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ABSTRACT 

The innate immune system is the body’s first line of defence against viruses, with pattern 

recognition receptors recognising molecules unique to viruses and triggering the expression 

of interferons and other anti-viral cytokines, leading to the formation of an anti-viral state. 

The Tripartite Motif Containing 25 (TRIM25) is an E3 ubiquitin ligase thought to be a key 

component in the activation of signalling by the pattern recognition receptor Retinoic Acid-

Inducible Gene I Protein (RIG-I). TRIM25 has recently been identified as an RNA-binding 

protein, raising the question of whether its RNA-binding activity is important for its role in 

innate immunity. Here, we review TRIM25’s mechanisms and pathways in non-infected and 

infected cells. We also introduce models that explain how TRIM25 binding to RNA could 

modulate its functions and play part in the antiviral response. These findings have opened 

new lines of investigations into functional and molecular roles of TRIM25 and other E3 

ubiquitin ligases in cell biology and control of pathogenic infections. 

 



GRAPHICAL ABSTRACT/CAPTION 

 

 

 

E3 ubiquitin ligase TRIM25 is newly identified RNA-binding protein which is emerging as a 

key factor in the innate immune response to RNA viruses.



INTRODUCTION 

Humans, as well as other organisms, must protect themselves from infection by viruses and 

other pathogens. To do this, they developed a robust means of distinguishing self from non-

self and responding accordingly. Their primary means of doing so is through the immune 

system. The immune system is divided into two parts, the adaptive and innate immune 

systems. Adaptive immunity consists of antigen-specific receptor-mediated responses to 

specific pathogens, while innate immunity consists of pathways for the detection of factors 

common to many pathogens as well as physical barriers such as the skin. In general, the 

innate immune system is fast-acting, involving elements that are ubiquitously expressed in 

somatic cells and acts in early infection. In contrast, the adaptive immune response is 

slower, acting in late infection, as there are only small numbers of each antigen-specific 

receptor and the cells expressing these must undergo clonal expansion before an effective 

response can be mounted1. 

The innate immune system involves non-antigen-specific pattern recognition receptors 

(PRRs) that recognise pathogen associated molecular patterns (PAMPs) that are common to 

many pathogens, but not found in host cells. Upon detection of PAMPs by PRRs, a signalling 

cascade is initiated that results in the expression of various anti-pathogenic molecules such 

as interferons (IFNs) and other cytokines, resulting in activation of host defences such as 

inflammation and recruitment of the adaptive immune system. Importantly, no single 

pathogen is recognised by a single PRR and biologically unrelated pathogens can be 

recognised by the same PRR, allowing for a fast and efficient response to any pathogen2. 

Different classes of pathogens are recognised by different PAMPs, for example viruses are 

recognised through glycoproteins and various DNA and RNA species3. Bacteria through 

lipoproteins4, peptidoglycan and derivatives5, CpG DNA6, lipopolysaccharides (LPS)7 and 



proteins such as flagellin8. Fungi are generally recognised through cell wall or cell surface 

components such as phospholipomannan9 or β-glycan10. 

There are a wide variety of PRRs found in humans that recognise different classes of PAMPs. 

PRRs are generally classed into the membrane-bound Toll-like receptors (TLRs) and C-type 

lectin receptors (CLRs) as well as the cytoplasmic RIG-I like receptors (RLRs), Nod-like 

receptors (NLRs) and cytosolic DNA sensors such as cGAS. The RLR family consists of three 

members; Retinoic Acid-Inducible Gene I (RIG-I), Melanoma Differentiation-Associated gene 

5 (MDA5) and Laboratory of Genetics and Physiology 2 (LGP2). The RLRs primarily recognise 

viral RNAs, with RIG-I recognising RNAs with a 5’-triphosphate (5’ppp) moiety and MDA5 

recognising long dsRNAs2. Signalling through PRR pathways generally results in the activation 

of transcriptional activators such as IRF-3, IRF-7 and NF-κB in the cytoplasm. These 

transcription factors translocate to the nucleus where they induce expression of various 

proteins that contribute to the establishment of an anti-pathogenic state such as IFNs and 

pro-inflammatory cytokines. This leads to robust host defences against virus infection, 

resulting in large-scale gene expression changes and the formation of an antiviral state2. 

Here we will focus on the Tri-partite Motif containing protein 25 (TRIM25), which was thought 

to be involved in the RIG-I/INF pathway. Recent findings showed that TRIM25 is an RNA-

binding protein11, 12 and put into question its major role in the RIG-I activation13, 14. We will 

elaborate on what is known about TRIM25 and its RNA-binding activity and speculate how it 

can affect its antiviral properties. This protein represents a large group of proteins with newly 

identified RNA-binding potential and can serve as an exemplar towards critical evaluation of 

protein functions in biological systems. 



