [273] was collected from 111 African-American women living in the 

states of Iowa and Georgia, as a part of the Family and Community Health Study (FACHS).
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4.2 Phenotypes 

This section outlines the phenotypes associated with obesity and smoking examined in this thesis to profile 

methylome and/or transcriptome. Extensive phenotypic information was used in Study I and Study III to 

assess obesity and smoking-associated changes in adipose and whole-blood tissues, respectively.

4.2.1 Obesity

In WLS (Study I) all the clinical measures were taken at three time points (baseline, 5 and 12 months). To 

assess the habitual dietary intake WLS participants were requested to maintain a detailed food journal for 

three consecutive days at 0, 5 and 12 months. Additionally, lifestyle counselling sessions were held twice a 

month for the first five months and monthly from sixth to twelfth month. At the end of the intervention, 

Table 5: Characteristics of the training and test datasets used to train and evaluate the 
performance of smoking status classifier (Study III)

Datasets N Sex (M/F)
Self-reported Smoking Status Age

(Mean, Range, SD)Current         Former        Never

Training Dataset (whole-blood)

DILGOM 474 215/259 113 118 243 52.2
(25-74,13.6)

Test Datasets (whole-blood)

EH-Epi study 408 166/242 67 141 200 62.2 
(32.3-69.7, 4.3)

EIRA (Epidemiological 
Investigation of 
Rheumatoid Arthritis)

687 196/491 266 228 193 51.9
(18-70,11.8)

CARDIOGENICS 464 327/137 22 263 179 55.4
(38-67, 6.7)

Test Datasets

Buccal 80a 80/0 40b - 40b 47.2
(35-60, 7.9)

PBMCs 111c 0/111 50 - 61 48.4 
(NA, 10)

aOf these 80 individuals, 58 were Caucasian, 21 were African-American and 1 unknown ethnicity. bIn 
buccal tissue data smoking behavior was defined as cigarette smoker and non-tobacco smoker. cAfrican-
American ancestry. SD: Standard deviation; NA: Not available
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complete data on energy intake and Baecke indices [274] were available from 15 and 16 participants, 

respectively. 

MZ twins from the TwinFat study (Study I validation cohort and Study II) were selected based on the 

questionnaire data and during a twin’s clinical visit, interviews, on-site measurements of body composition 

and sample collection (adipose tissue biopsy) was performed. All measures were used on continuous scale 

in statistical analyses unless specified otherwise.

4.2.1.1 Clinical assessments 

In the Study I identical protocols were followed in the weight loss- and the validation cohort unless specified 

otherwise. Weight and height measurements taken after a 12-hour overnight fast were used to calculate 

BMI and total body composition was assessed by dual energy X-ray absorptiometry (DEXA) (GE Lunar 

Prodigy Madison, WI, England) [275]. In the weight loss cohort, liver fat was measured by magnetic 

resonance spectroscopy (MRS) and volumetric subcutaneous adipose tissue (SAT) and visceral adipose 

tissue (VAT) were measured by magnetic resonance imaging (MRI) [276]. Systolic and diastolic blood 

pressure was measured in supine position and a mean of three consecutive measurements was considered 

as the accurate measurement. To calculate homeostatic model assessment (HOMA)-insulin resistance 

[277] and Matsuda-insulin sensitivity [278], plasma glucose (spectrophotometric hexokinase and glucose-

6-phosphate dehydrogenase assay, Roche Diagnostics, Basel, Switzerland) and serum insulin (time-

resolved immunofluorometric assay, Perkin Elmer, Waltham, MA, USA) were measured after a 12 hour 

overnight fast by performing a 75-g oral glucose tolerance test (OGTT) [279] at four time points (0, 30, 60 

and 120 min). Fasting plasma total cholesterol, HDL cholesterol, and triglyceride concentrations were 

determined by enzymatic methods (Roche Diagnostics Hitachi, Hitachi Ltd, Tokyo, Japan) and LDL 

cholesterol was calculated using Friedewald formula. In Study I fat percentage was considered as a 

representative measure of adiposity and obesity.

In the Study II total fat mass (TFM) and android-to-gynoid fat ratio (AGR) were determined by DEXA. 

4.2.2 Smoking 

Smoking status was ascertained through self-reported questionnaire data in all the datasets and was used 

as a categorical variable in all the analyses. Except for the PBMC dataset, smoking status was defined with 

respect to the cigarette consumption (Table 6).  FTC and EIRA datasets also included additional smoking 

measures enabling us to comprehensively assess the smoking status of the participants. Table 6 provides 

a summary of the smoking phenotypes used in this thesis. 

In Study III DILGOM data was used as the training dataset to build a smoking status classifier (see 

Table 6 for detailed smoking status definitions). Hence, to ensure the classification accuracy of the classifier 
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and to minimize bias, smoking behavior of the participants was thoroughly assessed using a combination 

of the following three measures:

1. Self-reported smoking status:

a. Never Smoker

b. Former Smoker (quit more than a year ago)

c. Recent quitter (quit 1 month to year ago)

d. Current occasional smoker

e. Current daily smoker

2. When did you have your last cigarette? (measured using 7 response alternatives):

1. Yesterday or today

2. Two days to one month ago

3. One month to half a year ago

4. Half a year to year ago

5. 1 to 5 years ago

6. 6 to 10 years ago

7. More than 10 years ago

3. Cotinine measurements

Self-reported smoking status was validated with cotinine measures where available (86 current, 31 

former and 3 never smokers) and using a response measured on a scale of 1-7 about last smoking (Q: 

when did you have your last cigarette). We considered current occasional smokers with either high cotinine 

values or who smoked their last cigarette less than six months ago as current smokers. By using a 

combination of the above three measures I have excluded 28 former, 2 never and 6 occasional smokers 

with discrepant smoking information from the further analyses. 

I used 408 twins from the FTC corresponding to the EH-Epi study as a test dataset in Study III. 

Comprehensive smoking information available from these participants, including cumulative pack-years, 

smoking abstinence duration (years since quitting) and passive smoking information was used to perform 

secondary analyses in Study III. Current smoker category was subdivided into current daily and current 

occasional smokers in FTC and EIRA datasets based on frequency and extent of smoking.
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Table 6: Detailed smoking-status definitions from all the datasets used in Study III

Self-reported 

smoking status

DEFINITION

DILGOM (N=474) Smoking behavior of the study participants was thoroughly assessed using three   

                           measures

Current (1) Smokes regularly or occasionally, (2) last cigarette was smoked ranging from today 

to less than six months ago and (3) where available has a cotinine value > 10 (nanogram 

per milliliter; ng/ml).

A sub-class of current occasional smokers was separated from current daily 

smokers with individuals who had smoked their last cigarette one month to half a year 

ago.

Former Has quit smoking at least a year ago, last cigarette was smoked more than 1 year ago

and where available has a cotinine value less than 10 ng/ml.

Never Has never smoked or smoked less than 100 cigarettes during their lifetime. 

FTC (n=408)          Smoking was ascertained with response alternatives ranging from 1 to 7 (see     

                               numbering below).

Current Smokes cigarettes less than once a week to 20 or more cigarettes per day (1 - 5).

We have further divided them into current daily and current occasional smokers as 

follows:

Current daily: smokes between > 20 cigarettes per day to < 10 cigarettes per 

day (1 - 3).

Current occasional: Smokes at least once per week but not every day or smokes 

less than once a week (4 - 5).

Former Has quit smoking or is in abstinence (6). 

Never Has never smoked or smoked less than 100 cigarettes during their lifetime (7).

EIRA (n=687)            For patients with RA, smoking status was ascertained based on the smoking habits in 

                                   the index year (the year in which symptoms of RA onset occurred).

Current If smoking currently, when did you start smoking and the average number of cigarettes 

per day.
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4.3 Sample collection and DNA and RNA extraction

In Studies I and II surgical biopsies of abdominal SAT were obtained from the periumbilical area under local 

anesthesia and were snap-frozen in liquid nitrogen. In the validation cohort (Study I) [280], SAT biopsies 

were available from all the BMI-discordant MZ twin pairs (n=26 pairs) for gene expression analyses, 

whereas only 24 twin pairs had DNA for the methylation analyses. High-molecular weight total RNA was 

isolated from SAT biopsy using RNeasy Lipid Mini Kit (QIAGEN Nordic, Sollentuna, Sweden) following the 

manufacturers' instructions and the RNA quality was assessed by 2100 Bioanalyzer using RNA Integrity 

Number (RIN) algorithm (Agilent Technologies, Espoo, Finland). High-molecular-weight DNA was extracted 

from whole blood (Study III) and adipose tissue (Study I and II) using QIAamp DNA Mini kit (QIAGEN Nordic, 

Sollentuna, Sweden) according to the manufacturer’s instructions. Quality and concentration of DNA were 

For RA cases, if smoked during the index year. Current smokers were further 

classified into daily and occasional smokers.

Former Not a current smoker but smoked previously, start year and end year of regular smoking, 

average number of cigarettes smoked while smoking.

In RA cases, patients who quit regular smoking for at least one year before the 

index year. 

Never Has never smoked before or during the index year.

CARDIOGENICS (n=464)

Former Has quit smoking for more than 12 weeks (n=251) or less than 12 weeks (n=12) before 

the participant recruitment.

Buccal Tissue Dataset (n=80)

Smokers Smoked at least 10 cigarettes per day for a minimum of 3 years and had exhaled carbon 

monoxide (CO) levels between10-100 (parts per million; ppm).

Non-smokers Abstinent from all nicotine and tobacco containing products for a minimum of 5 years 

with expired CO levels between 0-5 ppm.

PBMC Dataset (n=111)

Smokers Actively smoking

Non-smokers Denied using any tobacco products
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assessed using NanoDrop® ND-1000 UV-Vis (ThermoFisher Scientific, Helsinki, Finland)

spectrophotometer.

4.4 Omics Data

This section outlines various omics datasets used in the studies summarized in this thesis. Genome-wide 

transcriptome and methylome data were characterized using microarray technology. Stringent QC and 

filtering performed in each study to include only high-quality samples and probes for further analyses are 

described in this section. Figure 6 outlines the general workflow of array-based DNA methylation and 

transcriptome data analysis.

