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Abstract

A major research goal in evolutionary genetics is to uncover loci expe-

riencing positive selection. One approach involves finding ‘selective sweeps’

patterns, which can either be ‘hard sweeps’ formed by de novo mutation, or

‘soft sweeps’ arising from recurrent mutation or existing standing variation.

Existing theory generally assumes outcrossing populations, and it is unclear

how dominance affects soft sweeps. We consider how arbitrary dominance

and inbreeding via self-fertilisation affect hard and soft sweep signatures.

With increased self-fertilisation, they are maintained over longer map dis-

tances due to reduced effective recombination and faster beneficial allele

fixation times. Dominance can affect sweep patterns in outcrossers if the

derived variant originates from either a single novel allele, or from recurrent

mutation. These models highlight the challenges in distinguishing hard and

soft sweeps, and propose methods to differentiate between scenarios.
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Introduction

Inferring adaptive mutations from nucleotide polymorphism data is a major re-

search goal in evolutionary genetics, and has been subject to extensive modelling

work to determine the footprints they leave in genome data (Stephan 2019). The

earliest models focused on a scenario where a beneficial mutation arose as a single

copy before rapidly fixing. Linked neutral mutations then ‘hitchhike’ to fixa-

tion with the adaptive variant, reducing diversity around the selected locus (May-

nard Smith and Haigh 1974; Kaplan et al. 1989). Hitchhiking also increases linkage

disequilibrium in regions flanking the selected site, by raising the haplotype car-

rying the selected allele to high frequency (Thomson 1977; Innan and Nordborg

2003; McVean 2007). These theoretical expectations have spurred the creation of

summary statistics for detecting sweeps, usually based on finding genetic regions

exhibiting extended haplotype homozygosity (Sabeti et al. 2002; Kim and Nielsen

2004; Voight et al. 2006; Ferrer-Admetlla et al. 2014; Vatsiou et al. 2016), or an

increase in high frequency derived variants (Fay and Wu 2000; Kim and Stephan

2002; Nielsen 2005; Boitard et al. 2009; Yang et al. 2018; Fujito et al. 2018).

Classic hitchhiking models consider ‘hard’ sweeps, where the common ancestor

of an adaptive allele occurs after the onset of selection (Hermisson and Pennings

2017). Recent years have seen a focus on ‘soft’ sweeps, where the most recent com-

mon ancestor of a beneficial allele appeared before it became selected for (reviewed

by Barrett and Schluter (2008); Messer and Petrov (2013); Hermisson and Pennings

(2017)). Soft sweeps can originate from beneficial mutations being introduced by

recurrent mutation at the target locus (Pennings and Hermisson 2006a,b), or orig-

inating from existing standing variation that was either neutral or deleterious (Orr
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and Betancourt 2001; Innan and Kim 2004; Przeworski et al. 2005; Hermisson and

Pennings 2005; Wilson et al. 2014; Berg and Coop 2015; Wilson et al. 2017). A

key property of soft sweeps is that the beneficial variant is present on multiple

genetic backgrounds as it sweeps to fixation, so different haplotypes may carry the

derived allele. This property is often used to detect soft sweeps in genetic data

(Peter et al. 2012; Vitti et al. 2013; Garud et al. 2015; Garud and Petrov 2016;

Schrider and Kern 2016; Sheehan and Song 2016; Harris et al. 2018a; Kern and

Schrider 2018; Harris and DeGiorgio 2018, 2019). Soft sweeps have been reported

in Drosophila (Karasov et al. 2010; Garud et al. 2015; Garud and Petrov 2016; Vy

et al. 2017), humans (Peter et al. 2012; Schrider and Kern 2017; Laval et al. 2019),

maize (Fustier et al. 2017), Anopheles mosquitoes (Xue et al. 2019), and pathogens

including Plasmodium falciparum (Anderson et al. 2016) and HIV (Pennings et al.

2014; Williams and Pennings 2019). Yet determining how extensive soft sweeps

are in nature remains a contentious issue (Jensen 2014; Harris et al. 2018b).

Up to now, there have only been a few investigations into how dominance

affects sweep signatures. In a simulation study, Teshima and Przeworski (2006)

explored how recessive mutations spend long periods of time at low frequencies,

increasing the amount of recombination that acts on derived haplotypes, weakening

signatures of hard sweeps. Fully recessive mutations may need a long time to

reach a significantly high frequency to be detectable by genome scans (Teshima

et al. 2006). Ewing et al. (2011) have carried out a general mathematical analysis

of how dominance affects hard sweeps, finding that recessive beneficial mutations

have markedly different signatures compared to those with other dominance values.

Yet the impact of dominance on soft sweeps has yet to be explored in depth.

In addition, existing models have so far focussed on randomly mating popu-
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lations, with haplotypes freely mixing between individuals over generations. Dif-

ferent reproductive modes alter how alleles are inherited, potentially changing the

hitchhiking effect. Self-fertilisation, where male and female gametes produced from

the same individual can fertilise one another, can alter adaptation rates and selec-

tion signatures (Hartfield et al. 2017). This mating system is prevalent amongst

angiosperms (Igic and Kohn 2006), some animals (Jarne and Auld 2006) and fungi

(Billiard et al. 2011). As the effects of dominance and self-fertilisation become

strongly intertwined, it is important to consider both together. Dominant muta-

tions are more likely to fix than recessive ones in outcrossers, as they have a higher

initial selection advantage (Haldane 1927). Yet recessive alleles can fix more easily

in selfers than in outcrossers as homozygote mutations are created more rapidly

(Charlesworth 1992; Glémin 2012). Furthermore, a decrease in effective recom-

bination rates in selfers (Nordborg et al. 1996; Nordborg 2000; Charlesworth and

Charlesworth 2010) can interfere with selection acting at linked sites, making it

likelier that deleterious mutations hitchhike to fixation with adaptive alleles (Hart-

field and Glémin 2014), or that rare mutations are lost by drift due to competition

between adaptive mutations (Hartfield and Glémin 2016).

