
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Uptake of diagnostic tests by livestock farmers: a stochastic
game theory approach

Citation for published version:
Mohr, S, Beard, R, Nisbet, AJ, Burgess, STG, Reeve, R, Denwood, M, Porphyre, T, Zadoks, R & Matthews,
L 2020, 'Uptake of diagnostic tests by livestock farmers: a stochastic game theory approach', Frontiers in
Veterinary Science. https://doi.org/10.3389/fvets.2020.00036

Digital Object Identifier (DOI):
10.3389/fvets.2020.00036

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Frontiers in Veterinary Science

Publisher Rights Statement:
Copyright © 2020 Mohr, Beard, Nisbet, Burgess, Reeve, Denwood, Porphyre, Zadoks and Matthews. This is an
open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright
owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Feb. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/286810266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3389/fvets.2020.00036
https://doi.org/10.3389/fvets.2020.00036
https://www.research.ed.ac.uk/portal/en/publications/uptake-of-diagnostic-tests-by-livestock-farmers-a-stochastic-game-theory-approach(ee25031e-6a1a-447c-b349-78ad975e5812).html


ORIGINAL RESEARCH
published: 05 February 2020

doi: 10.3389/fvets.2020.00036

Frontiers in Veterinary Science | www.frontiersin.org 1 February 2020 | Volume 7 | Article 36

Edited by:

Moh A. Alkhamis,

Kuwait University, Kuwait

Reviewed by:

Bouda Vosough Ahmadi,

European Commission for the Control

of Foot and Mouth Disease

(EuFMD), Italy

Nicholas M. Fountain-Jones,

University of Tasmania, Australia

*Correspondence:

Sibylle Mohr

Sibylle.Mohr@glasgow.ac.uk

Specialty section:

This article was submitted to

Veterinary Epidemiology and

Economics,

a section of the journal

Frontiers in Veterinary Science

Received: 23 August 2019

Accepted: 14 January 2020

Published: 05 February 2020

Citation:

Mohr S, Beard R, Nisbet AJ,

Burgess STG, Reeve R, Denwood M,

Porphyre T, Zadoks RN and

Matthews L (2020) Uptake of

Diagnostic Tests by Livestock

Farmers: A Stochastic Game Theory

Approach. Front. Vet. Sci. 7:36.

doi: 10.3389/fvets.2020.00036

Uptake of Diagnostic Tests by
Livestock Farmers: A Stochastic
Game Theory Approach
Sibylle Mohr 1*, Rodney Beard 1, Alasdair J. Nisbet 2, Stewart T. G. Burgess 2,

Richard Reeve 1, Matthew Denwood 3, Thibaud Porphyre 4, Ruth N. Zadoks 1,5 and

Louise Matthews 1

1 Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine,

College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, 2Moredun Research

Institute, Pentlands Science Park, Midlothian, United Kingdom, 3Department of Veterinary and Animal Sciences, Faculty of

Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark, 4 The Royal (Dick) School of Veterinary
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Game theory examines strategic decision-making in situations of conflict, cooperation,

and coordination. It has become an established tool in economics, psychology and

political science, andmore recently has been applied to disease control. Used to examine

vaccination uptake in human medicine, game theory shows that when vaccination is

voluntary some individuals will choose to “free-ride” on the protection provided by others,

resulting in insufficient coverage for control of a vaccine-preventable disease. Here, we

use game theory to examine farmer uptake of a new diagnostic ELISA test for sheep

scab—a highly infectious disease with an estimated cost exceeding £8M per year to

the UK industry. The stochastic game models decisions made by neighboring farmers

when deciding whether to adopt the newly available test, which can detect subclinical

infestation. A key element of the stochastic game framework is that it allows multiple

states. Depending on infestation status and test adoption decisions in the previous year, a

farmmay be at high, medium or low risk of infestation this year—a status which influences

the decision the farmer makes and the farmer payoffs. Ultimately, each farmer’s decision

depends on the costs of using the diagnostic test vs. the benefits of enhanced disease

control, which may only accrue in the longer term. The extent to which a farmer values

short-term over long-term benefits reflects external factors such as inflation or individual

characteristics such as patience. Our results show that when using realistic parameters

and with a test cost around 50% more than the current clinical diagnosis, the test will

be adopted in the high-risk state, but not in the low-risk state. For the medium risk

state, test adoption will depend on whether the farmer takes a long-term or short-term

view. We show that these outcomes are relatively robust to change in test costs and,

moreover, that whilst the farmers adopting the test would not expect to see large gains

in profitability, substantial reduction in sheep scab (and associated welfare implications)

could be achieved in a cost-neutral way to the industry.
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INTRODUCTION

Effective policies for livestock disease control and surveillance
ideally require that we take into account individual decision-
making and behavior. Even so, new diagnostic tests and control
measures are typically developed without an assessment of
whether they are likely to be taken up by the farming community.
An example of current importance is the potential uptake of
a new diagnostic test for sheep scab (Psoroptic mange), which
is one of the most important diseases in terms of welfare and
economic impacts for sheep farmers in the United Kingdom
(UK) (1).

Sheep scab is a highly contagious disease, caused by infestation
with an ectoparasitic mite (Psoroptes ovis), prompting an allergic
reaction and intense irritation to the animals resulting in rubbing
and scratching behavior that leads to large and painful skin
lesions (2, 3). Psoroptic mange is not only a major animal welfare
concern but also imposes a significant economic burden on
livestock industries in many locations worldwide (1). In the UK,
incidences of sheep scab dramatically increased following the
deregulation of compulsory sheep scab preventative treatment
in 1992, with the number of outbreaks rising from just under
100 per year to an estimated 7,000 in 2003 and 2004 (4–6).
Since then, infestation by the parasite has been made notifiable
in many countries and, in Scotland, the Scottish Government
has collaborated with industry through the Scottish Sheep Scab
Initiative to enable control of the disease since 2004.