4.4.1 Expression data 

Total RNA isolated from SAT was used to measure gene expression on Affymetrix Human Genome U133 

Plus 2.0 Array (Affymetrix, Vienna, Austria) at the Biomedicum Functional Genomics Unit (FuGU), Helsinki, 

Finland), following a previously validated protocol [281]. All the samples (both WLS and the validation 

TwinFat cohort) passed QC checks for RNA degradation, hybridization, and amplification performed using 

R packages: simpleaffy (to read Affymetrix data i.e. CEL files) [282] and affyPLM (to fit probe-level 

models and quality assessments) [283]. Robust Multi-array Average (RMA) algorithm [284] was applied (R 

package affy) to perform background correction (correcting for optical noise and non-specific binding), 

quantile normalization and to summarize expression values on logarithmic scale per each probeset. 

Probesets were then mapped to the corresponding genes using the Brainarray customized Chip Description 

File version 18.0 (hgu133plus2hsentrezgcdf) [285]. Expression data from 19598 genes were available for 

downstream analyses. From the validation cohort of MZ twins, I used only a subset of the expression array 

data corresponding to the significantly differentially expressed genes identified in the discovery analyses in 

the WLS to perform validation analyses.

4.4.2 Methylation data

The Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA) (450k array) was 

used to quantify methylation from whole blood (Study III) and adipose tissue (Study I and II) at the Microarray 

Consortium, Oslo, Norway, at the Technology Centre, FIMM, University of Helsinki, Finland, at The 

Genomics Facility, University of Chicago, Chicago, IL, USA, and at The SNP&SEQ Technology Platform, 

University of Uppsala, Sweden. Samples were randomly distributed into 96-well plates to minimize potential 

batch effects, and discordant co-twins were always placed next to each other on the same plate. Bisulfite 

conversion of genomic DNA was performed using the EZ-96 DNA Methylation-Gold Kit (Zymo Research, 
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Irvine, CA, USA) and genome-wide DNA methylation was quantified on the 450k array following the 

manufacturer’s instructions.  

            Figure 6: A comprehensive workflow of DNA methylation and transcriptome data analysis 

 

Quality control (QC) and preprocessing steps in Study I-III were performed using R package minfi [86]. 

Numerous preprocessing and normalization methods are proposed for 450k data, however, there is no clear 

consensus on the best approach to be followed. This is also reflected in the different preprocessing steps, 

normalization methods and cut-offs employed in this thesis, to ensure the inclusion of high-quality samples 

and probes for further analysis. I excluded probes with higher detection P-values to ensure that the 

measured intensity was not representing background noise. In Study II, I excluded probes with detection P-

value > 0.05 as per Illumina recommendations. In Study I, I employed a more stringent cut-off and excluded 

probes with P-value >0.001. In the Study III, detection P-value threshold was further lowered to 1x10-16 

following more recent recommendations by Lehne et al, to improve quantification of methylation and to avoid 

spurious detection of call rates [87]. Additionally, in Study III probes with more than 2% missing data across 

samples were also excluded. I removed probes located on X and Y chromosomes and probes specific to 

SNPs and non-CpG probes (Study I–III). Sample exclusion threshold was set as sample call rate< 95%, 

based on this criteria four samples were excluded from Study III.  
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At each CpG site methylation levels (β-values) were calculated as the ratio of methylation signal to the 

total locus intensity, ranging from 0 to 1, representing 0 to 100% methylation.

Following the QC and preprocessing steps described above, methylation data was normalized and 

filtered when needed as per study design. The goal of normalization is to remove technical noise or 

unwanted variation from the signal (thereby normalized data representing very likely true signal or biological 

variation) and to make the methylation measures across samples comparable. Different normalization 

methods were employed in this thesis, reflecting the constant development in methods to efficiently correct 

for two type of probe chemistries present on the 450k array (Figure 4).

In Study I, quantile normalization (QN) followed by Beta MIxture Quantile (BMIQ) [84] normalization was 

performed in both WLS and the validation cohort TwinFat. While QN makes all the samples to have the 

same distribution of probe intensities, BMIQ adjusts the distribution of type II probes with respect to type I 

probes within each sample. Following normalization, I used ComBat function in the R package SVA [286]

to remove unwanted variation introduced by potential batch effects. Finally, unreliable probes (mapping to 

multiple genomic locations, presence of SNPs in probe body or at the CpG site or deletions, insertions, and

repetitive DNA) [287] were removed leaving 292802 probes for further analyses. By filtering low-quality 

probes multiple testing burden was minimized. In the validation cohort of MZ twins, I have used only a 

subset of CpG probes needed to verify methylation results from WLS.

In Study II, I first performed within-sample normalization using the BMIQ method and then normalized 

methylation levels to follow the normal distribution N(0,1) using qqnorm R function. This additional step was 

performed as most of the probes on the 450k array do not follow the normal distribution which may violate 

the assumptions of linear regression. 

In Study III, I first separated the probe intensity values into six categories based on the color channel, 

probe-type, and subtype and then performed QN on each probe category using a custom function. In each 

probe category, I first sorted the actual intensity values within each sample and then calculated average 

intensity values for each rank across all the samples. I then replaced the actual intensity values with the 

corresponding average intensity values (quantiles) thereby forcing all samples to have the same distribution. 

I saved the quantiles obtained from the six probe categories. I then calculated beta values for each CpG 

probe using the normalized intensity values. I have not rescaled the intensities of Infinium II probes based 

on Infinium I probes, as it is nonessential for building a classification algorithm. After the normalization, I

have removed unreliable probes mapping to multiple genomic positions [288] and weakly varying probes 

with variance <0.002 across the samples. To assess the performance of our classifier in the three whole-

blood test datasets, I have performed quantile normalization using the same six set of quantiles 
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(corresponding to probe categories) obtained from the training dataset. This approach of fitting test dataset 

distribution to the training dataset ensures cross-study performance and can be referred to as “frozen” 

quantile normalization following McCall et al [289]. I performed subset quantile normalization (SQN) [80]

and Illumina normalization (ILN) on the datasets to calculate smoking score (SSc) [217] and methylation 

score (MS) [221], respectively. In SQN, the reference quantiles are first calculated for each probe category 

of Infinium I signals using CpG annotations (Shore, S shelf, N shore, N shelf and distant), to which the Type 

II probes are then adjusted. ILN uses internal control probes as a reference to normalize the data. Frozen 

quantile normalization was not performed on publicly available test datasets from tissues other than blood,

as the quantiles used in QN were derived using whole blood training dataset.

I used R package ‘IlluminaHumanMethylation450kanno.ilmn12.hg19’ for annotating the 450k data in all 

the studies.

4.5 Statistical Analyses

This section provides a broad overview of statistical analyses employed in the Studies I to III. All statistical 

analyses used in this thesis were performed in the R statistical environment [290].

4.5.1 Differential expression and methylation analyses (Study I)

We hypothesized that weight loss causes changes in gene expression profiles of SAT. To assess these 

changes, I performed differential expression analyses for three comparisons: short-term, continuous and 

long-term weight loss. I used pair-wise moderated t-tests [291] to compare expression levels of individuals 

with themselves at the current time point (lean) to an earlier time point (obese).  Fat percentage was used 

as a continuous variable and was assessed for normality using Shapiro-Wilk test. I used R package limma 

[291] to fit gene-wise linear models using the fat percentage as a predictor and normalized gene expression 

data as a response variable. A design matrix was defined with fat percentage as a continuous variable and 

a pair-wise comparison (using an individual identification number to pair the samples from two-time points). 

I then fitted linear models on normalized gene expression data and the design matrix. Empirical Bayes 

procedure was then performed on the linear models to calculate the moderated t-statistic, to assess 

differential expression between the lean and obese conditions of individuals. The moderated t-statistic [291]

differs from the classic t-statistic as the variance is estimated by borrowing information across all the genes. 

Hence variability of a gene implies a combination of gene-specific variability and global variability.  

In the validation cohort, we hypothesized that weight loss-associated genes identified from WLS will 

have opposite direction of expression in acquired obesity. I performed paired moderated t-tests to compare 

BMI-discordant MZ co-twins. A design matrix was defined outlining the condition of the twins (a two-level 

factor: Heavy and Lean, using Heavy as a reference class) and a pair-wise comparison (using a twin 

identification number to pair the co-twins). I assessed differential expression between heavy and lean co-
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twin to validate significantly differentially expressed genes identified in the WLS comparisons, to test 

whether the gene expression changes in acquired obesity were in opposite direction to weight loss.

We also investigated changes in SAT DNA methylation profiles during weight loss. I performed 

differential methylation analyses at three comparisons: short-term, continuous and long-term weight loss, 

to compare methylation levels of individuals at the current time point to an earlier time point. I have used 

the same design matrix as outlined above using the fat percentage as a predictor and normalized 

methylation data as a response variable. R package limma [291] was used to fit probe-wise linear models 

on normalized methylation data and design matrix. In the validation cohort, I used paired moderated t-tests 

to investigate differential methylation between the heavier and the leaner co-twins.

In all the analyses above, raw P-values were derived from moderated t-statistic. Bonferroni correction 

was applied to correct for multiple testing and genes or CpG sites with adjusted P-values <0.05 were 

considered as significant. 

4.5.2 Integrated DNA methylation and gene expression analyses and Replication 
analyses (Study II)

The objective of Study II was to identify concurrently occurring smoking-associated changes in methylome 

and transcriptome of SAT and to test the effects of these identified smoking-associated methylation and 

expression signals on weight gain and adiposity measures. Discovery analysis was performed using 

adipose methylome (450k array) and transcriptome (RNA sequencing) from female twins of the TwinsUK 

cohort (n= 542) [266] by first author, Pei-Chien Tsai. A subset of 345 individuals was used to identify 

differentially expressed genes and methylated sites between current (n=54) and never smokers (n=291) 

using linear mixed-effect regression (LMER) model adjusting for appropriate covariates. 

A subset of TwinFat participants (n=69) was used to replicate the significant methylation associations 

with TFM, VFM and AGR. A LMER model with family structure and zygosity as random effect terms and 

rest of the covariates as fixed effect terms were used to perform replication analyses. Here, fixed effects

terms represent the parameters that are invariant across individuals (i.e. the model holds with respect to all 

individuals in the population of interest) while random effects terms capture the correlation between 

individuals within twin pairs. For each CpG site, a full model that regressed all of the covariates was 

compared to a null model that regressed all the covariates except smoking status. ANOVA F statistic was 

used to compare full and null models.
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Full model:

y

Null model:

4.5.3 Epigenetic Smoking status Estimator (EpiSmokEr) (Study III)

Our objective in Study III was to build a smoking status classifier (EpiSmokEr) using whole-blood 

methylation data to predict smoking status of an individual from his/her methylation profiles. To build the 

smoking status classifier I used the DILGOM dataset, which is representative of the general Finnish 

population with extensive smoking information (including cotinine measurements) and broad age spectrum,

as the training dataset. I used multinomial LASSO regression to identify CpG sites predictive of smoking 

and then tested the performance of our classifier in five independent test datasets. Figure 7 outlines the 

steps involved in training the classifier and also shows how the output (predicted smoking status) is 

generated for user data.