In a constant-sized population, beneficial mutations can be less likely to fix

from standing variation (either neutral or deleterious) in selfers as they maintain

lower diversity levels (Glémin and Ronfort 2013). Yet adaptation from standing

variation becomes likelier in selfers compared to outcrossers under ‘evolutionary

rescue’ scenarios, where swift adaptation is needed to prevent population extinc-

tion following environmental change. Here, rescue mutations are only present

in standing variation as the population size otherwise becomes too small (Glémin

and Ronfort 2013). Self-fertilisation further aids this process by creating beneficial

5



homozygotes more rapidly than in outcrossing populations (Uecker 2017).

Little data currently exists on the extent of soft sweeps in self-fertilisers. Many

selfing organisms exhibit sweep-like patterns, including Arabidopsis thaliana (Long

et al. 2013; Huber et al. 2014; Fulgione et al. 2018; Price et al. 2018); Caenorhab-

ditis elegans (Andersen et al. 2012); Medicago truncatula (Bonhomme et al. 2015);

and Microbotryum fungi (Badouin et al. 2017). Soft sweeps have also been reported

in soya bean (Zhong et al. 2017). Detailed analyses of these cases has been ham-

pered by a lack of theory on how hard and soft sweep signatures should manifest

themselves under different self-fertilisation and dominance levels. Previous studies

have only focussed on special cases: Hedrick (1980) analysed linkage disequilib-

rium caused by a hard sweep under self-fertilisation, while Schoen et al. (1996)

modelled sweep patterns caused by modifiers that altered the mating system in

different ways.

To this end, we develop a selective sweep model that accounts for dominance

and inbreeding via self–fertilisation. We determine the genetic diversity present

following a sweep from either a de novo mutation, or from standing variation. We

also determine the number of segregating sites and the site frequency spectrum,

while comparing results to an alternative soft-sweep model where adaptive alleles

arise via recurrent mutation. Note that we focus here on single sweep events, rather

than characterising how sweeps affect genome-wide diversity (Elyashiv et al. 2016;

Campos et al. 2017; Booker and Keightley 2018; Rettelbach et al. 2019).
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Methods

Model Outline

We consider a diploid population of size N (carrying 2N haplotypes in total).

Individuals reproduce by self-fertilisation with probability σ, and outcross with

probability 1 − σ. A derived allele arises at a locus, and we are interested in de-

termining the population history of neutral regions that are linked to it, with a

recombination rate r between them. We principally look at the case where the ben-

eficial allele arises from previously–neutral standing variation, and subsequently

look at a sweep arising from recurrent mutation. The derived allele initially seg-

regates neutrally for a period of time, then becomes advantageous with selective

advantage 1 + hs when heterozygous and 1 + s when homozygous, with 0 < h < 1

and s > 0. We further assume that the population size is large and selection is

large enough so that the beneficial allele’s change in frequency can be modelled

deterministically (i.e., Nehs � 1 and 1/Ne � s � 1). Table 1 lists the notation

used in the analysis.

Our goal is to determine how the spread of the derived, adaptive allele affects

genealogies at linked neutral regions. For a sweep originating from standing vari-

ation, we follow the approach of Berg and Coop (2015) and, looking backwards

in time, break down the selected allele history into two phases. In the recent

past is the ‘sweep phase’ where the derived allele was selectively favoured, with

its frequency decreasing from 1 to p0. Prior to that phase is the ‘standing phase’,

which assumes that the derived allele is present at an approximate fixed frequency

p0. During both phases, a pair of haplotypes can either coalesce, or one of them

recombines onto the ancestral background. A schematic is shown in Figure 1.
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Symbol Usage
N Population size (with 2N haplotypes)
σ Proportion of matings that are self-fertilising
F Wright’s inbreeding coefficient, probability of identity-by-descent at a single gene,

equal to σ/(2 − σ) at steady-state
Φ Joint probability of identity-by-descent at two loci (Equation 1)

Ne Effective population size, equal to N/(1 + F ) with selfing
r Recombination rate between loci A and B

reff ‘Effective’ recombination rate, approximately equal to r(1 − 2F + Φ) with selfing
R 2Nr, the population-level recombination rate
p0 Frequency at which the derived allele at B becomes advantageous

p0,A Accelerated (effective) starting frequency of B appearing as a single copy,
conditional on fixation

s Selective advantage of derived allele at B
h Dominance coefficient of derived allele at B
t Number of generations in the past from the present day

τp0 Time in the past when derived locus became beneficial
p(t) Frequency of beneficial allele at time t

Pc Probability of coalescence at time t
Pr Probability of recombination at time t

Pm Probability of mutation at time t
PNE Probability that neutral marker does not coalesce or recombine during sweep phase

PR,Sw Probability that neutral marker recombines during sweep phase
PR,Sd Probability that neutral marker recombines during standing phase

PM,Sw Probability that a lineage mutates during sweep phase
PM,Sd Probability that a lineage mutates during standing phase

Hl, Hh ‘Effective’ dominance coefficient for allele at low, high frequency
π Pairwise diversity at site (π0 is expected value without a sweep)

πSV Pairwise diversity following sweep from standing variation
πM Pairwise diversity following sweep from recurrent mutation

μ Probability of neutral mutation occurring per site per generation
μb Probability of beneficial mutation occurring at target locus per generation

θ = 4Neμ Population level neutral mutation rate
Θb = 2Neμb Population level beneficial mutation rate

Table 1. Glossary of Notation.
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Figure 1. A schematic of the model. The history of the derived variant is
separated into two phases; the ‘standing phase’ (shown in light gray), and the
‘sweep phase’ (shown in dark gray). Axis on the left-hand side show allele
frequency on a log-scale. Dots on the right-hand side represent a sample of
haplotypes taken at the present day, with lines representing their genetic
histories. Solid lines represent coalescent histories for the derived genetic
background; dotted lines represent coalescent histories for the ancestral, neutral
background. Note the allele trajectory is an idealised version as assumed in the
model.