Transmission of sheep scab typically occurs through direct
contact with an infested animal or by contact with contaminated
fomites in an infested environment, for instance with fence posts,

farmmachinery, or contaminated wool. Importantly, continuous
incursions of infestation happen between neighboring farms

(7, 8), particularly when these farms keep sheep in adjacent
fields with shared rubbing areas or when there are gaps in

common fence-lines. Because of this, it is typically recommended
that neighbors should treat at the same time to achieve
maximum effect and protection. Currently, sheep scab can only
be diagnosed at the late clinical stage, meaning that infestation
is able to spread between animals and between farms prior
to detection and treatment. At present, farmers use various
chemicals to treat the sheep, including organophosphate plunge
dipping or injection with macrocyclic lactones (ML) (3). This
has the potential to be detrimental to the environment and,
crucially, it has been shown that mites have evolved to become
resistant to ML chemicals (9, 10). It is well-established that
clinical infestation with sheep scab substantially reduces growth
and productivity and, if left untreated, can even kill.

If farmers were able to diagnose and effectively treat sheep
strategically, at an early stage of infestation, this would not only
benefit the health and welfare of the sheep, but it would also
avoid farmers’ financial losses from rearing poorly performing
animals, as well as reducing transmission to neighboring flocks.
One new control option is a recently developed diagnostic blood
test (an ELISA test), which can detect sheep scab infestation in
sub-clinically infested animals (11, 12). This ELISA test employs
a single recombinant antigen, and importantly, is capable of
accurately detecting P. ovis infestation in sheep at the subclinical

stage (12). Such a test would allow the infestation to be identified
before the advent of clinical signs, reducing the risk of developing
clinical disease and also limiting spread.

The question of whether individuals are likely to adopt an
intervention can be studied using game theory. Game theory
is a mathematical approach to decision making which captures
at its core the idea of strategic interactions, where “strategic”
refers to the fact that the decision made by one individual is
influenced by the decisions made by others, with classic examples
being bargaining or bluffing in cards games. Game theory is
such a powerful tool that it has been used to examine a wide
range of strategic interactions in social, economic and biological
systems, such as conflicts over fishing rights, weapons arms
races, pricing strategies among competing firms, and the uptake
of interventions in human medicine (13–17). For example,
application to the uptake of vaccines in human medicine has
shown that if there is any risk or cost associated with vaccination
then individual self-interest can prevent eradication of a vaccine-
preventable disease (14).

The origins of game theory are typically attributed to the
mathematical proof of the minimax theorem by von Neumann
in 1928, which established what was later calledNash equilibrium
for strictly competitive games (18, 19). In general, game theory
describes strategic interactions of two or more rational decision
makers (or players), where each individual’s decision (or actions)
jointly determine an outcome that affects them all.

The most prominent and well-known example for a simple
strategic game is what is known as the prisoner’s dilemma (20).
Two prisoners (A and B) are accused of a crime, for instance
robbing a bank together. They are kept separate by the police and
are individually presented with a bargain. If prisoner A confesses
while prisoner B does not, the one who confesses will be released
immediately and the other will spend 6 years in prison. If neither
confesses, each will be imprisoned for just 0.5 years; this outcome
which has the lowest combined sentence for both players is
known as the social optimum (shown in red in Figure 1). If both
confess, they will each be jailed 4 years. Crucial to determining
the outcome is the observation that although neither prisoner
knows whether the other has confessed, each prisoner knows

FIGURE 1 | The prisoner’s dilemma in which (i) if prisoner A confesses while

prisoner B does not, the one who confesses will be released immediately (0

year sentence) while the other receives a 6 year sentence, (ii) if neither

confesses, each receives just a 0.5 year sentence, and (iii) if both confess, they

each receive a 4 year sentence.
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that whatever the behavior of the other, they can improve their
outcome by confessing (see Figure 1).

The outcome arrived at when each prisoner acts in their
own self-interest is known as the Nash equilibrium (shown in
blue in Figure 1). However, in these circumstances, when each
prisoner acts in their own self-interest, both end up worse off (a
4 year sentence) than if they had acted in accordance with the
best solution for all (the social optimum which corresponds to a
sentence of just 0.5 year).

In the context of veterinary disease control, relatively little
research has applied game-theoretic techniques, mostly using the
standard static strategic-form game approach (21, 22). Here, we
combine epidemiological and economic parameters in type of
game called a stochastic game that aims to analyse the adoption
of the new diagnostic ELISA test for sheep scab in Scotland,
where sheep scab is a notifiable disease requiring treatment upon
confirmatory diagnosis.

Stochastic games extend traditional strategic-form games
(18, 23), such that they are responsive to dynamic situations
where the environment changes in response to players’ choices.
Stochastic games were first introduced by Shapley in 1953
who established the idea of multiple states, and at each
stage of the play the players chose an action in the game
dependent on the current state (24, 25). The set actions
(or strategies) that each player decides on, together with the
current state, determine not only the stage payoff that each
player receives but also the probability distribution governing
the transitions between states. Thus, stochastic game theory
provides a suitable mathematical framework for assessing if,
and under which circumstances, farmers are likely to adopt the
new diagnostic test for subclinical sheep scab by providing a
mathematical framework which enables us to capture different
risk states inherent to epidemiological problems and probabilistic
transitions between these states.

Our aim is to use a stochastic game to answer the question
whether farmers will use the newly available diagnostic test and
treat early or whether they will wait and treat on clinical diagnosis
only. Here, the term stochastic means that we are analyzing a
game with different states of infestation risks—states of high,
medium, or low risk of infestation. The current state depends
on the previous state and the test adoption decision by the
farmers. Because sheep scab can spread between neighboring
flocks, the decision a farmer’s neighbor makes affects their risk of
infestation. Therefore, whether a farmer believes his flock might
be infested and should be tested will depend to some extent
on the decisions his neighbor takes. If a neighboring farm had
sheep scab last season the farmer’s flock might be at high risk
of being infected this year, whereas if his neighbor was free of
infestation, the farmer might consider his flock to be at low risk
of being infected this year. Moreover, in this situation, strategic
interactions arise because the farmer may consider his animals
at low risk if his neighbor controls infestation by using the
diagnostic test. He may “free-ride” on the protection afforded by
his neighbor and choose not to adopt the test. Such outcomes can
be suboptimal for disease control in the population as a whole.

The paper is organized as follows: First we introduce the
basic assumptions underpinning our sheep scab model. We then

introduce the basic game-theoretic concepts and definitions for
a simple strategic game. This we then extend to a stochastic-
game set-up, which we illustrate with a simple example. Finally,
we present our multi-state sheep scab test-adoption game, along
with our findings in terms of economic and epidemiological
implications as well as a discussion of the limitations of the
current approach.

