

Edinburgh Research Explorer

Tiling Optimizations for Stencil Computations Using Rewrite
Rules in Lift

Citation for published version:
Stoltzfus, L, Hagedorn, B, Steuwer, M, Gorlatch, S & Dubach, C 2020, 'Tiling Optimizations for Stencil
Computations Using Rewrite Rules in Lift', ACM Transactions on Architecture and Code Optimization, vol.
16, no. 4, 52, pp. 52:2-52:25. https://doi.org/10.1145/3368858

Digital Object Identifier (DOI):
10.1145/3368858

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Architecture and Code Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Feb. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/286810337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3368858
https://doi.org/10.1145/3368858
https://www.research.ed.ac.uk/portal/en/publications/tiling-optimizations-for-stencil-computations-using-rewrite-rules-in-lift(1ac8fc55-02d1-4cf2-818a-9671b359007e).html

Tiling Optimizations for Stencil Computations Using

Rewrite Rules in Lift

LARISA STOLTZFUS, The University of Edinburgh, United Kingdom
BASTIAN HAGEDORN, University of Münster, Germany
MICHEL STEUWER, University of Glasgow, United Kingdom
SERGEI GORLATCH, University of Münster, Germany
CHRISTOPHE DUBACH, The University of Edinburgh, United Kingdom

Stencil computations are a widely used type of algorithm, found in applications from physical simulations to
machine-learning. Stencils are embarrassingly parallel, therefore fit on modern hardware such as Graphic
Processing Units perfectly. Although stencil computations have been extensively studied, optimizing them
for increasingly diverse hardware remains challenging. Domain Specific Languages (DSLs) have raised the
programming abstraction and offer good performance, however this method places the burden on DSL
implementers to write almost full-fledged parallelizing compilers and optimizers.

Lift has recently emerged as a promising approach to achieve performance portability by using a small
set of reusable parallel primitives that DSL or library writers utilize. Lift’s key novelty is in its encoding of
optimizations as a system of extensible rewrite rules which are used to explore the optimization space.

This paper demonstrates how complex multi-dimensional stencil code and optimizations are expressed
using compositions of simple 1D Lift primitives and rewrite rules. We introduce two optimizations that
provide high performance for stencils in particular: classical overlapped tiling for multi-dimensional stencils
and 2.5D tiling specifically for 3D stencils. We provide an in-depth analysis on how the tiling optimizations
affects stencils of different shapes and sizes across different applications. Our experimental results show that
our approach outperforms existing compiler approaches and hand-tuned codes.

CCS Concepts: • Computing methodologies → Parallel programming languages; • Software and its
engineering → Compilers.

Additional Key Words and Phrases: Code Generation, Stencil, GPU Computing, Performance Portability, Lift

ACM Reference Format:
Larisa Stoltzfus, Bastian Hagedorn, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2019. Tiling
Optimizations for Stencil Computations Using Rewrite Rules in Lift. ACM Trans. Arch. Code Optim. 0, 0,
Article 0 (2019), 25 pages. https://doi.org/0000001.0000001

Extension of Conference Paper High performance stencil code generation with Lift published at CGO 2018 [22]. This paper
presents an extended in-depth discussion of a real-world stencil application, the representation of a optimization specific
for 3-dimensional stencils - 2.5D tiling - as a rewrite rule, and additional performance results analyzing the performance
characteristics of 2.5D tiling, in particular with respect to different stencil sizes and shapes.

Authors’ addresses: Larisa Stoltzfus, The University of Edinburgh, United Kingdom, larisa.stoltzfus@ed.ac.uk; Bastian
Hagedorn, University of Münster, Germany, b.hagedorn@wwu.de; Michel Steuwer, University of Glasgow, United Kingdom,
michel.steuwer@glasgow.ac.uk; Sergei Gorlatch, University of Münster, Germany, gorlatch@wwu.de; Christophe Dubach,
The University of Edinburgh, United Kingdom, christophe.dubach@ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2019/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

1 INTRODUCTION

Stencil algorithms update elements in a multi-dimensional grid based on neighboring values using
a fixed pattern. They are part of the “seven dwarfs” [2] and are one of the most relevant classes
of high-performance computing applications. Domains such as medical imaging (e.g., SRAD),
numerical methods (e.g., Jacobi) or machine-learning (e.g., convolutional neural networks) are all
heavily dependent on stencils.
Programming of stencils for parallel accelerators such as Graphics Processing Units (GPUs)

remains challenging. High-performance stencil code is usually hand-written using low-level pro-
gramming languages like OpenCL or CUDA and achieving high-performance requires expert
knowledge to map parallelism to GPUs or to exploit data locality with local memory.
Domain Specific Languages (DSLs) and high-level libraries drastically simplify application

development. Many of these approaches are based on algorithmic skeletons [10], which are recurring
patterns of parallel programming. While these solutions raise the abstraction level, they rely on
hard-coded, not performance portable implementations. Alternative code generation approaches
place a great burden on their implementers who have to reinvent the wheel for each new domain.

Lift [44] is a novel code generation approach based on a high-level, data-parallel intermediate
language whose central tenet is performance portability. It is designed as a target for DSLs and
library writers, and exploits functional principles to produce high-performance GPU code. Applica-
tions are expressed using a small set of composable functional primitives and optimizations are all
encoded as semantics-preserving rewrite rules. These rules define the optimization space which is
automatically searched [48]. This approach frees programmers and DSL implementers from the
tedious process of re-writing and tuning their code for each new domain or hardware.

This paper shows how stencil codes and their optimizations are expressible in Lift, reusing its
existing machinery whereever possible to manage parallelism, memory hierarchy and optimizations.
Two new primitives were added to Lift to allow to express stencils functionally: one primitive
for neighborhood gathering and another one for boundary condition handling. By composing
these simple 1D primitives, complex multi-dimensional stencils are expressible, demonstrating the
extensibility of Lift to new application domains.

Two distinct tiling optimizations have also been added to Lift by through the addition of rewrite
rules, a new primitive and additional code generation techniques. The first tiling optimization
is classical overlapped tiling, which exploits data reuse and memory locality. The second tiling
optimization is 2.5D tiling specifically optimizing 3D stencil codes by exploiting register reuse to
provide high performance. Both tiling optimizations are expressed as rewrite rules allowing them
to be automatically selected by Lift’s optimization process.
This paper extends our prior conference publication [22] by extensively discussing the imple-

mentation of the new tiling optimization and analyzing its performance characteristics. The 2.5D
tiling optimization is implemented using a new primitive, which ensures the precise code gen-
eration required for the optimization. In order to generate efficient OpenCL code we added new
functionality to the Lift code generator with respect to array unrolling and inlining of structs. A
detailed analysis of the performance impact of the 2.5D tiling optimization using varying sizes,
shapes and applications demonstrates the importance of a flexible code generator such as Lift
capable of applying the best optimization in different settings.
Experimental performance results show that our approach is highly competitive with hand-

written implementations and with the state-of-the-art PPCG polyhedral GPU compiler. We are also
able to show how the additional 2.5D tiling optimization further improves on our previous results.
By reusing Lift’s existing exploration mechanism, we automatically generate high-performance
stencil code for AMD, NVIDIA and ARM GPUs.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:3

This paper makes the following contributions:
(1) We show how complex multi-dimensional stencils are expressible using Lift’s existing

primitives with the addition of two fundamental primitives;
(2) We formalize and implement two stencil-specific optimizations – overlapped tiling and 2.5D

tiling – as rewrite rules;
(3) We analyze the performance characteristics of the 2.5D tiling optimization on a range of

different types of stencils, in particular those relevant to 3D wave model simulations;
(4) We demonstrate this approach generates high-performance code for several stencil codes.

The formalization and implementation of 2.5D tiling and the analysis of its performance characteris-
tics are additional contributions that were not discussed in the original conference publication [22].

2 MOTIVATION

The advent of Graphics Processing Units has been the first sign of an increasing trend of hardware
diversity. The end of Dennard scaling and Moore’s law forces computer architects to specialize their
design for increased performance and efficiency. Traditional multi-core CPUs are now challenged by
massively parallel architectures. This diversity in hardware requires massive changes for software as
traditional, sequential implementations are hard to automatically adapt to this zoo of architectures.

2.1 A Solved Problem: High-Level Programming Abstractions for Stencils

Domain specific languages (DSLs) and libraries help application developers target modern hardware,
shielding them from the ever changing landscape. They are commonly accepted as being part
of the solution to address the performance portability challenge. They are widely used in stencil
computations, which have been extensively – and successfully – studied in terms of application-
specific optimizations in the high performance computing community. High-level frameworks such
as Halide [38] are designed specifically to express stencil computations in a functional style, fuse
multiple operations and generate parallel GPU code automatically. Similarly, PolyMage [35] fuses
multiple stencil operations and uses the polyhedral model to produce parallel CPU code.
While the use of DSLs provides a nice solution for the end user, they are costly in terms of

compiler development. Each new DSL needs to implement its own backend compiler and optimizer
with its own approach to parallelization. This is clearly not sustainable given the number of
application domains and the ever growing hardware diversity.

2.2 The Real Challenge: Universal High Performance Code Generation

What is needed is a reusable compiler approach that covers a wide range of domains and delivers
high performance across devices. Figure 1 shows the vision of a universal compiler which was first
proposed by Delite [51]. Delite advocates the use of a small set of parallel functional primitives
upon which DSLs are implemented. A single backend takes care of compiling and optimizing these

Halide PolyMagePATUS Pochoir HIPAcc PARTANS
Domain Specific Languages

Hardware

multi-core CPU mobile GPU desktop GPUFPGAXeon Phi

Universal High Performance Code Generator

Fig. 1. Vision of a high performance code generator used as a universal interface between DSLs and hardware.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:4 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

Primitives Rewrite Rules
map

split

reduce

…zip
+

slide

pad

exploit local memory vectorization

…

+

Lif t

Overlapped
Tiling

map(f, slide(...))
...

mapfusion
map(f) o map(g) map(f o g)

Fig. 2. Additions to Lift proposed for the minimal support of stencils. Only two main new primitives and a

rewrite rule enabling general tiling optimization are added.

primitives down to the hardware, enabling all the DSLs implemented on top of Delite to benefit
from these optimizations and reach good performance on a specific parallel device.
Lift [44, 47, 48] is a novel approach to achieve performance portability. Similarly to Delite,

a small set of data-parallel patterns are used to implement higher-level abstractions. However,
in contrast to Delite, Lift generates code by encoding algorithmic choices and device-specific
optimizations as provably correct rewrite rules. This design makes it easy to extend and add new
optimizations into the compiler, whereas in Delite optimizations are hard-coded for each backend.
A more detailed discussion about this process can be found in our previous work[42].