TRIM25’S ROLE IN INNATE IMMUNITY 

TRIM25 is an E3 ubiquitin ligase 

The Tri-partite Motif (TRIM) family is a large (>80 members in humans) group of E3 ubiquitin 

ligase proteins that share a common domain structure. Human TRIM25 is a 630 amino acid, 

71kDa E3 ubiquitin ligase that is widely expressed across human cell types and is conserved 

among vertebrates including fish, birds and mammals15-19. Like other TRIM family proteins, it 

consists of an N-terminal zinc-finger Really Interesting New Gene (RING) domain, responsible 

for its E3 ubiquitin ligase activity, two B-box zinc finger domains of unknown function, a 

coiled-coil domain (CCD), responsible for homo and heterodimerization, with a linker domain 

leading to a C-terminal associated with SPRY/SPla and the RYanodine Receptor (PRY/SPRY) 

domain, responsible for protein-protein interactions. 

The primary role of TRIM E3 ubiquitin ligases is to catalyse the addition of polyubiquitin chains 

or single ubiquitin monomers (monoubiquitination) to lysine residues on their target proteins. 

Ubiquitin is a 76aa, 8.5kDa protein and polyubiquitin chains are made by the formation of 

isopeptide bonds between the ubiquitin C-terminal glycine and one of the 7 lysine residues 

present in the protein20, 21. It has also been shown that polyubiquitin chains can form in a 

‘head-to-tail’ manner via the N-terminal methionine residue22. The addition of ubiquitin 

monomers to a target protein or extension of a polyubiquitin chain involves three types of 

proteins; E1 activating enzyme, E2 conjugating and E3 ubiquitin ligase23. The multiple lysines 

present in ubiquitin allow the formation of several different types of polyubiquitin chains, 

each of which has different functionality. The most well studied are straight, homogenous 

K48-linked polyubiquitination, which leads to targeting of proteins for degradation via the 



proteasome, and K63-linked polyubiquitination which is used in many intracellular signalling 

pathways, such as activation of NF-κB and induction of RIG-I/IKK/Interferon type I 24. 

TRIM25 forms an antiparallel dimer mediated by its CCD, with the RING domain of each 

monomer at opposite ends of the dimer and the PRY/SPRY domains positioned at the centre 

via the CCD-PRY/SPRY linker25 (Figure 1). Further work indicated that the RING domain of 

TRIM25 must dimerize in order to catalyse polyubiquitin chain formation, implying that 

higher-order assembly of TRIM25 dimers is required for its activity26. Two separate 

mechanisms of higher-order assembly were proposed. Firstly, an ‘end-to-end’ model in which 

RING domains on each end of the dimer interact with RING domains from separate dimers. 

Secondly, a ‘tetramer’ model in which TRIM25 dimers effectively stack on top of each other 

with RING domains on either end of one dimer interacting with both RING domains from 

another dimer26. When human TRIM25 RING domain was crystallised with an ubiquitin-

charged E2 conjugating enzyme, UBE2D1, it was shown to form a dimer with both RING 

monomers contacting the ubiquitin molecule27. Crystal structures have also been generated 

for the PRY/SPRY domain of mouse TRIM25, showing that its overall structure is that of two 

anti-parallel β-sheets in a sandwich type conformation, similarly to PRY/SPRY domains found 

in other proteins28. 

 



 

Figure 1.  Possible models of dimerization of the RING domains of TRIM25 dimers as proposed 

by Sanchez et al. Due to the anti-parallel structure of the TRIM25 dimer, RING domains from 

TRIM25 molecules found in the same dimer cannot dimerize themselves. This implies that 

higher order oligomerisation is required for TRIM25’s catalytic activity. 

 

Miscellaneous roles of TRIM25 in the cell 

TRIM25 has been found to perform many roles in the cell and has been implicated in several 

cancers29-38. TRIM25 was initially identified as a protein responsive to oestrogen in a screen 

for regions of DNA bound by the oestrogen receptor and was shown to be upregulated in 

oestrogen receptor-positive mammary cells39. Since then, TRIM25 has been found to have an 



important role in the defence against viruses and has been implicated in the activation of the 

RIG-I/INF pathway, which will be discussed further in the next section.  

TRIM25 has been shown to play other functions in innate immunity. It was shown to positively 

regulate Melanoma Differentiation-Associated gene 5 (MDA5)-mediated signalling through 

tumour Necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin protein ligase, 

leading to activation of NF-κB40. TRIM25 has also been shown to enhance the activity of Zinc-

finger Antiviral Protein (ZAP), which is a known antiviral protein, this interaction will be 

addressed later in this review41, 42. In contrast, TRIM25 can also be involved in the dampening 

of RIG-I signalling. The ubiquitin-like FAT10 (also known as Ubiquitin D) forms a complex with 

TRIM25/RIG-I that sequesters RIG-I away from the mitochondria and causes it to form 

insoluble aggregates to prevent further signal transduction43. TRIM25 stabilises FAT10, which 

is usually unstable, by preventing its proteasome-mediated degradation43. 