During the sweep phase, the derived allele will also cause the spread of linked

haplotypes that it appeared on. Over the course of the sweep, haplotypes are bro-

ken down by recombination; the total number of recombination events is propor-

tional to rτp0 , where τp0 is the fixation time of the beneficial allele, given an initial

frequency p0 (Maynard Smith and Haigh 1974). Dominance and self–fertilisation

have different effects on τp0 , and therefore the number of fixing haplotypes. If p0

is low (∼1/2N) then highly recessive or dominant mutations take longer to go to

fixation (Glémin 2012), which can increase the number of recombination events.

Dominance also affects the nature of the sweep trajectory. For example, recessive

mutations spend more time at a low frequency compared to dominant mutations.
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These different sweep trajectories can also affect the final sweep profile (Teshima

and Przeworski 2006). Self–fertilisation leads to decreased fixation time of adap-

tive mutations through converting heterozygotes to homozygotes (Glémin 2012).

Recombination is likelier to act between homozygotes under self-fertilisation, so its

effective rate is reduced by a factor 1 − 2F + Φ, for F = σ/(2 − σ) the inbreeding

coefficient (Nordborg et al. 1996; Nordborg 2000) and Φ the joint probability of

identity-by-descent at the two loci (Roze 2009, 2016; Hartfield and Glémin 2016),

defined as:

Φ = σ(2 − σ − 2(1 − r)r(2 − 3σ))
(2 − σ)(2 − (1 − 2(1 − r)r)σ) (1)

Note that 1 − 2F + Φ approximates to 1 − F (as Φ ≈ F ), unless σ is close to one

and r is high (approximately greater than 0.1).

During the standing phase, the amount of initial recombinant haplotypes that

are swept to fixation depend on the relative rates of recombination and coales-

cence. The latter occurs with probability proportional to 1/2Ne for Ne the effec-

tive population size. Under self–fertilisation Ne = N/(1+F ) (Wright 1951; Pollak

1987; Charlesworth 1992; Caballero and Hill 1992; Nordborg and Donnelly 1997),

so self–fertilisation increases the coalescence probability. This scaling factor will

change if there is a large non-Poisson variation in offspring number (Laporte and

Charlesworth 2002). Although we focus on inbreeding via self-fertilisation, the

scalings Ne = N/(1 + F ) and re ≈ r(1 − F ) should also hold under other systems

of regular inbreeding (Caballero and Hill 1992; Charlesworth and Charlesworth

2010, Box 8.4).

We will outline how both coalescence and recombination act during both of
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these phases, and use these calculations to determine selective sweep properties.

Previous models tended to only determine how lineages recombine away from the

derived background during the sweep phase, without considering how two lineages

coalesce during the sweep phase. If lineages coalesce during the sweep, then the

total number of unique recombination events, and hence the number of linked

haplotypes, are reduced. Barton (1998) showed that these coalescent events are

negligible only for very strong selection (log(Ns) � 1; and B. Charlesworth, un-

published results). Hence, accounting for these coalescent events is important for

producing accurate matches with simulation results.

Throughout, analytical solutions are compared to results from Wright-Fisher

forward-in-time stochastic simulations that were ran using SLiM version 3.3 (Haller

and Messer 2019). Results for outcrossing populations were also tested using coa-

lescent simulations ran with msms (Ewing and Hermisson 2010). The simulation

methods are outlined in Supplementary File S2.

Data Availability. File S1 is a Mathematica notebook of analytical deriva-

tions and simulation results. File S2 contains additional methods, results and

figures. File S3 contains copies of the simulation scripts, which are also available

from https://github.com/MattHartfield/SweepDomSelf. Supplemental mate-

rial has also been uploaded to Figshare.
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Results

Probability of events during sweep phase

We first look at the probability of events (coalescence or recombination) acting

during the sweep phase for the simplest case of two alleles. Looking back in time

following the fixation of the derived mutation, sites linked to the beneficial allele

can either coalesce or recombine onto the ancestral genetic background. Let p(t)

be the adaptive mutation frequency at time t, defined as the number of genera-

tions prior to the present day. Further define p(0) = 1 (i.e., the allele is fixed at

the present day), and τp0 the time in the past when the derived variant became

beneficial (i.e., p(τp0) = p0).

For a pair of haplotype samples carrying the derived allele, if it is at frequency

p(t) at time t, this lineage pair can either coalesce or one of the haplotypes recom-

bine onto the ancestral background. Each event occurs with probability:

Pc(t) = 1
2Nep(t) = (1 + F )

2Np(t)

Pr(t) = 2reff (1 − p(t)) = 2r(1 − 2F + Φ)(1 − p(t))
(2)

Equation 2 is based on those obtained by Kaplan et al. (1989), assuming that

Ne = N/(1 + F ) due to self-fertilisation (Pollak 1987; Charlesworth 1992; Ca-

ballero and Hill 1992; Nordborg and Donnelly 1997), and reff = r(1 − 2F + Φ)

is the ‘effective’ recombination rate after correcting for increased homozygosity

due to self-fertilisation (Nordborg et al. 1996; Nordborg 2000; Charlesworth and

Charlesworth 2010; Roze 2009, 2016; Hartfield and Glémin 2016). Equation 2
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demonstrates how each event is differently influenced by p. In particular, the per–

generation coalescence probability Pc can be small unless p is close to 1/2N . The

total probability that coalescence occurs during the sweep phase increases if the

beneficial allele spends a sizeable time at low frequency, e.g., when it is recessive.

The terms in Equation 2 can also be defined as functions of p.