Lift has demonstrated that high performance is achievable for linear algebra [47]. This paper
takes Lift a step further and shows how it is also applicable, with few modifications, to stencil
computations. We show how complex multi-dimensional stencils are expressible by composing a
handful of simple 1D primitives. Additionally, we strive to leverage existing functionality in Lift,
inheriting the benefits of automatic exploration of algorithmic and device-specific optimizations.

3 EXTENDING LIFT FOR STENCIL COMPUTATIONS

Figure 2 shows the extensions to Lift for the general support of stencil computations. Only minor
additions are required to support stencils and generate high-performance code across multiple
parallel devices. We begin by describing the existing Lift primitives we reuse, before introducing
two new primitives slide and pad which allow us to express stencil computations in a functional
style. After discussing a 1D example, we introduce the handling of multi-dimensional stencils which
are expressed by the composition of fundamental 1D primitives. We finish with a real-world 3D
stencil example simulating room acoustics expressed with the introduced high-level primitives.

3.1 Existing High-Level Lift Primitives

Lift [44] offers data-parallel primitives which are efficiently compiled to GPUs using rewrite-
rules [48]. Primitives relevant to stencils are shown in Figure 3 with their types. [T]n is an array
with n elements of type T , {T1,T2, . . .} represents tuple types while T → U is a function type from
T toU .

Map, Reduce, Iterate. Map applies function f to all array elements and is the only primitive that
expresses data parallelism. Reduce applies a reduction operator f to an array, using an accumulator
initialized with init . Iterate performsm iterations of f reusing output as input at the next iteration.

Zip, Split, Join. Zip creates an array of tuples {T ,U } by combining two input arrays of the same
length. Split introduces an additional dimension, by splitting the input array into chunks of sizem,
wherem is a number evenly dividing the input size n. Join performs the opposite operation.

Array and Tuple accesses. The at primitive indexes an array with constant index. This is used
for accessing elements from the stencil shape. In this paper, we write in[3] as syntactic sugar for
at (3,in). get indexes into tuples, written as in.i in the rest of this paper.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:5

map : (f : T → U , in : [T]n) → [U]n
reduce : (init : U , f : (U ,T) → U , in : [T]n) → [U]1

zip : (in1 : [T]n , in2 : [U]n) → [{T ,U }]n
iterate : (in : [T]n , f : [T]n → [T]n , m : Int) → [T]n
split : (m : Int, in : [T]n) → [[T]m]n/m
join : (in : [[T]m]n) → [T]m×n
at : (i : Cst , in : [T]n) → T

get : (i : Cst , in : {T1,T2, . . .}) → Ti

array : (n : Int, f : (i : Int, n : Int) → T) → [T]n
userFun : (s1 : ScalarT , s2 : ScalarT ′, . . .) → ScalarU

Fig. 3. High-level Lift primitives and their types

Array Constructors. Arrays can be built lazily by invoking a function f on index i and length n.
Section 3.5 shows this primitive is used for creating masks which is useful for certain stencils.

UserFun. Finally, userFuns define arbitrary functions which operate on scalar values and which
do not have side effects. These functions are written in C and are embedded in the generated
OpenCL code.

3.2 Extensions for Supporting Stencils

It is not possible to express stencil computations in Lift using solely the primitives above. Instead
of expressing stencils using a single high-level stencil primitive, as is often seen in other high-level
approaches, e.g. [7, 45], in Lift we aim for composability and thus express stencil computations
using smaller, fundamental building blocks. Every stencil computation is decomposable into three
steps. Consider the 3-point stencil shown in Listing 1 applied on a 1D array A of length N that
sums the elements of each neighborhood. As explained below, stencil computations consist of three
fundamental parts:

(a) for every input element, a neighborhood is accessed specified by the stencil shape (line 3);
(b) boundary handling is performed which specifies how to handle neighboring values for

elements at the borders of the input grid (line 4);
(c) finally, for each neighborhood, its elements are used to compute an output element (line 5).
We have added new primitives to perform the first two steps. Following Lift’s design goal, each

primitive expresses a single concept and complex functionality is achieved by composition. The
first new primitive handles boundary conditions and the second one expresses element grouping.

1 for(int i = 0; i < N; i++) {
2 int sum = 0;
3 for(int j = -1; j <= 1; j++) { // (a)
4 int pos = (i+j < 0) ? 0 : ((i+j > N-1) ? N-1 : i+j); // (b)
5 sum += A[pos]; } // (c)
6 B[i] = sum; }

Listing 1. Simple 3-Point Jacobi Stencil in C

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:6 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

input

output

0 1 2 3 4 5 6 7 8 9

boundary handling
using pad

create neighborhoods
using slide

...

3-point stencil

compute output element
 using map stencilfunction

1

2

3

0 0 1 2 3 4 5 6 7 8 9 9

0 0 1 0 1 2 8 9 9

1 20

Fig. 4. Expressing a stencil in Lift using pad for boundary handling, slide for creating the neighborhood and

map to compute the output elements. These three steps are compiled into a single OpenCL kernel by Lift.

Boundary Handling with Pad. Pad adds l and r elements at the beginning and end of the input
array in, respectively. One variant reindexes into the input array, while a second variant appends
values computed by a user-specified function. For stencil computations, these primitives are used
to express what happens when we reach the edge of the data boundary.

Step 1 in Figure 4 visualizes boundary handling with pad. The input array on the top is enlarged
with one element on each side as highlighted with dashed lines.

The pad primitive for reindexing has the following type:

pad :
(
l : Int,r : Int,h : (i : Int, len : Int) → Int, in : [T]n

)
→ [T]l+n+r

It uses the index function h to map indices from the range [0,l +n + r] into the smaller range of the
input array [0,n]. The elements added at the boundaries are, thus, elements of the input array and
h is used to determine which elements this will be. For instance, by defining the following function:

clamp(i, n) = (i < 0) ? 0 : ((i >= n) ? n-1 : i)

it is possible to express a clamping boundary condition which artificially extends the original input
array by two elements to the left and three to the right by repeating the value at the boundary. In
the extended version of Lift we write: pad(2,3,clamp,input).
Indexing functions implementing mirroring or wrapping are similarly defined and must not

reorder the array elements, but only map indices from outside the boundaries into a valid index.
The pad primitive which appends values has a similar type (not shown for brevity), where the

function h produces a value which is added to the array edges. This pad variation is used for
constant or dampening boundary conditions where the out-of-bound value decreases with distance.

Creating Neighborhoods with Slide. The slide primitive applies a sliding window of length size
traversing past step elements. For a one-dimensional 3-point stencil we write: slide(3,1,input).
This creates a nested array, as shown in step 2 in Figure 4, where each element of the outer

array is itself an array of three elements. The second element of the first inner array is also the
first element of the second array, which corresponds to the notion that we group the first three
elements together before we move the sliding window by one element. The type of slide is:

slide : (size: Int, step: Int, in: [T]n) → [[T]size] n−size+step
step

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:7

1 val sumNbh = fun(nbh => reduce(add , 0.0f, nbh))
2 val stencil = fun(A: [Float]n) =>
3 map(sumNbh , // (c)
4 slide(3, 1, // (a)
5 pad(1, 1, clamp , A)))) // (b)

Listing 2. 3-Point Jacobi Stencil expressed in Lift

Computing the Stencil for each Neighborhood with Map. Themap primitive is the only way in Lift
to express data parallelism. As stencils are naturally data-parallel, we express the last step of the
stencil computation using themap primitive. This step takes the array of neighborhoods as its input
and performs the stencil computation to produce a single output value for each neighborhood.

3.3 One-Dimensional Stencil Example in Lift

Listing 2 shows a simple 3-Point Jacobi Stencil in Lift. This is the same example we saw as C
code in Listing 1. Due to the functional style of nested function calls, the Lift expression reads
bottom-up. We can see the decomposition in three steps: first, boundary handling is performed
(line 5) using pad; then, neighborhoods are created (line 4) using slide; finally,map (line 3) performs
the computation for every neighborhood. The computation is defined as function sumNbh in line 1.
It is important to emphasize that the logical distinction of these three steps will not be echoed

in the generated OpenCL code. The boundary handling and creation of neighborhoods are not
performed by copying elements in memory, but are combined with map in a single step by creating
a compiler-internal data structure, called view in Lift [48], which influences how data will be read
from memory. This is discussed in more detail in Section 5.

3.4 Multi-Dimensional Stencils in Lift

One of the crucial concepts of this paper is the ability to express complex multi-dimensional stencils
as compositions of simple 1D primitives. We now show how we define n-dimensional versions of
padn and sliden as compositions of the simple pad, slide, and map primitives.

Multi-dimensional stencils are expressed following the same structure as one-dimensional ones:
mapn (f , sliden (size, step, padn (l , r , h, input)))

Boundary handling is performed via padn using the function h. Here we present the simple case
where the same boundary handling strategy is performed in each dimension. It is straightforward
– and supported by our implementation – to do different boundary handlings in each dimension.
The sliden creates a n-dimensional neighborhood, which is then processed by mapn.