TRIM25’s role in the RIG-I/INF pathway 

RIG-I recognises RNAs with a 5’- di- or triphosphate (5’pp/5’ppp) moiety triggering 

downstream signalling pathways via the adaptor Mitochondrial Antiviral Signalling protein 

(MAVS, also known as Interferon Beta Promoter Stimulator Protein 1 (IPS1), CARD Adapter 

Inducing Interferon Beta (CARDIF) or Virus-Induced-Signalling Adapter (VISA)), leading to 

activation of IRF-3, IRF-7, NF-κB and INF type 1 expression44. To prevent inappropriate 

activation of innate immune responses, RIG-I signalling must be repressed in the absence of 

5’ppp-RNA. This is achieved by several auto-repression mechanisms45-48. Upon binding to 

5’ppp-RNA, RIG-I translocates down the dsRNA stem, allowing multiple RIG-I molecules to 

form a ‘beads-on-a-string’ complex on the RNA49, 50. This oligomerisation activity is ATP 

hydrolysis-dependent and increases the strength of the resulting type I IFN response51. 



Oligomerisation of RIG-I is also important for the formation of tetramers of the 2CARD (two 

Caspase Activation and Recruitment Domains), which is required for activation of 

downstream signalling via MAVS through interaction with MAVS’ own CARD52. A critical 

process in the formation of the 2CARD tetramer and the activation of MAVS is the TRIM25-

mediated K63-linked polyubiquitination of the 2CARD, which has been shown to stabilise the 

2CARD tetramer and enhance the formation of MAVS filaments that are required for 

signalling53, 54 (Figure 2). It has been showed that another E3 ubiquitin ligase Riplet is also 

necessary for release of the 2CARD and RIG-I activation55, 56. 

 

Figure 2.  Model of activation of RIG-I based on the sequential ubiquitination model proposed 

by Okamoto et al. Upon recognition of 5’ppp-dsRNA, RIG-I undergoes a conformational 



change and the Helicase-CTD linker can be ubiquitinated by Riplet. This releases the 2CARDs 

from auto-repression and allows their dephosphorylation by PP1. Ubiquitination of the linker 

also promotes the assembly of other RIG-I molecules along the dsRNA, although the CTD of 

only one molecule can bind the 5’ppp moiety. The 2CARDs from RIG-I molecules assembled 

along the dsRNA can form ‘tetramer’ structures that are stabilised by K63-linked 

polyubiquitination of the 2CARD. This ubiquitination is performed by several E3 ubiquitin 

ligases including TRIM25, MEX3C, TRIM4 and Riplet. This tetramer structure interacts with the 

CARDs of MAVS and promotes its oligomerisation, leading to further downstream signalling 

and expression of type I interferon. 

 

Initially, TRIM25 was identified as the key E3 ubiquitin ligase for the ubiquitination of the RIG-

I 2CARD in both mice and humans by Gack et al.57. In this report, 6 lysine residues on the RIG-

I 2CARD that underwent K63-linked polyubiquitination were identified by mass spectrometry 

(MS); K99, K169, K172, K181, K190 and K193. Of these, only mutation of K172 to arginine 

resulted in a reduction in polyubiquitination of the 2CARD and a concomitant reduction in 

activation of the NF-κB and IFNβ promoters when the 2CARD was transfected into HEK293 

cells. This suggested that polyubiquitination of this residue is key for RIG-I 2CARD-mediated 

signalling. However, later work suggested that a RIG-I K172R mutant was fully functional and 

could efficiently trigger innate immune signalling in response to Sendai virus infection, 

suggesting that K172 may not be required for signalling58. Gack et al. also identified TRIM25 

as a binding partner of the 2CARD in co-immunoprecipitation (Co-IP) experiments and 

demonstrated that this interaction was mediated by the C-terminal SPRY domain of TRIM25. 

Furthermore, knockdown of TRIM25 using RNA interference (RNAi) resulted in a reduction of 



RIG-I 2CARD polyubiquitination and IFNβ promoter activity in response to 2CARD 

transfection. Finally, production of IFNβ in TRIM25 knockout (KO) mouse embryonic fibroblast 

(MEF) cells upon Sendai virus infection was reduced compared to WT cells, while replication 

of VSV was increased in the TRIM25 KO cells compared to WT57.  

Further work has underlined the role that TRIM25 plays in ubiquitination of the RIG-I 2CARD. 

Mutation of T55 in the first RIG-I CARD was found to abolish the TRIM25-2CARD interaction 

and this was required for TRIM25-mediated polyubiquitination of the 2CARD59. In vitro 

reconstitution of the human RIG-I pathway suggested that direct conjugation of K63-linked 

polyubiquitin chains to the 2CARD was not necessary for activation of signalling as 

unanchored K63-linked chains generated by TRIM25 can be bound by the 2CARD and this is 

sufficient for activation of signalling60. Transfection of TRIM25 into HEK293T KO cells 

enhanced IFNβ promoter activity by about 2-fold compared to TRIM25 KO cells alone in 

response to transfection of the RIG-I 2CARD. However, a roughly 20-fold induction of IFNβ 

promoter activity when compared to cells not transfected with the RIG-I 2CARD was seen in 

the TRIM25 KO HEK293T cells, suggesting that there may be some redundancy in the role of 

TRIM25 in RIG-I signalling26. 

