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(ii) Abstract 

 

Aims: Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet 

understanding of their contribution to endothelial cell (EC) function is incomplete. We identified 

lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded 

micropeptide SPAAR in EC function. 

 

Methods and Results: Deep sequencing of human embryonic stem cell differentiation to ECs was 

combined with ENCODE RNA-seq data from vascular cells, identifying 278 endothelial enriched 

genes, including 6 lncRNAs. Expression of LINC00961, first annotated as a lncRNA but reassigned as 

a protein coding gene for the SPAAR micropeptide, was increased during the differentiation and was 

EC-enriched. LINC00961 transcript depletion significantly reduced EC adhesion, tube formation, 

migration, proliferation, and barrier integrity in primary ECs. Overexpression of the SPAAR open 

reading frame increased tubule formation, however overexpression of the full length transcript did not, 

despite production of SPAAR. Further, overexpression of an ATG mutant of the full length transcript 

reduced network formation, suggesting a bona fide non-coding RNA function of the transcript with 

opposing effects to SPAAR.  As the LINC00961 locus is conserved in mouse, we generated a 

LINC00961 locus knockout (KO) mouse that underwent hind limb ischaemia to investigate the 

angiogenic role of this locus in vivo. In agreement with in vitro data, KO animals had a reduced capillary 

density in the ischaemic adductor muscle after 7 days.  Finally, to characterise LINC00961 and SPAAR 

independent functions in ECs, we performed pull-downs of both molecules and identified protein 

binding partners. LINC00961 RNA binds the G-actin sequestering protein thymosin beta-4x (Tβ4) and 

Tβ4 depletion phenocopied the overexpression of the ATG mutant. SPAAR binding partners included 

the actin binding protein, SYNE1.   

 

Conclusion: The LINC00961 locus regulates EC function in vitro and in vivo.  The gene produces two 

molecules with opposing effects on angiogenesis: SPAAR and LINC00961.  

 

Words 298  

 

 

Translational Perspective (100 words): 

Treatment of ischemic conditions remains a major cardiovascular health burden. Identification of genes 

and non-coding RNAs that regulate the function of the vascular endothelium is important to understand 

and evolve potential new strategies that might enhance vascular regeneration. Here, we describe and 

dissect the functional importance of a micropeptide-encoding RNA transcript in the vascular 

endothelium, and demonstrate that both the RNA and the peptide regulate endothelial biology. 

Modulation of this axis may be a novel approach to regulate angiogenesis. 

 

Non-standard Abbreviations and Acronyms  

aa: Amino acids 

α-sma: α-smooth muscle actin 

bp: Base pairs 

DsiRNA: Dicer substrate siRNA 

EC: Endothelial cell 

ECIS: Electric cell-substrate impedance sensing assay 

ENCODE: Encyclopedia of DNA Elements 

FISH: Fluorescent in situ hybridisation 

GO: Gene Ontology 

hESC: Human embryonic stem cell  

HSVEC: Human saphenous vein endothelial cell 

HUVEC: Human umbilical vein endothelial cell 

IB4: Isolectin B4 

KD: Knock down 

KO: Knock out 
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lincRNA: Intergenic lncRNA 

lncRNA: Long non-coding RNA  

LV: Lentiviral 

MP: Day 3 mesodermal population 

ncRNA: non-coding RNA 

ORF: Open reading frame 

PCA: Principal component analysis  

SMC: Smooth muscle cell 

SPAAR: Small regulatory polypeptide of amino acid response 

Tβ4: Thymosin beta-4x 

UBC: Ubiquitin C 

WT: Wild type 

 

(iii) INTRODUCTION  

 

The endothelium is a heterogeneous organ system that regulates homeostasis of the vasculature and 

represents a permeable monolayer barrier between the vessel wall and the blood. Endothelial cells (ECs) 

regulate and adapt to shear stress, leukocyte extravasation, blood clotting, inflammation, vascular tone, 

extracellular matrix deposition, vasoconstriction/vasodilation, and angiogenesis. During angiogenesis, 

ECs become activated and undergo sprouting, proliferation, migration along a gradient of pro-

angiogenic factors (eg. VEGF, FGF, PDGF), and anastomose to form new capillaries before returning 

to their quiescent state 1. Aberrant activation however, leads to EC dysfunction that can cause systemic 

vascular pathology 1, 2. This uncontrolled activation is a significant factor contributing to coronary artery 

disease, diabetes, hypertension patients, hypercholesterolemia, lupus, and has been reported as 

increased in smokers 3, 4. 