Multi-dimensional Boundary Handling. This follows the same idea as in the one-dimensional
case. Using nested maps, we apply pad to inner dimensions. Thus, padn is defined recursively as:

pad1 (l , r , h, input) = pad(l , r , h, input)
padn (l , r , h, input) =mapn-1 (pad(l , r , h),padn-1 (l , r , h, input))

where mapn are n nested maps:
map1 (f , input) =map(f , input)
mapn (f , input) =mapn-1 (map (f), input)

While the base case is the one-dimensional pad, for each higher dimension a pad primitive is added
where nested maps are used to apply it to the innermost dimension.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:8 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

We provide an example for pad2 using the clamping which repeats the values at the boundary:

pad2 (1, 1, clamp,

[
[a, b],
[c, d]

]
) = map(pad(1,1,clamp), pad(1,1,clamp,

[
[a, b],[c, d]

]
)) =

map(pad(1,1,clamp),
[
[a, b],[a, b],[c, d],[c, d]

]
) =

[a, a, b, b],
[a, a, b, b],
[c, c, d, d],
[c, c, d , d]

After expanding pad2, pad is applied to the 2D array outer dimension, resulting in an enlarged
array where the first and last element – themselves both arrays – are prepended and appended.
Then, pad is applied using map, which pads every nested array resulting in the final 2D array.

Multi-dimensional Neighborhood Creation. Neighborhood creation is more complex than
boundary handling, but follows a similar idea. For the two-dimensional case, slide2 is defined as:

slide2 (size, step, input) = map(transpose,slide(size, step,map(slide(size, step), input)))
We explain this definition using an example:

slide2 (2,1,

[a, b, c],
[d , e, f],
[д, h, i]

) =

map(transpose, slide(2,1,map(slide(2,1),
[
[a, b, c], [d , e, f], [д, h, i]

]
))) =

map(transpose, slide(2,1,
[
[[a, b], [b, c]], [[d , e], [e, f]], [[д, h], [h, i]]

]
)) =

map(transpose,
[
[[[a, b], [b, c]], [[d , e], [e, f]]],
[[[d, e], [e, f]], [[д, h], [h, i]]]

]
)) =

[[[a, b],
[d , e]

]
,
[[b, c],
[e, f]

]]
,

[[[d , e],
[д, h]

]
,
[[e, f],
[h, i]

]]

The resulting 4D array is created out of four 2×2 neighborhoods. These are created by applying slide
to the inner and outer dimensions, before using map(transpose) to switch the two inner dimensions.
We can generalize the definition of slide2 to sliden for creating n-dimensional neighborhoods.

The general structure is similar to the two-dimensional case:
sliden (size, step, input) = reorderingDimensions(slide(size, step, map(sliden-1 (size, step, input))))
We first recursively apply the sliding in one inner dimension for the nested dimension of our n-
dimensional input with map(sliden−1). Then, slide is applied to the outermost dimension, so that we
now have applied slide exactly once to all dimensions. In the last step, we reorder the dimensions, so
that the nested dimensions created by the slides are the innermost ones. This is best understood by
looking at the types involved. For a three-dimensional array, after applying slide in each dimension
we obtain an array of this type: [[[[[[T]so]o]sn]n]sm]m , where sm andm are the two dimensions
resulting from applying slide to the outermost dimension. By rearranging the dimensions, we obtain:
[[[[[[T]so]sn]sm]o]n]m , which corresponds to a three-dimensional neighborhood. The rearranging
is realized purely as a combination of map and transpose calls which swap individual dimensions.

3.5 A Complex Stencil: Room Acoustics Simulation

Lift can handle complex real-world stencils. Listing 3 shows a stencil application for modeling
room acoustics developed by HPC physicists [55] in Lift. A sound wave propagates from a source to
a receiver in a 3-dimensional space using Finite-Difference Time-Domain methods. The coefficients
used in calculating the physical properties of the sound wave are adjusted according to the reflection
when encountering a physical boundary (the walls are the boundaries of the grid). The computation
is based on a discretized version of the 3D wave equation to simulate the energy at different points.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:9

1 acousticStencil(gridt−1:[[[Float]m]n]o ,gridt :[[[Float]m]n]o) {
2 map3(m -> {
3 val sumGridt−1 = m.1[0][1][1] + m.1[1][0][1] + m.1[1][1][0] +
4 m.1[1][1][2] + m.1[1][2][1] + m.1[2][1][1]
5 val numNeighbor = m.2
6 return getCF(m.2, CSTloss1 , 1.0f) * ((2.0f-CSTl2 * numNeighbor)*m.1[1][1][1]+
7 CSTl2 * sumGridt−1 - getCF(m.2, CSTloss2 , 1.0f) * m.0) },
8 zip3(gridt ,slide3(3, 1, pad3(1,0,gridt−1)), array3(m,n,o,computeNumNeighbors))) }

Listing 3. Accoustic simulation expressed in Lift

The two inputs used in this benchmark (дridt−1 and дridt on line 1) indicate previous and current
time steps to update the state of the room across time. This type of inputs is often found in real-
world physical simulations, which span three dimensions for physical space and one for time. The
first grid is taken point-by-point, however the second grid uses slide3 to form stencil neighborhoods.
The дridt−1 input is padded using pad3, so that no out-of-bounds accesses occur. These grids are
zipped together along with an on-the-fly array generator which calculates the number of neighbors
for a given point (computeNumNeighbors) as seen on line 8 (the zip3 and array3 primitives used
are similar versions to the one-dimensional primitives which work on 3D data). This results in a
tuple of: {valuet−1, neighborhoodt , numNeighbors}.
On lines 3–4, the stencil is computed by accessing neighboring values using the at primitive

(written []) which are combined with other inputs in an equation to model the sound (lines 6–7).
A difficult problem for wave-based simulations is handling physical obstacles in the room. This

simplified version uses state-free boundary conditions, which involve variable coefficients, however
the same ideas could be applied to more complicated state conditions. The variable coefficients
(a. k. a. loss) at the obstacles boundary are handled through the use of a mask, which returns a
different value depending on whether it is on an obstacle or not. In Lift, this mask is calculated on
the fly using the array3d generator and contains a value at each point in the grid. The coefficients
are then calculated using the getCF function as can be seen on line 6. For those values which are on
the border (i.e., numNeighbors < 6), a lossy coefficient is used in the equation (CSTloss1 or CSTloss2).

This 7-point stencil benchmark represents the most simplistic version of an acoustics simulation,
but there are other schemes which bring improved accuracy [23]. These schemes use either “leggy”
(i.e., higher-order) or dense schemes which involve more memory accesses, thus modeling the wave
more accurately. In Section 8.2 we will take a closer look at these variations of stencil shapes.

3.6 Summary

This section has shown how stencils are expressed in Lift by adding two new primitives: pad
and slide. Together with existing Lift primitives, this allows for expressing multi-dimensional
stencils built from the one-dimensional building blocks. We have also discussed stencils in a physics
simulation and the importance of building tools and optimizations that work for these codes.
Crucially, the parallelism found in stencil applications is expressed using the existing map

primitive, without introducing a special case for stencils. Rewrite rules explaining how to optimally
leverage OpenCL hardware using map are then reusable for stencil applications as we show next.

4 EXPRESSING OPTIMIZATIONS

This section discusses stencil-specific optimizations and how they are expressed as rewrite rules in
Lift. These new rules are used together with Lift’s existing rules to explore the implementation
space of stencil applications. By applying different rewrites, programs can be tailored to target
different architectures, thus, achieving performance portability.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:10 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

tile

output

tile tile

overlap

output

input

Fig. 5. Overlapped tiling for 3-point Jacobi Stencil

1 fun(A: [Float]n =>
2 map(tile =>
3 map(sumNbh , slide(3,1, tile)),
4 slide(5,3,
5 pad(1,1, clamp , A))))

Listing 4. Algorithm for Overlapped Tiling

4.1 Exploiting Locality through Classical Overlapped Tiling

Stencil applications involve local computations which only access elements in a neighborhood.
Nearby elements in a grid share large parts of their neighborhoods. Exploiting this locality is the
most commonly used and successful optimization for stencil computations. On GPUs, the fast (but
small) local memory is used to store a set of neighborhoods where elements are loaded only once
from the slow global memory, such that successive accesses are made from the fast local memory.

Locality is traditionally exploited using overlapped tiling [19, 21, 60]. Although this optimization
is most often used for time tiling, performance benefits can still be seen when analyzing single-step
stencil computations. However, the same approach can be used for iterative stencils. An input
grid is divided into overlapping tiles allowing grid elements to access neighboring values. The
overlap size is determined by neighborhood size. Figure 5 shows overlapped tiling for a 3-point
1D Jacobi stencil. The left-hand side shows a tile of five elements. The reuse of data can be seen
where the highlight on the left shares two elements from the tile with the middle computation. On
the right-hand side, overlap in between the left and right tile can be seen. These two elements are
available in both tiles.

Representing Overlapped Tiling in Lift. The slide primitive is reused to represent overlapping tiles.
Listing 4 shows the Lift expression of the 3-point Jacobi stencil using tiling. The slide primitive is
used twice: in line 3 a neighborhood is created, but in line 5 overlapping tiles are created instead of
neighborhoods. Due to parameter choice (5 and 3 in this case), 5 elements are grouped in a tile,
with 2 elements overlapping with the next tile. Figure 6 shows the creation of tiles in the first step
(using slide(5, 3)), then for each tile we create the local neighborhoods using slide again.

Tiling as a Rewrite Rule. Phrasing tiling as a rewrite rule makes it accessible to Lift’s automatic
exploration process. Tiling in one dimension is expressible as follows:
map(f , slide(size, step, input)) 7→ join(map(tile⇒ map(f ,slide(size, step, tile)),slide(u,v, input)))

The parameters u and v have to be selected appropriately, i.e., the difference between the size and
step has to match the difference of u and v : size-step = u −v . Figure 5 visualizes this constraint for
a neighborhood size of 3 and where step is 1. When choosing the size of the tile u, e.g. 5 in the
example, v has be selected so that it matches the formula (i.e. 3 in this case) as 3 − 1 = 5 − 3. This is
the only valid choice forv as it determines the overlap created between the tiles which corresponds
with the size of the original neighborhood. Choosing u and v according to the formula ensures that
we end up with the same number of neighborhoods on both sides of the rewrite rule.