CHARACTERIZATION OF THE GAME

Before describing the stochastic game in mathematical terms,
we introduce our underlying assumptions: The stochastic game
presented here is designed to capture the decisions made by two
neighboring farmers when confronted with the choice of either
adopting the diagnostic test for subclinical sheep scab or not.
We assume that a farmer believes his flock to be (i) at high risk
of infestation in the current year, if either he or his neighbor
suffered clinical sheep scab in the previous year, (ii) at low risk
of infestation if both farms were free of infestation last year, (iii)
and at a medium risk of infestation if sheep scab was diagnosed
using the new test and then treated at the subclinical stage.

The basic game-theoretic concepts are players (the decision
makers, i.e., the farmers), strategies (alternatives among which
each player chooses), and payoffs (such as financial gains)
among the possible outcomes of the game. Fundamentally it
is assumed (i) that all players have consistent preferences and
behave rationally in the sense of consistently choosing an option
that maximizes their individual payoffs based on their beliefs
and knowledge at the time of decision-making and (ii) that the
specification of the game and the players’ payoffs and rationality
are common knowledge among the players.

There are multiple factors that may influence whether farmers
adopt a new test, such as (i) the cost of the test, (ii) the expected
cost of the disease, (iii) and the cost of treating sheep scab. We
assume that the current treatment protocol is that sheep are
treated when clinical signs are observed, which involves physical
examination of individual sheep, locating lesions, followed by
diagnosis through skin-scraping by a veterinary surgeon.

The financial profits (payoffs)made by a farmer depend on the
revenue from his sheep, which will be reduced if they become
diseased, together with the costs of testing and treating the
animals. At the time when the farmer decides whether to adopt
the new diagnostic test, he does not know whether his flock is
infected. Hence, he will have to make his decision based on the
payoff he expects, which will depend on whether he considers his
flock at high, medium or low risk of infestation. The problem can
be presented as a stochastic game matrix, with a high, medium,
and low risk state and farmer payoffs that depend on the state
and their chosen actions (to adopt the test or not to adopt the
test). Key to the decisions made by the farmers is also how
they weigh up the immediate costs and benefits of adopting
the test, which may not pay off in the current year if test costs
are high, vs. the long-term benefits of moving to a lower risk
state, should both farmers adopt the test. The extent to which a
farmer values the short term vs. the long term can be captured
by including a discount factor. The discount factor captures
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the farmer’s preference for a reward now vs. a future reward
(also known as a time preference). Game theory then tells us
the decision they arrived at when individuals act according to
rational self-interest, known as the Nash equilibrium, and also
whether this represents the best outcome for both farmers, and
we refer to the outcome with the highest combined payoffs for
both farmers as the social optimum. In the case of the stochastic
game, the solution (Nash equilibrium or social optimum) not
only specifies the decision opted for but also determines
the relative amount of time spent in each state over the
long run.

NOTATIONS, BASIC DEFINITIONS, AND
STOCHASTIC GAMES

Basic Definitions
Throughout the paper we apply standard terminology and
notation from classical game theory. Before defining how to solve
a stochastic game it is useful to illustrate how to solve a standard
static game: A simple two-player game is defined by a matrix pair
(A, B), specifying the payoffs for the row player (player 1) and the
column player (player 2), respectively. It is assumed that all game
matrices A and B are n by n, corresponding to a set of n strategies
available to the players.

For example, the prisoner’s dilemma game described above
(Figure 1) has two strategies available to the players which are
“Confess” or “Keep quiet.” Formally, the game is represented by
the matrices A (for the row player) and B (for the column player)

A =

(

4 0
6 0.5

)

B =

(

4 6
0 0.5

)

The decisions made by each player are represented by vectors
of probabilities over the available strategies. In this case, the

strategy vectors (1, 0) and

(

1
0

)

for the row and column players,

respectively, represent the Nash equilibrium.
The strategies “Confess” or “Keep quiet” are examples of

what are known as pure strategies. In general, a player’s strategy
may be a probability distribution over the available options,
known as a mixed strategy, which in the above case could be

represented by the strategy vectors (x, 1− x) and

(

y
1− y

)

. Here,

the strategy vector (1,0) indicates that the row player will play the
first pure strategy “Confess” with probability 1 and the second
pure strategy “Keep quiet” with probability 0. Similarly, the

strategy vector

(

1
0

)

indicates that the column player will play the

first pure strategy “Confess” with probability 1 and the second
pure strategy “Keep quiet” with probability 0. Thus, the Nash
equilibrium is both players confessing (Figure 1, blue payoffs),
with payoff of 4 for each player. The strategy vectors (0, 1) and
(

0
1

)

represent the social optimum (both players keeping quiet,

Figure 1, red payoffs).
Returning to the general case of n available strategies, if

the row player chooses the strategy x and the column player

chooses the strategy y, player 1 receives payoff A(x,y) and player 2
receives B(x,y). The strategy vectors X∗ and Y∗ represent a Nash
equilibrium when

(

AY∗
)

i
≤ X∗AY∗ = v1 (1)

and
(

X∗B
)

i
≤ X∗BY∗ = v2 (2)

where v1 is the value to player 1 and v2 the value to player 2 at
the Nash equilibrium. The term (AY∗)i is the ith element of AY∗,
giving the payoff to player 1 playing the ith action against player
2 playing Y∗. Similarly (X∗B)i is the payoff to player 2 playing the
ith action against player 1 playing X∗.

The inequalities state that the value to player 1 playing a pure
strategy against player 2 playing their Nash equilibrium strategy
is always less than or equal to player 1’s optimal value, v1 (and
vice versa). This is because player 1 will not do better than earn v1

against player 2 playing Y∗ by definition of the Nash equilibrium
(and vice versa). Therefore, these inequalities must be satisfied
by a Nash equilibrium and hence are a necessary condition for a
Nash equilibrium.