           Fixed Effects                                                                   Random Effects

                         Fixed Effects                                                   Random Effects
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Figure 7: Schematic illustration of the workflow of the smoking status classifier. This figure is 
reproduced from [292] (Bollepalli et al 2019) with permission of Future Medicine Ltd. 
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4.5.3.1 Training the classifier: 

Multinomial LASSO regression 

I used 52421 high-quality CpG probes available from the DILGOM dataset after stringent quality control and 

filtering to perform multinomial LASSO regression using the R package glmnet [293]. I fitted a LASSO-

penalized generalized linear model of the multinomial family, with three categorical variables (smoking 

status: current, former and never) and sex as an additional covariate to select CpGs predictive of smoking 

status. LASSO regression minimizes the residual sum of squares of coefficients by applying L1 norm penalty

and forcing several coefficients to become exactly zero. 

The following is an outline of the multinomial LASSO regression model used in Study III. This outline 

provides a mathematical review of our model for obtaining a parsimonious set of smoking-associated CpGs 

which were then used to build a classifier to predict smoking status (Equations 1 to 4). We represent the 

index of a CpG probe on the 450k array as , subject (sample or individual) as  and quantile normalized 

methylation values on beta scale as . Three levels of smoking status categories are represented as 

= {current, former, never}. In multinomial regression, model fits a linear predictor which is a multinomial 

equivalent to the log odds of logistic regression, i.e., corresponds to the probability for the subject 

for each smoking status assigned by the classifier via the logistic transformation,

    (1)

Here denominator ensures that the sum of the probabilities from the three smoking statuses are 

equivalent to 1.

The linear predictor is given as a linear combination of the fitted model coefficients ,

                                              (2)

Here each CpG probe has three coefficients , corresponding to each smoking status while the three 

intercepts acts as thresholds. The sex coefficient is included as a covariate and is added to the 

intercept if the subject is male and omitted if the subject is female .
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These coefficients were obtained by fitting the LASSO regression model, which maximizes the 

penalized log likelihood as follows:

(3)

Here , represents the penalty term which prevents overfitting by making the fit to select only those 

CpG probes that contribute most to the prediction of smoking status and shrinks the coefficients of rest of 

the probes to zero. I used the “grouped” shrinkage option where the glmnet function links the three 

coefficients (each coefficient corresponding to a smoking status) for a given probe such that they are either 

selected or not selected together.

An optimal value of tuning parameter which regulates the amount of shrinkage was chosen through 

internal cross-validation which is explained below.

Cross-validation

I performed 100 iterations of internal cross-validation on the DILGOM dataset to identify an optimal lambda 

of 0.55 from a sequence of 100 candidate values. In each iteration, the training dataset, DILGOM, was 

randomly subdivided into 90% training and 10% hold-out data. A multinomial LASSO regression model was 

then fitted on the 90% training dataset using the 100 candidate lambda values. For each lambda value, I

then tested the fit of the prediction on the 10% hold-out data to obtain estimated probabilities per each class 

of smoking status. 

I calculated multinomial deviance in each iteration for every as below: 

                                                          

Here the sum runs over the 10% of the hold-out data. is the probability assigned by the classifier to 

the held-out subject using Equation (1), with true smoking status , obtained by using the coefficients 

from the training with the given penalty parameter . I then averaged the deviances for each value over 

the 100 iterations and chose the lambda value with lowest average deviation (between the probability that 

the classifier has assigned and the subject´s original smoking status) as the optimal (here 0.55). I

performed a final fit on the full training dataset (DILGOM) to obtain the non-zero coefficients of 121 CpG 

sites, sex and intercept coefficients. These coefficients were used to build the classifier to predict the 

smoking statuses in the test datasets. 
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4.5.3.2 Testing the classifier: 

Smoking status prediction

To predict the smoking status of a given test dataset using the classifier, the test dataset is first quantile 

normalized reusing the quantiles obtained from the training dataset. Then using the Equation (1), for each 

subject in the test data set, a probability is calculated for each of the three smoking statuses. The smoking 

status category with the highest probability is reported as the predicted smoking status of the individual.

Evaluating the performance of the classifier

I used three independent and external whole-blood test datasets (FTC, CARDIOGENICS and EIRA) to 

evaluate the performance of our classifier. As explained above raw methylation data from these test 

datasets was first quantile normalized using the training dataset quantiles and then smoking statuses were 

predicted using our classifier. 

I also evaluated the performance of our classifier in two additional tissues: buccal tissue and PBMCs, 

to test the broader impact of smoking on methylation across tissues. No additional normalization was 

performed in these two datasets owing to the difference in the tissues. 

I calculated sensitivity and specificity values to assess the accuracy of the predictions from our classifier. 

Owing to the multinomial model with three smoking status categories, I calculated these accuracy estimates 

by comparing one category with the union of the other two categories.

4.5.3.3 Smoking scores (SSc) and methylation scores (MS)

I additionally computed smoking and methylation scores from the two whole-blood test datasets (FTC and 

EIRA) to compare with the performance of our classifier. 

To calculate SSc, test datasets were first normalized using the SQN method and scores were calculated 

as described by the Elliott et al [217], using the methylation values from never smokers of Zeilinger et al

[220] as reference values. 

)

Here index runs over the 187 smoking-associated CpGs from the Zeilinger et al. ‘s Table S2 [220] and 

denotes the SQN normalized methylation value of an individual for CpG site . The reference methylation 

value for CpG site is the median methylation value of never smokers from Zeilinger et al, where the 

methylation values were averaged over discovery and replication cohorts (columns P and S of the Table 

S2).
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The probe weight is obtained as follows:

Here represents median methylation value of current smokers obtained by averaging methylation 

values across discovery and replication cohorts (columns Q and T of their Table S2) [220].

To calculate MS, test datasets were normalized using the ILN method and the methylation values of 4 

CpG probes (cg05575921, cg05951221, cg02451831 and cg06126421) from the test datasets were 

multiplied with their corresponding weights provided in the Figure 4 of Zhang et al [221] and then summed 

up.

I tested multiple threshold values for SSc and MS to compare with our method because the papers on 

SSc and MS did not provide a fixed threshold value to use.

4.5.3.4 Secondary analyses

I used the well-annotated FTC dataset (Table 6) to comprehensively scrutinize the misclassifications of our 

classifier. Here, misclassification refers to the disagreement between self-reported smoking status and 

predicted smoking status from the classifier. Considering self-reported smoking status as the ground truth 

can be counter-productive when unreliable self-reports are used. Therefore, I examined the duration of 

smoking abstinence (years since quitting) and cumulative exposure to smoking (pack-years), the two most 

informative smoking behavior variables to verify the disagreements. I also examined the effects of passive 

smoking on the misclassifications. To specifically understand the misclassifications from the current 

smoking category, I subdivided current smokers into current daily and occasional smokers in the FTC and 

EIRA datasets.

4.5.3.5 Availability and usage of our classifier

Our smoking status classifier, EpiSmokEr, is available as an R package: 

https://github.com/sailalithabollepalli/EpiSmokEr

EpiSmokEr expects methylation data from the 450k arrays as an input, either as raw methylation data 

(IDAT files) or a normalized methylation matrix and a sample sheet with sex information. The normaliseData

function of our package has a suite of customized internal functions for normalizing and calculating beta 

values from the IDAT files. I use functionalities from the minfi package [86] to perform SQN [80] and ILN 

normalization, and I use a custom function to perform QN. The output from the classifier is provided as a 
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label, namely the smoking status category with the highest probability. The output is generated both in 

HTML and CSV file formats and also includes probability estimates for each of the smoking status 

categories. It requires only a few minutes for a typical calculation beginning with the IDAT files to the 

prediction of the smoking status. I also provide the functionality to calculate SSc and MS. 

4.5.4 Correlation analysis between gene expression, DNA methylation and clinical 
measures (Study I)

In Study I, I associated expression and DNA methylation by calculating Pearson correlation coefficients for 

each comparison. In WLS, correlation coefficients were computed for significantly differentially expressed 

genes and the CpG sites within the corresponding genes by using the expression and methylation 

differences within an individual. CpG sites were mapped to corresponding genes using 

IlluminaHumanMethylation450kanno.ilmn12.hg19 annotation file. To validate these correlations in acquired 

obesity I have computed correlations in BMI-discordant MZ twins using within pair expression and 

methylation differences. I also associated gene expression with obesity-related clinical measures by 

correlating intra-individual gene expression differences with the corresponding intra-individual differences 

in clinical measures. Pearson correlation coefficients with P-values below 0.05 after adjusting the false 

discovery rate using the Benjamini-Hochberg procedure were considered as significant.

4.5.5 Pathway Analyses (Study I)

I performed Gene Set Analysis (GSA) [294] on genes from each weight loss comparison in the Study I to 

gain functional insights. GSA enabled us to assess the significance of pre-defined gene sets representing 

Reactome pathways [295] rather than individual genes. We expect that closely related genes with similar 

expression levels belong to a gene set and thereby increase the statistical power by borrowing strength 

across the genes. I performed a two-class paired comparison with 1000 permutations [296] using 526 of 

674 gene sets with a size of 15 to 500 genes. Pathways with FDR adjusted p-values below 0.05 were 

considered as significant.

4.5.6 Covariates

Various study-specific covariates were included in the statistical models to adjust for confounding. In Study 

I, no covariates were included in the statistical models as I performed intra-individual or within-pair (in MZ 

twins) comparisons. In Study II, age, sex, BMI, alcohol, batch effects (plate), family and zygosity structure 

were used as covariates. In Study III, I performed singular value decomposition (SVD) analysis using R 

ChAMP [81] package to test whether the top 20 principal components (PCs) of the DILGOM methylation 

data were associated with the proportions of blood cell subtypes. Only a nominal association was identified 

between PC-2 and CD8+ (cytotoxic) T cells. I have included sex as a covariate in the LASSO model for 

building the classifier owing to the higher global prevalence of smoking in men compared to women. 
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4.6 Ethics permissions and Data availability

All the participants in the Weight Loss Study, FTC and DILGOM/FINRISK have provided written informed 

consent and the studies were designed and carried out following the principles of the Declaration of Helsinki. 