We are interested in calculating (i) the probability PNE that no coalescence or

recombination occurs in the sweep phase; (ii) the probability PR,Sw that recombi-

nation acts on a lineage to transfer it to the neutral background that is linked to

the ancestral allele, assuming that no more than one recombination event occurs

per generation (see Campos and Charlesworth (2019) for derivations assuming

multiple recombination events). We will go through these probabilities in turn to

determine expected pairwise diversity. For PNE, the total probability that the two

lineages do not coalesce or recombine over τp0 generations equals:

PNE =
τp0∏
t=0

[1 − Pc(t) − Pr(t)]

≈ exp
(

−
∫ τp0

t=0
[Pc(t) + Pr(t)] dt

)
assuming Pc, Pr � 1

≈ exp
(

−
∫ τp0

t=0

[
1 + F

2Np(t) + 2r(1 − 2F + Φ)(1 − p(t))
]

dt

)

≈ exp
⎛
⎝−

∫ p0

p=1−ε

⎡
⎣ 1+F

2Np
+ 2r(1 − 2F + Φ)(1 − p)

dp/dt

⎤
⎦ dp

⎞
⎠ taking the integral over p

(3)

Here ε is a small term and 1 − ε is the upper limit of the deterministic spread

of the beneficial allele. We will discuss in the section ‘Effective starting frequency

from a de novo mutation’ what a reasonable value for ε should be. Also note that
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we switch from a discrete–time calculation to a continuous–time calculation, which

can give simplifying results. To calculate PNE we insert the deterministic change

in allele frequency p (Glémin 2012):

dp

dt
= −sp(1 − p)(F + h − Fh + (1 − F )(1 − 2h)p) (4)

Note the negative factor in Equation 4 since we are looking back in time. By

substituting Equation 4 into Equation 3, we obtain an analytical solution for PNE,

although the resulting expression is complicated (Section A of Supplementary File

S1).

To calculate PR,Sw, the probability that recombination acts during the sweep,

we first calculate the probability that recombination occurs when the beneficial

allele is at frequency p′. Here, no events occur in the time leading up to p′, then

a recombination event occurs with probability Pr(p′) = 2r(1 − 2F + Φ)(1 − p′).

PR,Sw is obtained by integrating this probability over the entire sweep from time

0 to τp0 :

PR,Sw ≈
∫ p0

p′=1−ε

PR,p′

dp′/dt
dp′ (5)

where:

PR,p′ = exp
[
−

∫ p′

p=1−ε

Pc(p) + Pr(p)
dp/dt

dp

]
· Pr(p′)

= exp
⎡
⎣−

∫ p′

p=1−ε

1+F
2Np

+ 2r(1 − 2F + Φ)(1 − p)
dp/dt

dp

⎤
⎦ · [2r(1 − 2F + Φ)(1 − p′)]

(6)
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Note that the exponential term of PR,p′ is different from PNE (Equation 3) since

the upper integral limit is to p′ rather than p0. That is, it only covers part of the

sweep phase. Equation 5 is evaluated numerically. In Supplementary File S2, we

provide a ‘star–like’ analytical approximation to PNE that assumes no coalescence

during the sweep phase.

Probability of coalescence from standing variation

The variant becomes advantageous at frequency p0. We assume that p0, and hence

event probabilities, remain fixed over time. Berg and Coop (2015) have shown this

assumption provides a good approximation to coalescent rates during the standing

phase. The outcome during the standing phase is thus determined by competing

Poisson processes. The two haplotypes could coalesce, with an exponentially-

distributed waiting time with rate Pc(p0) = (1 + F )/(2Np0). Alternatively, one

of the two haplotypes could recombine onto the ancestral background with mean

waiting time Pr(p0) = 2reff (1 − p0). For two competing exponential distributions

with rates λ1 and λ2, the probability of the first event occurring given an event

happens equals λ1/(λ1 + λ2) (Wakeley 2009, Chapter 2). Hence the probability

that recombination occurs instead of coalescence equals:
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PR,Sd = Pr(p0)
Pc(p0) + Pr(p0)

= 2reff (1 − p0)
1+F
2Np0

+ 2reff (1 − p0)

= 2R(1 − 2F + Φ)p0(1 − p0)/(1 + F )
1 + 2R(1 − 2F + Φ)p0(1 − p0)/(1 + F )

≈ 2R(1 − σ)p0(1 − p0)
1 + 2R(1 − σ)p0(1 − p0)

(7)

The probability of coalescence rather than recombination is PC,Sd = 1 − PR,Sd.

Here R = 2Nr is the population-scaled recombination rate. The final approxima-

tion arises as (1−2F +Φ)/(1+F ) ≈ (1−F )/(1+F ) = (1−σ) if Φ ≈ F . This term

reflects how increased homozygosity reduces both effective recombination and Ne,

with the latter making coalescence more likely. In addition, it also highlights how

the signature of a sweep from standing variation, as characterised by the spread

of different initial recombinant haplotypes, is spread over an increased distance of

1/(1 − σ) under self–fertilisation.

Effective starting frequency for a de novo mutation, and

effective final frequency

When a new beneficial mutation appears as a single copy, it is highly likely to

go extinct by chance (Fisher 1922; Haldane 1927). Beneficial mutations that in-

crease in frequency faster than expected when rare are more able to overcome this

stochastic loss and reach fixation. These beneficial mutations will hence display

an apparent ‘acceleration’ in their logistic growth, equivalent to having a starting
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frequency that is greater than 1/(2N) (Maynard Smith 1976; Barton 1998; Desai

and Fisher 2007; Martin and Lambert 2015). Correcting for this acceleration is

important to accurately model hard sweep signatures, and inform on the mini-

mum level of standing variation needed to differentiate a hard sweep from one

originating from standing variation.

In Section B of Supplementary File S1, we determine that hard sweeps that go

to fixation have the following effective starting frequency:

p0,A = 1 + F

4NsHl

(8)

where Hl = F +h−Fh is the effective dominance coefficient for mutations at a low

frequency. This result is consistent with those of Martin and Lambert (2015), who

obtained a distribution of effective starting frequencies using stochastic differential

equations. This acceleration effect can create substantial increases in the effective

p0, especially for recessive mutations (Figure 2).

