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A B S T R A C T   

Understanding the potential impacts of a large tsunami on a coastal region enables better planning of disaster 
management strategies. Potential housing damage, habitability, human displacement and sheltering needs are 
key concerns for emergency managers following tsunami events. This article presents a novel approach to 
address these requirements. We first review available literature on factors influencing residential habitability, 
human displacement and sheltering needs following disasters. Existing models are reviewed to identify lessons, 
gaps and opportunities that can inform the development of a new model. We then present a new model for 
estimating habitability, displacement and sheltering needs for tsunami (HDS-T). The model uses an additive 
scoring system incorporating both physical and demographic factors, weighted according to their relative in-
fluence. We demonstrate application of HDS-T through the case study of three tsunami scenarios affecting the 
coastal city of Christchurch, New Zealand. The results are time-varying, reflecting the response and early re-
covery phase of the tsunami events. For the largest scenario, 14,695 residents are displaced on the first day, with 
1795 displaced residents requiring sheltering assistance. The number of displaced residents reduces to 9014 on 
Day 4, 7131 on Day 7, and 4366 at the time point of one month. HDS-T is designed to be adaptable to other 
natural hazards and contexts, such as earthquakes.   

1. Introduction 

Tsunami are powerful natural events that become hazardous if 
coastal communities are exposed to their effects. The impacts are 
potentially devastating, as evidenced by the 2004 Indian Ocean and 
2011 Great East Japan tsunami events, which resulted in great loss of life 
and extensive damage to buildings and infrastructure [1–4]. Direct im-
pacts such as casualties and building damage are caused primarily by 
hydrodynamic and hydrostatic forces, including flow velocity, scouring, 
inundation, buoyancy effects and impact by entrained debris [5,6]. In-
direct impacts to society can be severe and long-lasting, and include 
human displacement, economic loss, psychosocial impacts, and 

disruption to services [5,6]. Inundation extent and amplification effects 
are influenced primarily by wave height and frequency, local bathym-
etry and topography [7]. Tsunami impacts depend on the characteristics 
of the tsunami as well as the vulnerability of exposed assets and pop-
ulations [6,8]. Understanding the potential impacts of a large tsunami 
on a coastal region enables better planning and preparedness initiatives 
to take place [9]. Assessing impacts requires appropriate data on the 
hazard, the assets and population which are exposed, and modelling 
techniques suitable for the local context. Issues of housing damage, 
habitability, displacement and sheltering needs are key concerns for 
emergency management following natural hazard events including 
tsunami [10]. Although many risk models provide estimates of building 
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damage or monetary loss, few models provide estimates of habitability, 
displacement or sheltering needs [11]. 

The displacement of residents and assessment of sheltering needs 
during a disaster is a complex process that is influenced by many factors 
[10,12–15]. These include physical factors (e.g. building damage, loss of 
utilities), social or demographic factors explaining relative levels of 
vulnerability, and decision-making by residents exposed to hazards. 
Four phases of shelter following disasters were identified by Quarantelli 
[12]: 1) emergency sheltering (evacuation because of an immediate 
threat, up to one day); 2) temporary sheltering (short-term displacement 
accommodation, several days); 3) temporary housing (longer-term 
while are repairs undertaken to residence); and 4) permanent housing 
(returning to original residence or relocating permanently). These 
phases continue to show utility throughout many studies, however 
several stages may be occurring at the same time as recovery processes 
are complex [10]. 

Reflecting on the inconsistent definitions of building functionality 
within the literature [16], we define residential habitability as a 
dwelling which is safe and healthy to occupy. A dwelling that is unin-
habitable will result in displacement of the occupants. Throughout this 
paper, we also use the term liveability, referring to the relative ability of 
residents to go about their normal household routines in a dwelling. 
Liveability is used in recognition that even though a dwelling may be 
habitable, there may be challenges to living there and assistance may be 

required. 
This study presents a novel approach to assess habitability, live-

ability, human displacement and sheltering needs following a tsunami 
event. We first review the literature on factors influencing residential 
habitability, displacement and sheltering needs following disasters. 
Existing models are reviewed to identify lessons, gaps and opportunities 
that can inform the development of a new model. We then present a new 
model for estimating habitability, liveability, displacement and shel-
tering needs for tsunami (HDS-T). The model uses an additive scoring 
system incorporating both physical and demographic factors, weighted 
according to their relative influence. 

HDS-T is designed to inform potential emergency management de-
mands relating to habitability and displacement following a large 
tsunami impacting an urban environment, including: how many resi-
dents are displaced from their homes, and for how long; of those, how 
many will require public sheltering assistance; where residents are dis-
placed from; and for habitable dwellings in the affected area, how 
liveable they are. We demonstrate the application of HDS-T through the 
case-study of far-field tsunami scenarios impacting the New Zealand 
coastal city of Christchurch. 

1.1. Study area 

The city of Christchurch is located on the east coast of Canterbury, 

Fig. 1. The study area of coastal Christchurch, New Zealand, showing the main suburbs affected by tsunami inundation modelling. The study area represents the 
extent of the building asset database (further described in section 4.4.2). 
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New Zealand (Fig. 1). Although tsunami have affected the region several 
times during the period of European settlement, the impacts have 
generally been minor due to relatively sparse population, limited asset 
exposure compared to present levels of coastal development, and 
fortuitous low-tide during a large tsunami in 1960 [17]. A review of 
palaeo-tsunami in the Christchurch region also identified 6–7 possible 
major events occurring in the last 6500 years [18]. Most recently, a 
tsunami generated by the 14 November 2016 Kaik�oura earthquake 
reached coastal Christchurch. The wave height was small (maximum 
amplitude of 0.63 m) and no damage was reported within the city, 
although a large scale evacuation was undertaken [19,20]. Probabilistic 
modelling of the tsunami hazard to Christchurch suggests the largest 
contribution to the hazard is from distant sources originating along the 
subduction zone off South America [6,21]. Tsunami inundation from 
credible scenarios is limited to coastal suburbs on the eastern and 
southern edges of the city (Fig. 1). 

The low-lying coastal suburbs of Christchurch consist of mainly free- 
standing residential buildings of one to three storeys. Most are timber- 
framed construction, with a minority constructed of concrete masonry. 
Commercial areas consist of a mix of construction types including tim-
ber, reinforced concrete, steel and concrete masonry, and are mostly less 
than three storeys. Within the study area, the usually resident popula-
tion is approximately 15,400, 54% of homes are owner-occupied and 
median annual household income is NZ$62,500 (US$42,900) [22]. 

Christchurch suffered major impacts from the 2010–2011 Canter-
bury earthquake sequence (CES), resulting in significant changes to the 
coastal suburbs in the study area [23,24]. Many residential dwellings 
were damaged [25] and required repair or demolition, resulting in the 
displacement of residents [26,27]. A residential ‘red zone’ was declared 
encompassing areas at risk to natural hazards across Christchurch City, 
and the demolition of approximately 7300 properties within the zone 
has reduced exposure relative to pre-CES [28]. New and repaired 
buildings are required by Christchurch City Council (CCC) to adhere to 
stricter building standards regarding materials and height above 
ground, likely reducing vulnerability to the effects of tsunami inunda-
tion. Repair and replacement of infrastructure (e.g. roads, bridges and 
pipes) are also likely to have improved resilience. However, these im-
provements to the built environment are counter balanced by subsi-
dence of some coastal areas and uplift of the Avon-Heathcote Estuary 
which has resulted in a greater risk of inundation and sea level rise [23, 
24]. 

Canterbury Civil Defence and Emergency Management and CCC take 
a proactive approach to risk management and are engaged with research 
to understand tsunami hazard and risk across the 4Rs framework 
(reduction, readiness, response and recovery). CCC use tsunami inun-
dation modelling and risk assessments to inform infrastructure design 
and town planning. This case study is designed to inform these aspects 
and allow better planning and preparedness measures to take place. 