Decomposing this rule into two smaller rules shows that it is semantics preserving:
map(f , join(input)) 7→ join(map(map(f), input))

slide(size, step, input) 7→ join(tile⇒ map(slide(size, step, tile)),slide(u,v, input))

Here it can be seen that the first rule preserves semantics as on both sides function f is applied
to each element of the two-dimensional input. On the left-hand side, this is done by flattening the

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:11

...

...

slide 5 3

input

array of overlapping tiles

array of tiles containing neighborhoods

output

map (slide 3 1)

Fig. 6. Applying slide to the input creates tiles.

Applying slide to tiles creates neighborhoods

...

...
...

...
(map(map
 (slide2d size' step')) ∘
 slide2d size step) input

input
overlapping
tiles

neighborhoods

Fig. 7. Applying overlapped tiling in 2D

input and then applying the function, whereas on the right-hand side the function is first applied
to each element of the input and then flattened afterwards.
Assuming that u and v are valid parameter choices as described above, the correctness of the

second rule is also straightforward. Starting on the right-hand side, we create tiles using the first
slide primitive. Then, we perform the second slide for each created tile, before the join removes the
outermost dimension and, therefore, resolves the tiles, leaving us with a two-dimensional array
equivalent to the array produced by only applying the second slide.

Overlapped Tiling in Lift in Multiple Dimensions. Our extension to Lift fully supports tiling in
higher dimensions. Figure 7 visualizes overlapped tiling in two dimensions.
The optimization rules for tiling higher-dimensional stencils are expressed by reusing the one-

dimensional primitives. The rewrite rule covering two-dimensional tiling looks similar to the
one-dimensional case when written with the map2 and slide2 primitives introduced previously:

map2 (f , slide2 (size, step, input)) 7→
map(join, join(map(transpose,map2 (tile⇒ map2 (f ,slide2 (size, step, tile)),slide2 (u,v, input)))))

4.1.1 Usage of Local Memory. Local memory is key to gaining high performance for overlapped
tiling. Modern GPUs have small caches and the programmer must explicitly use the fast scratchpad
memory (called local memory) in OpenCL. This can be cumbersome and does not always provide
better performance. The benefit of local memory depends on the hardware architecture and how
much data reuse there is in the stencil application. We address these issues in Lift by using a
rewrite rule to express local memory use, which can be used on its own or in conjunction with
tiling. This rule is one of many optimization choices applied in the automatic optimization process.
Besides the high-level primitives introduced in Section 3, Lift also defines OpenCL-specific

low-level primitives [44] to exploit particular features of OpenCL, such as the use the local memory.
The toLocal primitive wraps around a function to indicate that this function should write its result
into local memory. To copy a single scalar value into local memory, we can use the identity user
function id, as in: toLocal(id). For copying arrays, we wrap the map(id) function in toLocal.
Copying into local memory is legal inside workgroups as described by this rewrite rule:

map(id) 7→ toLocal(map(id))

Together with a rule which introduces map(id) at any position, this allows the exploration of using
local memory. Currently, heuristics are used to prevent applying this rule at unfavorable places.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:12 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

r2

r3 r3

r1 r1

r2

x

y

z

step i

step i+1

step i+2

r1

r2

r3

load from memory

reuse register

Fig. 8. A visual representation of the 2.5D tiling optimization for a single thread loading memory into registers

r1, r2, and r3 which are reused over multiple iteration steps.

4.2 Exploiting Spatial Locality of 3D Stencils Through 2.5D Tiling

2.5D tiling is an optimization for 3D stencils which iterates over two spatial dimensions in parallel
and the third dimension sequentially[36, 59]. This optimization allows 3D stencils to exploit locality
in the third dimension and avoid costly redundant memory accesses. Parallelism is thus only
exploited for the XY plane. Figure 8 shows this technique for a single thread. The highlighted
squares represent the values accessed by a thread at each iteration of the stencil. The dark centered
squares show the values that are reused across iteration and are, therefore, re-loaded from registers
and not each time from memory. Because threads only iterate over two dimensions, instead of
the typical three for 3D stencils, parallelism is essentially traded for fewer memory accesses (but
increased register pressure). We will discuss the impact of register pressure more in Section 7.

Representing 2.5D Tiling in Lift. Supporting this optimization in Lift is achieved by combining
the existing functionality of map and slide. In particular, we use the mapseq primitive, a version of
map which iterates sequentially. In order to support a moving window, we added a third primitive:
mapseqslide. This primitive has the following type:

mapseqslide :
(
f : T → U , size: Int, step: Int, in : [T]n

)
→ [U] n−size+step

step

Mapseqslide implements a moving window to iterate over tiles sequentially. The primitive can be
used on any number of dimensions and the loop in dimension N-1 will be sequential. That is, in 1D
(or “.5 tiling”) there will only be a single sequential loop, for 2D (or “1.5 tiling”) there will be one
parallelizable loop and one sequential loop. However, the remainder of this paper focuses on the
optimization for 3D stencils with 2.5D tiling, as this is where speedups have been known to occur.

2.5D Tiling as a Rewrite Rule. The mapseqslide primitive can replace any mapseq following a slide.
We explain the addition of these rewrite rules for the 2.5D case in particular. To add 2.5D tiling as a
rewrite rule requires matching against three nested maps and three nested slides. The rewrite rule
in three dimensions is described as follows:

map3 (f, slide3(size,step,input)) 7→ map2 (mapseqslide (f,size,step,slide2(size,step,input)))

Memory Coalescing. In order for the newmapseqslide primitive to generate performant code, care
must be taken when data is passed to the mapseqslide primitive. Doing so in dimensions greater
than one requires reordering the data through one or more transposes in order for the outer-most
dimension to be the first one from the perspective of the primitive. The outer dimension is then
iterated over first, which retains memory coalescing and ensures the same stencil shape is retained
as a normal operation. Similar to the process of multi-dimensional slides described in Section 3.4,

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:13

transposes are added to the data input to the primitive in the same fashion relative to the number
of dimensions used. As we focus on 2.5D tiling in particular for three dimensional stencils, we
describe the approach for ensuring the correct ordering for the 3D case below:

mapseqslide(size, step, f,transpose (map (transpose (
slide2 (size, step,map (transpose (transpose (input))))))))

This approach takes an input array of type[[[T]m]n]o , transposes it to create [[[T]m]o]n , then maps
a transpose to create [[[T]o]m]n . A slide2 on the input then produces [[[[[T]o]sm]sn]m]n . Once inside
the mapseqslide, the matrices of size sm × sn iterate over columns of length O (i.e., [[[T]o]sm]sn]).
This is then transposed twice more with another map(transpose) followed by a tranpose resulting
in [[[T]sm]sn]o , which can then be slided and mapped over in the correct direction. All transposes
are then undone before the resulting data is written to the output.

Loop Unrolling. Loop unrolling is a traditional low-level optimization which can greatly increase
performance for certain cases. It is crucial for ensuring high performance for the 2.5D tiling
optimization as we will discuss further in Section 5.2. However, we can also utilize loop unrolling
as an isolated optimization, similar to local memory. To explore this for stencil applications, we use
a variation of the reduce primitive which is unrolled by the Lift compiler. As seen in the 3-Point
Jacobi example in Listing 2, the reduce pattern is often used in stencil computations to sum up
values in a neighborhood. The unrolled variation of reduction is called reduceUnroll and has a
matching rewrite rule making it an optimization choice during exploration. Unrolling is only legal
if the size of the input array has a known length at compile time. For stencils, the reduction is
applied to a neighborhood which almost always consists of a fixed number of elements.

4.3 Summary

This section has shown how stencil optimizations are expressed as rewrite rules, which are then
applied by the Lift exploration process. Overlapped tiling in multiple dimensions is expressed by
reusing ideas of the simple one-dimensional case. 2.5D tiling is built using an extension of existing
primitives and uses a rolling window over the input array. Together with low-level optimizations,
such as usage of local memory and loop unrolling, Lift is capable of automatically exploring a
variety of optimizations for stencil applications.

5 CODE GENERATION

Lift’s exploration process automatically rewrites a stencil program expressed using pad, slide,
and map into a Lift expression of low-level, OpenCL-specific primitives which explicitly encode
implementation and optimization choices, such as tiling. In addition to the OpenCL code generation
described in [48], we describe in this section additions to the code generator for producing efficient
OpenCL code for the new primitive and ensuring good performance for the new tiling optimization.

5.1 Views

Lift uses an intermediate compiler data-structure called a view [48] when implementing primitives,
which modifies the data layout without performing any computation itself. These operations are
not performed in memory, but influence how successive primitives read input data.

Pad and slide are implemented using this approach. These primitives are integrated with Lift’s
view system and are not directly compiled to OpenCL code. Instead, the reindexing of computations
introduced with pad are performed when the padded array is accessed for the first time. Similarly,
the slide primitive does not physically copy created neighborhoods into memory. Slide guides

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:14 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

1 for (int i = get_global_id (0); i < M ; i = i + get_global_size (0)) {
2 float w10 = in[3]
3 float w11 = in[4]
4 float w12;
5 for (int j = 1; j < N; j = j+1) {
6 w12 = in[i+j*M+M]
7 out[i] = multSumUp(in[i+j*M-1],w10,w11,w12,in[i+j*M+1]);
8 w10 = w11; w11 = w12; /* ... */ } /* ... */}

Listing 5. Example of 1.5D Tiling generated C code for a 5-point stencil in 2D

accesses to elements in a neighborhood to the original array, so that accesses to the same element
in different neighborhoods result in memory accesses from the same physical location.
This technique means Lift can build complex - potentially multi-dimensional - abstractions

which simplify the implementation of stencil applications compiled to efficient OpenCL code.

5.2 Generating efficient code for 2.5D Tiling

There are three stages in the code generation for mapseqslide: 1) initialize values, 2) update values
and 3) swap values. The code generator implements a rolling window within mapseqslide where
each value is stored in private memory (registers). This provides the data reuse which leads to
performance benefits. However, this necessitates that arrays in private memory are automatically
unrolled into scalar values that are guaranteed to be stored in private memory.