Data collection and ethical permissions were approved by the appropriate ethics committees. All the other 

datasets used in this thesis have obtained permission from their respective ethical boards.

Data used in Study I is available from the Gene Expression Omnibus (GEO) repository under the 

accession numbers GSE103769, GSE68336, and GSE92405. Data from the DILGOM and FTC cohorts can 

be obtained through permission from the corresponding data access committees. Four test datasets used 

in Study III are publicly available from the GEO (EIRA: GSE42861; CARDIOGENICS: GSE50660; Buccal 

dataset: GSE94876; and PBMC dataset: GSE53045).
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5 Results and Discussion 

5.1 Gene expression and DNA methylation changes in adipose tissue during 
weight loss (Study I)

Relentlessly increasing global obesity and its associated co-morbidities are posing a major health-care 

challenge. Losing weight is the primary recommendation to treat obesity-associated diseases. Despite a 

plethora of existing weight-loss interventions, only a few obese individuals succeed to attain and maintain 

long-term weight loss. Consequently, it is crucial to improve our understanding of the underlying genetic 

and epigenetic mechanisms inducing acquired obesity and weight loss, to design efficient long-term weight 

loss strategies.

We performed a one-year weight loss intervention program on 19 healthy obese participants to assess 

longitudinal gene expression and DNA methylation at three time points in the subcutaneous adipose tissue 

(SAT). Participants consumed a hypocaloric diet for the first six weeks, followed by a normal weight loss 

diet in conjunction with counselling sessions and exercise plans. We concurrently analyzed SAT expression 

and methylation to broaden our current knowledge of weight loss mechanism in mildly-obese but clinically 

healthy individuals.

Based on the biopsy collection our study can be divided into three phases: 0, 5 and 12 months. Several 

metabolic and clinical parameters were measured at each time point. Total energy consumption reduced 

by an average of 35.2% over the first 5 months, resulting in a mean weight loss of 11.7 % and a 5 % 

decrease in the mean fat percentage (Appendix I: Supplementary Table 1). Also, several clinical and

metabolic measures considerably altered with weight reduction, suggesting enhanced health status. For 

instance, all fat depots (SAT, VAT and liver fat), waist circumference and LDL cholesterol decreased while 

physical activity and insulin sensitivity increased.

After the fifth month of intervention, participants were categorized into two separate groups based on 

their weight loss trajectory, enabling us to evaluate metabolic parameters, transcriptome and methylome in 

weight losers (WLs, n=6) and weight regainers (WRs, n=13), separately (Figure 8). While WLs continued to 

lose weight, WRs either maintained their weight at the fifth month level or began to regain weight. WLs 

showed a steady decline in BMI, body fatness and waist circumference after the fifth month, as well as an 

increase in HDL-cholesterol (HDL-C) up to the twelfth month (Appendix I: Supplementary Table 1). By the 

end of the study WLs achieved a total weight loss of 17% and a 7.4% decrease in the fat percentage. 

Conversely, at the twelfth month, WRs showed an increase in BMI, body fatness and systolic blood pressure 

and a decrease in insulin sensitivity (Matsuda index) compared to fifth month. Interestingly, there was no 

significant difference in the energy intake between WLs and WRs, although WLs had higher physical activity 

and work index [274] compared to the baseline.
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We profiled SAT transcriptome and methylome at the three time points during the intervention (baseline, 

fifth and twelfth month). With the emergence of two weight loss categories after the fifth month we performed 

three different analyses: short-term weight loss (baseline to fifth month, all participants), continuous weight 

loss (fifth to twelfth month, only in WLs) and long-term weight loss (baseline to twelfth month, only in WLs). 

We identified several differentially expressed genes (DEGs) from these three analyses, however, we did 

not find any significant changes in methylation levels (differential methylation) with genome-wide 

significance. We then used a targeted approach to integrate expression and methylation data by correlating 

significantly differentially expressed genes with their DNA methylation (CpG sites from the respective 

genes). To gain a broader perspective of the results, we also performed pathway analysis using the 

significant genes from each comparison. Furthermore, we used a validation cohort of BMI-discordant MZ 

twins to test the hypothesis whether some of the weight-loss associated genes react in an opposite manner 

in acquired obesity.  

 
Figure 8: A schematic representation of the weight loss study design. Modified from Figure 1 of [297] 
(Bollepalli et al 2018). 

 

A comprehensive overview of main findings from Study I are illustrated in Figure 9 and are explained in 

the following paragraphs. We identified 69 significantly differentially expressed genes (Bonferroni corrected 

P-value <0.05) during short-term weight loss (from baseline to fifth month) in the 19 participants using gene-

wise linear models. Both the most significantly upregulated gene, TMEM100, and the most significantly 

downregulated gene, NQO1, had previously shown the same direction of expression in weight 



Results and Discussion

53

loss [180,298]. While TMEM100 is crucial for vascular integrity [299], NQO1 has been positively associated 

with adiposity, glucose intolerance and obesity-associated metabolic complications [300]. Altogether, short-

term weight loss upregulated genes involved in cholesterol flux (APOE) and downregulated genes involved 

in oxidative stress (NQO1, UCHL1 and CRYAB), adipogenesis (CRYAB, AKR1C2 and ADAM12) and lipid 

metabolism (BHMT2, AKR1C2 and SEPT11). Furthermore, most of the genes identified during short-term 

weight loss have been previously associated with obesity or weight loss [301]. Our findings were further 

strengthened by the opposite direction of regulation in 60 of these 69 weight-loss associated genes in 

acquired obesity observed in the within-pair comparisons of the obesity-discordant MZ twins. Pathway 

analyses revealed enhanced blood HDL-C levels following short-term weight loss, which was evident from 

the improved blood HDL-C levels in the WLs during fifth to twelfth month weight loss. Typically, increased 

levels of HDL-C are regarded as a signature of effective cholesterol efflux transporting cholesterol back 

from peripheral tissues to the liver. Our results are consistent with earlier findings suggesting that weight 

loss results in increased HDL-C levels [180,301,302]. Integrative analyses revealed that methylation at 21 

of 69 genes had significant correlations with gene expression of the corresponding gene indicating the 

potential regulatory impact of DNA methylation on these genes. Moreover, six CpGs in 5 genes (CPXM1,

APOE, COL6A3, SYNPO and VGLL3) that showed positive expression-methylation correlations were 

replicated in the validation cohort of BMI-discordant MZ twins representing acquired obesity.

We next assessed changes in transcriptome during continuous weight loss (fifth to twelfth month) in 

WLs. A total of 5 genes were identified to be differentially expressed, with three upregulated (BCL9,

RPS4XP3 and TUBGCP5) and two downregulated (EGFEM1P and SPON1) genes. Pathway analyses 

showed elevated signalling by insulin receptor which is in line with earlier studies that demonstrated 

improved insulin sensitivity following weight loss [181,301]. Also, three of the five genes showed significant 

expression-methylation correlations.

We identified 35 DEGs (20 downregulated and 15 upregulated) responding to long-term weight loss by 

comparing the baseline to 12 month in the WL group. UCHL1 was the most downregulated gene, and

previously associated with reducing oxidative stress [301] indicating a positive impact of weight loss. 

Pathway analyses of long-term weight loss-associated genes showed a wider impact resulting in several 

pathways related to structural, developmental and metabolic functions of SAT. These included 

downregulation cell cycle control, metabolism of proteins and gene expression pathways and upregulation 

of pathways associated with signal transduction. Of the 35 significant genes, gene expression was 

correlated with methylation at 23 CpG sites corresponding to 16 genes. Both positive and negative 

expression-methylation correlations were observed for the CpGs located in the promoters of the 

corresponding genes. However, for the CpGs located in the gene bodies, only positive correlations were 

observed, except for one CpG site. In the validation cohort of MZ twins, 20 of these 35 genes were 

associated with acquired obesity and five CpGs residing in four genes (MAL2, FAM129A, PPL and 
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PDZRN4) were also replicated. Replication in the validation cohort indicates the opposite direction of 

expression of weight-loss associated genes in acquired obesity. Altogether, 73 of the 99 weight-loss 

associated genes were also associated with acquired obesity suggesting their high responsiveness to 

changes in weight. 

Although we anticipated to observe overlap between genes from various time points, there was no 

overlap between all three time points. This suggests that genes may not react linearly and may return to 

their baseline pre-weight loss function after an initial change in gene expression during weight loss. Notably, 

in both the short-term and long-term weight loss, seven genes (UCHL1, BAG3, TNMD, LEP, BHMT2, 

EPDR1 and OSTM1) were commonly down-regulated. While downregulation of BAG3, an anti-apoptotic 

protein [303] and an indicator of cellular stress [304] may be indicative of reduction in adipocyte size [305]. 

While downregulation of TNMD [306], LEP [301,307,308], BHMT2 [309], EPDR1 [310] and OSTM1 [311] 

have been previously associated with shrinkage of SAT and reduced adipogenesis. 

Figure 9: A schematic representation of the main findings from Study I. 
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Alterations in DNA methylation associated with diet [184] and exercise [60] have been reported earlier. 

We did not observe any genome-wide significant differentially methylated CpG sites during our weight loss 

intervention. However, we have identified several significant correlations between differentially expressed 

genes and CpGs in the corresponding genes. We highlight that six CpGs in 5 genes (CPXM1, APOE,

COL6A3, SYNPO and VGLL3) from short-term weight loss and five CpGs in 4 genes (MAL2, FAM129A,

PPL and PDZRN4) from long-term weight loss which had positive correlation with the expression were also 

replicated in the validation cohort. These results hint that DNA methylation might potentially regulate the 

expression of these genes.

The sample size of 19 individuals is a major limitation of our study, especially subgroup analysis of WLs 

is statistically underpowered to detect modest genome-wide differences in DNA methylation. We also note 

that due to the cellular heterogeneity of SAT, we may not have captured the same cell-type specific signals 

at different time points of the study and our findings may partly reflect changes in the composition of SAT 

during weight loss. In addition to SAT cellular heterogeneity, immune cell infiltration could also impact 

the overall methylation profile of SAT. Also, expression results from subgroup analysis may have false 

negatives when there are small or medium effects. However, we validated many of our results by observing 

opposite direction of gene expression in acquired obesity, and additionally results from our study replicate 

several previously published results indicating the consistency of observed gene expression changes of 

these specific genes during weight loss. We were also successful in controlling for several confounding 

factors by using intra-individual comparisons and a validation cohort of BMI-discordant MZ twin pairs. 