Several groups have demonstrated the ability to differentiate ECs from human embryonic stem cells 

(hESC) 5-7. This protocol yields ECs that are relatively immature and express genes that are somewhat 

distinct from those of mature ECs from various vascular beds 8, highlighting the importance of 

understanding the molecular mechanisms controlling both general and specialised EC differentiation, 

specification, and function. These derived ECs have been extensively proven to be functional both in 

vitro, by the ability to form capillary like networks on Matrigel 7 and in vivo, by their ability to improve 

vascular density and perfusion in a murine model of hind limb ischaemia (HLI) 9. These data provide 

evidence of the benefits to hESC-derived EC for therapeutics and as a model to characterise early 

vascular development. 

Data from the human Encyclopedia of DNA Elements (ENCODE) project indicates that approximately 

93% of the genome is transcribed, with less than 2% encoding protein sequences 10. Currently, these 

non-coding RNAs (ncRNAs) are classified based on size, into long non-coding RNAs (lncRNAs) 

>200bp and small ncRNAs < 200bps. LncRNAs correspond to a heterogeneous class of genes, with 

subtypes classified based on neighbouring protein-coding genes. In particular, lincRNAs are intergenic 

lncRNAs with no overlap with protein-coding genes. While some lincRNAs regulate in cis their protein-

coding neighbours expression, a large range of trans-functions have been reported including chromatin 

remodelling, transcriptional and post-transcriptional regulation, translation control and regulation of 

protein activity 11. LncRNAs show spatio-temporal expression, and are poorly conserved between 

species 12 , however, to date only a few of the lncRNAs known to exist have been functionally 

characterised. Recent literature highlights the important functions of lncRNAs as regulators of the 

cardiovascular system 13, 14.  In the vascular endothelium, TIE1-AS1 was the first described endothelial 

specific lncRNA, involved in modulating TIE-1 expression and regulating endothelial vessel formation 
15. A comprehensive transcriptome analysis of early cardiovascular development revealed the regulation 

of several lncRNAs and led to the characterisation of ALIEN and PUNISHER 16. Recently, the hypoxia-

induced lncRNA, GATA6-AS, was shown to epigenetically regulate angiogenesis through its 

interaction with the epigenetic regulator LOXL2 17, 18. 
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The “non-coding” property of some lncRNAs has been disputed by the discovery of small open reading 

frames (ORFs) in some lncRNA transcripts, able to generate functional micropeptides 19, 20. For 

example, LINC00948 has been reclassified as a protein-coding gene, as it encodes myoregulin, which 

inhibits the calcium ATPase SERCA in muscle 21. Similarly, the micropeptide DWORF encoded by 

lncRNA NONMMUG026737 activates the SERCA pump 22. Noteworthy to this study, a conserved 

micropeptide termed small regulatory polypeptide of amino acid response (SPAAR) was recently 

shown to be encoded by the LINC00961 locus 23. SPAAR attenuates lysosomal v-ATPases interaction 

with mTORC1 under amino acid stimulation and modulates skeletal muscle regeneration following 

cardiotoxin injury 23. These studies focused on the function of the derived micropeptide, however, some 

micropeptides have been shown to be expressed from lncRNAs with previously characterised non-

coding functions24, suggesting the possibility of bi-functional loci. 

 

We identified the LINC00961/SPAAR locus as EC enriched, and sought to identify the role of this 

micropeptide-encoding gene. This led to dissection of the contribution of the LINC00961 RNA 

transcript itself and the SPAAR micropeptide on endothelial function. LINC00961 RNA was found to 

act as a bona fide lncRNA that inhibited angiogenesis and bound to the known angiogenic and actin 

binding protein thymosin beta 4-x (Tβ4). Whereas SPAAR was found to be pro-angiogenic and bound 

to another actin binding protein, SYNE1.   

 

 

(iv) METHODS 

 

Endothelial cell isolation and cell culture 
All donated tissues have been obtained under proper informed consent and the investigation conforms 

with principles in the Declaration of Helsinki. Human saphenous vein endothelial cells (HSVECs) were 

obtained by enzymatic collagenase digestion of human saphenous veins (Ethics 15/ES/0094). Human 

umbilical vein endothelial cells (HUVEC) were obtained from Lonza (Basel Switzerland). 

 

RNA-Seq of human embryonic stem cell differentiation to endothelial cells  

A previously published protocol was employed to generate endothelial cells from H9 human embryonic 

stem cells 25. RNA-Seq analysis was performed as previously described 26 with minor modifications. 

Ensembl GRCh38 was used for transcriptome annotation. Read counts for each gene were obtained 

using HTSeq 27. The differential expression was analysed using DESeq2 28. RNA-seq data are deposited 

at the Gene expression Omnibus as GSE118106. 