To exclude the possibility that strategies other than a Nash
equilibrium might satisfy the inequalities, we also show that
the inequalities are sufficient i.e., that if they are satisfied, they
represent a Nash equilibrium. To demonstrate this, we consider
any old strategy X = (x1, x2, x3, x4, .., xn) where

∑

xi = 1 and
multiply Equation (1) by each xi and sum the equations to obtain

∑n

i=1
xi

(

AY∗
)

i
≤

∑n

i=1
xi X

∗AY∗ (3a)

i.e.,
∑n

i=1
xi

(

AY∗
)

i
≤ X∗AY∗ (3b)

i.e.,

XAY∗ ≤ X∗AY∗ (3c)

Consequently, the value to player 1 when playing X∗ is always
greater than or equal to the associated with any old strategy X.
This demonstrates that X∗ is the best response to Y∗. A similar
line of reasoning [multiplying Equation (2) by yi, the elements of
Y where Y is any old strategy adopted by player 2] demonstrates
that Y∗ is the best response to X∗. Therefore, the inequalities
1 and 2 are a necessary and sufficient condition, meaning that
(X∗,Y∗) is a Nash equilibrium if and only if the inequalities
are satisfied.

The Stochastic Game
Overview and Example
A stochastic game differs from a static game (outlined above)
in three respects: (i) payoffs are specified for multiple states of
the system, (ii) transition probabilities between states need to be
specified, (iii) the value to a player depends not just on the payoff
from the current state but on the discounted sum of payoffs from
future states visited. This third component requires an additional
parameter, the beta discounted reward parameter (β) (here also
referred to as discount factor), which can take on values between
0 and 1. This parameter is the weight given to next year’s payoff
relative to the current payoff. Taking the extreme cases, if β = 0,
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next year’s payoff carries no weight in the decision making. If β

= 1, next year’s payoff carries equal weight to the current payoff
(see the Appendix for further details).

The example illustrated in Figure 2 shows a 2-state stochastic
game. The diagram shows the payoffs for each player in each
state and for each pair of player choices. In this example, for
simplicity, the payoffs in state 2 are proportional to the payoffs
in state 1 (determined by a scaling factor s). Figure 2 also shows
the transition probabilities. For example, the top left box for state
1 shows that if each player makes choice 1, they will each receive a
payoff of 4, and given these choices, the probability of remaining
in state 1 is 1 and the probability of transitioning to state 2 is 0.

We have chosen a simple example so that in either state choice
1 always gives a lower payoff than choice 2. We can view choice
1 and choice 2 as being “Moderate” or “Greedy” in the case of
competition for resources. For s < 1, state 1 is the state with
high resource levels and state 2 with low resource levels. Both
players being “Moderate” in state 1 results in remaining in state
1, whereas if both players are “Greedy” there is a transition to
state 2. Conversely, both players being “Moderate” in state 2
means a transition to state 1, whereas both being “Greedy” means
remaining in state 2. Whenever one player is “Moderate” and the
other “Greedy” there is a 0.5 probability of transitioning to the
other state.

The procedure for determining the Nash equilibrium and
social optimum for a stochastic game such as this is outlined in
the Appendix. Here, we illustrate the concepts by discussing the
solution for s= 1.0, 0.8, 0.6, 0.4, and 0.2 (see Figures 3A–E).

• When s =1.0 (Figure 3A), the Nash equilibrium and social
optimum for both players is to be “Greedy” in either state. The
long-term equilibrium is for the players to be in state 2, both
earning the maximum reward of 8 at each time point.

• When s = 0.8 (Figure 3B), payoffs in state 2 are 0.8 those of
state 1 but the Nash equilibrium and social optimum remain
at “Greedy” for both players in each state.

• When s = 0.6 (Figure 3C), the social optimum shifts in state
2 from being “Greedy” to being “Moderate” for high values
of the discount factor β i.e., the players can achieve greater
payoffs by being “Moderate” in state 2 when β is large. For

ease, consider the case β = 1. Under the Nash equilibrium of
being “Greedy,” in the long-run both players remain in state
2 earning a payoff of 8s (=4.8). Under the social optimum
of both being “Moderate,” the players flip between a payoff
of 8 and 4s, giving an average payoff of (8 + 4s)/2 (= 5.2).
The social optimum is not a Nash equilibrium as shown by
the following argument: If one player were to defect from the
social optimum and be “Greedy” in state 2, their payoff would
increase to 8s in state 2. Under this scenario, both players
spend 1/3 their time in state 1 and 2/3 in state 2. Thus, the long-
term payoff for the defecting player would be 8(1+ 2s)/3. This
exceeds their payoff at the social optimum (8+ 4s)/2 provided
s > 0.4. Since a player can increase their payoff by defecting
from the social optimum, it cannot be a Nash equilibrium.

• When s = 0.4 (Figure 3D), we see a change in the Nash
equilibrium with the Nash equilibrium now coinciding with
the social optimum for β = 1.

• When s = 0.2 (Figure 3E), the Nash equilibrium and social
optimum continue to coincide when β =1.

THE SHEEP SCAB TEST ADOPTION
GAME: A MULTISTATE MODEL SET-UP

For the stochastic game we assume voluntary test adoption
of the new diagnostic ELISA test under a given perfect test
regime, assuming a perfect test sensitivity and test specificity [see
Supplementary Material for implementation of a multi-state
setup under an imperfect test regime (26)]. Based on infestation
status and test adoption decisions taken the previous year, a farm
may be at high, medium, or low risk of infestation this year. In the
model, last year’s decisions and infestation status determine the
decisions the farmer takes this year, and along with the resulting
farmer payoffs.

To determine the payoffs, we used epidemiological parameters
and estimated costs associated with sheep scab prevalence, which
were derived from the literature (2, 5, 11) and are summarized
in Tables 1, 2. Traditional treatment costs were obtained for two
different treatments, organophosphate plunge dipping and an

FIGURE 2 | A simple stochastic game for resource competition. The players’ pure strategy set is to be “Moderate” or “Greedy.” For s < 1, state 2 is the low resource

state and state 1 the high resource state. Each quadrant contains the payoffs to each player, plus annotated arrows. The straight arrows are annotated with the

probability of moving to the alternative state and the curved arrows are annotated with the probability of remaining in the current state.
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FIGURE 3 | The solution to a simple stochastic game representing resource competition showing the Nash equilibrium (blue triangles) and social optimum (red

triangles). The states of the stochastic game are a high resource and low resource state and the pure strategies available to the players are to in either state to either

be a Greedy or Moderate user of the resource. The solutions shown in (A–E) correspond to s = 1.0, 0.8, 0.6, 0.4, and 0.2 where s is the parameter determining the

payoff in the state 2 (the low resource state) relative to the payoff in the high resource state.
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TABLE 1 | Sheep scab economic costs and epidemiological parameters derived

from literature.