Moreover, our study was performed for a longer duration compared to other weight loss studies, and our 

approach of attaining weight loss through diet and exercise was highly similar to the current practice at

weight loss clinics. Also, our study fills the gap in the existing literature about the weight loss intervention

on healthy obese individuals. Nevertheless, we agree that it is difficult to distinguish between consequences 

and causes in these analyses with this study design; it is indeed likely that most of the changes that we 

observe were consequential to weight loss. However, it is possible that some of the gene expression 

changes are indicators of processes that enable or hinder weight loss or maintenance of weight loss. 

Validation in the twin sample provided additional verification that the genes indeed were responsive to 

weight change. We acknowledge that our results are mainly descriptive and needs further functional 

validation to determine their potential use in clinical setting. However, we believe that the information 

generated in our study serves to improve our basic understanding of weight loss induced changes in SAT 

at multiple time points, and the results from our study pave the way forward to the integrative analysis 

approach by using the information from multiple mechanisms impacting both weight loss and obesity. 
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5.2 Smoking-associated changes in DNA methylation and gene expression 
of adipose tissue and their consequences for metabolic health (Study II)

Smoking profoundly impacts DNA methylation levels and numerous independent studies performed on 

different populations have identified several smoking-associated CpGs in the blood methylome [61,64,216–

218,220–222,224]. As outlined in the section 2.3.3, the relationship between smoking and obesity is highly 

complex, with contradictory findings and limited knowledge about their interaction and co-occurrence. 

Current smokers have lower BMI and higher adiposity than never smokers, and smoking cessation is 

associated with weight gain [245–247,249–251,254,255].

Given the global increase of obesity and harmful risks of smoking, it is imperative to investigate and 

understand the effects of smoking on metabolically relevant tissues. Adipose tissue is not only metabolically 

relevant but it also serves as an ideal tissue to study the impact of smoking on obesity-related metabolic 

diseases and adiposity phenotypes. In this study, we investigated concurrently occurring smoking-

associated changes in methylome and transcriptome of adipose tissue. We further evaluated the role of the 

identified adipose tissue methylation and expression signals in metabolic disease risk phenotypes.

Discovery EWAS and transcriptome wide association study (TWAS) were performed in the TwinsUK 

cohort (n=345) [266] comparing current and never smokers. The EWAS identified 42 significant (at 1% FDR) 

differentially methylated CpGs which mapped to 29 unique genomic regions (28 genes and 1 intergenic 

region). And the TWAS across 17399 genes identified 42 significant DEGs (at 1% FDR). Integrating the 

genome-wide significant results from the above two analyses revealed overlapping signals at five genes 

(AHRR, CYP1A1, CYP1B1, CYTL1, and F2RL3) comprising 14 CpG sites (Figure 10). These CpG sites 

were located at gene body (CYP1B1, AHRR, and F2RL3) and promoter (CYTL1 and CYP1A1).

Of these 5 genes, AHRR and F2RL3 are the most consistently reported smoking-associated signals 

and have been suggested as potential biomarkers to estimate smoking habits (smoking cessation for 

F2RL3) from blood methylome [216,222,241,242]. CYP1A1, a lung cancer susceptibility gene, is the most 

differentially expressed gene in this study with differentially methylated signals at the promoter region. 

Previously promoter methylation of CYP1A1 has been associated with smoking in lung tumor tissue [312]

and placenta [313]. In current smokers, all these five genes were upregulated and a majority of the CpG 

sites (93%) were hypomethylated compared to never smokers. This clear pattern of negative correlations 

observed between methylation and expression (at these five genes) implies regulatory effects. This is in line 

with the well-established gene expression control by promoter- based methylation (promoter 

hypermethylation) for CpG sites in CYTL1 and CYP1A1. However, the observed negative correlation 

between methylation and expression for the other three CpG sites located in the gene body is not unusual. 

Both positive and negative correlations between methylation and expression for CpGs in gene body have 

been reported earlier [314,315]. CpG sites in the gene body that are negatively associated with expression 
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levels could be located in alternative promoters that regulate the expression of particular isoforms or in 

intragenic CpG islands influencing enhancer loci, specifically enriched within large first introns [54].

To characterize the widespread effects of smoking on metabolic health, three metabolic disease risk 

measures (total fat mass [TFM], android-to-gynoid fat ratio [AGR] and visceral fat mass [VFM]) were 

assessed with respect to the identified smoking-associated methylation and expression signals. Figure 10 

illustrates the discovery and replication analyses performed to associate smoking-associated methylation 

signals and adiposity measures. Methylation levels at the 42 genome-wide significant CpG sites from the

discovery EWAS were tested for association with the three metabolic health traits (adiposity phenotypes) 

using 288 individuals (42 current and 246 never smokers, mean BMI = 26.70 ± 4.62) adjusting for BMI and 

smoking. Significant associations were identified for three CpG sites in CYP1A1 with VFM and AGR. To 

elaborate, cg23160522 (beta = 1.35 × 10−3, SE = 3.03 × 10−3, P = 4.35 × 10−7) and cg23680900 

(beta = − 1.59, SE = 0.44, P = 6.58 × 10−6) were independently and significantly associated with VFM and 

AGR, respectively. Interestingly, cg10009577 located in the CYP1A1 promoter, showed an interaction effect 

with AGR (P = 5.50 × 10−4) exhibiting different patterns of association in current and never smokers. 

Moreover, a significant inverse association was identified for NOTCH1 (cg14120703) and AGR 

(beta = − 1.80, SE = 0.43, P = 1.07 × 10−7). A subset of younger Finnish twins (n=69, 21 current smokers) 

was used to replicate the methylation associations with metabolic risk factors. The overall inverse

association between cg10009577 (CYP1A1) and AGR (discovery sample beta = − 0.95, SE = 0.31; 

replication sample beta = − 0.58, SE = 0.25, P = 0.02) and direction of interaction effects remained 

consistent, however, the replication signal did not reach statistical significance. Expression levels of F2RL3

showed significant association with all the three risk factors (VFM beta = − 1.5 × 10−3, SE = 3.78 × 10−4,

P = 7.8 × 10−4; AGR beta = 2.3, SE = 0.56, P = 4.5 × 10−5; TFM beta = 1.6 × 10−3, SE = 3.9 × 10−4,

P = 5.8 × 10−5). OR51E1 expression was significantly associated with VFM (beta = − 1.5 × 10−3,

SE = 3.78 × 10−4, P = 7.8 × 10−4) and AGR (beta = − 2.85, SE = 0.51, P = 3.1 × 10−8). These significant 

associations reveal the broader impacts of smoking on metabolic health.
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Figure 10: An overview of discovery and replication analyses performed in Study II. DMS: differentially 

methylated signal; DEG: differentially expressed gene. Modified from Figure 1 of [316] (Tsai P-C et al 2018). 

To test the effects of smoking-associated methylation and expression signals on weight gain and 

adiposity measures, 248 individuals comprising current, former and never smokers were used. Phenotype 

differences observed between the two-time points separated by 5-year time interval were correlated with 

the methylation and expression levels measured at the initial time point. After a 5-year interval, current 

smokers who quit smoking by time point two and recent quitters (< 4 years) at time point one showed higher 

levels of adiposity measures. However, this increase seems transient as this effect was not observed in 

former smokers with higher cessation time (> 5 years) at the initial time point. To explore these associations 

further smoking-associated methylation and expression signals were used to predict future changes in 

adiposity, specifically in visceral fat accumulation, upon smoking cessation. Visceral fat is a major risk factor 

for metabolic diseases and has been strongly associated with type 2 diabetes and cardiovascular disease 

[122,317]. Two significant signals predictive of future gain in visceral fat were identified for individuals who 

were current smokers (n=5) or recent quitters (n=13, < 4 years) at time point one, who later quit smoking or 

continued abstention at time point two. Methylation levels of these current smokers or recent quitters at 

cg16320419 in BHLHE40 (by group interaction term P = 9.3 × 10−4) explained 35.5% of the variation in future 

gain in visceral fat. Similarly, expression levels of AHRR (by group interaction term P = 4.7 × 10−5) in these 
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current smokers or recent quitters explained 44% of the variation in future gain in visceral fat. While these 

associations indicate a potential impact of environment-mediated molecular mechanisms on metabolic 

disease risk, replication of these results in a larger sample will enable to make further conclusions. Although 

correcting for cell composition [93] did not alter the identified associations, usage of adipose tissue data in 

this study might have identified signals that reflect cell-type specific methylation profiles. Also, infiltration of 

inflammatory immune cells specifically during obese state could affect the overall methylation profiles of 

SAT.  Technical factors such as the procedure used to retrieve SAT (e.g. surgical biopsy), sample handling 

and blood cell contamination during SAT acquisition could also influence SAT biopsy composition [318].

This was the first study to comprehensively assess the coordinated changes occurring in the adipose 

tissue methylome and transcriptome due to smoking and is of great relevance to public health. Several 

smoking-associated methylation and expression signals were identified indicating a substantial impact of 

smoking on adipose tissue. Some of these signals were also associated with metabolic health risk factors 

highlighting the widespread effects of smoking and importance of understanding common basis of smoking 

and adiposity.
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5.3 EpiSmokEr: a robust DNA-methylation based smoking status classifier 
(Study III)

Epigenetic modifications, especially DNA methylation have been extensively reported to be influenced by 

environmental exposures. Smoking strongly influences methylation with current and never smokers 

exhibiting distinct methylation profiles [61,64,216,217,219–222]. Notably, two studies attempted to quantify 

methylation at smoking-responsive CpGs into a score that reflects smoking behavior [217,221]. However,

these score-based approaches are not ideal for predictive purposes as a threshold cut-off value specific to 

each dataset needs to be determined by the user. For instance, the smoking score (SSc) of Elliott et al [217]

uses ethnic-specific threshold values to differentiate smokers from never smokers, limiting its universal 

applicability, while methylation score (MS) of Zhang et al [221] can only perform binary comparisons i.e. 

current vs never and former vs never smokers.