Importantly, other E3 ubiquitin ligases have also been implicated in the ubiquitination of the 

RIG-I 2CARD. In addition to its role in ubiquitinating the RIG-I helicase-CTD linker, Riplet (also 

known as RIG-I E3 Ubiquitin Ligase (REUL)) was found to polyubiquitinate the RIG-I 2CARD at 

lysines 154, 164 and 172. Knockdown of Riplet was shown to inhibit IFNβ expression in 

response to Sendai virus infection and resulted in increased replication of VSV61. Knockdown 

of TRIM4 was found to inhibit activation of the IFNβ promoter in response to overexpression 

of RIG-I or infection with Sendai virus62. This study also found that TRIM4 primarily targeted 



K164 and K172 of the RIG-I 2CARD for polyubiquitination. A systems biology approach 

combined with experimental validation identified the ubiquitination of K164 and K172 by 

TRIM25 and TRIM4 as being key for RIG-I signalling activation, with TRIM25 and TRIM4 

working synergistically to optimise activation63. Another E3 ubiquitin ligase, Mex-3 RNA 

Binding Family Member C (MEX3C), was found to co-localise with RIG-I in antiviral stress 

granules and ubiquitinate the RIG-I 2CARD at K48, K99 and K169. Cells derived from MEX3C 

KO mice were shown to have impaired activation of the IFNβ promoter in response to 

infection with VSV and Newcastle Disease Virus (NDV) while activation after infection with 

Encephalomyocarditis Virus (EMCV, recognised by MDA5) was unaffected64. Shi et al. showed 

that in a HEK293T cell-free system knockout of Riplet abrogates RIG-I mediated aggregation 

of MAVS in response to VSV genomic RNA while knockout of TRIM25, MEX3C or TRIM4 did 

not abrogate aggregation. However, MAVS aggregation could still be triggered in response to 

addition of the RIG-I 2CARD even in the absence of Riplet65. This may suggest that activation 

of full-length RIG-I signalling in response to viral RNA requires Riplet activity, but Riplet is 

redundant with the other E3 ubiquitin ligases in the ubiquitination of the RIG-I 2CARD alone.  

Okamoto et al. proposed a ‘sequential ubiquitination’ mechanism to explain the activation of 

RIG-I by polyubiquitination by different E3 ubiquitin ligases (Figure 2)66. In this model, Riplet 

first ubiquitinates the helicase-CTD linker at K788 upon RIG-I RNA binding to release the 

2CARD from auto-repression and this step is required for the E3 ligases to access the 2CARD. 

This is followed by ubiquitination at various sites on the 2CARD by Riplet, TRIM25, TRIM4 and 

MEX3C. This would fit with several recent observations13, 14, 65 that Riplet is absolutely 

required for efficient RIG-I signalling activation, while TRIM25 is not, as well as explaining why 

there is seemingly redundancy between the other E3 ligases. In particular, recent work by 

Cadena et al. showed that deletion of TRIM25 from HEK293T and MEF cells results in an 



increase, not a reduction in RIG-I activation in response to 5’ppp-RNA. In contrast, deletion of 

Riplet from the same cell line results in complete abolition of RIG-I signalling, to the same 

level as deletion of RIG-I itself14. The same was found to be true for expression of IFNβ mRNA 

in response to infection with Sendai virus, with deletion of TRIM25 in this case resulting in a 

significant increase in IFNβ expression14. Interestingly this study also found that TRIM25 was 

not capable of ubiquitinating RIG-I in vitro, even in the presence of 5’ppp-dsRNA. This goes 

against previous work which has shown TRIM25 to be capable of ubiquitinating the RIG-I 

2CARD in vitro, although these studies used purified 2CARD and not full-length RIG-I26, 67 

In order to be able to replicate efficiently, most human viruses have evolved mechanisms for 

avoiding the triggering of innate immune signalling. Many RNA viruses that can be recognised 

by RIG-I have developed mechanisms of inhibiting RIG-I signalling at different stages of the 

pathway. The NS1 protein of IAV is known to block ubiquitination of RIG-I through interactions 

with TRIM25, Riplet and RIG-I itself68-70. IAV NS1 binds to the coiled-coil domain of TRIM25, 

and this was thought to prevent its multimerisation which it requires for its catalytic activity68. 

However, more recent structural data indicates that  the inhibitory effect of NS1 on TRIM25 

activity is due to disruption of interactions between the TRIM25 PRY/SPRY and coiled-coil 

domains that are required for RIG-I ubiquitination activity, not a lack of TRIM25 

multimerisation71. IAV NS1 is capable of inhibiting Riplet activity in both mouse and human 

cells and this is likely important for the overall inhibitory effect of NS1 on RIG-I signalling70. 

Other viruses also target TRIM25-mediated RIG-I ubiquitination for inhibition in order to 

dampen the innate immune response. The V proteins of several paramyxoviruses (Nipah, 

measles, Sendai and parainfluenza viruses) were found to interact with both the RIG-I 2CARD 

and the SPRY domain of TRIM25, preventing TRIM25-mediated ubiquitination of RIG-I72. 