Parameter Description Default

value

Source

CDiag Cost per head of clinical

diagnosis (£100 per flock)

0.21 ADAS (2)

CTest Cost per head of new subclinical

test (£160 per flock)

0.33

CTreat (dipping) Cost per head of dipping 0.61 ADAS (2)

CTreat (injected) Cost per head of injecting 0.65 ADAS (2)

Subclinicalseverity Fraction of revenue lost in

subclinical infestation relative to

clinical infestation

0.15 ADAS (2)

Diseasecost Disease cost per clinical

infestation

6.54 ADAS (2)

φ1 Proportion of flock becoming

infested (subclinical or clinical)

132/160 Burgess et al.

(11)

φ2 Proportion of flock progressing

to clinical infestation

27/160 Burgess et al.

(11)

TABLE 2 | Assumed or derived parameters.

Parameter Description Default value

CTest Cost of new subclinical test 1.6*CDiag

RH Revenue from a healthy animal 20

RC Revenue from clinical animals RH – DiseaseCost

RS Revenue from a subclinical animal RH– SubclinicalSeverity
DiseaseCost

RTT Revenue from treated animal 0.8 RH+ 0.2RS

θL Probability of flock being infested in

the low risk state

0.0138 [fitted to Rose et al.

(5)]

θH Probability of flock being infested in

the high risk state

0.585 [fitted to Rose et al.

(5)]

θM Probability of flock being infested in

the medium risk state

0.5(θL + θH )

injectable formulation using a macrocyclic lactone. Subsequent
results are presented for the slightly cheaper option of dipping.

The cost associated with the traditional approach of
diagnosing at the subclinical stage is the vet’s call-out fee
(assumed to be £100 per flock). The cost associated with using the
new subclinical diagnostic test is assumed to be the vet’s call-out
fee plus an additional £60 per flock (27). Costs per head inTable 1
are derived from reported flock costs (2). Thus, the new test is
1.6×more expensive than the status quo clinical diagnosis cost.

Note that the values for the stage payoffs are determined by
what the farmer perceives his risk of infestation to be, which
may not be an accurate reflection of reality. We considered four
scenarios for the test-adoption game:

1) The farmer’s flock is uninfested and he does not adopt the
new ELISA test with payoff

2) The farmer’s flock is infested and he does not adopt the test.
3) The farmer’s flock is uninfested and he does adopt the new

ELISA test.

4) The farmer’s flock is infested and he does adopt the new
ELISA test.

Expected Payoffs
Under scenario 1, the payoff P1is represented by P1 = RH.

Under scenario 2, a proportion of the farmer’s flock (ϕ1 –
ϕ2) will be subclinically infested with revenue RS, of which
proportion ϕ2progresses to clinical infestation with revenue RC.
At this point infestation will be identified and the whole flock will
be treated at cost CTreat . Therefore, under scenario 2, the farmer’s
payoff, P2, would be

P2 = (1− ϕ1)RH + (ϕ1 − ϕ2)RS + ϕ2RC −
(

CDiag + CTreat

)

Under scenario three, the test costs CTest are included for the
calculation of the stage pay-off P3, where

P3 = RH − CTest

Under scenario 4, using the diagnostic test and treating infested
animals prevents the flock from progressing to the clinical state.
Assuming revenue from flock RH and test and treatment costs
CTest and CTreat , the stage payoff, P4 will be

P4 = (1− ϕ1)RH + ϕ1RTT − (CTest + CTreat) .

Calculating Expected Payoffs
Another consideration is that because the farmer does know
whether his flock is infested or not, he derives his decision to
adopt the test or not from what he anticipates his payoff to be.
Here, we assume that the farmer is risk neutral and therefore that
expected payoffs are a linear combination of the payoffs for an
infected and uninfected flock. For instance, suppose he thought
there was 30% chance (probability of 0.3) that his flock is infected
(i.e., a 70% chance or 0.7 probability that it is uninfested). If he
decides to adopt the test, his anticipated (or expected) pay-off
would be a weighted average of that under scenarios 3 and 4 i.e.,
the expected pay-off would be 0.7P3 + 0.3P4. In general, if the
farmer thinks his flock has a probability θ of being infested and
he does adopt the test, his expected pay-off is

(1− θ)P3 + θP4

Conversely, if the farmer thinks his flock has a probability θ

of being infested, and he does not adopt the test the expected
pay-off is

(1− θ) P1 + θP2.

Risk of Infestation and Payoff Matrices
Wedistinguish the 3 states by the probability θK of the flock being
infested in each state with state probabilities θK={θL, θM , θH}
denoting the low, medium and high risk states, respectively.

The payoffmatrices stating the expected payoffs (the weighted
mean across the uninfested and infested scenarios) for a given
action in a given state (θL, θM , θH) are defined in Table 3.

The infestation probabilities, θL and θH were estimated by
fitting a Markov chain (see Supplementary Material) to 10 years
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TABLE 3 | Payoff matrix stating the expected payoffs for a chosen action in a

given state (θL, θM, θH ), where θK represents the probability of the flock being

infected in low, medium, and high risk states, respectively (θK= {θL, θM, θH}).

Farmer 2

Risk state Does not adopt Adopts

Farmer 1

Does not adopt (1 – θK )P1 + θKP2,

(1 – θK )P1 + θKP2

(1 – θK )P1 + θKP2,

(1 – θK )P3 + θKP4

Adopts (1 – θK )P3 + θK P4,

(1 – θK )P1 + θK P2

(1 – θK )P3 + θK P4,

(1 – θK )P3 + θK P4

of historical sheep scab outbreak data in the UK, comprising
approximately 400 farms in total (5). The data available for
these farms was their current infection status and the number
of outbreaks in the previous 10 years [illustrated in Figure 1 of
(5)]. A Markov chain was simulated for a pair of farms in which
the probability of infestation is low (θL) if neither were infected
in the previous year, or high (θH) if one or both were infested in
the previous year. Maximum likelihood was used to determine
the values of θH and θL that provided the best fit to the observed
distribution of outbreaks. This model fitting therefore exploits
the temporal autocorrelation in these data. No information on
θM

1 could be obtained as the subclinical test was not in use. Thus,
θM was set equal to the mean of θH and θL.