To advance the practical applicability of the smoking-associated methylation signals, we proposed a 

classifier with an emphasis on smoking status prediction. We have implemented multinomial least absolute 

shrinkage and selection operator (LASSO) regression on whole blood-derived 450K methylation data from 

an adult population with a wide age spectrum. We have considered three smoking statuses, current, former 

and never smokers, to build the classifier. We have demonstrated the accuracy of our classifier in three 

independent whole blood datasets. We have developed an R package EpiSmokEr (Epigenetic Smoking 

status Estimator) with functionalities to start from raw intensity files (IDAT), followed by quantile 

normalization and smoking status prediction. The R package also provides functions to calculate the SSc 

by Elliott et al [217] and MS by Zhang et al [221].

Our objective was to build a classifier to predict the smoking status of a person based on their DNA 

methylation profile. We have used whole blood methylation data from the DILGOM cohort [269,270] to train 

our classifier. DILGOM is representative of the general Finnish adult population with a wide range of age 

distribution and well-characterized smoking status information. We considered current smokers (occasional 

to heavy smokers), former smokers (recent quitters [>1 year] to long-term quitters) and never smokers for 

training the smoking status classifier (Tables 5 and 6). To ensure the usage of high-quality data to train the 

classifier and limit misclassification, self-reported smoking status was verified with cotinine measures 

whenever data was available. Multinomial LASSO regression with nested cross-validation was performed 

to select a parsimonious set of 121 CpG sites predictive of smoking status (Figure 7).

To assess the performance of our classifier we used three external test datasets: FTC [259], EIRA [59]

and CARDIOGENICS [61] from different populations, from which we calculated sensitivity and specificity to 

quantify the performance of our classifier. These values were calculated for each smoking category by 

comparing the one versus the union of the other two categories. Results indicated that on average current 

smokers were identified with a sensitivity of 81% and a specificity of 85% across the three test datasets,
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whereas never smokers were identified with 94% sensitivity and 57% specificity. Lower sensitivity values 

were identified for former smokers averaging to 18% across the test datasets. However, a higher average

specificity of 96% was shown by the classifier demonstrating its ability to correctly identify individuals who 

did not belong to the former smoker category.

Owing to the differences in outputs we could not comprehensively compare our classifier with SSc and 

MS. However, we calculated sensitivity and specificity from the other two methods to make a fair 

comparison. We tested multiple threshold values for SSc and MS to compare with our classifier. A threshold 

value of zero for SSc showed good sensitivity to identify current smokers from other smoking status 

categories. For MS a threshold value of -7.5 achieved an average sensitivity of 85% and a specificity of 

68% to identify current smokers from never smokers. However, we could not determine a single threshold 

value of MS that could discriminate former from never smokers with reasonable accuracy across all test 

datasets. We note that this process of determining a threshold value for each test dataset in itself is a serious 

limitation. We demonstrated this limitation by trying to compute a threshold to calculate sensitivity and 

specificity for MS and SSc. This also presents a difficulty in interpreting the meaning of the score when 

dealing with individual samples, as there is no comparable threshold or reference value to determine the 

sample’s smoking status. Additionally, the SSc European ethnic threshold 17.75 was not applicable to any 

of the test datasets highlighting that this threshold might be dataset-specific, which cannot be generalized 

to other datasets. We curtail the need of determining the threshold by user as our classifier uses an implicit 

threshold and determines the smoking status category. 

For instance, figures 11A and 11B illustrate that the SSc and MS respectively showed overlapping 

profiles for different smoking statuses and thus failed to achieve clear classification. Also, the European 

ethnic smoking score threshold of 17.55 proposed by Elliott et al [217] was not applicable, as only two 

individuals were identified as current smokers based on this threshold. Figure 11C shows the results from 

our classifier as a confusion matrix with actual self-reported smoking statuses on the X-axis and the 

predicted smoking statuses on the Y-axis.
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Figure 11: Results from three DNA-methylation based smoking status estimation approaches from the FTC 
dataset. Modified from Figure 3 of [292] (Bollepalli et al 2019) with permission of Future Medicine Ltd. 

We also observed that in addition to the differences in the approaches to predict smoking status all the 

three methods also differ in training schemes and normalization methods. The training dataset used by SSc 

contained only 95 men with 16 heavy smokers while the training data used to develop MS was composed 

of older age (50-75) individuals. Using only heavy smokers could have resulted in the higher sensitivity and 

specificity values of SSc in discriminating current smokers from others. We used a cotinine verified training 

dataset with a broad age spectrum including both men and women and used multinomial LASSO with cross 

validation to train our classifier by limiting biases and overfitting. In summary, our classifier performed well 

across all the test datasets in identifying current and never smokers and showed moderate to marginal 

performance in identifying self-reported former smokers. MS showed good performance for the binary 

classification of distinguishing current smokers from never smokers.  

We next focused on understanding specifically the misclassifications from our classifier using FTC and 

EIRA datasets. In this context, misclassification refers to disagreement between self-reported smoking 

status and predicted smoking status from the classifier. We have used self-reported smoking status as the 

ground truth to evaluate the classifier’s performance. However, using less reliable self-reports as a ground 

truth is counterproductive and results in decreased accuracy estimates of the classifier. Therefore, we used 

extensive smoking information available from FTC and EIRA to understand the results more thoroughly. 

First, we wanted to comprehend the misclassifications observed in current smoker category. In both these 

datasets current smoking category could be further divided into current daily and occasional smokers. When 

we used occasional smokers as a separate category, we observed that majority of the misclassifications is 



Results and Discussion

63

because of occasional smokers being identified as either never or former smokers. Of the 66 occasional 

smokers in the EIRA dataset, 53 were predicted as never smokers and six as former smokers by the 

classifier. Consequently, the exclusion of occasional smokers has improved the sensitivity values of current 

smokers in this dataset from 69% to 88%. This highlights the effect of including occasional smokers along 

with current daily smokers on the ostensible performance of the classifier. This misclassification can be 

attributed to similarity in methylation profiles of occasional smokers to never and former smokers based on 

the extent and intensity or frequency of smoking, which also reflects in the results of our classifier.

Next we focused on understanding misclassifications observed in the former smokers category by using 

the comprehensive smoking behavior information from the FTC dataset. The former smokers class in the 

FTC had a high misclassification rate where a majority of former smokers (n=101) were predicted as never 

smokers. We noticed that 85 out of the 101 individuals had quit smoking for more than 10 years prior to 

blood sampling (Figure 12). This is line with results from earlier studies where the former smokers showed 

highly similar profiles to never smokers [61,64,216,217,219,220]. Interestingly, nine of the former smokers 

who were predicted as current smokers had recently quit smoking and had higher mean pack-years than 

other former smokers. While these results appear to be misclassifications compared to self-reported 

smoking status, they are biologically meaningful as they indicate the reversal in the methylation patterns of 

former smokers after cessation of smoking, which after a long period of cessation are indistinguishable from 

never smokers. Several studies have already shown that the methylation profiles of former smokers may 

resemble current or never smokers based on the total abstinence time between cessation and sampling 

[216,219,222–224], and the extent [219] and the duration they have smoked before cessation (pack-year 

history). Although the magnitude or extent of this reversal varies, a typical abstinence period of more than 

ten years is likely to reverse the methylation pattern of former smokers making them very similar to never 

smokers. However, this reversal of methylation levels may also be site-specific, as it has been shown that 

methylation levels at certain CpG sites remained unchanged even after decades of cessation [61,219,220].
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Figure 12: Illustration of results from the classifier with respect to cessation time (years since quitting) and 
extent of smoking (pack years) of the self-reported former smokers in the FTC dataset. Modified from Figure 
4 of [292] (Bollepalli et al 2019) with permission of Future Medicine Ltd. 

Besides active smoking, to some extent every class of smokers in the FTC were also exposed to passive 

(second-hand) smoking. We also observed that some individuals have been exposed to both active and 

passive smoking for longer duration. Also, intrauterine exposure to smoking can also impact the methylation 

levels of never smokers [233]. Although results from our classifier reflect the cumulative exposure to 

smoking, it is difficult to delineate the extent of passive smoking that resulted in changes in the levels of 

methylation.  

In addition to the transient nature of DNA methylation that resulted in biologically relevant and 

meaningful discrepancies between self-reported and predicted smoking status, I briefly discuss here other 

factors that may have led to misclassifications. Typically, accuracy estimates are calculated by comparing 

the self-reported smoking status with the smoking status predicted by the classifier. However, the self-
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reported smoking status is prone to errors due to misreporting and poor recall of long-term smoking history 

[239]. Accuracy estimates are therefore affected by the reliability of the test dataset’s smoking status 

information. Generally, the classification methods are based on the premise of independence (mutually 

exclusive) that each smoking status category has a distinctive methylation profile without overlapping with 

other categories. However, this assumption is not true for smoking-associated methylation profiles (i.e. 

overlap in methylation profiles between different categories of smoking) and smoking behavior in general. 

Accuracy of the classifier can also be affected by the presence of SNPs in close proximity to smoking-

associated CpG sites [319].

To evaluate our classifier's efficiency in tissues other than blood we used methylation data from buccal 

tissue [272] and peripheral mononuclear blood cells (PBMCs) [273]. In the buccal tissue dataset current

smokers were detected with 95% sensitivity 97% specificity. This dataset had two categories namely 

"tobacco smoker" and "non-tobacco smoker" based on the self-reported smoking status. However, 15 of 

the non-tobacco smokers were identified as former smokers by our classifier. This result is consistent with 

the definition of non-tobacco smoker [272] used in this cohort (Table 6), that is individuals who have been 

abstinent from tobacco or nicotine-containing products for at least 5 years. The good performance of our 

whole blood trained classifier on the buccal tissue data was surprising owing to the tissue-specific nature of 

DNA methylation. However, a similar result was observed when a smoking index developed using blood-

derived smoking-associated CpGs showed a good discrimination of smokers from non-smokers in the same 

dataset [320,321]. We have also observed a good performance in the PBMC dataset and the results are 

reassuring as PBMCs are extracted from whole blood. These results indicate a broader impact of smoking 

on methylome spanning across multiple tissues. Additionally, these two datasets allowed us to demonstrate 

global applicability of our classifier as these datasets comprised individuals of African-American ethnicity. 

However, to confirm the cross-tissue performance of our classifier further testing in multiple tissues is 

needed.

Our classifier is publicly available as an R package, EpiSmokEr (Epigenetic Smoking Status Estimator)

and expects raw (IDAT) or normalized methylation data from the 450K array along with sex information as 

an input. The package vignette provides extensive documentation with examples and has been already 

tested on multiple datasets with sample size ranging from 400 to 700. It only takes a few minutes to estimate 

smoking status starting with the IDAT files. We also provide functionality for SSc and MS approaches 

offering users with a choice for their analysis. Our classifier offers an objective smoking status measure and 

is applicable to all datasets, reducing the need for population or ethnic-specific thresholds to be calculated. 