Unrolling arrays in private memory.Array unrolling is achieved by creating private scalar variables
for each value in the array. The array size must be statically known for this optimization. The code
generator automatically unrolls arrays until there are no more dimensions to unroll. An example
of the resulting code for 2.5D tiling generated with the mapseqslide can be seen in Listing 5, which
shows the generated C code for a 2D example for a 5-point stencil when rolling a window over the
Y dimension. On lines 2–4 the unrolled values of the rolling window are initialized, line 6 loads the
new value into the window, and finally on line 8 the rolling window values swap.
Inlining structs. In addition to unrolling arrays, structs are inlined into independent private

variables as well to ensure these values are stored in registers separately. When inlined, a variable
of the struct Tuple2_int_float { int intValue; float floatValue; } would result in the
individual variables int tup_i; float tup_f;.
The algorithm for private memory array unrolling and struct inlining follows subsequent re-

cursive passes of the C AST in the compiler. First a pre-order traversal of the tree is performed to
unroll private arrays. Then another pre-order traversal of the tree is performed to inline structs.
Passes continue until all private memory has been unrolled and all structs have been inlined.

6 EXPERIMENTAL SETUP

Platforms and Measurement. Experiments are conducted using single precision floats on: a Tesla
K20c with CUDA 8.0 driver version 367.48; an AMD Radeon HD 7970 with OpenCL version 1.2
AMD-APP (1912.5); and the SAMSUNG Exynos 5422 ARMMali GPU with OpenCL 1.2 v1.r17p0. The
medians of 100 executions are reported measured using the OpenCL profiling API. Data transfer
times are ignored since the focus is on the quality of the generated kernel code. More information
about the hardware used (including their ridge points from the Roofline Model [57] showing the
ratio of computation and memory bandwidth) can be found in Table 1.
Benchmarks. The Lift-generated kernels are compared against hand-tuned and automatically-

generated kernels from the PPCG [54] state-of-the-art OpenCL polyhedral compiler. We also

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:15

Platform Memory Bandwidth Peak Performance Ridge Point
(GB/s) (Single Precision GFLOPS) (FLOPS/Byte)

NVIDIA K20c 208 3524 16.9
AMD Radeon HD 7970 288 4096 14.2
ARM Mali T-628 14.9 68 4.5

Table 1. Platforms and Hardware Metrics used in the evaluation.

Benchmark Dim Pts Input Size #FLOP #Grids

Stencil2D [11] 2D 9 4098×4098 17 1
SRAD1 [6] 2D 5 504 × 458 35 1
SRAD2 [6] 2D 3 504 × 458 13 2
Hotspot2D [6] 2D 5 8192×8192 4 2
Hotspot3D [6] 3D 7 512×512×8 17 2
Acoustic [49] 3D 7 256×256×202 13 2

Gaussian [41] 2D 25 40962 / 81922 50 1
Gradient [41] 2D 5 40962 / 81922 18 1
Jacobi2D [41] 2D 5/9 40962 / 81922 10/18 1
Jacobi3D [41] 3D 7/13/19/27 2563 / 5123 13/25/37/54 1
Poisson [40] 3D 19 2563 / 5123 21 1
Heat [40] 3D 7 2563 / 5123 15 1

Table 2. Benchmarks used in the evaluation. Benchmark is the benchmark name, Dim is the dimensions of

the input grids, Pts is the number of points in the stencil, Input Size is the number of grid points, #FLOP is the

number of floating point operations in the stencil and #Grids is the number of input grids

collected hand-written kernels from SHOC (v1.1.5), Rodinia (v3.1) and an OpenCL version of the
acoustics simulation code discussed in Section 3.5. We hard-coded each benchmark to perform a
single iteration of the stencil computation. We also collected a series of single-kernel C codes that
work with the PPCG compiler from a recent study [40, 41], provided by the authors. Table 2 lists
these benchmarks along with their key characteristics. Subsequent benchmarks used in Section 8.1,
include two additional Jacobi 3D stencils using 19 points (with 3 points in each direction) and 27
points (which accesses all points in a 3× 3× 3 neighborhood). The 19-point stencil used is the same
as the Poisson stencil and the 13-point Jacobi stencil is the same as the PPCG version.

Exploration and Auto-Tuning. Our exploration process is divided into two phases: 1) Rewriting,
and 2) Auto-Tuning. For this evaluation, our existing rewriting strategy [42] was used without mak-
ing any adjustments. In the first phase, a derivation tree was created by applying multiple potentially
applicable rules, each creating a separate branch. For some optimizations, like overlapped-tiling,
multiple "small" rewrite rules are gathered into a larger macro rewrite rule which encodes a specific
optimization sequence. Instead of using the smaller rules in the rewriting phase, these macro rules
are used, which additionally helps to limit the number of leaves in the derivation tree, i.e. the
low-level expression which serves as input to the auto-tuning phase.
Lift exposes optimization choices via rewrite rules which leads to several low-level Lift ex-

pressions per benchmark. Each low-level expression contains many parameters that are tunable,
controlling for instance: local/global thread counts, tile sizes, how much work a thread performs
or how memory accesses are reordered. The parameters of each Lift expression are fine-tuned

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:16 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

Nvidia AMD ARM

0

4

8

12

0

5

10

15

20

25

0.00

0.05

0.10

0.15

0.20

Aco
us

tic

Hots
po

t2D

Hots
po

t3D

SRAD1

SRAD2

Sten
cil2

D

Aco
us

tic

Hots
po

t2D

Hots
po

t3D

SRAD1

SRAD2

Sten
cil2

D

Aco
us

tic

Hots
po

t2D

Hots
po

t3D

SRAD1

SRAD2

Sten
cil2

D

G
ig

ae
le

m
en

ts
 p

er
 S

ec
on

d

version
Lift

Reference

Fig. 9. Performance of the Lift generated code and hand-optimized kernels.

using the ATF auto-tuning framework [39], which builds on top of OpenTuner [1] and additionally
allows constraint specification in the parameter space. The auto-tuner was used for a maximum of
three hours for a single program for tuning all expressions.
The PPCG compiler used in our comparison exposes global/local thread counts and tile sizes

as tunable parameters in each dimension. ATF and OpenTuner were also used for finding the
best combination of these parameters, with the same maximum tuning time of three hours per
benchmark. For both Lift and PPCG, the auto-tuner has been enhanced to take into account
OpenCL specific constraints (e.g., global thread counts should be a multiple of local thread counts).

7 EVALUATION

7.1 Performance Results

This section presents the results of the exploration and auto-tuning process for hand-tuned kernels.
It also shows the performance achieved by hand-written optimized kernels from the benchmark
suites or from HPC experts, as explained previously. Performance is expressed in elements updated
per second, which we define simply as the output size divided by the execution time.

Figure 9 shows the performance for six benchmarks of which there are hand-written implementa-
tions. In most cases the Lift generated kernels are comparable to their hand-written counterparts,
showing that our compiler approach generates high-performance kernels.
The benchmarks srad1 and srad2 seem to under-perform compared to the other benchmarks

on the AMD and Nvidia platforms. This is due to the input sizes being too small to saturate these
large GPUs (on the smaller ARM GPU, these benchmarks perform as good as the others).

The Hotspot2D benchmark is also a clear outlier on the AMD and ARM platforms. On the ARM
GPU, the Lift generated version is 2× faster than the hand-written version. On the AMD platform,
the performance of the hand-written version is clearly under-performing, especially compared to
the performance of the other benchmarks. The Lift generated kernel achieves similar performance
than the other benchmarks while being 15× faster than the hand-written version which was
originally written for an Nvidia platform. This clearly illustrates the need for code-generation
techniques which compile generated code specific to a particular device.

7.2 Performance Comparison of Lift versus PPCG

This section compares Lift with the state-of-the-art PPCG polyhedral GPU compiler [54]. Similar
to Lift, PPCG generates optimized code for data-parallel algorithms starting from a single program.

Figure 10 shows the relative performance of Lift-generated kernels over PPCG-generated kernels.
As described in Section 6, both Lift and PPCG use the same auto-tuning mechanism for a fair
comparison. In nearly all cases, the Lift generated code is on-par or clearly outperforms PPCG.

OnNvidia, many benchmarks achieve a speedup of up to 4× over PPCG, such as the Heat program
with large size, where Lift is 4.3× faster. In this case, the best Lift kernel uses no tiling and each

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:17

 12.2

Nvidia AMD ARM

0

2

4

6

Gau
ssi

an

Grad
ien

t
Hea

t

Ja
co

bi2
D5p

t

Ja
co

bi2
D9p

t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n

Gau
ssi

an

Grad
ien

t
Hea

t

Ja
co

bi2
D5p

t

Ja
co

bi2
D9p

t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n

Gau
ssi

an

Grad
ien

t
Hea

t

Ja
co

bi2
D5p

t

Ja
co

bi2
D9p

t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n

Sp
ee

du
p

ov
er

 P
PC

G

size
small

large

Fig. 10. Performance of Lift-generated kernels compared to PPCG-generated kernels. Both approaches

auto-tune kernels for three hours per benchmark/input/device. Large sizes did not fit onto the ARM GPU.

Nvidia AMD ARM

Aco
us

tic

Hots
po

t3D Hea
t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n

Aco
us

tic

Hots
po

t3D Hea
t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n

Aco
us

tic

Hots
po

t3D Hea
t

Ja
co

bi3
D13

pt

Ja
co

bi3
D7p

t

Pois
so

n
-25

0

25

50

75

%
 Im

pr
ov

em
en

t w
ith

 2
.5

DT

size
small

large

Fig. 11. Effects of using 2.5D Tiling on 3D Benchmarks from Table 2

thread only computes 2 elements. On the contrary, the PPCG version looks very different and
uses tiling, with each thread processing 512× more elements sequentially than Lift. For Gradient,
small size, the PPCG performance is almost as good as Lift. Both versions are similar, use tiling
and the difference between the amount of sequential work is only 4×.
On AMD, the results look more uniform, with the exception of the Poisson benchmark on the

large input. Here again, the best Lift kernel does not use tiling, while the PPCG compiler generates
a tiled version of the benchmarks. On the ARM GPU, the results of Lift and PPCG are much closer
than on the other platforms, with most of the gain coming again from not using tiling.