Outcome Probabilities
In order to decide whether the farmers will consider themselves
in a high, medium, or low risk state next season depends on
the possible outcomes for this season which in turn depend on
the farmers’ actions. At the end of the season, the four possible
outcomes (allowing for an imperfect test) for a flock are:

(1) clinical infestation is observed and treated,
(2) subclinical infestation is correctly identified with the new test

and treated,
(3) subclinical infestation is incorrectly identified with the new

test and treated, and
(4) the absence of infestation is correctly identified.

Outcome 1 (clinical infestation is observed and treated) will
occur if a flock is infected and also progressed to clinical
infestation without the farmer having tested the flock. Outcome
2 (subclinical infestation is correctly identified and treated) will
happen if the flock was infected and tested positive. Outcome
3 (subclinical infestation is incorrectly identified) will occur if
the flock was uninfected and testing results in a false positive.
Outcome 4 (no infestation is observed) will happen if the flock
is uninfected and testing returns no false positives.

Given the probability θ of a flock being infected, A1(θ), A2(θ),
A3(θ), and A4(θ) represent the probabilities of outcomes 1, 2, 3,
and 4 if the farmer adopts the test. Similarly, DA1(θ), DA2(θ),
DA3(θ), and DA4(θ) represent the probabilities of outcomes 1, 2,
3, and 4 if the farmer does not adopt the test.

1A farm is at a medium risk of infestation if sheep scab was diagnosed using the

new test and then treated at the subclinical stage.

Here, we specify the vectors A(θ) and DA(θ) for the case of
a perfect test. If the farmer does not adopt the test, infestation
can only be identified at the clinical stage. Thus, the only possible
outcomes are 1 (clinical infestation) and 4 (no infestation)
which occur with probabilities θ and 1–θ . If the farmer does
adopt the test, the only possible outcomes are 2 (subclinical
infestation identified) and 4 (no infestation) which again occur
with probabilities θ and 1–θ , respectively. Thus, the vectors of
outcome probabilities for adopting the testA(θ) and not adopting
the test DA(θ) are

A (θ) =









0
θ

0
1− θ









,DA (θ) =













θ

0
0

1− θ













.

Transition Probabilities Between High,
Medium, and Low Risk States
The outcomes described above determine whether a farmer is in
a high, medium, or low risk state next season. In other words,
the outcomes determine the probabilities of transitioning to the
high, medium or low risk state. We assume that H, M, and L are
4 × 4 matrices, which satisfy Lij + Mij + Hij =1. Lij gives the
probability of transition to the low risk state next season given
outcome i for the farm 1 and outcome j for the farm 2. Similarly,
Mij gives the probability of transition to the medium risk state
next season given outcome i for the farm 1 and outcome j for
farm 2.Hij gives the probability of transition to the high risk state
next season given outcome i for the farm 1 and outcome j for the
farm 2.

One option for specifying H, M, and L is as follows: We
assume that if either farm experiences clinical infestation (i or
j = 1), both farms transition to the high-risk state next year,
represented as follows:

1 2 3 4

H =









1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0









1
2
3
4

We assume that if either farm correctly identifies subclinical
infestation but neither clinical infestation (i = 2, j 6= 1 or j =
2, i 6= 1), both farms transition to the medium-risk state next
year, represented as follows:

1 2 3 4

M =









0 0 0 0
0 1 1 1
0 1 0 0
0 1 0 0









1
2
3
4

If both farms are uninfested or they incorrectly identified
subclinical infestation (i= 3 or 4, j= 3 or 4) both farms transition
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to the low risk state next year, represented as follows:

1 2 3 4

L =









0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1









1
2
3
4

Hence, the transition probabilities for the stochastic game are:

H =









1 1
1 0

1 1
0 0

1 0
1 0

0 0
0 0









M =









0 0
0 1

0 0
1 1

0 1
0 1

0 0
0 0









L =









0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 1









As an example, consider a scenario in which neither farmer
adopts the test. Suppose farm 1 had outcome i and farm 2 had
outcome j, then the probability of this combination is DAi(θH)
× DAj(θH). Therefore, the probability of these observations
and followed by transitioning to the high-risk state next season
would be

DAi (θH) DAj (θH) Hij

Thus, the overall probability of transition to the high-risk state
will be obtained by summing over all i and j, i.e.,

4
∑

i=1

4
∑

j=1

DAi (θH)DAj (θH)Hij

or, equivalently,

4
∑

i=1

DAi (θH)

4
∑

j=1

HijDAj
(θH)

Given that Hij refers to the elements of a 4 × 4 matrix H and
DAi(θH) are the elements of a vector DA(θH) of length 4, the
sum over i and j is equal to multiplying the vectorDA(θH) by the
matrixH and then multiplying the result by vectorDA(θH) i.e.,

DA (θH)H ·DA (θH)

Accordingly, for the complete stochastic game, the final payoff
matrices and transition probabilities for the high risk state (blue),
medium risk state (orange), and low risk state (green) are defined
in Table 4. Note that the risk of being infected takes on θK={θL,
θM , θH}, depending on the respective risk state of the farm last
year, and H (high risk), M (medium risk), and L (low risk)
represent the state-specific transition matrices.

RESULTS

We first examined the test adoption decision for each assumed
risk state (high, medium, low) in terms of the Nash equilibrium
and as a function of the extent to which farmers value future
profits. This is captured in terms of the discount factor β . When
β = 0, only immediate returns (i.e., within the season) factor

TABLE 4 | Matrix notation of the complete stochastic game.

For each strategy (adopts/does not adopt) chosen by each farmer (row values = Farmer

1; column values = Farmer 2), the upper triangle depicts the respective payoffs, whereas

the lower triangle state the probabilities of transitioning to another risk state, shown in

blue for transition to the high-risk state, orange for the medium-risk state and green for

the low-risk state. Here, H, M, and L represent the transition matrix for each individual

risk state (high, medium, low), which is multiplied by each farm’s outcome vector of either

adopting the ELISA test [A(θK )] or not adopting the test [DA(θK )].

into the farmers’ decision and can be thought of as a short-term
outlook; at the other extreme, when β = 1, all future returns
are valued equally and can be thought of as taking a long-term
outlook. At intermediate values of β , the further into the future a
payoff comes, the less it is valued.