2. Factors influencing residential habitability and human 
displacement 

Modelling residential habitability and human displacement requires 
an understanding of the factors that influence residents’ decision- 
making regarding whether to leave or stay. As there are relatively few 
studies on human displacement and habitability specific to tsunami 
events or the New Zealand context, we conducted a broad review of 
relevant literature across all natural hazards and varying international 
contexts. Relevant literature includes studies on factors influencing 
human displacement, sheltering following disasters, evacuation de-
cisions, human vulnerability indicators, and functionality or habitability 
of buildings. The key factors and observations from these studies are 
summarised here, and an extended literature review is provided in 
Online Resource 1. 

Several literature reviews and case study examinations have been 
undertaken over recent decades regarding displacement, sheltering, 

return decisions and housing recovery following disasters [10,12,13,15, 
29,30]. The focus of these studies is primarily on social dimensions of 
disasters and insights tend to be drawn from case studies of US events 
such as hurricanes, earthquakes and floods. 

Studies on social vulnerability offer further assistance for under-
standing the demographics of populations that are more or less sus-
ceptible to experiencing displacement, and features of the built 
environment that contribute to vulnerability [31–37]. Research into 
evacuation decision-making identified many of the same demographic 
factors that apply to estimating displacement potential [38,39]. 

Further, studies regarding specific events provide more detail into 
displacement indicators and return decisions of residents. The most 
comprehensive studies involving large datasets are for US hurricanes 
[40–46]. Dickinson [47] examined household relocation in South shore, 
Christchurch following the CES. Gray et al. [48] explored issues of 
displacement following the 2004 Indian Ocean tsunami. Detailed studies 
are especially useful for understanding the relative influence of factors. 

Physical factors are shown to have the greatest influence on habit-
ability and displacement [34,36,40–42,45,47,48]. The degree and 
extent of building damage is the primary factor, followed by utility loss 
[40–42,44,45,47]. Displacement time is strongly correlated with 
building damage [40–42,45]. Access, due to damage or exclusion by 
authorities, must be restored before residents are able to return [6,45]. 
The amount of damage within neighbourhoods has a significant influ-
ence on the ability for residents to get on with their lives, regardless of 
whether a particular residence is habitable [29,47]. 

The demographic factors generally observed as important for influ-
encing displacement and return decisions are: income; age (young, and 
over 65); home ownership versus renting; race and ethnicity; gender; 
community ties; and education level. Low-income households are more 
affected by disasters, as they are more likely to rent, inhabit lower- 
quality housing, and have fewer resources to draw on for recovery 
[10,12,13,15,46]. Income is particularly important for estimating shel-
tering needs [30]. Children and the elderly are more vulnerable to the 
impacts of disasters [15,31], and the elderly tend to be displaced for 
longer [45]. Residents who own their homes generally have a strong 
desire to return, whereas renters are less inclined and are often pre-
vented from returning to damaged properties by their landlords [10,12, 
34]. Racial and ethnic minorities are more likely to be displaced, 
explained by minorities generally having lower household incomes and 
being more likely to rent [35,36,45]. Women are often more vulnerable 
to disaster effects, however the degree depends on the context, with 
vulnerability higher in developing countries [31,48]. Residents with 
strong community ties are more likely to return because of existing so-
cial networks, schooling or employment [34,45]. Level of educational 
attainment is a vulnerability factor that is associated with other factors 
such as income level and ethnicity [15,31,45]. 

Weighting of factors in terms of their relative influence is difficult, 
because they are generally not independent and vary between contexts 
[15,31,33]. Demographic factors are less important than physical fac-
tors for estimating habitability and number of displaced residents [40, 
41], but often have a significant influence on displacement time and 
recovery outcomes. Physical factors are beyond the control of residents, 
whereas demographics assist in estimating residents’ decision-making 
and ability to return. Physical and demographic factors are commonly 
linked, such as lower income neighbourhoods often being in areas that 
sustain greater damage [13,34]. Studies generally only include the most 
influential factors in vulnerability or displacement assessments [32,35]. 
Some factors can have either a positive or negative influence depending 
on the context [33]. 

Although there are few studies that deal directly with factors relating 
to tsunami events or the New Zealand context, most of the indicators are 
shown to be important across different natural hazards and contexts. 
The majority of literature are focused on data and learnings from US 
events, however given the similar level of development between the US 
and New Zealand, the results should be reasonably transferable. US 
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Hurricanes are particularly well-studied, and hurricane events have 
some similarities to distant-source tsunami. Both event types have suf-
ficient warning time to allow evacuation, and direct impacts typically 
involve inundation, building damage, utility loss and debris, albeit by 
different physical processes. Therefore, the factors identified across the 
studies are likely to be relevant for modelling tsunami impacts. 

Related to this current study, Scheele et al. [49] developed a survey 
to gather data on the influencing factors that caused building occupants 
to move out following recent earthquakes in New Zealand, and the 
factors influencing their decisions whether to return. 147 responses 
were received from individuals who had experienced major recent 
earthquakes in New Zealand, primarily the 2010–2011 CES and the 
2016 Kaik�oura earthquake. The main reasons for moving out of build-
ings were building damage, utility outage, and fear of returning (due to 
aftershocks), in that order. The most important reasons for returning 
were restoring normal routine, restoration of utilities, being allowed to 
return and feeling safe to return. There were an insufficient number of 
responses to examine the influence of factors in detail and the re-
lationships between factors (e.g. return decisions and demographics), 
however the results reflected the relative influence of factors observed in 
the literature. 

The factors that are useful for modelling habitability and displace-
ment post-disaster are those that can be quantified and for which data is 
readily available. Most of the factors identified in the literature, are 
either able to be modelled (e.g. damage) or obtained from publicly 
available sources (e.g. census data). Finally, given the difficulty of 
obtaining sufficiently timely and accurate information directly 
recording post-event residential habitability and displacement [50–52], 
modelling can help fill this gap for emergency management purposes. 

3. Existing models 

Several published models exist for estimating habitability, number of 
displaced people and number of people needing shelter post-disaster. 
Each varies in the natural hazards considered, the input factors and 
the outputs, summarised in Table 1. The existing models are described 
here, followed by an identification of gaps and potential improvements 
for a new model. Vecere et al. [11] reviewed available models, providing 
additional information that is not otherwise available from primary 
documentation. 

3.1. HAZUS-MH 

HAZUS-MH is a plugin for ArcGIS developed by the Federal Emer-
gency Management Agency (FEMA), used to produce loss estimates for 
natural hazards [53–55]. The models for earthquake, flood and hurri-
cane include modules for estimating displacement and sheltering needs 
using data at the census tract scale. The earthquake module first esti-
mates residential habitability by calculating the number of 

uninhabitable single-family dwellings, defined as having complete 
damage [55]. The estimate is combined with the number of damaged 
multi-family dwellings perceived to be uninhabitable by the occupants, 
defined as moderately damaged or above. The difference is based on the 
assumption that families in stand-alone houses are likely to wish to 
remain, whereas those in multi-family dwellings are renters who are 
unlikely to tolerate damage. 

The methodology pairs the uninhabitable dwelling estimates with 
census data to estimate the number of people displaced, and of those the 
number seeking public sheltering assistance. The assumptions are that 
those seeking shelter are low income households, those with young 
children or aged over 65, are renters, and are more likely to be black or 
Hispanic. The proportions of the population in each demographic 
category are multiplied by a weighting factor. The default weighting 
factors (which sum to 1.0) are 0.73 for income and 0.27 for ethnicity, 
and zero for both home ownership and age (effectively removing these 
factors). 

The hurricane module in HAZUS-MH follows the same methodology 
as for earthquakes, except building loss ratios rather than damage states 
are used to estimate uninhabitable dwellings [54]. The flood module is a 
modified version of the earthquake module, with sheltering needs 
calculated based on the number of displaced persons [53]. The inun-
dation area is used to estimate the displaced population, assuming that 
people will be displaced due to evacuation or lack of physical access to 
their property because of flooding. Only income and age demographic 
factors are used to estimate sheltering needs (default weighting of 0.8 
and 0.2 respectively). 