Similarly, RSV NS1 and N protein from SARS-CoV were also found to interfere with TRIM25 

activity73, 74.  

TRIM25 can be targeted for inhibition by the host cell in order to downregulate RIG-I signalling 

to prevent excessive inflammation and IFN responses. The Linear Ubiquitin Assembly 

Complex (LUBAC), composed of Heme-Oxidized IRP2 Ubiquitin Ligase 1 (HOIL-1) and HOIL-1 

Interacting Protein (HOIP), competes with TRIM25 for binding to RIG-I and also targets 

TRIM25 for degradation via the proteasome75.  

The partnership between TRIM25 and ZAP 

ZAP is a well know IFN induced antiviral protein that has been shown to inhibit the replication 

of many different types of viruses, such as SINV76, Ebola77, HIV78 and Hepatitis B79. However, 

this inhibition is specific as some viruses such as Herpes simplex 1 and vesicular stomatitis 

virus are not repressed by ZAP76. ZAP was found to bind CG dinucleotides in viral RNAs and 

inhibit virus replication80. The frequency of CG dinucleotides is  suppressed in host RNAs 

allowing the distinction of self from non-self. However, RNA viruses have evolved to supress 

their CG dinucleotide content, thereby evading the host response. ZAP’s ability to suppress a 

virus was shown to correlate with the viral RNA CG content80. This inhibition seems to be 

mainly through reducing the levels of viral mRNAs, however the mechanisms are still 

unknown, that said ZAP has been shown to bind viral RNAs directly81 and to promote 

translational repression82. Additionally, ZAP can degrade viral RNAs by recruiting proteins to 

remove the poly-A tail and trigger de-capping of the mRNA and finally recruit the mRNA 

degradation machinery78, 83, 84. ZAP is targeted to stress granules during viral infection, which 

is important for its antiviral activity85, 86. Tang et al. found that NS1 binds to and inhibits ZAP’s 

ability to block IAV mRNA translation and degradation, by interfering with its RNA binding 



ability87. ZAP has also been shown to interact with and activate RIG-I by promoting its 

oligomerisation in human cells88. However, the RIG-I-dependent type I interferon response 

does not seem to important in the antiviral defence against all viruses and in all cell types 

such as primary mouse cells85, HBV infection of human liver cancer cells79, and Xenotropic 

murine leukemia virus-related virus (XMRV) infection of human cells89. ZAP exists as four 

isoforms (L, XL, M, S) with ZAPL being the most abundant in normal cells, while ZAPS is 

upregulated the most following IFN-� treatment. ZAPL and ZAPXL show higher antiviral 

activity against some viruses, but not all. All isoforms induce type I IFN expression similarly 90.  

ZAP does not have enzymatic activity91 and is thought to require co-factors. TRIM25 has been 

shown to be required for ZAP’s antiviral function41, 42. TRIM25 was found to interact with ZAP 

through its SPRY domain, with both the ubiquitin ligase activity and multimerisation of 

TRIM25 being important in enhancing ZAP’s antiviral activity (Figure 3). TRIM25 was also 

shown to be dependent on ZAP for inhibiting SINV replication42. TRIM25 was shown to 

mediate K48- and K63-linked polyubiquitination of ZAP, but only K68-linked ubiquitination 

enhanced its antiviral activity41, 42. TRIM25 was found to do this by aiding the RNA binding 

ability of ZAP, leading to inhibition of viral translation41, 42. However, although TRIM25’s E3 

ligase activity was needed to enhance ZAP-mediated inhibition of Sindbis virus RNA 

translation, ubiquitination of ZAP itself did not seem to directly affect antiviral activity42. 

TRIM25 was also found to be required for ZAP’s antiviral activity against a HIV-1 virus with 

clustered CpGs80. Another co-factor KHNYN (a cytoplasmic protein of previous unknown 

function) is thought to form a complex with ZAP and TRIM25 to inhibit the replication of HIV-

1 with clustered CpGs. KHNYN required both TRIM25 and ZAP for its antiviral activity. 

However, KHNYN was not needed in the inhibition of SINV replication92. The authors 



speculated that KHNYN could be needed for ZAP mediated RNA degradation, but not 

translation inhibition. 

 

Figure 3.  RNA-binding is necessary for TRIM25’s E3 ligase ubiquitin activity and activation of 

its partner – RNA-binding protein ZAP. 