 

Expression data from several human endothelial and smooth muscle cell (SMC) lines was obtained 

from the Encyclopedia of DNA Element (ENCODE) Consortium. The list of analysed data and their 

abbreviated name can be found in Supplementary Table 1). Candidate filtering was done as follow: (a) 

Genes enriched in day7 EC versus hESC and non-EC day sample based on a LogFC>=1, padj<0.01, 

FPKM>=2 (b) Genes up-regulated in HSVEC versus hESC (LogFC>=1, padj<0.01, FPKM>=2) (c) 

Genes expressed in ENCODE ECs (min of 2 FPKM in 10 samples) (d) Enriched expressed in ENCODE 

ECs versus ENCODE SMCs (2 fold enrichment between the average expression in ECs and SMCs). 

 

HUVEC transfection and phenotype analysis 

All phenotypes were assessed in Human umbilical vein endothelial cells (HUVECs) at 24 hours after 

transfection with dicer substrate siRNA (dsiRNA) or infection with lentiviral constructs (details of 

reagents and protocols in Supplementary Methods). In vitro tubule network formation was assessed 

using Matrigel (Corning, USA) according to the manufacturer’s protocol. Proliferation was assessed 

using the Click-it EdU 488 Proliferation assay (Life Technologies, UK). Migration and endothelial 

barrier function assays were performed using an Electric Cell-substrate Impedance Sensing (ECIS) 

machine (Applied BioPhysics) and cell viability assessed with a FITC Annexin V Detection Kit with 

PI (BioLegend). 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article-abstract/doi/10.1093/cvr/cvaa008/5716664 by Edinburgh U

niversity user on 29 January 2020



5 
 

Hind limb ischaemia 
All animal experiments were performed in accordance with the Animals (Scientific Procedures) Act 

(UK) 1986 and under the auspices of UK Home Office Project and Personal Licenses held within The 

University of Edinburgh facilities. LINC00961-/- mouse line was obtained from Taconic©. Validation 

of genotype was two-fold. Ear clip samples from pups were sent to Transnetyx© for genotyping, and 

in house validation was also carried out using qRT-PCR on mRNA extracted from the kidney. Surgical 

procedures were performed under inhaled general anaesthesia (isoflurane at 5% for induction and 1-2% 

for maintenance) and with appropriate peri-operative analgesic cover (subcutaneous injection of 

buprenorphine at 0.05mg/kg). Unilateral hind limb ischaemia (HLI) was surgically induced by 

left femoral artery ligation at two points and cauterisation of this segment of artery, leaving the femoral 

vein and nerve untouched. Mice were maintained for 7 days after surgery. Male LINC00961-/- and wild 

type (WT) littermates on the C57Bl/b6NTAC were studied at 11 weeks of age. Animals were euthanised 

with pentobarbital (160mg/kg) given by intraperitoneal injection. Tissues were perfusion fixed with 

PBS at 6ml/min with a micro pump and then with 4% paraformaldehyde at 6ml/min.  

 

Pull-down 

LINC00961 RNA pull-down was carried out with 50 pmol biotinylated lncRNA, obtained using the 

T7 RiboMAX Express Large Scale RNA Production System (Promega, UK). The biotinylated lncRNA 

was incubated with streptavidin magnetic beads and 20 µg of HUVECs protein lysate, using the Pierce 

Mag RNA Protein Pull-down kit (Thermo Scientific). For the SPAAR pull-down HUVECs expressing 

either LV-Null, LV-SPAAR untagged or LV-SPAAR- HA tagged were cultured in EGM-2 media. 

Immunoprecipitation with either anti-IgG or anti- HA antibody was performed in two replicates. 

SPAAR binding partners were defined as proteins detected in the two pull-down replicates and with a 

2-fold enrichment compared to the IgG pull-down controls or pull-down in cells not overexpressing 

HA-tagged SPAAR. Keratin contaminants and unknown proteins were removed from the final 

candidate list. 

 

Statistical analysis 
Statistical analysis was performed as described in the figure legends using GraphPad Prism version 5.0. 

Data are expressed as mean ± SEM. Comparisons between 2 groups were analysed using 2-tailed 

unpaired Student’s t-tests. Comparisons between more than 2 groups were analysed using One-way 

ANOVA. For qRT-PCR analysis, graphs display the expression relative to the housekeeping gene based 

on the double dCt analysis while the statistical analyses were done on dCt values. For data represented 

as fold change, the statistical analysis was done on the Log2 Fold Change using a One Sample t-test. 