Interestingly, none of the Lift kernels generated for ARM or AMD GPU use classical tiling, how-
ever on Nvidia, 33% of the best Lift versions use this tiling. This confirms that different optimization
strategies are required for varying program/input sizes as well as for different hardware.

8 ANALYSIS OF PERFORMANCE CHARACTERISTICS OF 2.5D TILING

8.1 Effects of 2.5D Tiling

This section compares the effects of the 2.5D tiling optimization for 3D stencils found in Table 2.
Figure 11 shows the performance impact of using 2.5D tiling compared to the best found kernel
without 2.5D tiling. Overall, the most consistent improvement can be seen for stencils with larger
numbers of accesses (Jacobi3D13pt and Poisson). This will be investigated further in Section 8.2.
2.5D tiling achieves the most speedup on the Nvidia and AMD GPUs for both stencil sizes, however
on the Mali GPU we only see minimal improvement (or decrease in performance) for most stencils,
apart from a large improvement for the Poisson stencil. This trend is supported by the ridge points
in Table 1 showing that the AMD and Nvidia hardware require significantly more computations per
byte to unfold their full potential. Therefore, these devices should benefit more from optimizations
that save memory loads, such as 2.5D tiling, which is confirmed by Figure 11 showing the Nvidia
and AMD hardware gain higher performance than the ARM GPU.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:18 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

Acoustic Hotspot3D Heat Jacobi3D13pt Jacobi3D7pt Poisson

N
vidia

AM
D

AR
M

8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2

0.5
1.0
1.5

0.5
1.0
1.5

0.5
1.0
1.5

Z-Size

2.
5D

 T
ili

ng
 S

pe
ed

up X-Y Size
512

256

128

64

Fig. 12. Speedup using 2.5D Tiling on 3D Benchmarks from Table 2 across z-sizes and xy-domain sizes

2.5D tiling across different input sizes. Figure 12 shows an in-depth study of the same 3D stencils
and how 2.5D tiling affects performance for different input domain sizes by varying the z-sizes and
x-y sizes. The speedup shown is again in comparison to the best version found in the space which
does not use 2.5D tiling. Although each benchmark behaves uniquely, we note that the speedup
tends to improve with domain size on Nvidia and AMD across the benchmarks as also has been
reported in [59]. Focusing on the z-size, for example, on Nvidia the performance decreases for
larger z values. Threads perform more sequential work at higher z-sizes compared to the baseline
(without 2.5D tiling) which uses parallelism in all three dimensions, which explains this behaviour.

Effect of unrolling of private arrays and struct inlining. Figure 13 shows the impact of the code
generation optimisations of unrolling private arrays and inlining of structs. This graph shows how
the additional compiler passes affect different stencil benchmarks across different platforms and
different input sizes. The benchmarks shown are the same as in Figure 12 apart from the addition
of a Jacobi 27 point stencil. In particular, it can be seen that the Jacobi 27 point benchmark shows
a slowdown on NVIDIA and AMD, while others show similar or much improved performance.
Analysis of the NVIDIA PTX code shows a difference in the ordering of instructions, which could
explain the performance difference for the stencils with larger numbers of memory accesses. The
particularly large performance differences for Heat and Jacobi3D7pt on Mali are due to a much
larger number of registers being used in the non-unrolled version as can be seen using the Mali
Offline Compiler.

8.2 Stencil shape study

This section discusses how performance changes for different stencil shapes. A leggy (or higher
order) stencil accesses more points along the same axes as the 7-point stencil (a 13-point example
can be seen on the left in Figure 14). This has the potential to cut spatial error by half for each
additional point used in these schemes [9, 23].

A dense stencil accesses more points within the same 3×3×3 neighborhood as a 7-point stencil (a
27-point example is shown on the right in Figure 14) and produces physical simulation results with
more evenly distributed errors [23, 37]. Simulations, such as room acoustics, produce more realistic
models using either of these schemes. However this additional accuracy comes at the cost of more
computation, thus optimizations that work for these types of stencils are critical.

Figure 15 shows the speedups of using the 2.5D tiling optimization for leggy and dense stencils
with 13 points, 19 points (dense), 19 points (leggy) and 27 points, as compared to a 7-point stencil.
A 13-point stencil represents a leggy stencil with two points of memory access in each direction

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:19

Acoustic Heat Hotspot3D Jacobi3D13pt Jacobi3D7pt Poisson Jacobi3D27pt

N
vidia

AM
D

AR
M

8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2 8 16 32 6412
8
25

6
51

2

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0
2
4
6
8

Z-SizeSp
ee

du
p

of
 U

nr
ol

le
d

2.
5D

 T
ili

ng
 O

pt
im

iz
at

io
n

X-Y Size
512

256

Fig. 13. Performance benefit of Lift-generated when unrolling private arrays and inlining structs.

7-pt
13-pt

27-pt

x

y

z

Fig. 14. A comparison of different stencils shapes when applying 2.5D Tiling

instead of one. Similarly, a 19-point (leggy) stencil has three memory accesses in each direction. In
Figure 15 and Table 3, we denote these as leggy[n]. A 19-point (dense) stencil accesses 19 points in
a symmetric configuration and a 27-point scheme accesses all points in a 3×3×3 cuboid.
In Figure 15, the 13-point leggy stencil slightly benefits more than the 19-point leggy stencil

from 2.5D tiling on AMD and Nvidia, though the difference between them is close on the AMD and
ARM GPUs. ARM generally also shows less performance benefits of 2.5D tiling for both of these
stencils, as previously observed in Section 8.1.
For the dense stencils with 19 and 27 points, the performance benefits of 2.5D tiling are larger.

19-point stencils benefit the most from 2.5D tiling across all platforms (as also seen in Figure 12 for
Poisson), however the 27-point stencil does not benefit as much as one might expect based on the
number of reductions of memory accesses seen in Table 3.

To explain this behaviour, we investigated the reduction in memory accesses and register pressure
with and without 2.5D tiling. This information is shown in Table 3. The last two columns show the
operational intensity (as proposed by [57]) measured in FLOPS/byte. By comparing this number to
the ridge points shown in Table 1 we can see that all stencils are heavily memory bound (which is
well known in the community [13]). As the number of reduction of memory accesses is greatest
for the 27-point dense stencil one would expect to see the greatest benefit of 2.5D tiling for this
stencil, however it is the 19-point dense stencil which benefits the most from this optimization.
Investigating the register usage of the kernels on the Nvidia GPU showed that the number of
registers increases in almost all cases with 2.5D tiling and with number of points in the stencil
(from 26 registers up to 118). On GPUs, high numbers of registers limit the number of parallel
executing threads compared to the theoretical maximum, which results in a reduced occupancy of
the multicore. For the 7-point stencil a perfect occupancy of 100% without and with 2.5D tiling is
achieved while the occupancy is lower for the dense 19-point (62.5% without and with tiling) and

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:20 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

Nvidia AMD ARM

8 16 32 64 12
8

25
6 8 16 32 64 12

8
25

6 8 16 32 64 12
8

25
6

0.0

0.5

1.0

1.5

2.0

2.
5D

 T
ili

ng
 S

pe
ed

up benchmark
27-point (dense)

19-point (dense)

13-point (leggy[2])

19-point (leggy[3])

7-point

Fig. 15. Speedup using 2.5D Tiling for different z-sizes where domain size = 256 for leggy and dense stencils

Type # Memory Memory # Registers Occupancy OI [FLOPS/Byte]
accesses access w/o w/ w/o w/ w/o w/
w/ 2.5DT reduction 2.5DT 2.5DT 2.5DT

7pt original 5 1.40× 26 29 100.00% 100.00% 0.18 0.25
13pt leggy[2] 9 1.44× 30 59 100.00% 50.00% 0.44 0.62
19pt dense 9 2.10× 43 42 62.50% 62.50% 0.26 0.52
19pt leggy[3] 13 1.60× 38 118 75.00% 25.00% 0.46 0.66
27pt dense 9 3.00× 51 62 56.25% 50.00% 0.38 1.07

Table 3. Jacobi3D benchmark characteristics used in the evaluation. The first column shows the type of

stencil, the second shows the number of points in the stencil, the third shows the number of points read

from memory when using 2.5D tiling, the fourth column shows the overall reduction in memory accesses,

the fifth and sixth columns shows the profiled number of registers reused across iterations (with / without

2.5D tiling), the seventh and eighth columns show the occupancy of each multiprocessor on NVIDIA K20c

(with / without 2.5D tiling for the configuration XY = 256 and Z = 32) and the last two columns show the

Operational Intensity (OI) for each of the benchmarks (with / without 2.5D tiling).

dense 27-point (56.25% without 2.5D tiling) stencils. For the 27-point stencil 2.5D tiling increases the
register usage and results in a reduced occupancy of only 50% limiting the amount of parallelism
that is exploited. The 19-point stencil strikes a good balance between the amount of parallelism
exploited in the hardware which is not negatively affected by the 2.5D tiling optimization and the
number of memory accesses saved leading to the best overall performance. On AMD, profiling
has shown that for the 19-point dense stencil the memory unit is saturated the highest of all
versions confirming the prior observations and highlighting the importance of the memory systems
performance for these memory bound stencil codes.