 

RNA-BINDING ROLES OF TRIM25 

TRIM25 is an RNA-binding protein 

TRIM25 was initially discovered to be an RNA-binding protein (RBP) in a screen of mRNA 

binding proteins in HeLa cells11. Proteins were cross-linked to RNA via UV irradiation and 

mRNAs were isolated from the cell lysate with oligo(dT) probes before bound proteins were 

analysed by mass spectrometry11. A similar strategy also identified mouse Trim25 as an RBP 

in mouse embryonic stem cells93. Binding of human TRIM25 to RNA was further validated by 

immunoprecipitation (IP) of TRIM25 followed by radiolabelling of RNA. Signal from 

radiolabelled RNA after TRIM25 IP was reduced in cells in which TRIM25 had been knocked-

down by RNAi, indicating that TRIM25 was binding to RNA93. This study also tested several 

truncation mutants of TRIM25 for their RNA binding activity. Truncations in which the N-

terminal RING and B-box domains or the C-terminal PRY/SPRY domain were deleted were 

capable of binding RNA in this assay as seen by signal from radiolabelled RNA corresponding 



to the size of the constructs as visualised by western blot. Conversely, any mutants in which 

the CCD was deleted were incapable of binding RNA, suggesting that the CCD could play a 

role in TRIM25 RNA binding activity93. 

We independently discovered TRIM25’s RNA binding potential and showed the first RNA-

dependent function for TRIM25 in the Lin28-mediated degradation of pre-let-7a-194. TRIM25 

was found to bind to the conserved terminal loop (CTL) of pre-let-7 and activate LIN28a, which 

leads to more efficient TuT4-mediated uridylation and thereby degradation. Subsequently, 

we showed that TRIM25 binds hundreds of coding and non-coding RNAs and that the 

PRY/SPRY domain of TRIM25, specifically amino acids 470-508 

(VALSECYTVASVAEMPQNYRPHPQRFTYCSQVLGLHCYK) of human TRIM25, is required for 

binding to RNA12 (Figure 4). TRIM25ΔRBD (delta RNA binding domain), in which these amino 

acids were deleted, was unable to bind to pre-let-7a-1 in RNA pulldown or EMSA and 

exhibited loss of binding to target mRNAs and miRNAs in RIP experiments. Interestingly, 

TRIM25ΔRBD was capable of associating with TRIM25 WT, suggesting that dimerization with 

two intact PRY/SPRY domains is necessary for RNA binding (Figure 4). Aligning amino acids 

470-508 with the crystal structure of the PRY/SPRY domain from mouse Trim25 (the 

composition of which is highly similar to humans) shows that this region comprises β sheet 1, 

2 and 3 as well as loops 2, 3 and 4 of the PRY/SPRY domain28.  

 

 



 

Figure 4. Model of TRIM25 binding to RNA. The major point of contact between RNA and 

TRIM25 is the PRY/SPRY domain. Additional RNA-binding activity has been attributed to a 7 

Lysine peptide (7K) and the Coiled-coil domain. TRIM25 has been shown to bind both single 

and double-stranded RNAs. 

 

The requirement for the PRY/SPRY domain was confirmed by a recent study by Sanchez et al. 

that found a TRIM25 construct consisting of only the RING, B-box and CCD did not co-purify 

with nucleic acids, while full-length TRIM25 did67. These and our results contradict the earlier 

finding by Kwon et al. that TRIM25 without the PRY/SPRY domain precipitated with RNA93. It 

is worth noting that the latter construct did include the CCD-PRY/SPRY ‘linker’, while the 

former did not. Sanchez et al. also identified a motif containing 7 lysine residues (amino acids 

381-392, KKVSKEEKKSKK, termed 7K) in the linker region that seemingly contributed to RNA 

binding67 (Figure 4). Mutating all the lysines in 7K led to a significant decrease, although not 

a complete abolition, of RNA binding in EMSA experiments. A CCD-7K construct was not 

sufficient for RNA binding whereas a CCD-SPRY construct was (with an even higher affinity for 

RNA than full-length TRIM25) underlining the requirement for the PRY/SPRY domain67. Taken 



together, these results indicate that the PRY/SPRY domain is essential for TRIM25’s RNA 

binding and that binding is enhanced by the 7K motif in the CCD-PRY/SPRY linker and by CCD-

mediated dimerization. It remains unclear exactly which amino acids are involved in direct 

contact with the RNA and how many other PRY/SPRY domains harbour RNA-binding activity. 

 

TRIM25 inhibits the IAV RNA polymerase  

Recent work has identified a role for the RNA binding of TRIM25 in the restriction of IAV95. 

TRIM25 proteins from human and gibbon were overexpressed in Crandell Reese Feline Kidney 

(CRFK) cells that were subsequently infected with IAV. Levels of viral proteins were reduced 

in cells overexpressing TRIM25, with gibbon TRIM25 having a greater effect than human 

TRIM25, and this was rescued by expression of WT NS1 protein. Virus titres and levels of viral 

RNAs were also reduced upon overexpression of TRIM25, again with gibbon TRIM25 showing 

a larger effect and this was also seen for TRIM25 mutants lacking ubiquitin ligase activity 

(TRIM25 C13A/C16A)95. Deletion of RIG-I and TRIM25 from human A549 lung cells resulted in 

increased viral titres, viral protein, and vRNA levels, which could be rescued by expression of 

human or gibbon TRIM25. Interestingly, deletion of RIG-I alone had no effect, suggesting this 

function of TRIM25 is RIG-I-independent95. Further evidence that RIG-I is not required for this 

activity was shown by the use of a viral minigenome assay in HEK293T ΔRIG-I cells. 