The effective final frequency of the derived allele 1 − ε, at which its spread is

no longer deterministic, can be obtained by setting ε = p0,A(1 − h); that is, by

substituting Hl to Hh = 1 − h + Fh in Equation 8. This final frequency is always

used, even if p0 > 1/2N . Van Herwaarden and Van der Wal (2002) determined

that the sojourn time for an allele with dominance coefficient h that is increasing in

frequency, is the same for an allele decreasing in frequency with dominance 1 − h.

Glémin (2012) showed that this result also holds under any inbreeding value F .

See Charlesworth (2020) for a fuller discussion of effective final frequencies and

their impact on sweep fixation times.

17



�

�

�

�

Figure 2. Examples of the effective starting frequency. Equation 8 is
plotted as a function of F for different dominance values, as shown in the legend.
Other parameters are N = 5, 000, s = 0.05. The dashed line shows the actual
starting frequency, 1/2N .

Expected Pairwise Diversity

We use PNE, PR,sw and PR,sd to calculate the expected pairwise diversity (denoted

π) present around a sweep. During the sweep phase, the two neutral sites could

either coalesce, or one of them recombines onto the ancestral background. If

coalescence occurs, since it does so in the recent past then it is assumed that no

diversity exist between samples, i.e., π ≈ 0 for π the average number of differences

between two alleles (Tajima 1983). In reality there may be some residual diversity

caused by appearance of mutations during the sweep phase; we do not account

for these mutations while calculating π but will do so when calculating the site-

frequency spectrum. Alternatively, if one of the two samples recombines onto the

neutral background, they will have the same pairwise diversity between them as
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the background population (π0). If the two samples trace back to the standing

phase (with probability PNE) then the same logic applies. Hence the expected

diversity following a sweep πSV , relative to the background value π0, equals:

E

(
πSV

π0

)
= PR,sw + (PNE · PR,sd) (9)

The full solution to Equation 9 can be obtained by plugging in the relevant

parts from Equations 3, 5 and 7, which we evaluate numerically. Equation 9 is

undefined for h = 0 or 1 with σ = 0; these cases can be derived separately.

Figure 3 plots Equation 9 with different dominance, self-fertilisation, and stand-

ing frequency values. The analytical solution fits well compared to forward-in-time

simulations, yet slightly overestimates them for high self-fertilisation frequencies.

It is unclear why this mismatch arises. One explanation could be that drift effects

are magnified under self–fertilisation, which causes a quicker sweep fixation time

than expected from deterministic spread, if conditioning on a sweep going to fixa-

tion. Although p0,A (Equation 8) captures these drift effects for rare alleles, there

may be additional effects that are not accounted for. Under complete outcross-

ing, baseline diversity is restored (i.e., E(πSV /π0) goes to 1) closer to the sweep

origin for recessive mutations (h = 0.1), compared to semidominant (h = 0.5)

or dominant (h = 0.9) mutations. Sweeps caused by dominant and semidomi-

nant mutations result in a similar genetic diversity, so these cases may be hard to

differentiate from diversity data alone.

These results can be better understood by examining the underlying allele tra-

jectories, using logic described by Teshima and Przeworski (2006) (Figure 4). For

outcrossing populations, recessive mutations spend most of the sojourn time at
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Figure 3. Expected relative pairwise diversity following a selective
sweep. Plots of E(πSV /π0) as a function of the recombination rate scaled to
population size 2Nr. Lines are analytical solutions (Equation 9), points are
forward-in-time simulation results. N = 5, 000, s = 0.05, 4Nμ = 40 (note μ is
scaled by N , not Ne), and dominance coefficient h = 0.1 (red lines, points), 0.5
(black lines, points), or 0.9 (blue lines, points). Values of p0 and self-fertilisation
rates σ used are shown for the relevant row and column; note the x−axis range
changes with the self-fertilisation rate. For p0 = 1/2N we use p0,A in our model,
as given by Equation 8. Further results are plotted in Section C of
Supplementary File S1.

low frequencies, maximising recombination events and restoring neutral variation.

These trajectories mimic sweeps from standing variation, which spend extended

periods of time at low frequencies in the standing phase. Conversely, dominant mu-

tations spend most of their time at high frequencies, so most recombination events

are between haplotypes that carry the derived allele. Hence, there is a reduced

chance for linked neutral alleles to recombine onto the ancestral background.
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Figure 4. Beneficial allele trajectories. These were obtained by numerically
evaluating the negative of Equation 4 forward in time. N = 5, 000, s = 0.05, and
h equals either 0.1 (red lines), 0.5 (black lines), or 0.9 (blue lines). Values of p0
and self-fertilisation rates σ used are shown for the relevant row and column.
Note the different x−axis scales used in each panel. Further results are plotted in
Section C of Supplementary File S1.

As self-fertilisation increases, sweep signatures become similar to the co-dominant

case as the derived allele is more likely to spread as a homozygote, weakening the

influence that dominance exerts over beneficial allele trajectories. Increasing p0

also causes sweeps with different dominance coefficients to produce comparable

signatures, as beneficial mutation trajectories become similar after conditioning

on starting at an elevated frequency.

An analytical approximation can be obtained by using the ‘star-like’ result for

PNE (described in Supplementary Files S1, S2). In this case the expected pairwise

diversity approximates to:
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ESL

(
πSV

π0

)
= 1 − (PNE · PC,sd)

= 1 −
[

1
1 + 2R(1 − 2F + Φ)p0(1 − p0)/(1 + F )

]
·

[
Hl

Hh

(
1
p0

+ 1
)

− 1
]−2r(1−2F +Φ)/(Hls)

(10)

Note that Equation 10 instead uses the probability of coalescence during the

standing phase, PC,sd = 1 − PR,sd. This approximation reflects similar formulas

for diversity following soft sweeps in haploid outcrossing populations (Pennings

and Hermisson 2006b; Berg and Coop 2015). There is a factor of two in the

power term to account for two lineages. In Supplementary File S2 we demonstrate

that this equation overestimates the relative diversity following a selective sweep.