9 RELATEDWORK

High Perfomance Code Generation Languages like Accelerate [33], StreamIt [53] or Halide [38]
aim to simplify the programming of GPUs through parallel patterns. However, all of these ap-
proaches are compiled to low-level loop based code at an early stage of the compilation process.
Accelerate allows users to write high-level functional code in a DSL that compiles down to NVIDIA
GPUs. StreamIt aims to exploit parallelism for streaming applications and also lifts the abstraction
level for users. Halide focuses on developing parallel pipelines for image processing. These frame-
works all rely on hard-coded optimizations or heuristics and are limited in the backends they can
target, while Lift is able to optimize specifically for a particular architecture.
Delite [51] is the closest related work to Lift. A small set of parallel patterns is compiled and

optimized by a single backend into high-performance code, enabling DSLs implemented on top
of Delite to benefit from these optimizations. This approach lacks performance portability as
device-specific optimizations have to be implemented separately for each platform. In contrast,
Lift goes a step further by encoding optimizations in an extensible system of rewrite rules.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:21

Stencil-Specific High-Level Programming Approaches There exist many approaches aim-
ing to simplify the programming of stencils. These include stencil-specific DSLs (Domain Specific
Languages) or EDSLs (Embedded DSLs) like HLSF [14], Pochoir [52], PolyMage [35] and many
others [3, 8, 24, 26, 34]. These DSLs are often limited to a particular domain or rely on heuristics or
hard-coded implementations. [40, 41] discuss a stencil-specific compiler with a focus on fusion of
stencil operations to minimize data movements. Even more specialized solutions exist for Partial
Differential Equations [4, 5] and image processing [16]. Skeleton libraries providing stencil skele-
tons include SkePU [15], SkelCL [46], MUESLI [28], and PASTHA [29]. Most of these approaches
rely on hard-coded and stencil specific implementations. Lift is designed instead to be a middle
layer between high-level abstractions and low-level optimisations, capable of handling different
domains beyond stencils. None of thse solutions create a separation of concerns in this way, which
means they will always be strained in what they are capable of achieving.

Optimizations for Stencil Computations There are also many works detailing stencil op-
timization strategies. However, these optimizations must be hard-coded and as we have shown
in this paper it is crucial to be able to only apply optimizations where they work. These include
blocking [36, 56, 58, 59] and tiling approaches [19–21, 27, 30, 43], and other collections of optimiza-
tions [12, 17, 32, 50]. Furthermore, multiple auto-tuning frameworks aim to automatically optimize
stencils [18, 25, 31]. However none of these approaches formalize these optimizations as provably
correct rewrite rules. This enables their exploration systematically using an optimizing compiler,
instead of applying them in a ad-hoc manner using imprecise rules of thumb.
The 2.5D tiling optimization has been explored in other papers [36, 59]. These papers only

investigate the optimization on NVIDIA GPUs or CPUs, whereas this paper reports in detail on its
benefits across three GPU platforms. Additionally, we have analyzed the performance characteristics
of 2.5D tiling for different stencil shapes and sizes where related work had reported only on a single
7 point jacobi stencil for limited input sizes. The shape and size of stencils is important in physical
simulations as well as other disciplines, particular for the accuracy of the simulation results [9, 37].
[23] did a large exploration of stencil performance on NVIDIA GPUs for a range of different shapes
and sizes. However, this did not include investigating any optimizations such as 2.5D tiling.

10 FUTUREWORK

Lift’s strength stems from its ability to generate complex codes from small building blocks and the
addition of stencil functionality has enabled further possible progress in multiple directions.
Iterative Stencils are an interesting area for continued work, which are pervasive in HPC and
image processing. Handling such cases requires the ability to generate code on the host side in
order to run the kernel multiple times, which is mostly an engineering effort. More interestingly,
separate handling of boundary conditions would be required to support more complicated stencils.
Time Tiling is another interesting tiling optimization that could be added. As this work focused
on single iteration and single kernel stencils, this paper did not explore this further. However, all
the building blocks for this type of optimization already exist in Lift. Similar to what can be seen
in this paper, where overlapped tiling and 2.5D tiling required only one additional rule for the Lift
rewrite system, time tiling could also be encoded with the addition of a single rule.

11 CONCLUSIONS

This paper has shown how stencils and their optimizations are expressible in the data-parallel,
hardware-agnostic intermediate language Lift. The language has been extended by two primitives
for stencil functionality: to gather neighboring elements (slide) and define boundary conditions (pad).
Lift can now express complex stencils (like acoustic simulations), which will allow higher-level
DSLs to be defined on top of these primitives.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:22 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

This paper has also discussed how stencil-specific tiling optimizations are encoded as rewrite rules.
We have covered code generation additions required to supplement a new 2.5D tiling optimization.
We have also discussed the addition of rewrite rules for tiling optimizations which allow for
automatic optimization on platforms that could benefit from it. Due to the general nature of Lift,
we are also able to able to apply existing Lift optimizations which are also applicable to stencil
computations. This demonstrates that Lift is easily extensible to new domains with little effort.
Finally, experimental results provide evidence that this approach generates high-performance

stencil code on GPUs. In particular, we have shown how the added 2.5D tiling optimization affects
stencils varying by shape, size and domain space and how a reuse metric helps explains the results
we see. On three platforms, we see that performance is on par with hand-optimized reference
implementations. We also compare our approach to the PPCG polyhedral GPU compiler, showing
that Lift outperforms it in many cases.

ACKNOWLEDGMENTS

We would like to thank the Lift team; Prashant Singh Rawat for help with PPCG comparisons; Ari
Rasch and students of the University of Münster for help with the ATF framewok and integrating
it with Lift. This work was supported by the following: EPSRC Centre for Doctoral Training in
Pervasive Parallelism, funded by the UK Engineering and Physical Sciences Research Council (grant
EP/L01503X/1), the University of Edinburgh, HiPEAC collaboration grant and Google Faculty grant.

A APPENDIX

1 typedef struct coeffs_type {
2 double l2;
3 double loss1;
4 double loss2;
5 } coeffs_type;
6
7 void UpdateStencil(global float* t1, global float* t,
8 __constant struct coeffs_type* cf_d) {
9 int X = get_global_id (0);
10 int Y = get_global_id (1);
11 int Z = get_global_id (2);
12
13 if((X>0) && (X<(Nx -1)) && (Y>0) && (Y<(Ny -1)) && (Z>0) && (Z<(Nz -1))){
14 int cp = Z*area+(Y*Nx+X);
15
16 double cf = 1.0;
17 double cf2 = 1.0;
18
19 int K = (0||X-1) +(0||X-Nx -2) +(0||Y-1) +(0||Y-Ny -2) +(0||Z-1) +(0||Z-Nz -2);
20
21 if(K < 6) {
22 cf = cf_d [0]. loss1;
23 cf2 = cf_d [0]. loss2;
24 }
25
26 double S = t1[cp -1]+t1[cp+1]+t1[cp-Nx]+t1[cp+Nx]+t1[cp-area]+t1[cp+area];
27 t[cp] = cf*((2.0-K*cf_d [0].l2)*t1[cp] + cf_d [0].l2*S - cf2*u[cp]);
28 }
29 }

Listing 6. Acoustic Stencil implementation in C[55]

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:23

REFERENCES

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly,
and Saman Amarasinghe. 2014. OpenTuner: An Extensible Framework for Program Autotuning. In PACT ’14. ACM,
303–316.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, et al. 2006. The Landscape Of Parallel Computing

Research: A View From Berkeley. Technical Report. UCB/EECS-2006-183, EECS Department, University of California,
Berkeley.

[3] Olivier Aumage, Denis Barthou, and Alexandre Honorat. 2016. A Stencil DSEL For Single Code Accelerated Computing
With SYCL. In SYCL 2016 (Workshop) at ACM SIGPLAN PPoPP.

[4] Peter Bastian, Markus Blatt, Christian Engwer, Andreas Dedner, Robert Klöfkorn, S Kuttanikkad, Mario Ohlberger,
and Oliver Sander. 2006. The Distributed And Unified Numerics Environment (DUNE). In Proc. Of The 19th Symposium

On Simulation Technique In Hannover.
[5] Tobias Brandvik and Graham Pullan. 2010. SBLOCK: A Framework For Efficient Stencil-Based PDE Solvers On

Multi-Core Platforms. In CIT 2010. IEEE, 1181–1188.
[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A Benchmark Suite For Heterogeneous Computing. In IISWC 2009. IEEE, 44–54.
[7] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. PATUS: A Code Generation And Autotuning Framework

For Parallel Iterative Stencil Computations on Modern Microarchitectures. In IPDPS. IEEE, 676–687.
[8] Milosz Ciznicki, Michal Kulczewski, Piotr Kopta, and Krzysztof Kurowski. 2016. Scaling The GCR Solver Using A

High-Level Stencil Framework OnMulti-And Many-Core Architectures. In Parallel Processing And Applied Mathematics.
Springer, 594–606.

[9] GC Cohen and GC Gaunaurd. 2002. Higher-order Numerical Methods for Transient Wave Equations. Scientific
Computation. Applied Mechanics Reviews 55 (2002), B85.

[10] Murray I Cole. 1988. Algorithmic Skeletons: A Structured Approach To The Management Of Parallel Computation. Ph.D.
Dissertation. University of Edinburgh.

[11] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle Spafford, Vinod Tipparaju,
and Jeffrey S Vetter. 2010. The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings Of The 3rd

Workshop On General-Purpose Computation On Graphics Processing Units. ACM, 63–74.
[12] Usman Dastgeer and Christoph Kessler. 2012. A Performance-Portable Generic Component For 2D Convolution

Computations On GPU-Based Systems. In MULTIPROG Workshop at HiPEAC-2012. 1–12.
[13] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine A. Yelick. 2009. Optimization

and Performance Modeling of Stencil Computations on Modern Microprocessors. SIAM Rev. 51, 1 (2009), 129–159.
[14] Fabian Dütsch, Karim Djelassi, Michael Haidl, and Sergei Gorlatch. 2014. HLSF: A High-Level; C++-Based Framework

For Stencil Computations On Accelerators. In Proceedings Of The Second Workshop On Optimizing Stencil Computations.
ACM, 41–4.

[15] Johan Enmyren and ChristophWKessler. 2010. SkePU: AMulti-Backend Skeleton Programming Library For Multi-GPU
Systems. In Proceedings Of The Fourth International Workshop On High-Level Parallel Programming And Applications.
ACM, 5–14.

[16] Thomas L Falch and Anne C Elster. 2016. ImageCL: An Image Processing Language For Performance Portability On
Heterogeneous Systems. arXiv preprint arXiv:1605.06399 (2016).