 

 

 

(v) RESULTS 

 

Identification of endothelial cell enriched genes 

To identify genes specifically induced during endothelial fate specification and differentiation, we 

utilised an embryoid body-based protocol to generate ECs from human embryonic stem cells (hESCs) 

(Figure 1A) 25. This protocol was previously shown to generate functional hESC-EC, expressing 

CD144 and CD31 and able to form tube-like structures on Matrigel 7. RNA-seq was performed (45 

million paired end reads per sample) on ribosomal RNA depleted libraries from several replicates of 

the different cell populations (Figure 1A). Principal component analysis (PCA) demonstrated tight 

clustering of replicates and segregation of populations (Figure 1B). The purified EC samples obtained 

at day 7 (d7 EC) were closer to the human saphenous vein EC (HSVEC) samples in the PCA plot, but 

clearly clustered separately suggesting the immaturity of this EC population (Figure 1B). As expected, 

hESC pluripotency markers showed a down-regulation after day 3 of differentiation while mesoderm 

markers are up-regulated. We confirmed the expression of several endothelial markers in the d7 EC 

population but also showed the expression of arterial, venous and lymphatic phenotype markers, 

suggesting endothelial heterogeneity (Supplementary Figure 1A).  As expected, we observed a high 

overlap between the genes up-regulated in d7 EC versus hESC and the genes up-regulated in HSVEC 

versus hESC (Supplementary Figure 1B), validating their endothelial identity.  
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To identify genes important for endothelial identity and function, we focused on candidates showing 

high expression in immature and mature ECs. We specifically selected 409 genes enriched in the day7 

EC population but also expressed in our HSVEC samples. Then, we took advantage of RNA-seq data 

from the ENCODE consortium to assess their expression in several EC lines from different origins but 

also in SMCs. We retrieved a list of 278 genes with high expression in ECs and lower expression in 

SMCs (Supplementary Table 2). This list contains known markers of ECs including PECAM1, CDH5, 

and ERG, and the Gene Ontology (GO) analysis revealed the enrichment of terms related to vessel 

development and angiogenesis (Supplementary Figure 1C). 

 

LINC00961 is enriched in immature and mature ECs 

Among the 278 genes enriched in immature and mature ECs, we found 6 lncRNAs: 3 antisense 

lncRNAs and 3 intergenic lncRNAs (Figure 2A and B). While antisense RNAs often regulate the 

expression of their sense genes 24, intergenic lncRNAs have function generally unrelated to their 

neighbouring protein-coding genes. From the 3 intergenic lincRNA, LINC00961 is the only one 

conserved in mouse (Figure 2C). LINC00961 is located on chromosome 9 and while LINC00961 

transcript expression was detected in the d7 EC population and HSVECs with a read profile confirming 

a two-exon gene structure, neighbouring HRCT1 expression was restricted to HSVECs (Figure 2C). 

Although LINC00961 was initially annotated as a lncRNA, the locus encodes a small ORF in the second 

exon and has been re-annotated as a protein coding gene. Interestingly, the peptide was independently 

identified based on a proteomic strategy and termed SPAAR for small regulatory polypeptide of amino 

acid response 23. To validate the RNA-seq, LINC00961 gene expression was evaluated by qRT-PCR in 

the same sample set used for RNA-seq, which demonstrated the same profile of expression 

(Supplementary Figure 2). 

 

 

LINC00961/SPAAR gene silencing affects endothelial function  

To assess the impact of silencing LINC00961 transcript on endothelial function, we depleted 

LINC00961 levels in HUVECs by 70%, utilising dsiRNAs (Figure 3A). In an in vitro 2D Matrigel 

tubule network formation assay, LINC00961 silencing resulted in attenuated branch formation (Figure 

3B & C). Calcein AM was used to confirm that the lack of branch formation following LINC00961 

depletion was not a consequence of apoptosis (Figure 3C). We confirmed that LINC00961 silencing 

did not affect cell viability using Annexin V and PI staining (Supplementary Figure 3A). We then 

replicated the network formation phenotype via a GapmeR depletion strategy (Supplementary Figure 

4). Moreover, silencing LINC00961 led to a significant reduction in cell adhesion (Figure 3D) and 

endothelial membrane barrier integrity (Figure 3E & Supplementary Figure 3B). We also observed 

a trend towards a reduction in cell proliferation (Supplementary Figure 3C), and migration 

(Supplementary Figure 3D). To investigate whether LINC00961 played a cis- regulatory role in the 

expression of the closely located gene HRCT1, we tested HRCT1 transcript levels in siRNA LINC00961 

depleted cells. qRT-PCR analysis showed that HRCT1 expression was unaltered by LINC00961 

modulation (Supplementary Figure 5A & B). Similarly, siRNA silencing of HRCT1 did not affect 

LINC00961 levels (Supplementary Figure 5C & D). 