This mismatch arises since the star-like assumption of no coalescence during the

sweep phase is only accurate for very strongly selected mutations (Barton 1998; B.

Charlesworth, unpublished results). Hence it is important to consider coalescence

during the sweep phase to accurately model selective sweeps that do not have an

extremely high selection coefficient.

Site Frequency Spectrum

The star-like approximation can be used to obtain analytical solutions for the

number of segregating sites and the site frequency spectrum (i.e., the probability

that l = 1, 2 . . . n − 1 of n alleles carry derived variants). The full derivation

for these statistics are outlined in Supplementary File S2, which uses the star-like

approximation. Figure 5 plots the SFS (Equation A12 in Supplementary File S2)
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alongside simulation results. Analytical results fit the simulation data well after

including an adjusted singleton class, which accounts for recent mutations that

arise on the derived background during both the standing and sweep phases (Berg

and Coop 2015). Including this new singleton class improves the model fit, but

there remains a tendency for analytical results to underestimate the proportion of

low- and high-frequency classes (l = 1 and 9 in Figure 5), and overestimate the

proportion of intermediate-frequency classes. Additional inaccuracies could have

arisen due to the use of the star-like approximation, which assumes that there is

no coalescence during the sweep phase.

Hard sweeps in either outcrossers or partial selfers are characterised by a large

number of singletons and highly-derived variants (Figure 5), which is a typical

selective sweep signature (Braverman et al. 1995; Barton 1998; Kim and Stephan

2002). As the initial frequency p0 increases, so does the number of intermediate-

frequency variants (Figure 5). This signature is often seen as a characteristic of

soft sweeps (Pennings and Hermisson 2006b; Berg and Coop 2015). Recessive

hard sweeps (h = 0.1 and p0 = 1/2N) can produce SFS profiles that are similar to

sweeps from standing variation, as there are an increased number of recombination

events occurring since the allele is at a low frequency for long time periods (Fig-

ure 4). With increased self-fertilisation, both hard and soft sweep signatures (e.g.,

increased number of intermediate-frequency alleles) are recovered when measuring

the SFS at a longer recombination distance than in outcrossers (Figure 5, bottom

row). This is an example of how signatures of sweeps from standing variation

are extended over an increased recombination distance of around 1/(1 − σ), as

demonstrated by Equation 7.

23



Figure 5. Expected site frequency spectrum, in flanking regions to the
adaptive mutation, following a selective sweep. Lines are analytical
solutions (Equation A12 in Supplementary File S2), points are simulation results.
N = 5, 000, s = 0.05, 4Nμ = 40, and dominance coefficient h = 0.1 (red lines,
points), 0.5 (black lines, points), or 0.9 (blue lines, points). The neutral SFS is
also included for comparisons (grey dashed line). Values of p0, self-fertilisation
rates σ and recombination distances R are shown for the relevant row and
column. Results for other recombination distances are in Section E of
Supplementary File S1.

Soft sweeps from recurrent mutation

So far, we have only focussed on a soft sweep that arises from standing variation.

An alternative type of soft sweep is one where recurrent mutation at the selected

locus introduces the beneficial allele onto different genetic backgrounds. We can

examine this case by modifying existing results. Below we derive the expected

relative diversity between two alleles following this type of soft sweep, and outline
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the SFS for more than two samples in Supplementary File S2.

In this model, derived alleles arise from recurrent mutation and are instan-

taneously beneficial (i.e., there is no ‘standing phase’). During the sweep phase,

lineages can escape the derived background by recombination, or if they are derived

from a mutation event. If the beneficial allele is at frequency p then the probability

of being descended from an ancestral allele by mutation is Pm(p) = 2μb(1 − p)/p,

for μb the mutation probability (Pennings and Hermisson 2006b). Denote the

probability of a lineage experiencing recombination or mutation during this sweep

phase by PR,sw, PM,sw respectively. In both these cases the expected diversity

present at linked sites is π0. If none of these events arise with probability PNE,

then remaining lineages can either coalesce, or they arise from independent muta-

tion events. If they coalesce then they have approximately zero pairwise diversity

between them; alternatively, they have different origins and thus exhibit the same

pairwise diversity π0 as the neutral background. Let PM,sd denote the probability

that mutation occurs at the sweep origin, as opposed to coalescence.

Following this logic, the expected relative diversity for a sweep arising from

recurrent mutation equals (with additional details in Supplementary File S1):

E

(
πM

π0

)
= PR,sw + PM,sw + (PNE · PM,sd) (11)

πM denotes the diversity around a soft sweep from recurrent mutation. PR,sw,

PNE are similar to the equations used when modelling a sweep from standing

variation. They are both modified to account for additional beneficial mutation

arising during the sweep phase:
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PR,Sw ≈
∫ p0

p′=1−ε

PR,p′

dp′/dt
dp′ (12)

where:

PR,p′ = exp
[
−

∫ p′

p=1−ε

Pc(p) + Pr(p) + Pm(p)
dp/dt

dp

]
· Pr(p′)

= exp
⎡
⎣−

∫ p

p=1−ε

1+F
2Np

+ 2r(1 − 2F + Φ)(1 − p) + 2μb(1−p)
p

dp/dt
dp

⎤
⎦ · [2r(1 − 2F + Φ)(1 − p′)]

(13)

and:

PNE ≈ exp
(

−
∫ p0,A

p=1−ε

[
Pc(p) + Pr(p) + Pm(p)

dp/dt

]
dp

)

= exp
⎛
⎝−

∫ p0,A

p=1−ε

⎡
⎣ 1+F

2Np
+ 2r(1 − 2F + Φ)(1 − p) + 2μb(1−p)

p

dp/dt

⎤
⎦ dp

⎞
⎠ (14)

Note that Equation 14 has an upper integral limit of p0,A, as opposed to a

general p0 used in the sweep from standing variation model, reflecting that there

is no standing phase.