3.2. ERGO-EQ 

ERGO-EQ is a risk software platform for estimating physical, eco-
nomic and social impacts from earthquakes, developed by the Mid- 
America Earthquake Center at the University of Illinois [56]. Displace-
ment and sheltering is estimated using one of two methods, either a 
modified version of HAZUS-MH or logistic regression based on direct 
economic damage [11]. The first method uses damage states similar to 
HAZUS-MH, but estimates displacement per building rather than census 
tract. The same demographic factors (income, ethnicity, home owner-
ship and age) are used to estimate sheltering needs, albeit categorised 
and weighted differently. The second method uses an algorithm incor-
porating various social vulnerability factors, and can include modifiers 
for weather and utility loss [11]. Social factors are associated with 
damage levels, with the strength of social factors increasing in relation 
to building damage. 

3.3. MCEER 

A multi-criteria decision analysis framework was developed by 
Chang et al. [57] for estimating sheltering needs following an 

Table 1 
Input factors and outputs of models for estimating displacement and sheltering needs.  

Model HAZUS-MH ERGO-EQ MCEER SYNER-G Wright et al. RiskScape HDS-T 

Hazards EQ, flood, hurricane EQ EQ EQ EQ EQ, flood, tsunami Tsunami 
Inputs 
Building damage ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Utility loss ✓ ✓ ✓ ✓   ✓ 
Access/Evacuation   ✓ ✓   ✓ 
Neighbourhood condition   ✓    ✓ 
Demographics ✓ ✓ ✓ ✓   ✓ 
Weather  ✓ ✓ ✓   ✓ 
Economic loss (buildings)  ✓      
Outputs 
Habitability ✓  ✓ ✓   ✓ 
No. displaced ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Timeframe of disp.     ✓ ✓ ✓ 
Sheltering needs ✓ ✓ ✓ ✓   ✓  
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earthquake. The first decision considers whether a home is uninhabit-
able, based on building damage and utility loss. If it is habitable, resi-
dents’ decisions to stay or leave are determined by demographic and 
liveability factors (e.g. weather, neighbourhood condition). The next 
decision point is whether residents are physically able to leave, based on 
distance to shelter, car ownership or age. If residents are forced and able 
to move, a decision will be made whether to seek public shelter or a 
more desirable alternative, calculated using income. MCEER forms the 
basis of several displacement and sheltering needs assessment models. 

3.4. SYNER-G 

SYNER-G is a European research project with the goal of developing 
fragility models and holistic loss estimations for earthquakes, focused on 
applicability to European contexts [58]. As part of this project, a model 
for estimating sheltering needs was developed [59,60], based on the 
decision framework developed by Chang et al. [57]. The habitability of 
buildings is estimated by considering building usability (derived from 
building damage), utility loss and weather. Utility loss is calculated 
based on context-specific weightings defined by the user, considering 
the level of service minus the demand, and modified based on weather 
conditions. Selection of indicators was based on a literature review of 
commonly cited factors and statistical analysis of European de-
mographic data. Desire to evacuate incorporates household tenure 
(owning or renting), housing type (single or multi-family), household 
type (large families with children or single parents), age (elderly and 
children) and perceived security (recorded crime per 1000 population). 
Factors for desire to seek public shelter include income, unemployment 
rate, ethnicity and education level. The outputs are expressed as relative 
indexes of displacement and sheltering needs, rather than absolute 
values. The SYNER-G model is the most comprehensive model reviewed 
here, however has limited applicability to New Zealand without signif-
icant modification due to incorporating factors specific to the European 
context [11]. 

3.5. RiskScape and Wellington earthquake sheltering needs 

RiskScape is a joint research programme between GNS Science and 
the National Institute of Water and Atmospheric Research, which in-
cludes the development of a software application (also called RiskScape) 
for estimating impact and loss from natural hazards [61]. RiskScape 
version 1.0.3 estimates numbers of displaced people and displacement 
time based on building damage state, for earthquakes, tsunami and flood 
modules. The estimate ranges are expressed in months and are targeted 
towards timeframes of housing repair. 

Wright and Johnston [62] adapted the decision framework devel-
oped by Chang et al. [57] to estimate numbers of displaced residents 
following a major earthquake in Wellington, New Zealand. Although 
many contributing factors were identified, only building damage, water 
supply loss and building repair times were used to produce the estimates 
[63]. The RiskScape software was used to calculate building damage 
states for houses and apartments. Water supply loss and repair times 
were based on expert opinion. The modelling was an effort to apply the 
decision framework, and the authors concluded that refinement was 
needed to include factors such as demographics and neighbourhood 
liveability. 

3.6. Application of HAZUS-MH and ERGO-EQ to Christchurch 

Vecere et al. [11] identified HAZUS-MH and ERGO-EQ as the most 
appropriate models for estimating sheltering needs in post-earthquake 
context, and applied the models to a case study of the 22 February 
2011 Christchurch earthquake. The input data used was a ground 
shaking map of the event from USGS, the RiskScape building database 
for Christchurch, and census data. Demographic indicators from the 
models were adapted using the census data as best as possible, and 

structural attributes were matched to the closest equivalent in the 
RiskScape database. 

ERGO-EQ outputs resulted in very few residents requiring shelter, 
explained in part because Christchurch has mostly single-family dwell-
ings, which will only be modelled as uninhabitable if in a ‘complete’ 
damage state. The authors suggest further research is needed for the 
model to produce accurate estimates, as it is expected that partially 
damaged houses will sometimes result in displacement (and subsequent 
need for shelter). 

Application of HAZUS-MH to the case study resulted in no household 
displacement or people requiring shelter, again due to no buildings 
being in a ‘complete’ damage state. The two default demographic factors 
in the model were also a poor match for the case study, which had a very 
low proportion of the most vulnerable groups (Black/Hispanic and 
household income less than US$10,000, substituted for M�aori based on 
most common languages spoken and household income less than NZ 
$20,000 respectively). Vecere et al. [11] suggest the need for a detailed 
parametric study of social, physical and economic characteristics of the 
Christchurch context before either model can be usefully applied. 

3.7. Gaps and opportunities 

The existing models for estimating habitability, displacement and 
sheltering needs are all useful for their intended purposes and contexts. 
However, as Vecere et al. [11] demonstrated, existing international 
models for estimating habitability, displacement and sheltering needs 
are not easily applied to the New Zealand context. There are currently no 
published models directly addressing displacement from tsunami 
events, apart from models of social vulnerability (e.g. Ref. [32]) and a 
basic estimate in the current version of RiskScape. 

The models reviewed here are mostly targeted towards estimating 
sheltering needs as the primary output. Less emphasis is placed on es-
timates of building habitability and numbers of displaced residents as 
useful outputs, and none of the more comprehensive models (with re-
gard to included factors) estimate timeframes of displacement. Models 
with a time-varying component are currently focused only on longer- 
term recovery (months to years). 

To address these gaps, the new model presented here (HDS-T) is 
designed to produce estimates of residential habitability and liveability, 
the number of displaced residents and the timeframe of displacement, 
and the number of people seeking public shelter. HDS-T is intended to 
fill the current void for comprehensive displacement modelling in the 
New Zealand context, by using local data and appropriate fragility 
functions. In this study, the model is applied to tsunami scenarios, but is 
designed to be adaptable to other natural hazards such as earthquakes. 

4. Methodology 

4.1. Overview of HDS-T model 

HDS-T is based on an additive scoring system that assesses the level 
of habitability and liveability of residential dwellings, and accounts for 
different levels of social vulnerability and decision-making by residents. 
Input factors represent physical and social indicators contributing to an 
overall estimate of habitability, displacement and sheltering needs. Each 
input factor in the model is given a weighted score that reflects its 
relative influence. The default weighted scores presented in the 
following sections are based on the literature review, and are intended to 
reflect the relative influence of each factor in appropriate proportions. 
Sensitivity testing of the factor weightings is provided in Section 5. 
Outputs of the model estimate the number of buildings and people in 
each habitability category (further described in the next section), the 
number of people displaced, and the number of people requiring shel-
tering assistance. The outputs are calculated per meshblock, which is the 
smallest geographic area for New Zealand census data aggregation, 
equivalent to census tracts in the US. A flowchart of the HDS-T 
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modelling process is shown in Fig. 2. 
The HDS-T modelling process is a framework that can be applied to 

different hazards and contexts. The following sections describe the 
scoring system, how factors and weightings are derived, and the equa-
tions used for modelling. These sections are described with reference to 
the Christchurch case study, however are intended to be generic enough 
to demonstrate how the model could be applied to different case studies. 
The detailed description of how HDS-T is applied to Christchurch fol-
lows in Section 4.4. 