 

 

Murine LINC00961/SPAAR locus knock out reduces adductor muscle capillary density following 

hind limb ischaemia (HLI) 

To assess the role of the LINC00961 locus in vivo, we established a knock out (KO) mouse where the 

entire locus was deleted (Figure 4A). We first confirmed the absence of the LINC00961 mouse 

transcript by qRT-PCR (Supplementary Figure 6A). We then tested the efficacy of injury-induced 

angiogenesis compared to littermate controls at two time points. After 7 days, the capillary density 

between KO and WT animals was not significantly altered in the non-ischaemic leg (p=0.2471). 

However, at 7 days after HLI LINC00961-/- mice had a lower capillary density in the ischaemic adductor 

muscle compared to controls (Figure 4B). This was therefore comparable to the in vitro tubule 
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formation data in LINC00961 depleted HUVECs. Interestingly, KO animals had a significant decrease 

in the number of α-smooth muscle actin (αSMA) positive vessels at baseline compared to WT animals 

but this difference was not evident after injury (Figure 4C). We also analysed Laser Doppler ratio, 

capillary density and αSMA positive vessels at 21 days. No significant differences at this later time 

point were observed (Supplementary Figure 6). 

 

The LINC00961 locus encodes a biologically functional RNA 

We next investigated the angiogenic effect of overexpressing either the full length LINC00961 

transcript or the SPAAR ORF sequence in HUVECs, using lentiviral vectors (LV) (Figure 5A). We 

also generated a LV-ΔΔATG961 construct (Figure 5A), corresponding to the full length transcript with 

mutations in the ORF initiation codons to block translation. qRT-PCR (Figure 5B) and western blotting 

(Figure 5C) confirmed overexpression. Overexpression of the LV-SPAAR construct significantly 

enhanced endothelial network formation, whereas LV-ΔΔATG961 produced opposite results, 

significantly inhibiting angiogenesis (Figure 5D & E).  These data showed that the production of 

SPAAR induces network formation, whereas the LINC00961 RNA alone possesses an inhibitory effect, 

independent of SPAAR micropeptide production, thus unveiling a bona fide lncRNA function for the 

LINC00961 RNA. Furthermore, we observed that LV-mediated overexpression of SPAAR, but not the 

LINC00961 transcript, reduced endothelial barrier integrity (Figure 5F). As cellular localisation of 

lncRNA transcripts is informative with regards to their associated mechanisms, we determined the 

subcellular localisation of LINC00961 using RNA-fluorescent in situ hybridisation (FISH) 

(Supplementary Figure 8A & B) and cell fractionation (Supplementary Figure 8C) and showed the 

presence of LINC00961 in both the nucleus and the cytoplasm.  

 

Identification of binding partners for LINC00961 RNA and SPAAR micropeptide  

As both LINC00961 and SPAAR are functionally relevant for ECs, we used RNA and protein pull-

downs combined with mass spectrometry to identify the protein binding partners of the lncRNA and 

SPAAR micropeptide in HUVECs (Figure 6). 147 proteins were found in the LINC00961 pulldown 

samples, which were not in the pulldown with the beads alone or the control GFP RNA (Figure 6B & 

Supplementary Tables 3 and 4). GO analysis showed enrichment of terms related to cell-cell adhesion 

and cortical actin arrangement (Figure 6D).  The top candidate was the G-actin sequestering molecule, 

thymosin beta 4-x (Tβ4) which is associated with reorganisation of the actin cytoskeleton 29 and is also 

involved in angiogenesis 30, 31. Tβ4 functions within an actin organisation pathway with other actin 

associated molecules including Cofilin-1 and Profilin-1 32. Both Profilin-1 and Cofilin-1 were enriched 

in the LINC00961 immunoprecipitation (Supplementary Table 3); suggesting LINC00961 may play a 

role in actin cytoskeleton remodelling. To confirm the interaction between LINC00961 and Tβ4, we 

carried out immunoprecipitation of endogenous Tβ4 protein in HUVECs. qRT-PCR confirmed the 

detection of LINC00961 in Tβ4 immunoprecipitation samples, thus independently validating an 

interaction of LINC00961 with Tβ4 (Supplementary Figure 10A). Immunofluorescence of Tβ4 in 

HUVECs confirmed the presence of Tβ4 in the cytoplasm in accordance with a plausible interaction 

with LINC00961 (Supplementary Figure 10B). 