PM,sw is the mutation probability during the sweep phase, and is similar to

Equation 13 except that 2r(1 − 2F + Φ)(1 − p′) is replaced by 2μb(1 − p′)/p′, for p′

is the derived allele frequency when the event occurs. PM,sd is the probability that,

at the sweep origin, the derived allele appears by mutation instead of coalescing,

and is defined in a similar manner to PR,sd (Equation 7):
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PM,Sd = Pm(p0,A)
Pc(p0,A) + Pm(p0,A)

=
2μb(1−p0,A)

p0,A

1+F
2Np0,A

+ 2μb(1−p0,A)
p0,A

= 2Θb(1 − p0,A)
1 + F + 2Θb(1 − p0,A) (15)

where Θb = 2Nμb. The coalescence probability is 1 − PM,Sd. Equation 15 implies

that self–fertilisation makes it more likely for beneficial mutations to coalesce at the

start of a sweep, rather than arising from independent mutation events. Hence the

signatures of soft sweeps via recurrent mutation will be weakened under inbreeding.

Figure 6 compares E(πSV /π0) in the standing variation case, and E(πM/π0) for

the recurrent mutation case, under different levels of self-fertilisation. While dom-

inance only weakly affects sweep signatures arising from standing variation under

outcrossing, it more strongly affects sweeps from recurrent mutation in outcrossing

populations, as each variant arises from an initial frequency close to 1/(2N) (Fig-

ure 4). Second, the two models exhibit different behaviour close to the selected

locus (R close to zero). The recurrent mutation model has non–zero diversity

levels, while the standing variation model exhibits zero diversity. As R increases,

diversity eventually becomes higher for the standing variation case compared to

the recurrent mutation case. We can heuristically determine when this transition

occurs as follows. Assume a large population size but weak recombination and mu-

tation rates. Hence, it is unlikely that any events occur during the sweep phase, so

PR,sw, PM,sw ≈ 0 and PNE ≈ 1. Then the expected relative diversity (Equation 11)

equals PR,sd for a sweep from standing variation, and PM,sd for one from recurrent
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mutation. To find the recombination rate Rlim at which a sweep from recurrent

mutation yields higher diversity than one from standing variation, we find the R

value needed to equate the two probabilities, giving:

RLim = Θb

p0(1 − 2F + Φ)

≈ Θb

p0(1 − F ) (16)

The last approximation arises as Φ ≈ F . Hence for a fixed Θb, the window

where recurrent mutations create higher diversity near the selected locus increases

for lower p0 or higher F , since both these factors reduces the potential for re-

combination to create new haplotypes during the standing phase. Equation 16 is

generally accurate when sweeps from standing variation have higher diversity than

sweeps with recurrent mutations (Figure 6, bottom row), but becomes inaccurate

for h = 0.1 in outcrossing populations, as some events are likely to occur during

the sweep phase. In Supplementary File S2 we show how similar results apply to

the SFS.

Discussion

Summary of Theoretical Findings

While there has been many investigations into how different sweep processes can

be detected from next-generation sequence data (Pritchard and Di Rienzo 2010;

Messer and Petrov 2013; Stephan 2016; Hermisson and Pennings 2017), these
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Figure 6. Comparing sweeps from recurrent mutation to those from
standing variation. Top row: comparing relative diversity following a soft
sweep, from either standing variation (Equation 9 with p0 = 0.05, solid lines) or
recurrent mutation (using Equation 11 with Θb = 0.2, dashed lines). N = 5, 000,
s = 0.05, and dominance coefficient h = 0.1 (red lines), 0.5 (black lines), or 0.9
(blue lines). Bottom row: the ratio of the diversity following a sweep from
standing variation to one from recurrent mutation. Parameters for each panel are
as in the respective plot for the top row. Vertical dashed black line indicates
RLim (the approximate form of Equation 16); horizontal dashed line in the
bottom-row plots show when the ratio equals 1. Note the different x−axis
between left- and right-hand panels. Results are also plotted in Section F of
Supplementary File S1.

models generally assumed idealised randomly mating populations and beneficial

mutations that are semidominant (h = 0.5). Here we have created a more general

selective sweep model, with arbitrary self-fertilisation and dominance levels. Our

principal focus is on comparing a hard sweep arising from a single allele copy

to a soft sweep arising from standing variation, but we also consider the case of
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recurrent mutation (Figure 6).

We find that the qualitative patterns of different selective sweeps under selfing

remain similar to expectations from outcrossing models. In particular, a sweep

from standing variation still creates an elevated number of intermediate-frequency

variants compared to a sweep from de novo mutation (Figures 5, 6). This pattern is

standard for soft sweeps (Pennings and Hermisson 2006b; Messer and Petrov 2013;

Berg and Coop 2015; Hermisson and Pennings 2017) so existing statistical methods

for detecting them (e.g., observing an higher than expected number of haplotypes;

Vitti et al. (2013); Garud et al. (2015)) can, in principle, also be applied to self-

ing organisms. Under self-fertilisation, these signatures are stretched over longer

physical regions than in outcrossers. These extensions arise as self-fertilisation

affects gene genealogies during both the sweep and standing phases in different

ways. During the sweep phase, beneficial alleles fix more rapidly under higher

self-fertilisation as homozygous mutations are created more rapidly (Charlesworth

1992; Glémin 2012). In addition, the effective recombination rate is reduced by

approximately 1 − F (Nordborg et al. 1996; Nordborg 2000; Charlesworth and

Charlesworth 2010), and slightly more for highly inbred populations (Roze 2009,

2016). These two effects mean that neutral variants linked to an adaptive allele are

less likely to recombine onto the neutral background during the sweep phase, as re-

flected in Equation 3 for PNE. During the standing phase, two haplotypes are more

likely to coalesce under high levels of self-fertilisation since Ne is decreased by a fac-

tor 1/(1+F ) (Pollak 1987; Charlesworth 1992; Caballero and Hill 1992; Nordborg

and Donnelly 1997). This effect, combined with a reduced effective recombination

rate, means that the overall recombination probability during the standing phase

is reduced by a factor (1−σ) (Equation 7). Hence intermediate-frequency variants,
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which could provide evidence of adaptation from standing variation, will be spread

out over longer genomic regions (this result can be seen in the site–frequency spec-

trum results, Figure 5). The elongation of sweep signatures means sweeps from

standing variation can be easier to detect in selfing organisms than in outcrossers.