4.2. Scoring system of HDS-T 

The scoring system is devised to be able to estimate levels of habit-
ability and liveability, rather than a binary option of habitable or un-
inhabitable. A fully habitable dwelling with no disruption has a score of 
zero, and an uninhabitable dwelling has score of at least 1.0. Scores 
between these values represent different levels of liveability. De-
scriptions and scores for each category are shown in Table 2. 

The input factors to the HDS-T model are grouped into either phys-
ical or demographic factors. Physical factors are positive scores if they 
contribute to loss of habitability or liveability. For example, if electricity 
is unavailable in a meshblock it will receive a score (default 0.2), 
whereas if electricity is available no score will be added for that factor. 
Demographic factors may be positive or negative, depending on whether 
they increase or reduce the likelihood of residents returning to their 
homes. 

All physical factors are related to meshblocks, except building 
damage which is assessed for individual buildings. Demographic factors 
are aggregated into a single score per meshblock that acts as a modifier 
to habitability scores derived from physical factors. This is necessary 
because demographic information is not available at the scale of indi-
vidual buildings. The resulting assumption is that physical impacts are 
independent of household demographics. 

The overall method for calculating habitability/liveability categories 
for dwellings is described here. Further description of each input factor 
and the scoring system is provided in the following sections. First, a 

Fig. 2. Flowchart of the HDS-T modelling process.  

Table 2 
Habitability/liveability categories for residential dwellings.  

Habitability/ 
liveability 

Score 
(SDWL) 

Description 

No disruption 0 Fully habitable and liveable 
Minor disruption 0.1–0.4 Residents experience minor disruption to 

household routines 
Compromised 

liveability 
0.5–0.9 Difficulty undertaking household routines, 

residents may require assistance 
Uninhabitable �1.0 Residents will be displaced  

Table 3 
Physical factor scores.  

Physical factor Default score 

Access (AC) 
Resident access to property available 0 
No access to property for residents 1 
Building damage (BD) 
DS0: No damage 0 
DS1: Minor damage 0.3 
DS2 – DS6: Moderate damage – washed away 1 
Electricity (E) 
Electricity available 0 
Electricity unavailable 0.2 (summer), 0.4 (winter) 
Water (W) 
Water available 0 
Water unavailable 0.2 
Wastewater (WW) 
Wastewater available 0 
Wastewater unavailable 0.2 
Neighbourhood damage (ND) 
Less than 5% of buildings in DS2 or above 0 
5–20% of buildings in DS2 or above 0.1 
>20%–50% of buildings in DS2 or above 0.2 
>50% of buildings in DS2 or above 0.3  
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score is calculated for each meshblock by combining the scores for all 
physical and demographic factors, except building damage: 

SMB¼ SPF þ SDF (1)  

where SMB is the meshblock score, SPF is the total score for physical 
factors within the meshblock, and SDF is the total score for demographic 
factors within the meshblock. The constituent factors for SPF and SDF are 
combined using the methods shown in Eqs. (4) and (5) respectively. The 
meshblock score is then added to the weighted scores for building 
damage states to calculate a score for each dwelling: 

SDWL¼ SMBþ SBD¼ SPF þ SDF þ SBD (2)  

where SDWL is the dwelling score and SBD is the score related to building 
damage state for each dwelling. All dwellings in the same damage state 
within a meshblock are given the same dwelling score. The habitability/ 
liveability category is assigned based on the dwelling score (Table 2), 
and a count of dwellings in each category is calculated. 

Where access is unavailable, or the dwelling damage state is mod-
erate or greater (physical factors with scores of 1, see Table 3), dwellings 
are automatically categorised as uninhabitable. In these cases, the de-
mographic score is not applied because residents are unable to reoccupy 
regardless of their circumstances or decision-making. 

The population within each meshblock is distributed proportionally 
across all dwellings, providing the number of residents in each category: 

RHC ¼RMB�DHC �DMB (3)  

where RHC is the number of residents in the habitability category, RMB is 
the number of residents in the meshblock, DHC is the number of dwell-
ings in the habitability category and DMB is the number of dwellings in 
the meshblock. 

All residents in dwellings regarded as uninhabitable will be dis-
placed. A proportion of those displaced will require sheltering assistance 
(Section 4.3.3). The outputs vary over time reflecting the response and 
recovery process, such as restoration of access and utilities. The model 
may be run to calculate outputs for any point in time (e.g. Day 1, 4, 7 
etc.), provided the input data reflects the changing situation. 

4.3. Factors and weightings 

4.3.1. Physical factors 
The primary physical factors which affect habitability are access, 

building damage and utility disruption. These factors are generally 
beyond the control of residents. To account for community disruption, 
an additional factor of neighbourhood damage is included. The default 
scores for each physical factor are shown in Table 3. 

All physical factors which are related to meshblocks are combined 
into a single score (SPF): 

SPF ¼ SAC þ SE þ SW þ SWW þ SND (4)  

where SAC is the score for access in the meshblock, SE is the score for 
electricity in the meshblock, SW is the score for water in the meshblock, 
SWW is the score for wastewater in the meshblock and SND is the score for 
neighbourhood damage. The building damage score (SBD) is assessed for 
individual buildings and applied in Eq. (2). 

Access refers to the ability of residents to occupy their homes. Access 
can be impeded due to forced evacuation by authorities, or a variety of 
physical impediments such as debris, inundation, closed roads, 
contamination and exclusion zones [6,16]. This factor is binary, with 
any dwelling that lacks access considered effectively uninhabitable. For 
the Christchurch case study, access is estimated via expert judgement 
(see Section 4.4.4). 

Building damage is modelled for individual buildings based on 
appropriate fragility functions which output damage states. The defi-
nition of damage states is important for determining the effect on 

habitability [16]. For this study, the fragility functions and damage state 
definitions are those developed by Suppasri et al. [64]; described in 
Table 4. Buildings with only minor damage are able to be reoccupied 
immediately after minor clean up, experiencing no impacts that would 
render the dwelling uninhabitable without other negatively contrib-
uting factors. Buildings which are moderately damaged require repair to 
non-structural components, rendering them uninhabitable for a mini-
mum of one month based on repair and displacement times from 
flooding events in New Zealand and the United Kingdom [65,66]. All 
buildings experiencing at least moderate damage are considered unin-
habitable for the timeframes in this model. If different fragility functions 
were applied to HDS-T, the effect on habitability would need to consider 
the defined damage states associated with those functions. Displacement 
time is strongly correlated with building damage, especially when re-
pairs are necessary before reoccupation [36,45]. 

Disruption to utilities follows building damage as one of the most 
important factors influencing the return decisions of residents [40–42]. 
Each of the primary utilities of electricity, water and wastewater are 
weighted with a score of 0.2 by default. There is insufficient evidence in 
the literature regarding the relative importance of each utility. However, 
electricity is commonly used for cooking and heating in New Zealand, 
with approximately 93% of households using electricity for heating 
within the study area, and 79% nationally (2013 Census data; [22]). In 
winter, the requirement for electricity will be significantly higher for the 
majority of households [57], and a higher weighting to this factor should 
be given (default 0.4). Utility outage is estimated via expert judgement 
for the Christchurch case study (see Section 4.4.4), however the HDS-T 
modelling framework can accept estimates from more detailed utility 
outage assessments if available. 

Neighbourhood damage is defined by the proportion of buildings 
within an area (e.g. suburb) that are at least moderately damaged 
(�DS2). This factor is included in the model as a proxy indicator for local 
community disruption. Higher levels of neighbourhood damage are 
likely to be associated with disruptions such as closed community fa-
cilities and shops, damaged roads, and population displacement [29]. 
Even if a dwelling is habitable, residents may face difficulties if there is 
disruption in the surrounding community [47]. 

4.3.2. Demographic factors 
Demographic factors can assist in assessing the relative vulnerability 

Table 4 
Damage state classifications and descriptions for fragility functions from Sup-
pasri et al. [64].  