 

We next identified protein binding partners for SPAAR. We found 40 proteins enriched in the HA-

SPAAR pull-down compared to the IgG pull-down controls and compared to the pull-downs in control 

cells not expressing the fusion protein (Supplementary Table 5 & 6). GO analysis of SPAAR targets 

showed enrichment of terms related to immunity (Figure 6E). SPAAR has been previously shown to 

bind the v-ATPase complex in HEK293 33. However, these proteins were not found in the SPAAR 

pull-down in HUVECs, suggesting a different function for SPAAR in ECs. The top hit for SPAAR 

interactors was SYNE1, also known as NESPRIN-1, a regulator of EC shape and migration 34. 

 

Thymosin beta 4-x depletion phenocopies LV-ΔΔATG961 overexpression 

To characterise the function of LINC00961 and Tβ4 interaction, we assessed whether they co-regulated 

each other’s expression. siRNA silencing of TMSB4X (Supplementary Figure 9A) did not alter 

LINC00961 transcript levels (Supplementary Figure 9B). Similarly, silencing LINC00961 or 

overexpressing LV-ΔΔATG961 did not change TMSB4X transcript levels (Supplementary Figure 9C 

& 9D). The known pro-angiogenic effect of Tβ4 30, 31 was confirmed in our system, with a 49±16% 
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reduction in network formation following TMSB4X depletion (Figure 7A & 7B). This reduction is 

similar to the overexpression of LINC00961 transcript without the production of SPAAR micropeptide 

(LV-ΔΔATG961), suggesting that LINC00961 lncRNA might negatively regulate Tβ4-mediated 

angiogenesis. 

 

 

 

 

(vi) DISCUSSION 

 

Using RNA-seq, we identified LINC00961 as an endothelial enriched transcript. The strong impact on 

the endothelial phenotype following LINC00961 level manipulations confirmed the relevance of our 

candidate selection using the combination of our hESC to EC RNA-seq with ENCODE RNA-seq 

datasets. This further highlights the need to investigate the role of lncRNA transcripts in endothelial 

biology.  

 

In this study, we provide in vitro and in vivo evidence that the LINC00961 locus has a function in ECs. 

Whilst siRNA KD in vitro affects many aspects of EC biology (angiogenesis, adhesion, proliferation, 

migration, and membrane integrity), we assessed the angiogenic role in a murine KO model. 

LINC00961-/- mice had fewer αSMA positive vessels at day 7 baseline, suggesting a defect in the 

development, maturity and or stability of larger vessels. After injury, KO mice has fewer capillaries at 

day 7, indicating a reduced capacity of the endothelium to undergo angiogenesis after injury. However, 

the effect of the KO was not observed by day 21 post HLI. This suggests the KO animals may have a 

slower recovery rate after injury (due to an impairment in EC function), or activate compensatory 

mechanisms to maintain vessel numbers after injury. As we have a global KO, we cannot exclude the 

contribution of LINC00961deletion in other cell types to this phenotype. To further investigate the role 

of this locus in EC behaviour, it would be worthwhile to switch to an EC-specific and conditional 

LINC00961 KO mouse model. In addition, it would be interesting to assess the effect of LINC00961 

deletion in early development of vessel establishment and further characterise the dynamics of vessel 

recovery early in the HLI model.  

 

Previous studies have outlined the role of the micropeptide SPAAR, encoded from the LINC00961 

locus, during muscle regeneration 23. In our study, we showed opposing roles of LINC00961 RNA and 

SPAAR micropeptide in angiogenesis, one being anti- and the other pro-angiogenic respectively. The 

reduction in endothelial barrier integrity with SPAAR overexpression further validates our hypothesis 

that SPAAR is pro-angiogenic. Indeed, plastic junctions are required for sprouting angiogenesis 35. It 

would therefore be interesting to test the permeability of new SPAAR induced vessels in an animal 

system using a plasma tracer. 

 

To our knowledge, this is the first reported bi-functional locus in a cardiovascular setting. In other 

biological contexts, loci producing protein or functional ncRNAs through alternative splicing have been 

described 36-38. The novelty of the LINC00961 locus is that the SPAAR micropeptide is produced from 

the functional LINC00961 RNA instead of an alternative splicing transcript without an ORF. This 

configuration implies the requirement of a regulatory mechanism to control the levels of LINC00961 

RNA and SPAAR micropeptide independently of each other. The switch between LINC00961 and 

SPAAR could be controlled at the translation level, similarly to the STORM micropeptide whose 

translation initiation is regulated by eIF4E phosphorylation 39. However, the functional activity of the 

lncRNA encoding the STORM micropeptide has never been demonstrated. Expression of the 

LINC00961 transcript is high in basal HUVECs and detectable by qRT-PCR, in contrast, we are only 
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able to see the presence of SPAAR micropeptide in LV-SPAAR conditions. This limitation is likely 

due to either very low protein levels in basal HUVECs or the detection limit of the antibody. The precise 

molecular control of LINC00961 transcript and SPAAR levels needs further dissection in light of these 

findings. 