Conversely, sweeps from recurrent mutation will have weakened signatures under

self–fertilisation. This result is due to a reduced effective population size, making

it likelier that lineages trace back to a common ancestor rather than independent

mutation events.

We have also investigated how dominance affects soft sweep signatures, since

previous analyses have only focussed on how dominance affects hard sweeps (Teshima

and Przeworski 2006; Teshima et al. 2006; Ewing et al. 2011). In outcrossing or-

ganisms, recessive mutations leave weaker sweep signatures than additive or domi-

nant mutations as they spend more time at low frequencies, increasing the amount

of recombination that restores neutral variation (Figures 3, 4). With increased

self-fertilisation, dominance has a weaker impact on sweep signatures as most mu-

tations are homozygous (Figure 4). We also show that the SFS for recessive alleles

can resemble a soft sweep, with a higher number of intermediate-frequency vari-

ants than for other hard sweeps (Figure 5). Dominance only weakly affects sweeps

from standing variation, as trajectories of beneficial alleles become similar once

the variant’s initial frequency exceeds 1/(2N) (Figures 3, 4). Yet different domi-

nance levels can affect sweep signatures if the beneficial allele is reintroduced by

recurrent mutation (Figure 6). Hence if one wishes to understand how dominance

affects sweep signatures, it is also important to consider which processes underlie

observed patterns of genetic diversity.

These results also demonstrate that the effects of dominance on sweeps are
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not necessarily intuitive. For example, both highly dominant and recessive muta-

tions have elongated fixation times compared to co–dominant mutations (Glémin

2012). Based on this intuition, one could expect both dominant and recessive

mutations to both produce weaker sweep signatures than co-dominant ones. In

practice, dominant mutations have similar sweep signatures to co–dominant mu-

tations (Figures 3, 5), and recessive sweeps could produce similar signatures as

sweeps from standing variation (Figure 5). Dominance also has a weaker impact

on sweeps from standing variation (Figures 3, 5).

Soft sweeps from recurrent mutation or standing variation?

These theoretical results shed light onto how to distinguish between soft sweeps

that arise either from standing variation, or from recurrent mutation. Both mod-

els are characterised by an elevated number of intermediate-frequency variants,

in comparison to a hard sweep. Yet sweeps arising from recurrent mutation have

non–zero diversity at the selected locus, whereas a sweep from standing variation

exhibits approximately zero diversity. Hence a sweep from recurrent mutation

shows intermediate-frequency variants closer to the beneficial locus, compared to

sweeps from standing variation (Figures 6 and C in Supplementary File S2). Fur-

ther from the selected locus, a sweep from standing variation exhibits greater

variation than one from recurrent mutation, due to recombinant haplotypes being

created during the standing phase. Equation 16 provides a simple condition for

RLim, the recombination distance needed for a sweep from standing variation to

exhibit higher diversity than one from recurrent mutation; from this equation, we

see that the size of this region increases under higher self-fertilisation. Hence it

may be easier to differentiate between these two sweep scenarios in self–fertilising
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organisms.

Differences in haplotype structure between sweeps from either standing varia-

tion or recurrent mutation should be more pronounced in self-fertilising organisms,

due to the reduction in effective recombination rates. However, when investigating

sweep patterns over broad genetic regions, it becomes likelier that genetic diversity

will be affected by multiple beneficial mutations spreading throughout the genome.

Competing selective sweeps can lead to elevated diversity near a target locus for

two reasons. First, selection interference increases the fixation time of individual

mutations, allowing more recombination that can restore neutral diversity (Kim

and Stephan 2003). In addition, competing selective sweeps can drag different

sets of neutral variation to fixation. Selective sweep signatures in data tend to be

asymmetric, and this effect will exacerbate this asymmetry (Chevin et al. 2008).

Further investigations of selective sweep patterns across long genetic distances will

prove to be a rich area of future research.

Finally, we have assumed a fixed population size, and that sweeps from standing

variation arose from neutral variation. The resulting signatures could differ if

the population size has changed over time (Wilson et al. 2014), if populations

are structured (Zheng and Wiehe 2019), or if the beneficial allele was previously

deleterious (Orr and Betancourt 2001). Both issues could also affect our ability to

discriminate between soft and hard sweeps.

Potential applications to self-fertilising organisms

Existing methods for finding sweep signatures in nucleotide polymorphism data

are commonly based on finding regions with a site-frequency spectrum matching
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what is expected under a selective sweep (Nielsen et al. 2005; Boitard et al. 2009;

Pavlidis et al. 2013; DeGiorgio et al. 2016; Huber et al. 2016). The more general

models developed here can be used to create more specific sweep-detection methods

that include self-fertilisation. However, a recent analysis found that soft-sweep

signatures can be incorrectly inferred if analysing genetic regions that flank hard

sweeps, which was named the ‘soft shoulder’ effect (Schrider et al. 2015). Due to

the reduction in recombination in selfers, these model results indicate that ‘soft-

shoulder’ footprints can arise over long genetic distances and should be taken into

account. One remedy to this problem is to not just classify genetic regions as being

subject to either a hard or soft sweep, but also as being linked to a region subject

to one of these sweeps (Schrider and Kern 2016). These more general calculations

can also be extended to quantify to what extent background selection and sweeps

jointly shape genome-wide diversity in self-fertilising organisms (Elyashiv et al.

2016; Campos et al. 2017; Booker and Keightley 2018; Rettelbach et al. 2019), or

detect patterns of introgression (Setter et al. 2019).
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