When applying realistic economic and epidemiological
parameters and an assumed cost for the new ELISA test of around
50% more than the status quo clinical diagnosis cost, we found
that test adoption depends on the farmer’s assumed infestation
status (see Figure 4). Whenever a farmer considers their farm to
be at high risk, i.e., if either farm had been diagnosed with clinical
sheep scab the previous year, the diagnostic test will always be
adopted. Whenever a farmer considers their farm to be at low
risk, i.e., if neither farm had sheep scab the previous year, the test
will never be adopted. However, when a farmer considers their
farm to be at medium risk i.e., if either farm used the new ELISA
test to diagnose and treat animals at the subclinical stage in the
previous year, test adoption depends on the discount factor. In
this case, mixed adoption can also be observed, meaning that the
farmer will adopt the test with some probability between 0 and 1.

These outcomes are relatively robust toward the cost of the
new ELISA test (see Figure 5A). The test costs would need to
more than double before test adoption is not always observed in
the high-risk state (see Figure 5B), and would need to be very
low before test adoption can be seen in the low-risk state (see
Figure 5C).

We found that the Nash equilibrium strategy does not always
match the social optimum. For the same parameters as for
Figure 4 (i.e., a new ELISA test cost 1.5× that of the status
quo clinical diagnosis cost), in the high and low-risk states
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FIGURE 4 | The Nash equilibrium probability in each of the three states (high, medium, and low risk) of adopting the new ELISA test when the cost is 1.5× the status

quo clinical diagnosis cost, as a function of the discount factor.

the strategies associated with the Nash equilibrium and social
optimum agree; in the medium-risk state however, test adoption
for the social optimum occurs at lower values of the discount
factor than for the Nash equilibrium (Figure 6).

The test adoption decision determines the amount of time
spent by the farms in the high-, medium-, and low-risk states
(Figure 7). At the Nash equilibrium (Figure 7, blue triangles),
compared to the status quo (Never adopt), less time is spent in the
high-risk state, and more time spent in the medium and low-risk
states. Compared to the Nash equilibrium, the social optimum
(Figure 7, red triangles) either equals the Nash equilibrium or
improves upon it by spending less time in the high-risk state and
more time in the medium- and low-risk states.

The epidemiological impacts can be observed in terms of the
decrease in the proportion of infected farms when going from
the status quo “Never adopt” (with a corresponding baseline
proportion of infected farms of just under 0.1) to either the
Nash equilibrium (Figure 8, blue triangles) or social optimum
(Figure 8, red triangles), either of which result in a reduction in
the proportion of infected farms of around a half.

Contrasting the extreme cases of a discount factor of 0 (a
short-term outlook) and a discount factor of 1 (a long-term
outlook), shows the epidemiological outcome to be relatively

robust to the discount factor. Under test adoption in the high-risk
state only, the best strategy for a short-term outlook (Figure 9A,
highlighted in red), the annual incidence rate is expected to
drop to around 5%. If farmers take a long-term outlook and
choose to also adopt the new ELISA test in the medium-risk
state, the annual incidence rate is expected to drop further to 4%
(Figure 9B, highlighted in red).

The expected profits per head are greatest for the strategy
of adopting the test in the high and medium risk state (the
Nash equilibrium and social optimum for the long-term outlook;
Figure 10). The gains are relatively small, but nevertheless these

results show that substantial reductions in annual incidence can
be achieved without increasing costs to the farmer.

DISCUSSION AND FUTURE WORK

The transmission and control of infectious diseases strongly
depends on both the individual and joint decisions people make
with regard to control measures and treatments. In this paper,
we applied a game-theoretic model to examine the outcome of
strategic interactions between neighboring farms, surrounding
decisions to adopt a diagnostic test. The term strategic interaction
is used because each farmer’s decision and payoff depends on the
decision made by their neighbor.

Specifically, the game-theoretic model applied in this paper
was a stochastic game used to assess whether farmers are likely
to adopt the new P. ovis diagnostic ELISA test for subclinical
sheep scab and how this decision depends on whether a farmer
considers their farm at high-, medium- or low-risk of infestation
as well the costs and benefits of adopting the new test. Via the
discount factor, a stochastic game also allows us to account for
farmer preferences in terms of whether they take a short-term or
long-term outlook and correspondingly whether they only factor
immediate payoffs into their test adoption decision, or whether
they factor in future benefits.

In Scotland, the status quo is that sheep scab diagnosis happens
through skin scraping by a veterinary surgeon. The costs are
assumed to come from just the veterinary surgeon call-out fee
(here assumed to be £100 per flock), without a laboratory fee
as this is currently paid for by the Scottish Government. The
cost associated with using the new subclinical diagnostic test is
assumed to be the vet call out fee plus laboratory costs (here
assumed to be £60 per flock, assuming 12 animals are tested at £5
each). Thus, our assumptions here are that using the new ELISA
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FIGURE 5 | The Nash equilibrium probability in each of the three states (high, medium, and low risk) of adopting the new ELISA test as a function of the discount

factor for different multiples of the status quo clinical diagnosis cost (A) medium test costs, shown for multiples of 1.4×, 1.5×, 1.6×, 1.75×; (B) high test costs,

shown for multiples of 4×, 5×, 10×; and (C) low test costs, shown for multiples of 0.075×, 0.07×, 0.065×, 0.06×.

test would come to around £160 per flock vs. the £100 per flock
for the status quo clinical diagnostic test.

We analyzed the test adoption outcomes (Nash equilibria) and
showed that that they are strongly-dependent on the assumed risk
state (high, medium, low), and also that they are modulated not
just by the costs of the new diagnostic test but also by how much
short-term profits are preferred over long-term benefits. When
applying realistic economic and epidemiological parameters and
using an expected test cost of around 50% more than the current
clinical diagnosis via skin scraping, we observed test adoption in
the high-risk state, no test adoption in the low-risk state, and

mixed strategies in the medium risk state that depended on the
preference for short-term over long-term profits. We found the
outcomes in terms of test adoption to be relatively robust to the
cost of the test, with substantial increases or decreases in test cost
required to change the overall pattern of test adoption.

Individual decisions in game-theoretic models are based on
assumptions of rational self-interest and do not necessarily
correspond to a socially optimal outcome. However, in our
analysis, we found that test adoption decisions at the Nash
equilibrium were socially optimal for most calculated outcomes.
Specifically, whenever a farmer considered their farm to be at
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FIGURE 6 | The Nash equilibrium (blue triangles) and the social optimum (red triangles) for a test cost 1.5× that of the status quo clinical diagnosis cost, as a function

of the discount factor.