Damage 
state 

Classification Description Condition 

0 No damage No damage to building Possible to use 
immediately 

1 Minor 
damage 

There is no significant 
structural or non- 
structural damage, 
possibly only minor 
flooding 

Possible to be used 
immediately after minor 
floor and wall clean-up 

2 Moderate 
damage 

Slight damage to non- 
structural components 

Possible to be used after 
moderate reparation 

3 Major 
damage 

Heavy damage to some 
walls but no damage to 
columns 

Possible to be used after 
major reparation 

4 Complete 
damage 

Heavy damages to 
several walls and some 
columns 

Possible to be used after 
a complete reparation 
and retrofitting 

5 Collapsed Destructive damage to 
walls (more than half of 
wall density) and 
several columns (bent or 
destroyed) 

Loss of functionality 
(system collapse). Non- 
repairable or great cost 
for retrofitting 

6 Washed away Washed away, only 
foundations remain; 
totally overturned 

Non-repairable, requires 
total reconstruction  
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of residents to displacement and sheltering needs, and partially account 
for decision-making regarding whether to return to a building that is 
habitable but may have disruptions impacting liveability. The factors 
included in the model are household income, home ownership or rent-
ing, number of years resident, and age (<15 and >65 years). These 
factors were selected as they are commonly described in the literature as 
having a significant influence on displacement [15,29,31,33,34,36,45, 
48], are common to most contexts, and are readily available via census 
data. 

Each demographic factor in the model must have both positive and 
negative components, to describe whether a resident is more or less 
likely to be displaced given the physical habitability/liveability score for 
a dwelling. The default scores for each factor are shown in Table 5. 

Demographic factors are combined into a single score per meshblock 
(SDF), based on the proportion of residents in each demographic group: 

SDF ¼
X3

i¼1
PHIi� SHIiþ

X2

i¼1
POi � SOi þ

X4

i¼1
PYRi� SYRiþ

X2

i¼1
PAGi� SAGi

(5)  

where P is the proportion of residents in each demographic group, S is 
the score for each demographic group, HI refers to household income, O 
refers to ownership, YR refers to years resident and AG refers to age. 

Household income is consistently described as the most important 
demographic factor influencing likelihood of displacement (e.g. Refs. 
[10,29,60]). Income bands are based on census data categories. Low 
income households are strongly weighted towards displacement, as they 
are less likely to have the resources required to quickly recover and 
reoccupy [10,13,31,34,45]. 

Home ownership is a strong indicator of return decisions, with those 
owning homes having a strong preference to return [10]. Renters are 
likely to prefer to seek alternative accommodation, and may be pre-
vented from reoccupation by landlords until repairs are complete [12, 
34]. In New Zealand, either the landlord or tenant can apply for the 
tenancy to end if the property is destroyed or seriously damaged, and 
conditions are negotiable for repairable damage. The default scores 
reflect the strong difference in return decisions. 

Reflecting community ties, the number of years resident is included 
as a proxy indicator. Residents with strong community ties are less likely 
to want to relocate, due to factors such as social networks, schooling or 
employment [34,45]. 

Young people and the elderly have been found to be more vulnerable 
to disaster impacts [15,31], and older people are more likely to be dis-
placed for long time periods [45]. The proportion of the population 
under 15 and over 65 years are given a higher vulnerability score. 

Demographics are frequently linked [31,45], for example lower 
household income is more commonly associated with renting. Because 
of this, it is unlikely that including additional frequently associated 

factors will provide a significantly more accurate result given existing 
uncertainties. For example, educational attainment is associated with 
household income and age, and ranks lower as a descriptive variable for 
vulnerability [31,60], therefore inclusion is not deemed necessary. 
However, where data is available and if the user chooses, further factors 
may be included. 

A strong demographic indicator frequently identified in the literature 
is race and ethnicity. Although census data is available, this indicator is 
not included in the model as there are insufficient published studies on 
the relationship of racial and ethnic vulnerability to natural hazards and 
displacement in New Zealand. Unlike common factors such as income 
and ownership, it is not appropriate to apply data on minorities from 
international studies. This is because the racial, ethnic and cultural 
makeup in New Zealand is different to international contexts such as the 
US, where most displacement studies originate. Further, Elliott [36] 
found racial indicators diminished when controlled for household in-
come, family structure and renting. 

Weighting of factors is difficult because the factors are contextual 
and generally not independent [31,45], and because of a lack of research 
into the relative influence of factors and the return decisions of residents 
[10,15]. Esnard et al. [33] describe some of the issues with creating a 
displacement index using indicator variables, such as the lack of data for 
some variables identified via literature review and the difficulty of 
obtaining up-to-date data on variables that change frequently. A lack of 
literature on the directional effect of individual variables was noted as 
being highly problematic, particularly as some indicators can be both 
positive and negative with regards to displacement potential. Because of 
these issues, users of HDS-T may want to alter the default scores 
considering the specific local context of application. 

4.3.3. Sheltering needs 
The strongest indicator for whether displaced residents are likely to 

seek public shelter is household income [10,30]. The percentage of 
residents requiring shelter in each household income band is shown in 
Table 6. 

The calculation of sheltering needs for each meshblock is: 

RSH ¼
X3

i¼1
PISi�RSISi �RUHC (6)  

where RSH is the number of displaced residents requiring shelter in the 
meshblock, IS refers to the household income band, P is the proportion 
of residents in each household income band, RS is the percentage of 
displaced residents requiring shelter in each household income band and 
RUHC is the number of residents in the uninhabitable category in the 
meshblock. 

Data on income for those seeking sheltering assistance is generally 
not recorded in New Zealand due to privacy concerns. For this study, the 
percentage of displaced residents in each income category requiring 
sheltering assistance has been assigned based on observations from the 
literature and testing with the case study data. Using the values in 
Table 6 with the study area census data results in approximately 10.5% 
of residents requiring sheltering assistance, which is around the mean 
value across studies cited by Lee and Chen [30] which showed between 
3 and 19% of displaced residents sought public shelter. 

As described in the previous section, in the HDS-T model de-
mographic factors are first utilised for estimating the number of 

Table 5 
Demographic factor scores.  

Demographic factor Code Default score 

Household income (HI) 
< NZ$30,000 (US$20,600) HI1 0.5 
NZ$30,000 – $70,000 (US$20,600-$48,100) HI2 0.1 
> NZ$70,000 (US$48,100) HI3 � 0.1 
Ownership (O) 
Own home O1 � 0.3 
Renting O2 0.3 
Years resident (YR) 
<1 year YR1 0.3 
1–4 years YR2 0.2 
5–9 years YR3 � 0.2 
�10 years YR4 � 0.3 
Age (AG) 
15–65 years old AG1 � 0.1 
<15 or >65 years old AG2 0.2  

Table 6 
Percentage of residents requiring sheltering assistance for each household in-
come band.  

Household income (IS) Code Percentage requiring shelter 

< NZ$30,000 (US$20,600) IS1 30% require shelter 
NZ$30,000 – $70,000 (US$20,600-$48,100) IS2 15% require shelter 
> NZ$70,000 (US$48,100) IS3 2% require shelter  
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displaced people. This technique is in contrast to most existing models, 
which assess habitability and displacement based only on physical fac-
tors and utilise demographic factors for estimating sheltering needs [11, 
54,56,60]. 

A benefit of using demographic factors to first assess displacement is 
that the data is associated with the whole meshblock population, rather 
than assuming the displaced population proportionately reflects the 
census data. However, it is still necessary to use demographic data to 
estimate the number of displaced residents requiring sheltering assis-
tance. Household income is therefore utilised a second time in the HDS-T 
model. The issue of double-counting is minimised as the household in-
come factor is used in different ways, and models using demographic 
factors for sheltering needs estimates alone will still encounter the same 
issue of displaced residents not necessarily representing census de-
mographics for a meshblock. 

4.4. Application to Christchurch case study 

Applying the HDS-T model requires modelling building damage, loss 
of access and utilities, and obtaining demographic data. For the 
Christchurch case study, available data sources were sought and created 
where necessary. 