[17] Matteo Frigo and Volker Strumpen. 2005. Cache Oblivious Stencil Computations. In ICS 2005. ACM, 361–366.
[18] Joseph D Garvey. 2015. Automatic Performance Tuning Of Stencil Computations On Graphics Processing Units. Ph.D.

Dissertation. University of Toronto.
[19] Tobias Grosser, Albert Cohen, Paul HJ Kelly, J Ramanujam, P Sadayappan, and Sven Verdoolaege. 2013. Split Tiling

For GPUs: Automatic Parallelization Using Trapezoidal Tiles. In Proceedings Of The 6th Workshop On General Purpose

Processor Using Graphics Processing Units. ACM, 24–31.
[20] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P Sadayappan. 2014. The Relation Between Diamond Tiling And

Hexagonal Tiling. Parallel Processing Letters 24, 03 (2014).
[21] Jia Guo, Ganesh Bikshandi, Basilio B Fraguela, and David Padua. 2009. Writing Productive Stencil Codes With

Overlapped Tiling. Concurrency and Computation: Practice and Experience 21, 1 (2009), 25–39.
[22] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High performance

stencil code generation with Lift. In CGO. ACM, 100–112.
[23] Brian Hamilton, Craig J Webb, Alan Gray, and Stefan Bilbao. 2015. Large stencil operations for GPU-based 3-D acoustics

simulations. Proc. Digital Audio Effects (DAFx),(Trondheim, Norway) (2015), 292–299.
[24] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet, Jagannathan Ramanujam, and Ponnuswamy

Sadayappan. 2013. A Stencil Compiler For Short-Vector SIMD Architectures. In ICS 2013. ACM, 13–24.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

0:24 L. Stoltzfus, B. Hagedorn, M. Steuwer, S. Gorlatch, and C. Dubach

[25] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. 2010. An Auto-Tuning Framework For Parallel
Multicore Stencil Computations. In IPDPS 2010. IEEE, 1–12.

[26] Shoaib Kamil, Derrick Coetzee, Scott Beamer, Henry Cook, Ekaterina Gonina, Jonathan Harper, Jeffrey Morlan, and
Armando Fox. 2012. Portable Parallel Performance from Sequential, Productive, Embedded Domain-specific Languages.
In PPoPP 2012. ACM, 303–304.

[27] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay Rajopadhye, and Michelle Mills Strout. 2007.
Multi-Level Tiling: M For The Price Of One. In SC 2007. ACM, 51.

[28] Herbert Kuchen. 2002. A Skeleton Library. In Euro-Par 2002. Springer, 620–629.
[29] Michael Lesniak. 2010. PASTHA: Parallelizing Stencil Calculations In Haskell. In Proceedings Of The 5th ACM SIGPLAN

Workshop On Declarative Aspects Of Multicore Programming. ACM, 5–14.
[30] Tareq M. Malas, Georg Hager, Hatem Ltaief, and David E. Keyes. 2017. Multidimensional Intratile Parallelization

for Memory-Starved Stencil Computations. ACM Trans. Parallel Comput. 4, 3, Article 12 (Dec. 2017), 32 pages.
https://doi.org/10.1145/3155290

[31] AzamatMametjanov, Daniel Lowell, Ching-ChenMa, and Boyana Norris. 2012. Autotuning Stencil-Based Computations
On GPUs. In CLUSTER 2012. IEEE, 266–274.

[32] Naoya Maruyama and Takayuki Aoki. 2014. Optimizing Stencil Computations For NVIDIA Kepler GPUs. In Proceedings

Of The 1st International Workshop On High-Performance Stencil Computations, Vienna. 89–95.
[33] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. 2013. Optimising Purely Functional

GPU Programs. In ICFP 2013. ACM, New York, NY, USA, 49–60.
[34] Richard Membarth, Frank Hannig, Jürgen Teich, and Harald Köstler. 2012. Towards Domain-Specific Computing For

Stencil Codes In HPC. In SCC 2012. IEEE, 1133–1138.
[35] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic Optimization for Image

Processing Pipelines. In ASPLOS 2015. ACM, New York, NY, USA, 429–443.
[36] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and Pradeep Dubey. 2010. 3.5-D Blocking

Optimization For Stencil Computations On Modern CPUs And GPUs. In SC 2010. IEEE Computer Society, 1–13.
[37] Michael Patra and Mikko Karttunen. 2006. Stencils With Isotropic Discretization Error for Differential Operators.

Numerical Methods for Partial Differential Equations: An International Journal 22, 4 (2006), 936–953.
[38] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: A Language And Compiler For Optimizing Parallelism, Locality, And Recomputation In Image Processing
Pipelines. ACM SIGPLAN Notices 48, 6 (2013), 519–530.

[39] Ari Rasch, Michael Haidl, and Sergei Gorlatch. 2017. ATF: A Generic Auto-Tuning Framework. In HPCC. IEEE.
[40] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover, Louis-Noel Pouchet, Atanas Rountev,

and P. Sadayappan. 2016. Resource Conscious Reuse-Driven Tiling for GPUs. In PACT 2016. ACM, 99–111.
[41] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover, Louis-Noël Pouchet, and P. Sadayappan.

2016. Effective Resource Management for Enhancing Performance of 2D and 3D Stencils on GPUs. In GPGPU 2016.
ACM, New York, NY, USA, 92–102.

[42] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach. 2016. Performance Portable GPU Code
Generation for Matrix Multiplication. In Proceedings of the 9th Annual Workshop on General Purpose Processing Using

Graphics Processing Unit (GPGPU ’16). ACM, New York, NY, USA, 22–31. https://doi.org/10.1145/2884045.2884046
[43] Lakshminarayanan Renganarayana, Manjukumar Harthikote-Matha, Rinku Dewri, and Sanjay Rajopadhye. 2007.

Towards Optimal Multi-Level Tiling For Stencil Computations. In IPDPS 2007. IEEE, 1–10.
[44] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating Performance Portable Code

Using Rewrite Rules: From High-Level Functional Expressions To High-Performance OpenCL Code. In ICFP. ACM,
205–217.

[45] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gorlatch. 2014. High-Level Programming Of Stencil
Computations On Multi-GPU Systems Using The SkelCL Library. Parallel Processing Letters 24, 03 (2014), 1441005.

[46] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. 2011. SkelCL - A Portable Skeleton Library For High-Level Gpu
Programming. In Parallel And Distributed Processing Workshops And Phd Forum (IPDPSW), 2011 IEEE International

Symposium On. IEEE, 1176–1182.
[47] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016. Matrix Multiplication Beyond Auto-Tuning: Rewrite-

Based GPU Code generation. In CASES. ACM, 15:1–15:10.
[48] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: A Functional Data-Parallel IR For High-

Performance GPU Code generation. In CGO. ACM, 74–85.
[49] Larisa Stoltzfus, Alan Gray, Christophe Dubach, and Stefan Bilbao. 2017. Performance Portability For Room Acoustics

Simulations. In 20th International Conference on Digital Audio Effects (DAFx). 367–374.
[50] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Seidel. 2011. Cache Accurate Time Skewing In

Iterative Stencil Computations. In ICPP. IEEE, 571–581.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/10.1145/3155290
https://doi.org/10.1145/2884045.2884046

Tiling Optimizations for Single-Step Stencil Computations Using Rewrite Rules in Lift 0:25

[51] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2014. Delite: A Compiler Architecture For Performance-Oriented Embedded Domain-Specific Languages. TECS (2014),
134.

[52] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk, and Charles E Leiserson. 2011. The Pochoir
Stencil Compiler. In SPAA. ACM, 117–128.

[53] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil. 2009. Software Pipelined Execution Of Stream
Programs On GPUs. In CGO. IEEE, 200–209.

[54] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
2013. Polyhedral Parallel Code Generation for CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013),
23 pages.

[55] Craig Jonathan Webb. 2014. Parallel Computation Techniques For Virtual Acoustics And Physical Modelling Synthesis.
(2014).

[56] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann, and Holger Fehske. 2009. Efficient Temporal
Blocking For Stencil Computations By Multicore-Aware Wavefront Parallelization. In COMPSAC, Vol. 1. IEEE, 579–586.

[57] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An Insightful Visual Performance Model
For Multicore Architectures. Commun. ACM 52, 4 (2009), 65–76.

[58] Markus Wittmann, Georg Hager, and Gerhard Wellein. 2010. Multicore-Aware Parallel Temporal Blocking Of Stencil
Codes For Shared And Distributed Memory. In IPDPSW. IEEE, 1–7.

[59] Guangwei Zhang and Yinliang Zhao. 2016. Modeling the Performance of 2.5D Blocking of 3D Stencil Stencil Code on
GPUs. In HPEC. IEEE Computer Society.

[60] Xing Zhou. 2013. Tiling Optimizations For Stencil Computations. Ph.D. Dissertation. University of Illinois at Urbana-
Champaign.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 2019.

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Solved Problem: High-Level Programming Abstractions for Stencils
	2.2 The Real Challenge: Universal High Performance Code Generation

	3 Extending Lift for Stencil Computations
	3.1 Existing High-Level Lift Primitives
	3.2 Extensions for Supporting Stencils
	3.3 One-Dimensional Stencil Example in Lift
	3.4 Multi-Dimensional Stencils in Lift
	3.5 A Complex Stencil: Room Acoustics Simulation
	3.6 Summary

	4 Expressing Optimizations
	4.1 Exploiting Locality through Classical Overlapped Tiling
	4.2 Exploiting Spatial Locality of 3D Stencils Through 2.5D Tiling
	4.3 Summary

	5 Code Generation
	5.1 Views
	5.2 Generating efficient code for 2.5D Tiling

	6 Experimental Setup
	7 Evaluation
	7.1 Performance Results
	7.2 Performance Comparison of Lift versus PPCG

	8 Analysis of Performance Characteristics of 2.5D Tiling
	8.1 Effects of 2.5D Tiling
	8.2 Stencil shape study

	9 Related Work
	10 Future Work
	11 Conclusions
	Acknowledgments
	A Appendix
	References