 

We show that LINC00961 RNA binds Tβ4, a well-established actin binding protein with many 

additional functions including anti-inflammatory and anti-apoptotic properties, and a role in cell 

migration and angiogenesis 29. As TMSB4X transcript levels were not affected by LINC00961 depletion, 

we propose that LINC00961 regulates Tβ4 protein function. The enrichment of Profilin-1 and Cofilin-

1, actin monomer binding proteins, in the LINC00961 immuno-precipitation suggests a potential role 

for LINC00961 in actin recycling. Like Tβ4, Profilin-1 sequesters G-actin maintaining a large pool of 

monomeric actin. Unlike Tβ4 however, the high affinity of Profilin-1 for ATP allows it to act as a 

catalyst for the conversion of G-actin.ADP to G-actin.ATP, hence aiding the polymerisation of G-actin 

to F-actin filaments 40. In fact, Profilin-1, Tβ4, and actin have been shown to produce a complex 41. 

This, alongside the fact that Cofilin-1 and Tβ4 have been shown to co-localise in multiple cells types, 

further validates the nature of their finely balanced roles in cytoskeletal dynamics 42,43. It would be of 

interest to dissect the interactions of these three proteins with LINC00961 in future. 

 

We show that SPAAR binds to SYNE1, another actin binding protein, which suggests that the pro-

angiogenic effects of SPAAR could be mediated through SYNE1 and the actin cytoskeleton. This is in 

contrast to our proposed mechanism of action of LINC00961, which may negatively affect actin 

cytoskeleton rearrangement through interaction with Tβ4. SYNE1 is involved in the cellular 

organisation of organelles via connecting them to the actin cytoskeleton. SYNE1 is  especially 

important as a member of the linker of nucleoskeleton and cytoskeleton complex which tethers the 

nuclear lamina to the actin cytoskeleton during nuclear positioning and cell polarisation 44.  

Interestingly, SYNE1 is highly expressed in skeletal and cardiac muscle cells as it is essential in 

maintaining the characteristic peripherally located nuclei 45. Matsumoto and colleagues (2017) describe 

rapid muscle regeneration in mice lacking SPAAR; it would be interesting to ascertain if this 

phenomenon is in part mediated by an interaction, or lack thereof, between SPAAR and SYNE1. 

Furthermore, SYNE1 siRNA KD in HUVECs has been shown to reduce tubule formation in a Matrigel 

assay and decreased migration 34, 46, similar to our results with KD of the LINC00961/SPAAR locus.  

Cytoskeletal remodelling is a dynamic process which is constantly being influenced by internal and 

external signals, with many actin binding proteins having been identified 47. Here, we show that 

LINC00961 and SPAAR have independent actin binding protein partners that could influence 

downstream cytoskeletal architecture. It will be of interest to investigate if, and how, lncRNA and 

micropeptide levels can change cellular behaviour through cytoskeletal changes.  

 

 

In conclusion, our study provides important evidence for the expression and function of LINC00961 in 

ECs. Our work shows a role for the LINC00961 RNA, independent of the micropeptide SPAAR. This 

highlights the importance of a detailed bioinformatic and experimental approach to reveal the 

contribution of putative lncRNAs and their encoded proteins in cell behaviours. 
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(xi) FIGURE LEGENDS 

 

Figure 1: Identification of endothelial cell enriched genes. (A) Schematic representation of the RNA-

seq samples: day 0 H9 hESC (ESC); Day 3 mesodermal population CD326lowCD56+ (MP); Day 3 

remaining population (non-MP); Day 7 EC CD144+CD31+(EC); Day 7 remaining population (non-EC); 

Human Saphenous vein endothelial cell (HSVEC). (B) Principle component analysis (PCA) of the 

RNA-seq samples. The plot was generated on the regularized log transformed data using DESEq2. (C) 

Summary of the selection of candidates to identify genes enriched in ‘immature’ and ‘mature’ ECs (D) 

Heatmap showing the expression data (as row z-score of the Log2(FPKM+1)) during differentiation of 

the 278 EC enriched genes. (E) Heatmap showing the expression data (as row z-score of the Log2 

(FPKM+1)) of the 278 EC enriched genes in ENCODE RNA-seq samples.  