4.4.1. Inundation modelling 
Three tsunami inundation scenarios were used for this study, rep-

resenting distal sources originating from the subduction zone off South 
America. The inundation depth and extent of the scenarios are shown in 
Fig. 3. The inundation modelling was performed prior to this study and 
is documented with publicly available information [67,68]. 

The Peru2500 scenario is based on an extreme event with a 2500 
year return period, as recommended by GNS Science for evacuation 
planning and emergency management [68]. The tsunami source is a MW 

9.5 earthquake occurring in the subduction zone off the coast of Peru, 
which has been identified as a major tsunami hazard source for the 
Canterbury coast [21,68]. The modelling assumed arrival of the largest 
wave coinciding with Mean High Water Spring (MHWS), and resulted in 
water levels between 4 and 10 m above MHWS. The maximum flow 
velocities were between 2 and 3 m/s, except in at the mouth of the Avon 
Heathcote Estuary where they were over 5 m/s. The arrival time of the 
first wave is between 14 and 15 h after fault rupture, with the largest 
wave arriving between 17 and 20 h after fault rupture. Waves continued 
to cause disturbances for at least 24 h after the first wave arrival. The 
delay between fault rupture and first wave arrival should allow a suf-
ficient timeframe for evacuation of the inundation zone to take place. 

The HalfPeru2500 scenario is modelled from the same source as 
Peru2500, with the wave height reduced to half as it enters the eastern 
boundary of the model grid (approximately 175� W). This scenario 
represents a tsunami with smaller inundation depths and extent, as well 
as a shorter return period. Assuming linearity in the deep water this 
tsunami could nominally be caused by an earthquake of the same di-
mensions and source characteristics but half the slip, with a magnitude 
of MW 9.3. 

The SAGeneric scenario simulates a generic tsunami from a South 
American source entering the eastern boundary of the local grid (210� E; 
[67]). Instead of modelling the tsunami from source, the inundation 
characteristics of the 1868 Peru tsunami on the New Zealand coastline 
(based on historical records) were approximately recreated. The 1868 
Peru tsunami was generated by a MW 9.1 earthquake and had the largest 
effect on the Canterbury coastline since European settlement of New 
Zealand, with maximum wave heights of approximately 5 m above 
MHWS within the present case study area, and similar flow velocities to 
Peru2500 [67]. 

The hydrodynamic model used for modelling was RiCOM, which 
captures many of the physical aspects of tsunami inundation and is well- 

Fig. 3. The modelled inundation depth and extent for each of the three scenarios.  
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validated against standard analytical test cases and palaeo-tsunami data 
from New Zealand [68–71]. The topographic data used for Christchurch 
were LiDAR data collected in 2011 following elevation changes due to 
the Canterbury Earthquake Sequence (CES). The bathymetric data 
include an open-ocean grid combined with coastal New Zealand ba-
thymetry data [68]. The open-ocean grid has a resolution of approxi-
mately 2 km, reducing to 500 m at the coast [67,68]. The local grid has a 
resolution of approximately 10–20 m. 

The caveats and limitations of the modelling include uncertainties 
involving the source locations, characteristics of the source fault 
rupture, and topographic and bathymetric data [67,68]. The grid 
created to represent the coastline can deform the shape of bays and 
estuaries. The effect of drag may significantly alter the onshore propa-
gation of tsunami. The RiCOM modelling incorporates most hydrody-
namic aspects of tsunami propagation and inundation, but also includes 
some simplifying assumptions [67,68,71]. An enhancement of friction 
for shallow water locations, however the bed roughness does not vary 
spatially. Wind-driven wave heights are shown to have little effect on 
tsunami inundation and therefore the water surface is initially flat 
within the modelling. Uncertainties in the modelling can be quantified 
by running multiple simulations, however a degree of epistemic uncer-
tainty will always remain [68]. 

4.4.2. Building and demographic data 
An accurate asset database of buildings within the study area is 

necessary for estimating building damage. The important attributes are 
the location of buildings; the aspects that are relevant to vulnerability (i. 
e. construction type, ground floor height, number of storeys); and the 
building purpose (e.g. residential dwelling, school, commercial). 

Although an asset database for the study area was already available 
as part of the RiskScape software [61], trial surveying within the inun-
dation zone identified that updates were necessary, particularly as the 
urban zone had changed considerably following the CES. Although the 
current study is focused only on residential dwellings, buildings of all 
use categories were surveyed to create a database that is useful for 
multiple purposes. 

Building footprint locations were updated using Google Earth im-
agery (dated 9 January 2015), by manually removing footprints of 
demolished buildings and adding new building locations. Post- 
earthquake structural survey data of some buildings was obtained 
from CCC, which contained detailed attribute information for many 
commercial buildings within the study area. Further field surveying of 
building attributes was undertaken along transects of coastal Christ-
church for the purposes of quality assurance. Transects were designed to 
capture a representative sample of residential buildings, as well as 
obtain attributes for the majority of commercial and community build-
ings. The remaining building locations for which attributes were not 
available had attributes extrapolated statistically (for residential 
dwellings) or manually (for non-residential buildings) from buildings of 
similar type which had attributes attached. A summary of the number of 
buildings and data sources is shown in Table 7. 

Demographic data was obtained from the 2013 New Zealand Census 
meshblock dataset [22]. The aggregated demographic score based on 
the four demographic factors applied in HDS-T (household income, 
ownership, years resident, age) is shown per meshblock in Fig. 4. 

Positive scores represent an increased susceptibility of the population 
within a meshblock to being displaced, whereas negative scores are the 
opposite. The average demographic score across all meshblocks is 0.05. 
All individual meshblock scores are rounded to 1 d.p. The population per 
meshblock the count of residents who usually reside within each 
meshblock from the census data. 

4.4.3. Modelling tsunami damage to buildings 
The impact of a tsunami on a building depends on two factors: 1) the 

hazard intensity, in which the flow depth and velocity primarily control 
the hydrodynamic and hydrostatic forces; and 2) the attributes of the 
building, such as the type of structure (e.g. light timber vs. reinforced 
concrete), number of storeys, and ground floor height [72–74]. The 
direct effects of tsunami on buildings are primarily caused by the 
following:  

� Inundation: Direct damage due to water contact, hydrostatic forces on 
structures  

� Currents: Hydrodynamic forces acting upon structures  
� Scouring: Erosion of foundations  
� Buoyancy: Uplift of structures, especially beneath floor levels, and 

flotation of materials  
� Debris: Impact of entrained materials, such as materials from 

collapsed buildings, vehicles and trees  
� Fire: Ignition of floating flammable materials 

The individual influence of each of these contributing factors is 
difficult to isolate and may vary significantly between events and 

Table 7 
Summary of the number of buildings for each source of attribute 
data within the database.  

Data source No. of buildings 

Field survey 1205 
CCC Post-EQ data 174 
Manually extrapolated 109 
Statistically extrapolated 5006 
Total 6494  

Fig. 4. Demographic score per meshblock of the four combined demographic 
factors applied in HDS-T. 
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locations [75,76]. Studies using observations and analysis of tsunami 
damaged buildings have attempted to improve understanding of the 
relative importance of factors that contribute to damage [72–74]. Yet 
such post-event studies often find the only factor practical to directly 
measure is inundation depth, as evidence may be observed in the field 
whereas the other factors would require data collection as the event 
unfolds [77]. Although water velocities can be estimated from numeri-
cal modelling post-event, they are not necessarily accurate [76]. Debris 
is also expected to play a strong role in the impact on structures, how-
ever there are currently no available models developed for these effects 
[76,78]. 

The only reliable hazard intensity measure currently available for 
assessing tsunami impacts to buildings is therefore inundation depth. 
Despite the acknowledged limitations it is widely used for tsunami risk 
assessment for buildings, especially when used at scales larger than an 
individual building scale. Fragility functions relating inundation depth 
to the probability of damage, for buildings of different construction 
types, are the best available vulnerability functions for tsunami impact 
assessments [76,79]. 