Predicted smoking status from our classifier is beneficial when self-reported smoking status is unavailable 

or highly inaccurate and can also reduce misreporting bias by validating self-reported smoking information. 

Also, the predicted smoking status can be used as a covariate in association analyses like EWAS and 

GWAS to account for smoking-associated confounding.
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Typically, the predictive performance of a classifier can be influenced by the quality of the training 

dataset used to train the classifier. We have minimized this limitation by using a high-quality dataset with 

reliable self-reported smoking status data verified by multiple measures. Considering the complex nature of 

former smoker class it may remain as a challenge for methylation-based prediction algorithms to achieve a 

higher accuracy in this category. However, results from our classifier reflect the effect of smoking on DNA 

methylation and potential functional impacts on the genome which are clinically and biologically significant. 

Although our classifier is trained using the Infinium HumanMethylation450 BeadChip data, our approach 

can be re-implemented on the EPIC BeadChip array data to build a classifier specific to EPIC derived data.

In this study, we developed a robust smoking status predictor based on DNA methylation which provides 

an objective measure of smoking status. Our classifier considers three classes of smoking status and can 

be applied to any dataset. We also performed extensive phenotypic evaluation to examine the reasons for 

misclassification. By using our R package, EpiSmokEr, users can implement our classifier to predict 

smoking status in their own datasets. In conclusion, methylation-based smoking status predictors are more 

robust than existing traditional biomarkers with shorter half-lives. Therefore, we recommend using predicted 

smoking status from our classifier as a covariate to adjust for smoking-associated confounding rather than 

self-reported smoking status.
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6 Implications and Future Directions

We have come a long way in our understanding of the molecular basis of complex diseases in the last two

decades. With the rapid progress and advances in technology and increased affordability, we have moved 

from the candidate gene approach to genome-wide studies. GWASs have identified hundreds of significant 

associations between genomic regions and diseases, improving our understanding of the 

genetic architecture of complex diseases. However, a majority of the identified genetic variants exhibit 

smaller effect sizes, explaining only a smaller proportion of total heritability. Moreover, most of these 

identified variants reside in non-coding regions of the genome posing a challenge to understand their effects 

on gene regulation and disease mechanism. Larger sample sizes and better phenotyping as well as using

uncommon and rare variants with whole genome and exome approaches can address these challenges.

Epigenetic mechanisms serve as a key nexus between genetic and non-genetic factors that can 

regulate gene expression profiles and subsequent susceptibility to a complex disease or trait. Akin to 

GWAS, EWASs have enabled the identification of several disease-associated methylation sites. Both 

GWAS and EWAS require large sample sizes owing to the multiple testing problem to identify statistically 

significant associations, specifically to detect associations with smaller effect sizes. Although sample sizes

used in Study II and III were modest, we had sufficient power to identify large effects. However, Study I 

used a smaller sample size, and specifically the subgroup analysis was underpowered to identify modest 

differences in DNAm. While a larger sample size could potentially identify additional associations, for 

practical reasons, it is difficult to recruit participants who attend interventions for a longer duration. 

Comparatively, our study was performed for a longer duration than other weight loss studies that 

investigated genome-wide methylome and/or transcriptome of SAT. Moreover, we validated results from 

transcriptomic analysis using a validation cohort representing acquired obesity, showing the opposite 

direction of gene expression in obesity compared to weight loss. Also, we replicated several previously 

reported findings indicating the consistency of observed gene expression changes at specific genes during 

weight loss. Furthermore, identified DNAm differences usually show modest effect sizes, therefore it is 

necessary to appropriately adjust for potential biological and technical confounding factors to identify these 

modest associations. Age, BMI and smoking are included as covariates in EWAS owing to their well-

established impact on DNA methylation patterns. Also, covariates such as batch, sample plate, microarray 

slide are usually included in the association studies to account for technical variation. Additionally, 

techniques like PCA and SVD are also being employed to check and account for the unknown sources of 

variation.

Performing EWAS and interpretation of its results include additional challenges compared to GWAS. 

First, the dynamic nature of epigenetic modifications necessitates sample collection at the time of exposure

or at a specific time point based on the study hypothesis. Second, the tissue-specific nature of epigenetic 
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marks requires sampling of relevant tissues. Ideally, tissues that are directly affected by the disease or 

mediating the disease outcomes need to be studied. However, due to easy availability, whole blood is the 

most widely used tissue in EWAS. Additionally, buccal cells, saliva, hair follicles, and urine [91] have also

been considered as good surrogate tissues for tissues that are challenging to sample (e.g. brain). In addition 

to inter-individual variation, the dynamic nature of the epigenetic marks results in both spatial and temporal 

intra-individual variability. That is variation in epigenetic profiles across the tissues and variation in 

epigenetic profiles of the same tissue with time within an individual. Hence, multiple measurements over 

time might be needed to test their association with a phenotype. For instance, in Study I to capture the 

DNAm changes with respect to weight loss trajectory we have collected SAT biopsies at three-time points. 

Third, using a tissue composed of different mixture of cells might lead to spurious associations, as the 

DNAm variation captured often reflects the variation in the cellular composition that occurred as a 

consequence of disease or sample collection. Currently, histological quantification of cell proportions and 

employing cell-type deconvolution methods are the common practices to correct for the cellular 

heterogeneity confounding. Preferably, using single-cell types would minimize cellular heterogeneity, 

although the extent of this minimization depends on the purity of the cell samples. Single-cell RNA 

sequencing (scRNA-seq) could serve as a useful approach to identify, discriminate and quantify cell 

subtypes, especially in the tissues where the cell subtypes are not yet well studied [26]. scRNA-seq can be 

performed on a subset of samples to quantify cell subtypes and their corresponding gene expression profiles 

in a tissue, which can then be used to estimate the cell-type composition of the remaining set of larger 

samples with bulk RNA sequencing data [26].

Although DNAm and gene transcription profiles are tissue-specific, some of the trait-associated DNAm 

changes exhibit tissue-shared effects. For example, several smoking-associated DNAm changes identified 

in SAT in Study II overlapped with previously reported smoking EWAS hits in whole blood. The smoking 

status classifier developed in Study III was trained using whole blood data. However, it has shown good 

predictability in buccal tissue samples. A previous study reported a similar observation of overlap in 

smoking-associated methylation signals in buccal samples and whole blood [322]. This indicates that 

complex traits like smoking leaves wide-spread effects on methylation at certain CpGs across tissues, 

resulting in tissue-shared effects.

In addition to timing and sample collection, study design determines the direction of interpretation of 

results. It is important to identify disease-associated DNAm variants, however, it is crucial to identify causal 

DNAm variants to understand disease etiology. Establishing causality is more challenging in EWAS, as the 

observed DNAm alterations could be causal, consequential or even confounding. Longitudinal cohorts 

following disease-free individuals from birth are ideal study designs to establish causality of epigenetic 

marks. However, these cohorts are very difficult to establish and follow-up. For example, Study I used a 

longitudinal sample of 19 individuals with tissue samples, phenotype, and clinical assessments at three time 
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points during a one year weight loss intervention. Therefore, it is likely that the observed gene expression

and DNAm differences between the time points are due to weight change. However, we cannot definitely 

determine the causality of the identified changes. From a practical perspective, it is difficult to perform 

intervention studies for a longer duration, or to follow-up individuals for their lifetime, although they would 

be the best for understanding the etiology of complex traits and the corresponding role of epigenetic 

modifications.

MZ twin pairs with divergent phenotypes are also valuable to study epigenetic associations, as within-

pair comparisons control for age, sex, genetic and early environment confounding. However, discordant MZ 

twin pairs are very rare, and it is difficult to establish a large cohort of this nature. MZ twin pairs discordant 

for BMI were used as a validation cohort in Study I to verify the direction of expression of weight loss-

associated genes in obesity. This study design was appropriate as it not only captured weight-loss 

associated gene expression using intra-individual comparison but also simultaneously verified the findings 

by within-pair comparison of MZ twins discordant for BMI, as a model for acquired obesity. Nevertheless, it 

is difficult to distinguish if the observed gene expression or DNA methylation associations are causal or 

consequential of weight loss and obesity with this study design; it is indeed likely that many of the 

associations that we observe are due to body fatness or BMI. However, some of the gene expression

changes may be indicators of processes that enable or hinder weight loss or maintain it. Furthermore, it is 

necessary to verify whether the changes observed in gene expression are also translated to corresponding 

protein levels. 

Regarding DNAm and expression changes, efforts are clearly needed to collect large samples followed 

for a longer duration to determine the direction of effect of DNAm in gene expression and complex diseases 

like obesity, especially to establish causality. Alternatively, statistical techniques like Mendelian

randomization (MR) and causal inference test can be used to assess the directionality of DNAm and to infer 

causality by combining genetic and epigenetic data. However, care should be taken to model the complex 

biological data with regard to the underlying assumptions of these statistical models. For instance, a two-

step epigenetic Mendelian randomization strategy has been proposed to establish the causal relationships 

between environmental exposure, epigenetic signature (e.g. DNAm) and outcome [323]. In Step 1, the 

causal impact of exposure on the epigenetic signature is established using an SNP as a proxy for the 

exposure. In Step 2, the causal nature of the epigenetic signature on the outcome is interrogated using a 

genetic proxy for the epigenetic signature. In addition to the requirement of large sample sizes and satisfying 

the conventional MR assumptions, the epigenetic MR strategy faces the additional challenge of tissue 

specificity and availability of genetic variants that can be used as a proxy for epigenetic signature (e.g. cis-

acting SNP can be used as a proxy for DNAm levels). Furthermore, statistically identified causal 

relationships need to be functionally validated (e.g. with functional laboratory tests on cell lines or animal 

models) to determine the causal effect of DNAm or gene expression in the corresponding phenotype.
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By comprehensively understanding the human genome and the biological layers of information it 

encodes, we will gain a holistic understanding of biological processes and mechanisms associated with 

disease phenotypes. In this thesis, only DNAm and transcriptomic data were integrated identifying potential 

role of DNAm in gene regulation. Combining other informative layers like genotype, proteome, metabolome, 

and gut microbiome in the analysis would ideally reveal the complex interactions among these layers in 

relation to disease pathogenesis. Integrating multiple omics data also unravels the reasons for inter-

individual epigenetic variation. For instance, recent mQTL studies [2,58,324,325] revealed the influence of 

genetic variants on methylation at several CpGs, acting both in cis and trans fashion. In fact, a second-

generation EWAS approach was proposed to constitute a necessary panel of multiple complementary 

genome-wide assays (WGBS, ATAC-seq, RNA-seq, scRNA-seq, and genotyping), enabling multi-

perspective interpretation of results [26]. Although DNAm as 5mC is widely studied because of its stability,

easy access, and affordable technology to measure it, other forms of cytosine modifications (e.g. 5hmC, 

5fC, and 5caC) also need to be investigated to understand their role in disease and development, although 

their quantification requires additional steps compared to 5mC [326]. Besides, existing array-based 

technologies mainly measure DNAm in the CpG context. However, it is also crucial to assess and 

understand the role of DNAm in the non-CpG (CpH; H=A, C, or T) context to enhance our understanding 

related to development and disease. It is also vital to understand the role of histone modifications and 

ncRNAs to comprehensively understand the contribution of the epigenome to disease mechanism. 