Overexpression of both human and gibbon TRIM25 in these cells reduced expression of a 

luciferase reporter that could only be expressed in the context of IAV RNA polymerase 

activity, indicating that TRIM25 was inhibiting the activity of the IAV polymerase95. TRIM25 

was subsequently shown to bind to IAV viral RNPs (vRNPs) in an RNA-dependent manner and 

that gibbon TRIM25 binds to vRNPs more efficiently than human TRIM25. In addition to this, 



purified human or gibbon TRIM25 was able to inhibit viral mRNA chain elongation in vitro, 

again with gibbon TRIM25 doing this more efficiently, reflecting its higher ability to restrict 

viral replication and protein production as well as its stronger binding to vRNPs95. The authors 

of this study proposed a mechanism whereby TRIM25 blocks the IAV RNA polymerase from 

moving down the vRNA template and prevents the onset of chain elongation, thus restricting 

the virus. 

Dengue virus RNA inhibits TRIM25 

Dengue virus has been shown to take advantage of TRIM25’s RNA-binding by expressing a 

subgenomic flavivirus RNA (sfRNA) that binds to and inhibits TRIM25 preventing RIG-I 

activation and type I IFN induction. This lead to an increase in the epidemiological fitness of a 

new Dengue virus clade (PR-2B) compared to the previous one (PR-1)96. The authors found 

that the sfRNA from PR-2B bound more than that from PR-1 by EMSA and showed that 

TRIM25 bound to PR-2B sfRNA was more ubiquitinated than that bound by PR-1 sfRNA. The 

sfRNA did not affect TRIM25’s ability to co-immunoprecipitate with RIG-I, but TRIM25 bound 

to RIG-I was still ubiquitinated more in the presence of PR-2B sfRNA than PR1 sfRNA. 

However, it was unclear if this difference was because of the increased level of TRIM25 pulled 

down. It was concluded that the increased ubiquitination of TRIM25 was due to the inability 

of USP15 to de-ubiquitinate TRIM25 thereby preventing RIG-I activation and type I IFN 

induction. As mentioned previously, LUBAC binds to and ubiquitinates TRIM25 targeting it for 

degradation by the proteasome, preventing it from ubiquitinating and activating RIG-I75. 

However, Manokaran et al. did not test the nature of TRIM25 ubiquitination. In fact, more 

TRIM25 was co-immunoprecipitated with RIG-I in the presence of PR-2B sfRNA. This 



ubiquitination band could be the reported auto-ubiquitination of TRIM25, which has as yet to 

be found a function for12, 26, 75. 

TRIM25 requires RNA binding for its E3 ubiquitin ligase activity 

We recently found that TRIM25 requires RNA binding to be able to efficiently auto-

ubiquitinate itself and to ubiquitinate ZAP, one of its targets12. TRIM25 showed efficient auto-

ubiquitination in in vitro ubiquitination assays, while TRIM25ΔRBD did not. The same results 

were shown in in vitro ubiquitination experiments with ZAP. The importance of RNA binding 

was confirmed by RNase treatment of the protein extracts, which led to complete abolition 

of poly-ubiquitination both on TRIM25 and ZAP (Figure 3). Similar results were obtained by 

Sanchez et al. who found that TRIM25-mediated ubiquitination of the RIG-I 2CARD was 

severely reduced in the TRIM25 7K mutant compared to TRIM25 WT67. Overexpression of 

GST-2CARD in HEK293T cells resulted in robust ubiquitination of the 2CARD and induction of 

IFNβ promoter activity in cells expressing WT TRIM25 but not in cells expressing the 7K 

mutant67. These results support the hypothesis that TRIM25 requires RNA binding to 

ubiquitinate its target proteins and further suggest that this is a general property of TRIM25 

activity that is not restricted to a single target protein. Sanchez et al. also found that RNA 

binding mediated the localisation of TRIM25 to stress granules, and that RNA binding was 

required for Trim25’s antiviral activity. Virus replication was supressed by WT TRIM25 but not 

TRIM25 7K mutant during infection with Dengue virus, vesicular stomatitis virus and IAV67. 

Another recent report also suggested that TRIM25 RNA binding is important for its 

ubiquitination of RIG-I 2 CARD. TRIM25 binding to the lncRNA Lnczc3h7a was shown to 

enhance its interaction with and ubiquitination of RIG-I upon VSV infection and the presence 

of Lnczc3h7a increased the type I IFN response to RNA virus infection97. In addition to this, 



both RIG-I and TRIM25 co-purified with Lnczc3h7a from cells that had been infected with VSV 

and Lnczc3h7a interacted with the RIG-I helicase domain and TRIM25 in RNA pulldowns. The 

authors of this study proposed a model whereby Lnczc3h7a acts as a scaffold, binding to both 

RIG-I and TRIM25 in order to bring them closer together. However, it is unlikely that this 

would be sufficient to explain the differences in type I IFN induction seen due to the apparent 

redundancy of TRIM25 in RIG-I signalling with other E3 ubiquitin ligases such as Riplet, TRIM4 

and MEX3C66. It is possible, for example, that the action of Lnczc3h7a is not restricted to 

TRIM25 and it promotes the association of RIG-I with the other E3 ligases as well.  