The fragility functions used in this study are those developed by 
Suppasri et al. [64]; using empirical data from the 2011 T�ohoku, Japan 
tsunami. The functions are reasonably transferrable for assessment of 
structures in New Zealand, particularly due to similar building standards 
that require construction to withstand frequent seismic activity [79,80]. 
Due to the lack of empirical data and engineering assessments for 
tsunami impacts in New Zealand, there are no fragility functions 
currently available specific to the local context. 

There are separate fragility functions for four different construction 
types: wood (light timber), concrete masonry, steel, and reinforced 
concrete. For wood and reinforced concrete, separate functions are also 
available accounting for number of storeys. The damage states from 
Suppasri et al. [64] are described in Table 4. 

4.4.4. Estimating access and utility loss 
HDT-S requires access and utility loss as important input factors, 

preferably with a time varying element to model the response phase and 
the early stages of recovery. For the present case study, both access and 
utility loss (for electricity, water and wastewater) were estimated by 
expert judgement, via informal discussion with Mr Karn Snyder-Bishop 
(Water and Wastewater Network Operations Engineer at CCC) who has 
extensive knowledge of the local infrastructure, including in-
terdependencies and impacts following the CES. Modelled building 

damage, along with an impact assessment study of tsunami scenarios on 
Christchurch infrastructure [81] were used as supporting materials, 
however these assessments are not explicitly linked to the access and 
utility outage time estimates. This is a simple method of estimating loss 
of access and utilities, and serves as basic input data for applying the 
HDS-T model to Christchurch. More detailed estimates could use infra-
structure asset data, fragility functions or other more advanced model-
ling techniques, however these were not available for this study and are 
beyond the scope of the current work. The HDS-T modelling framework 
is designed to be able to accept input data derived from a variety of 
methods, depending on the scope of specific applications. 

For the first day of the scenarios, access is assumed to be unavailable 
throughout the study area as mandatory evacuation orders would be in 
place. Restoration of access depends on evacuation orders being lifted, 
debris being cleared, and any remaining health and safety hazards being 
minimised to an acceptable level. For this case study, it is assumed that 
the scenarios occur in summer, and the lower electricity factor weight-
ing of 0.2 is used. 

Spatial polygons of areas of restricted access and utility outage were 
created for each time point considered in the modelling (Days 1, 4, 7 and 
one month onwards). Across the three scenarios, access is generally 
restored by Day 7. Electricity is restored faster than the other utilities, 
and is typically available by Day 7 except in highly impacted neigh-
bourhoods (e.g. Sumner). Restoration of water and wastewater will take 
longer, and only becomes available within the first week in relatively 
lightly damaged neighbourhoods. It is assumed that all utilities are 
restored for the time point of one month onwards, reflecting the resto-
ration of the main utility infrastructure to each neighbourhood. Resto-
ration may take longer to significantly damaged buildings, however this 
will be effectively captured by the damage state (DS2 and above) 
rendering dwellings uninhabitable. 

5. Results 

The time points considered in the case study (Days 1, 4 and 7) 
represent the response and early recovery phase following evacuation of 
the inundation zone for each scenario. The additional time point of one 
month onwards is included to show the remaining uninhabitable 
dwellings per meshblock once access and utilities are fully restored, 
which is of use for assessing the number of residents likely to need 
temporary housing. These dwellings are those with at least moderate 
damage (DS2 and above), expected to take at least a month to repair 

Fig. 5. The number of residents in each habitability category for the three scenarios and time points considered in the case study.  
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before being habitable. Building damage is the only factor included at 
this time point. 

The habitability category and displacement results for each scenario 
are charted in Fig. 5 and tabulated in Table 8. A total of 14,695, 14,157 
and 5609 people are within the affected inundation area for the SAGe-
neric, Peru2500 and HalfPeru scenarios respectively. For the first day, 
all residents are displaced due to evacuation orders. Progressive resto-
ration of utilities and access allows an increase in habitability and 
liveability across the first 7 days, with a similar relative trend observed 
across the three scenarios. For the one month time point, SAGeneric and 
Peru2500 scenarios show 30% and 36% displaced due to housing 
damage, whereas only 14% are displaced for the HalfPeru scenario. This 
is primarily related to the extent and depth of inundation, with the first 
two scenarios being similar, and HalfPeru a much smaller scenario. All 
results can be displayed showing number of buildings rather than 
number of residents, if housing is the focus of interest. 

Fig. 6 shows the number of displaced residents and the number 
requiring sheltering assistance for the first 7 days of each scenario. A 
similar decreasing trend is observed between the scenarios relative to 
their magnitude. The number of residents requiring sheltering assistance 
is a conservative estimate and is based on the assumption that the same 
proportion of displaced residents will require shelter across the time 
points. Displaced residents in shelters are likely to attempt to find 
alternative accommodation as time goes on, especially if it becomes 
clear that they will not be able to return to their home. 

Using the SAGeneric scenario as an example, the habitability and 
liveability results are displayed spatially per meshblock in Fig. 7. 
Stacked columns show the relative number of people in each habitability 
category. Once the results are mapped, a picture emerges of the areas 
that are more or less impacted, and where response and recovery efforts 
may be focused. For example, in areas where many dwellings are within 
the compromised liveability category, temporary services such as water 
delivery and portable toilets may be needed to maintain habitability. 

The results of sensitivity testing to examine the influence of each of 
the factors on the number of residents in each habitability and liveability 
category are shown in Fig. 8. Day 7 of the Peru2500 scenario was chosen 
as a time point and scenario that is likely to be sensitive to the full range 
of factors included in the model. The influence of each factor is tested by 
adding or subtracting 0.1 from the default score of each factor (as listed 
in Tables 3 and 5). Access is excluded from the testing because it is bi-
nary (0 or 1). The effect of removing each or all of the demographic 
factors is also examined. For each tested factor, the percentage change of 
number of residents in each category is reported. Altering the factor 
scores may increase or decrease the number of residents in each category 
(or remain the same). Habitable liveability categories (i.e. residents are 
not displaced) are generally more sensitive than the “Displaced” cate-
gory. Neighbourhood damage is the most sensitive physical factor, with 
category changes between 1.5 and 42.2%. All other physical factors 
have category changes of less than 5%. Each demographic factor shows a 
similar sensitivity to changes in scores, between 1.3 and 42.7%. 
Removing income, ownership or all demographics alters the results in 
some categories by up to 68.9%. Physical scores are essential to the HDS- 
T model and therefore sensitivity testing of removal is not conducted, by 
contrast demographic factors modify the overall scores and may be 
included or removed. The sensitivity testing results demonstrate the 
influence of altering the factor scores or removing demographic factors, 
which can be of assistance for users who may want to alter the defaults. 

Table 8 
Number of residents able to occupy their homes, number displaced but not 
requiring sheltering assistance, and number displaced requiring sheltering 
assistance for each time point and scenario.  

Time point and 
scenario 

Return/ 
Remain 

Displaced – do not 
require sheltering 
assistance 

Displaced - Require 
sheltering assistance 

Day 1 - 
SAGeneric 

0 (0%) 12900 (88%) 1795 (12%) 

Day 4 - 
SAGeneric 

4424 
(30%) 

9014 (61%) 1257 (9%) 

Day 7 - 
SAGeneric 

6612 
(45%) 

7131 (49%) 952 (6%) 

1 month - 
SAGeneric 

10329 
(70%) 

4366 (30%) – 

Day 1 - 
Peru2500 

0 (0%) 12428 (88%) 1729 (12%) 

Day 4 - 
Peru2500 

5380 
(38%) 

7745 (55%) 1032 (7%) 

Day 7 - 
Peru2500 

6646 
(47%) 

6621 (47%) 890 (6%) 

1 month – 
Peru2500 

9038 
(64%) 

5119 (36%) – 

Day 1 - 
HalfPeru 

0 (0%) 4992 (88%) 617 (12%) 

Day 4 - 
HalfPeru 

3123 
(56%) 

2225 (39%) 261 (5%) 

Day 7 - 
HalfPeru 

3849 
(69%) 

1575 (28%) 185 (3%) 

1 month - 
HalfPeru 

4833 
(86%) 

776 (14%) –  

Fig. 6. The number of residents displaced, and of those the number requiring sheltering assistance for each scenario and time point.  
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6. Discussion 

The scoring system of HDS-T has the advantage of allowing a variety 
of outputs to be produced, depending on the needs of the user. For 
emergency managers responsible for planning welfare needs, the esti-
mate of the number of residents displaced and those requiring shelter 
can be of assistance. A unique feature of HDS-T is the ability to quan-
titatively and spatially describe the various levels of habitability and 
liveability within the affected area, and the production of time-varying 
estimates. The habitability results can be of assistance to those respon-
sible for asset management including utility providers, as well as orga-
nisations tasked with ensuring the welfare of residents who may wish to 
return to their homes in various states of liveability. 