FIGURE 7 | Proportion of time spent in the high-, medium-, and low-risk states for the Nash equilibrium (blue triangles), for the social optimum (red triangles), the

status quo solution “Never adopt” and the solution “Always adopt” for test costs 1.5× that of the status quo clinical diagnosis cost, as a function of discount factor.

high risk based on last year’s infestation status of themselves or
their neighbor’s they always chose to adopt the new diagnostic
test. Analogously, whenever a farmer considered their farm to be
at low risk given that neither farm had sheep scab the previous
year, the test was never adopted. For our default parameters—
an expected test cost of around 50% more than the current
clinical diagnosis via skin scraping—we found discrepancies
between the Nash equilibrium and the social optimum in the
medium risk state, for intermediate values of the discount factor
(the parameter specifying the preference for short-term over
long-term gains). One reason for this is that adopting the
new diagnostic test is freely chosen by the individual farmers
and individual choices do not necessarily align with the public
interest. Also, some individuals may free-ride on the protection
provided by their neighbor, which is at odds with the socially
optimal outcome. In light of this any new policy intervention
promoting the use of the new diagnostic ELISA must address

the divergence between private and public consequences of
actions and, ideally, motivate individual free choice toward a
social optimum (28). This could be achieved for example by
offering private incentives and encouraging cooperative schemes
among farmers.

However, when viewing the outcomes in terms of the
prevalence of infestation, we see that the outcomes are largely
robust to whether the Nash equilibrium or social optimum is
adopted. The primary benefits are seen in the drop in prevalence
from the baseline of just under 10% to around 5% following
adoption of the test in the high-risk state, or 4% following
adoption in the high- and medium risk state.

The financial benefits to the farmer are not substantial;
however, what these results show is that substantial reductions
in sheep scab incidence should be achievable without additional
costs to the farming community. Moreover, the results suggest
that the primary goal should be to facilitate test adoption amongst
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FIGURE 8 | The proportion of infected farms at equilibrium for the Nash

equilibrium (blue triangles), the social optimum (red triangles), the status quo

“Never adopt” and the solution “Always adopt” for a test cost 1.5× than the

status quo clinical diagnosis cost, as a function of the discount factor.

farms at high-risk of infestation, as this would providemost of the
epidemiological benefits.

However, there are limitations to this modeling framework.
Firstly, the framework does not account for the fact that the
external risk to farms should decline as the expected prevalence
of infestation in the farms adopting the test declines. Whilst
capturing this would be desirable, it is not something that
can readily be done within the stochastic game framework.

We therefore view our results as a conservative assessment

of the benefits of the adopting the test, since widespread
adoption would reduce the external risk to farms. Thus,

cooperative behavior among the farming community should

provide additional benefits, first by encouraging the social
optimum rather than just the Nash equilibrium outcome,

and secondly, by reducing the external risk of infestation
and therefore the expected prevalence of infestation following

widespread test adoption.
A second limitation is that the model considers a two-farm

system only and the above scenario of widespread adoption

should ideally be assessed by extending the analysis to include

multiple farms as well as multiple farmer strategies. In this paper
we chose to examine this simple two-farm set-up in order to allow

FIGURE 9 | Annual incidence rate for (A) a short-term outlook (discount rate, β = 0) and (B) a long-term outlook (discount rate, β = 1) under alternative scenarios for

adoption of the new ELISA test: the status quo (i.e., never adopting the test); always adopt the test (irrespective of risk state); adopt the test only in the high risk state;

and adopt the test in the high and medium risk state. When β = 0, the Nash equilibrium and social optimum coincide (shown as red bar) and are to adopt the test in

the high risk state (see Figure 6). When β = 1, the Nash equilibrium and social optimum coincide (shown as red bar) and are to adopt in the high and medium risk

states (see Figure 6).
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FIGURE 10 | Expected profits per head for a long-term outlook (discount rate, β = 1) under alternative scenarios for adoption of the new ELISA test: the status quo

(i.e., never adopting the test); always adopt the test (irrespective of risk state); adopt the test only in the high risk state; and adopt the test in the high and medium risk

state. In this case of the long-term outlook, the Nash equilibrium and social optimum coincide at test adoption in the high and medium risk state (shown in red).

a game-theoretic approach. However, to capture multiple farms
with realistic farm to farm heterogeneity and features such as
explicit import of infested sheep (as opposed to capturing this via
the fixed background risk) would require a much more flexible
framework. Such future work would be more amenable to an
agent-based approach, following, for example (29). This could
offer a more flexible and potentially more realistic approach
for modeling individual farmer decisions that allows farmers to
learn from their infestation history, risk status, and past payoffs.
The approach in this paper necessarily assumes a perfect mixing
of populations, and is not able to capture farm heterogeneity
and differences in behavior, not only socially but also in terms
of spatially-driven interactions. Particularly for the latter, where
players interact with their immediate neighbors more than with
randomly chosen individuals and the payoff becomes a function
of the risk state and preferred choices of more than two players,
agent-based methods on a network or a grid-based scenario
provide a potential next step.

Third, the costs used in these analyses were current at the
time of publication of the ADAS report and some changes may
have occurred. Nevertheless, the robustness of the results to test
cost would suggest that we would expect a similar picture with
current figures.

It should also be noted that the results shown here assume
a test with perfect sensitivity and specificity—a reasonable
assumption given that estimates for flock level sensitivity and
specificity are very high at 0.98 and 0.97, respectively. However,

the framework can be used in the case of an imperfect test (as
described in the Supplementary Material). When we assume
an imperfect test, we obtain broadly similar results, albeit
with slightly lower payoffs and slightly higher incidences of
infestation. Small improvements in outcome were observed for
a scenario in which the farmer does not know that the test is
imperfect, vs. a scenario whereby the farmer is assumed to be
able to captured changes to payoffs due to an imperfect test in
the calculation of the Nash equilibrium.

In summary, we have presented a novel use of a stochastic
game which provides advantages over the more commonly
used static games [e.g., (21)], especially in an epidemiological
context where it is useful to be able to capture dynamic changes
in risk. Together our findings provide strong support for the
new diagnostic test whilst also indicating that further benefits
could be accrued through flock health schemes that encourage
and facilitate cooperation between farmers. Our key finding
however, remains that adopting the new diagnostic ELISA test
for subclinical sheep scab could significantly reduce prevalence
of sheep scab and improve animal welfare in a cost-neutral way
to the industry.
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