CONCLUSION AND FUTURE PERSPECTIVE 

TRIM25 plays an important role in innate immunity and has proven importance in inhibiting 

virus replication, however the precise mechanisms are still unclear. Previous reports of 

TRIM25’s significance in RIG-I activation has recently come under scrutiny with several studies 

also implicating RIPLET, MEX3C and TRIM4 as potential activators of RIG-I, of which RIPLET 

seemingly the most important13, 14, 61-66. This discrepancy in TRIM25 ubiquitination of RIG-I 

could be a result of earlier studies using isolated GST-2CARD and not full-length RIG-I. It is 

possible that TRIM25 is not capable of ubiquitinating full-length RIG-I in cells as there may be 

other factors in the cell that are required for this activity that are not present in vitro. Cadena 

et al. showed that deletion of TRIM25 did result in lower RIG-I signalling activity in response 

to transfection of GST-tagged 2CARD alone, suggesting that there may be different 

mechanisms of activation for isolated 2CARD and 2CARD in the context of full-length RIG-I. 

This study also further explored the interaction between Riplet and RIG-I. It found that Riplet 

only binds to RIG-I in the presence of RNA and that it can bind to full-length RIG-I or a mutant 

in which the 2CARD has been deleted but not to the isolated 2CARD14. Interestingly, the Riplet 



PRY/SPRY domain was required for its interaction with RIG-I and Riplet dimerization was also 

required for this interaction. This bears striking similarities to the requirements for TRIM25 

binding to RNA, which also requires dimerization and the PRY/SPRY domain12, 98. Due to the 

similar domain structures of TRIM25 and Riplet, and the RNA-dependence of the Riplet-RIG-I 

interaction, this raises the question of whether Riplet is binding directly to RNA in this instance 

and, if it is, whether this RNA binding is necessary for the interaction with RIG-I.  

It is likely that TRIM25 is dispensable for RIG-I activation in human cells while Riplet is 

essential. It is, however, still possible that requirements for different E3 ligases vary between 

different cell and tissue types as expression levels may be different and there could be other 

differences in the environments of different cells. As such it would be prudent to perform a 

large-scale screen of Riplet and TRIM25 (as well as TRIM4 and MEX3C) knock outs of many 

different cell types. The idea that TRIM25 was the key E3 ligase for RIG-I activation was mainly 

based off experiments in which the RIG-I 2CARD was overexpressed in cells or in vitro 

experiments using the 2CARD. The experiments performed with full length RIG-I exemplify 

the fact that full-length proteins may function differently to their domains in isolation and 

this can lead to confusion about how biological processes work. 

RIG-I-independent functions of TRIM25 in innate immunity have been described, and these 

seem to be RNA-binding dependent. Meyerson et al. showed that TRIM25 binds vRNPs and 

inhibits the Influenza A polymerase95. While TRIM25 is required for the antiviral activity of 

ZAP41, 42, with TRIM25 ubiquitination of ZAP being RNA dependent12. Sanchez et al. further 

showed that RNA binding was required for TRIM25’s antiviral response to several viruses67. 

Additionally, they showed that TRIM25 localises to stress granules in an RNA-binding 



dependent way. ZAP also localises to stress granules85, 86 and it is possible this helps these 

proteins to co-localise. 

The mechanism by which TRIM25 RNA-binding facilitates its ubiquitination activity is 

unknown. It is known that the RING domain of TRIM25 is active as a dimer and it is likely that 

this requires higher order oligomerisation of TRIM25 dimers. It is therefore possible that RNA 

binding is important for this higher order organisation, for example by clustering the 

PRY/SPRY domains from separate dimers together to facilitate formation of a ‘tetramer’-like 

structure. This is rendered less likely by our data showing that purified His-TRIM25ΔRBD and 

His-TRIM25 WT both form tetramers in vitro, although it remains possible that the proteins 

behave differently in vivo. It is also possible that binding to RNA causes TRIM25 to undergo a 

conformational change that allows ubiquitin ligase activity. 

Although TRIM25 has been established as an RNA-binding protein there are many 

outstanding questions. How does the emerging RNA-binding roles of TRIM25 contribute to 

innate immunity? Which host and viral RNAs do TRIM25 bind during viral infection? Do viral 

proteins, such as IAV NS1, interfere with TRIM25 binding to host RNAs? Is the ubiquitination 

and PRY-SPRY mediated RNA-binding activity of TRIM25 necessary for antiviral defence? 

Which other E3 ubiquitin ligases bind to RNA and are involved in the innate immune 

response? Answering these questions will result in a paradigm shift in our understanding of 

TRIM25-mediated control of RNA viruses and will pave the way towards novel, targeted, 

antiviral therapies.  
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