Results of applying the HDS-T model to the case study of Christ-
church produced outputs consistent with expectations. In line with 

observations from the literature, the physical factors of building damage 
and utilities are weighted highly in the scoring system, with de-
mographic factors weighted to have a more moderate effect on esti-
mating whether residents are likely to be displaced, and the perceived 
habitability or liveability of dwellings. However, HDS-T has not been 
validated against observations for a real event, because there are no 
appropriate events for which sufficient data is available for this study. 

As with all models incorporating many factors to represent complex 
situations, a degree of uncertainty exists within each constituent 
component of the model. First, there is the assumption that the model 
inputs sufficiently describe the main features of the event. Included in 
HDS-T are the factors identified in the literature that are commonly cited 
as contributing to loss of habitability and displacement across different 
natural hazard events, however these may differ in the case of tsunami 
and the local context. The scenarios modelled for the Christchurch case 

Fig. 7. Stacked columns showing the number of residents in each habitability category per meshblock and time point for the SAGeneric scenario. Column height 
proportionately represents population within the meshblocks (the most populated meshblock has 288 people). 
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study are far-field in origin, allowing for evacuation time of residents. If 
applied to a local source tsunami scenario, factors such as casualties and 
widespread destruction (as occurred in the 2011 Great East Japan 
tsunami) may require modification of the model to account for these 
effects. Using HDS-T for a real-time situation may be complicated by 
difficulties in characterising the event (e.g. incomplete hazard infor-
mation), increasing the uncertainty of the estimates. 

Access within the study area was initially estimated by assuming all 
meshblocks within the inundation zones would be evacuated. Progres-
sive restoration of access was estimated by expert judgement, consid-
ering the extent of modelled building damage and knowledge of the 
local context. Considerable uncertainty exists as there are many 
contributing factors to access restoration such as road damage, debris 
and contamination. Due to the complexity of modelling such phenom-
ena, it is likely that future applications of HDS-T will also rely on expert 
opinion unless more advanced modelling techniques and functions are 
developed. 

Following access, building damage is often cited as the most influ-
ential physical factor affecting habitability. Building damage relies on 
accurate inundation modelling paired with a robust database of build-
ings with appropriate attributes for applying fragility functions. Care has 
been taken to use recent inundation modelling and develop a building 
database as accurate as practically possible. Without empirical or 
analytical data yet available for developing New Zealand-specific 
fragility functions, it was necessary to apply functions based on Japa-
nese data, where buildings may respond differently to similar levels of 
inundation. Further, fragility functions do not explicitly account for all 
tsunami impacts. Despite the uncertainties, the building damage 
modelling follows best established practice in line with other modelling 
of this type. 

Second to building damage, the loss of utilities has a strong influence 
on the habitability and liveability of a dwelling. For this study utility loss 
was estimated by expert opinion via informal discussion using available 

knowledge and resources. As such, a high level of uncertainty exists 
regarding the impact and timeframes for restoration. Ideally utility loss 
should be modelled using accurate data on infrastructure paired with 
fragility functions and estimated repair rates, producing spatial and 
temporal outputs of utility outage. However, much of the required data 
was not available for the authors of this study, and appropriate pub-
lished fragility functions describing infrastructure damage are currently 
lacking. HDS-T is able to input more advanced utility outage informa-
tion if it is available, and uncertainty could be managed with outage 
estimates that provide a range of values. 

The demographic factors included in HDS-T are common to many 
natural hazards and contexts and are also applied in other models of 
displacement and sheltering needs. As with other studies, census data is 
used for the study area, which is likely to remain the most accurate and 
widely available source of demographic data for modelling purposes. 
Because of the way demographic factors in HDS-T have both positive 
and negative weightings and are aggregated into a single modifying 
score per meshblock, additional factors may be easily added. With 
further research, incorporating factors relating to the experience of 
minorities regarding displacement and sheltering would be valuable. 

Default weightings of both physical and demographic factors are 
assigned based on examination of their relative influence within the 
literature and consideration of the local context. Validation of weight-
ings is difficult due to a lack of appropriate data. However, some vali-
dation can be achieved by ensuring the scoring system delivers 
reasonable expected outcomes. For example, physical and demographic 
factor combinations and their respective weightings (e.g. minor building 
damage, utilities unavailable, household income > NZ$70,000, home 
ownership and so on) can be checked to see whether the summed scores 
fit within expected categories of habitability. As long as the results of the 
combinations are appropriate the majority of the time, the model should 
produce reasonable results. Sensitivity testing of the factor scores can be 
of assistance for users who may wish to modify the default scores. 

Fig. 8. Sensitivity test results of increasing or decreasing the score of each factor by 0.1 relative to the default and removing demographic factors for Day 7 of the 
Peru2500 scenario. Percentages are the change per category. 
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Finally, despite uncertainties, the measure of a model of this type is 
whether it is useful and useable, and can be applied to various scenarios. 
HDS-T is designed to be able to take input data from a variety of sources, 
depending on the best available data. Applying HDS-T to other coastal 
locations in New Zealand that are exposed to tsunami hazard should 
produce useful results by following a similar method and adopting the 
default factor weightings. All factor weightings are modifiable by the 
user. Importantly, the weighting system of HDS-T both allows additional 
factors but also may be used without them, which is essential for 
application for scenarios in which data is limited. Demographic factors 
can be added or removed easily because they are independent of other 
factors. Adding or removing physical factors would require re-weighting 
of the physical factors to ensure the scoring system is balanced and 
produces outputs in line with expectations. 

Further development of HDS-T could include greater detail and 
adjustment for assessing habitability for longer time periods, through 
into the recovery phase. The model as applied to the present case study 
only indicates loss of habitability for one month or longer, however 
more information on repair rates could inform timeframes for restora-
tion of habitability. Although the coastal suburbs of Christchurch mainly 
consist of free-standing single-family dwellings, many locations have 
apartment buildings which should be considered differently, such as the 
greater impact of utility loss. Refinement regarding factors such as the 
loss of community facilities, the provision of assistance (e.g. water 
trucks) and effects of contamination could be included with appropriate 
data. 

7. Conclusions 

HDS-T is a new model aimed at addressing the current gaps in 
modelling habitability, displacement and sheltering needs for tsunami 
events and the New Zealand context, and may be used to assist in 
decision-making for emergency management. The additive scoring sys-
tem, incorporating weighted physical and demographic factors, allows 
for a variety of outputs for the purposes of emergency management, 
housing assessment and infrastructure providers. Quantitative model-
ling outputs are time-varying and may be visualised spatially, allowing 
for the creation of diverse communication products depending on the 
intended purpose. The model can use input data from various sources 
depending on availability, and factor weightings can be adjusted to suit 
the local context. 

Applying HDS-T to the case study of tsunami scenarios impacting 
Christchurch produced outputs in line with expectations and knowledge 
of the local context, and in agreement with observations from interna-
tional studies on events leading to residential habitability loss and 
displacement. As with all comprehensive models describing complex 
events, there are many sources of uncertainty, which can be reduced or 
quantified depending on the input data used. With appropriate inputs, 
HDS-T could be modified to be run stochastically and produce a range of 
estimates, allowing for further sensitivity testing and increased confi-
dence in the results. For example, a range of potential outage times for 
utilities could be used, and a Monte Carlo simulation employed to assess 
the impact on the results of changing utility outage times. 

Research is ongoing to adapt the HDS-T model to other natural 
hazards including earthquakes, as well as other contexts. Through this 
process further refinements will be made that could also improve the 
model for tsunami impact assessments. 
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