 

Figure 2: LINC00961 is enriched in immature and mature endothelial cells. (A) Heatmap of the 6 

lncRNAs identified in our EC differentiation protocol in each of the isolated cell populations. (B) 

Heatmap of these 6 lncRNAs in ENCODE RNA-seq samples including various types of EC lineages 

such as, venous, arterial and lympthatic ECs. (C) Genomic organisation of the LINC00961 gene, read 

profile from the ESC to EC RNA-seq and conservation track based on UCSC alignment and PhyloP 

score.  
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Figure 3: Functional impact of LINC00961/SPAAR depletion in endothelial cells. (A) 

Confirmation of the dsiRNA-mediated depletion of LINC00961 transcript in HUVECs by qRT-PCR 

(n=4, unpaired t-test). (B) Network formation assay in LINC00961 depleted HUVECs. Branch length 

assessed by Image J Angiogenesis plugin. (n=3, unpaired t-test). (C) Representative phase contrast and 

Calcein AM staining of network formation assay of LINC00961 depleted and control HUVECs. Phase 

Scale bar =0.5mm. Calcein AM Scale bar =0.1mm. (D) Impact of LINC00961 depletion on HUVEC 

adhesion (n=3). (E) Analysis of average barrier resistance, expressed as Rb [Ohm x cm2], across a 10 

hour time course (n=4 except for mock n=3, one-way ANOVA). For data represented as fold change, 

the statistical analysis was done on the Log2 Fold Change using a One Sample t-test. On the graphs, 

*p<0.05 **p<0.01 ***p<0.001.  

 

Figure 4:  LINC00961/SPAAR KO mice have a reduced adductor muscle capillary density 

following hind limb ischaemia at 7 days. (A) Schematic representation of the deleted region of the 

LINC00961 mouse locus using CRISPR/Cas9 technology by Taconic©. Red arrows indicate the 

position of the guide RNA strands utilised to delete the whole locus. (B) Capillary density per sample. 

Five random regions of interest  from 3 sections per sample were counted (n= 4 wild type mice/6 knock 

out mice, one-way ANOVA, ** p<0.01, ns - not significant). (C) α-smooth muscle actin (αSMA) 

positive vessel density per sample. (D) Representative adductor muscle immunofluorescent images: 

Isolectin b4 (IB4) capillary/endothelium, αSMA, and nuclear DAPI, scale bar 50µm. Zoomed panel on 

left corresponds to red box on area of WT control limb image. 

 

Figure 5: Impact of LINC00961 transcript and SPAAR micropeptide overexpression in in vitro 

angiogenic assays. (A) Schematic representation of LINC00961 LV constructs with transcript length 

in base pairs (bp) and encoded peptide length in amino acids (aa). (B) qRT-PCR validation of the LV 

constructs overexpression in HUVECs using primers targeting the ORF sequence. Unpaired t-test, 

comparison test versus LV-EMPTY (n=4). (C) Representative western blot of SPAAR micropeptide 

and β-actin in HUVECs infected with the LV constructs. (D) Network formation assay comparing 

HUVECs transfected with LV constructs.  Branch length assessed by Image J Angiogenesis plugin. 

Unpaired t-test versus LV-EMPTY, (n=3). (E) Representative Phase contrast of network formation 

assay of HUVECs transfected with LV constructs. (F) Analysis of average barrier resistance, expressed 

as Rb [Ohm x cm2], across a 10 h time course (n=4, one-way ANOVA). Scale bar =0.5mm. On the 

graphs, *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 6: LINC00961 and SPAAR both bind to actin binding proteins. 

(A) Schematic of the LINC00961 RNA and SPAAR peptide pull-down experiments in HUVECs. (B) 

List of the top 10 proteins identified in LINC00961 RNA pull-down (ranked on label free quantification 

value) (C) List of the top 10 proteins identified in HA-SPAAR peptide pull-down (ranked on label free 

quantification value)  (D) GO analysis on enriched proteins from LINC00961 immunoprecipitation. (E) 

GO analysis on enriched proteins from SPAAR immunoprecipitation. 

 

Figure 7: Thymosin beta 4-x KD in HUVECS has a similar phenotype to LV-ΔΔATG961 

overexpression on tubule formation. (A) Network formation assay in dsiRNA-mediated TMSB4X 

depleted HUVECs.  Branch length assessed by Image J Angiogenesis plugin, n=5, unpaired t-test. (B) 

Representative phase contrast and Calcein AM staining of network formation assay of depleted 

HUVECs. Phase contrast Scale bar =0.5mm. Calcein AM Scale bar = 0.1 mm. On the graphs, *p<0.05, 

**p<0.01, ***p<0.001. 
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