However, comprehensive investigation of all the epigenetic measures is expensive as all the measures 

need to be captured simultaneously. Additionally, efficient computational and statistical methods are crucial 

to successfully integrate and interpret multiple genetic and epigenetic layers. 
In GWAS identifying causal variants is more important than inferred or associated variants, as causal 

variants help to identify drug targets to treat a disease. Similarly, identifying causal epigenetic variants is of 

high importance, and epigenetic variants serve as ideal drug targets because of their reversible nature. 

However, most of the identified DNAm variants so far are shown to be consequential in nature to disease

outcomes. Independent of being causal or consequential, dynamic nature of epigenetic marks makes them 

ideal biomarkers indicating the onset or progress of the disease, or exposure. Currently available and 

frequently used assays measuring absolute DNAm at single-CpG resolution (e.g. 450k array) are robust to 

replicate DNAm differences identified in large cohorts, and therefore have the potential to detect DNAm 

biomarkers [327]. In Study III we built a classifier to predict smoking status based on DNA methylation 

profiles. We identified smoking-associated CpGs using penalized regression to serve as predictors. Given 

the cross-sectional nature of the study, we cannot determine the causality, but nevertheless these smoking-

associated CpG sites are valuable to identify DNAm patterns to distinguish smoking status categories.

Furthermore, we showed that smoking status estimated using DNAm profiles is biologically relevant and 

more reliable than smoking status based on questionnaires. Our classifier is provided as an R package 
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enabling identification of smoking status in future studies and can be used in preclinical settings to screen 

the impact of smoking on methylation profiles of patients. However, the development of a biomarker panel 

using smoking-associated CpGs would perhaps be more cost-efficient and better suited for clinical 

purposes.

Although microarray technology (450k and EPIC) allows a cost-effective investigation of genome-wide 

DNA methylation, they only cover a fraction of the 28 million known genomic CpG sites. Therefore, 

affordable sequencing technologies are necessary to unravel the complete potential of DNAm in disease 

mechanisms. Furthermore, developments in statistical methods are needed to enable efficient integration 

of data across platforms and multiple omics. Machine learning and artificial intelligence are revolutionizing 

several fields including biomedicine. Deep learning, a subfield of machine learning, is showing exceptional 

results in image and speech recognition settings. However, larger and well-annotated samples are needed 

to apply deep learning algorithms to biological settings. In Study III we achieved this by using detailed 

smoking-behavior specific questions and by validating self-reported smoking status with cotinine to filter the 

training data. Additionally, independent test datasets are also required to test the performance of predictors. 

The requirement of large datasets can be partly achieved through publicly sharing data in databases like 

GEO and by collaborative efforts such as ENCODE and IHEC. However, privacy regulations such as the 

General Data Protection Regulation (GDPR) limit the extent of this sharing in public domain. For instance, 

only three whole blood 450k datasets were available from GEO (as of September 2018) with smoking 

behaviour (e.g. self-reported smoking status) and sex information to test the performance of our classifier

in Study III. Fortunately, an increasing number of biobanks with new laws in place (e.g. Finnish biobank act 

2013) are making huge datasets available for research.

Studies in this thesis focused mainly on obesity and smoking. Both obesity and smoking are associated 

with complex interactions among genetic, epigenetic and environmental factors. Despite several campaigns 

and policies to treat and prevent obesity, there is still a need for more efficient and implementable strategies 

to combat obesity [328–330]. The prevalence of smoking has reduced in developed countries because of 

strict policies and taxation, however, increased prevalence is observed in developing and under-developed 

countries [190,191]. Thus, there is a crucial need to strengthen translational research strategies with the 

potential to implement promising novel findings directly to clinical practice to treat obesity and smoking.

Developing drugs and therapies targeting the reversible epigenetic marks is certainly an avenue to consider

and explore.

After a decade of GWAS, we are still in infancy to use causal GWAS hits in a clinical setting, and a

similar trajectory is also expected with epigenetic variants. In addition to the biological hypothesis, EWAS 

should define possible cellular epigenetic models which are thought to mediate the phenotypic changes, 

which can then be tested by designing appropriate molecular studies [26]. To determine and establish 

causality of the identified genetic and epigenetic variants, functional laboratory experiments are needed.
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Recently, it has been suggested to test the functional value of identified epigenetic associations through 

epigenetic editing using CRISPR toolbox [331–334]. Epigenetic biomarkers can be considered 

advantageous over genetic markers as they can capture environmental and lifestyle factors impacting 

disease. Notably, DNAm-based biomarkers are more stable than RNA-based tests and can be detected in 

all genomic contexts i.e. not limited to coding regions. However, the cell-type-specific nature of epigenetic 

marks, and costs associated with screening, still pose limitations. Epidrugs target specific epigenomes with 

disrupted epigenetic signalling, and reverse the aberrations at the target to restore the signalling. Several 

epidrugs are already used in clinics, for instance, DNA methyltransferase inhibitor (DNMTi) and histone 

deacetylase inhibitor (HDACi) drugs are approved for treating hematological malignancies [331]. However, 

there are certain limitations associated with the epidrugs (e.g. lack of specificity), and further research is 

needed to overcome the current limitations. Another important aspect of epigenetic findings pertains to 

sharing the results to participants. As the epigenetic marks reflect the impact of genetic and non-genetic 

factors, results may have to be shared with participants and other concerned individuals (e.g. sharing the 

same environment). Also, epigenetic information may not be covered under existing genetic non-

discrimination laws, as these laws are specific to “genetic characteristics” and might result in decreased 

participation of individuals in studies [335]. Therefore, new laws should be enacted specifically covering 

epigenetic data. In summary, there are certainly several challenges to be met in future research to tailor 

personalized medicine which can target inter-individual variability in disease, and epigenetic markers will be 

vital in achieving these goals.
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7 Conclusions

Each of us are unique owing to the complex interplay of inherited genetic factors and experienced 

environmental stimuli. Even MZ twins with identical genotype can exhibit phenotypic divergence with their 

co-twin as a response to environmental and stochastic factors. By understanding inter-individual variability

we can assess an individual’s risk for developing a disease and response to treatment. Epigenetic 

mechanisms, specifically DNA methylation has been shown to contribute to human variation by acting as 

an additional layer of gene regulation. Integration of multiple layers of omics data is essential to uncover the 

mechanisms behind complex phenotypes like obesity and smoking, and to design effective and efficient 

treatments. This thesis focused on integrating transcriptomic and DNA methylation data to understand the 

regulatory mechanisms in obesity and smoking by employing appropriate study designs and statistical 

methods.

In Study I, we aimed to understand the temporal changes in expression and methylation profiles of 

adipose tissue during weight loss. We also integrated gene expression data and methylation profiles, to

obtain a holistic view on the impact of methylation on gene expression and thereby weight loss. Both short-

and long-term weight loss resulted in several differentially expressed genes, with significant correlations 

with methylation levels in the respective genes. Furthermore, replication of our results in a validation cohort 

of BMI-discordant MZ twin pairs indicated that majority of the weight-loss associated genes showed opposite 

expression in acquired obesity. This study fills the gap in the existing literature regarding SAT transcriptome 

and methylome changes during weight loss and also adds to our current understanding of the weight loss 

mechanism in healthy obese individuals from multiple perspectives. This study also highlights the 

importance of longer duration intervention studies, controlled for genetic and other confounding factors, in 

identifying biologically relevant findings despite of small sample size.

Obesity and smoking are independently associated with high risk of mortality and are of high public 

health relevance worldwide. A co-occurrence of these two conditions is even more detrimental to health.

Therefore, to understand the impact of smoking on adiposity, we performed transcriptome- and methylome-

wide assessment of SAT in Study II. We identified 42 differentially methylated signals and 42 differentially 

expressed genes associated with smoking with an overlap at five genes, including highly replicated 

smoking-methylation signals AHRR and F2RL3. Identified smoking-associated methylation and 

transcriptome profiles were associated with adiposity phenotypes demonstrating the broader impact of 

smoking on human metabolic health.

In Study III we extended the practical applicability of smoking-associated methylation sites by building 

a robust smoking status classifier. We used multinomial LASSO regression in conjunction with internal 

cross-validation to build the classifier. We have extensively tested the performance of this classifier on 

several independent test datasets in comparison with two existing approaches. Our classifier showed higher 
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accuracy compared to other approaches and is globally applicable to all datasets without the need for 

explicit data-specific threshold. Our classifier is available as an R package, EpiSmokEr, to enable smoking 

status prediction in future studies.

In conclusion, this thesis advances our understanding of obesity and smoking by integrating 

transcriptome and methylation data. Furthermore, this thesis extends practical applicability of smoking-

associated methylation signals and overcomes the limitations of existing score-based approaches by 

developing a robust smoking status estimator and closes an important gap in the currently available toolbox 

for methylation studies.

Our findings clearly show that trait associated DNA methylation profiles, independent of causality 

claims, serve as important biomarkers, and are thus valuable in assessing progression of a disease or trait.

Research presented in this thesis provides valuable insights for epidemiological and epigenetic research of 

obesity and smoking, and paves way forward to application of statistical and machine learning approaches 

to enhance our understanding of complex diseases and traits. Epigenetic variants hold a great promise and

may emerge as vital biomarkers and drug targets, taking us a step closer to understanding inter-individual

variability in disease and realizing personalized medicine.
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