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Abstract

When classification methods are applied to high-dimensional data, selecting a

subset of the predictors may lead to an improvement in the predictive ability of

the estimated model, in addition to reducing the model complexity. In Func-

tional Data Analysis (FDA), i.e., when data are functions, selecting a subset

of predictors corresponds to selecting a subset of individual time instants in

the time interval in which the functional data are measured. In this paper, we

address the problem of selecting the most informative time instants in multivari-

ate functional data, a case much less studied than its single-variate counterpart.

Our proposal allows one to use in a very simple way high-order information

of the data, e.g. monotonicity or convexity by means of the functional data

derivatives. The aforementioned problem is addressed with tools of Global Op-

timization in continuous variables: the time instants are selected to maximize

the correlation between the class label and the Support Vector Machine score

used for classification. The effectiveness of the proposal is shown in univariate

and multivariate datasets.
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Vector Machines

1. Introduction

Real-time information monitoring has become extremely popular thanks to

the technological advances witnessed in recent years. Consequently Functional

Data Analysis (FDA), [18, 38, 39], has become an outstanding field in many

real-world areas. See [7, 10, 32, 34, 40] for applications in physical and chemical5

processes, spectrometry, meteorology, or speech recognition, among others.

FDA can be seen as a generalization of the standard multivariate analysis, where

the data are (multivariate) functions of a continuous parameter instead of vec-

tors in a finite dimensional space. A multivariate functional datum is defined

as a finite dimensional vector where each component is a univariate function.10

A simple approach to handle functional data consists of the discretization of

the multivariate observed function to then apply multivariate techniques to the

resulting vector. Nevertheless, functional data are intrinsically infinite dimen-

sional and have properties that differentiate them from multivariate data. In

fact, the direct use of the standard multivariate methodologies shows severe lim-15

itations. For instance, multivariate analysis is not able to deal with situations

where the curse of dimensionality appears, i.e. when the number of covariates

is larger than the number of individuals. On the other hand, although theoreti-

cally functional data are infinite dimensional, in practice they are discretized in

a grid of points, yielding high dimensional vectors with larger cardinality than20

the number of records. Therefore, some issues may appear when solving such

type of instances. Furthermore, the strong correlation between two consecutive

points of the functions, which is an intrinsic characteristic of functional data,

may not be adequately considered in traditional multivariate analysis proce-

dures.25

Many efforts have been done in the literature to extend the multivariate tech-

niques to FDA, mostly for univariate functional data, and specific problems such

as clustering [24] and PCA [3] Hence, it is desirable to promote the development
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of new tools which exploit the functional structure of the multivariate functional

data.30

In this paper, we address the problem of classifying multivariate functional data

into two prefixed classes by using the information provided by a training sample

[18]. Classifiers will be based on the benchmark supervised classification tool

Support Vector Machines (SVM), [32, 34, 40]. For other classification techniques

used with functional data, the reader is referred to [18, 37] and [1] for a survey.35

Functional data classification entails some difficulties associated with the high

computational costs, and the introduction of redundancy and noise from mea-

surement errors, which may deteriorate the correct classification rate. Since

functional data are intrinsically infinite dimensional data, it is thus useful to

select the time instants providing the most relevant information of the data,40

i.e., to perform variable selection.

Advantages of the variable selection are highlighted in what follows. First, in-

terpretability may be enhanced and monitoring costs may be reduced if just a

few time instants capable of discriminating the behavior of functional data are

considered instead of the full time interval. Second, variable selection may lead45

to a better performance of the classifier. The reduction of dimensionality of

the (discretized) functional data may result in a better classification, since the

correlation between features (time instants) may negatively affect classification

rates.

The feature selection problem has been widely studied in the multivariate data50

literature. See for instance the surveys [27], the papers [2] addressing classifi-

cation problems, [33] for regression, and [28] for clustering. Particularly, some

references in very high-dimensional problems such as cancer detection via gene

expression data, must be mentioned. The work of [36] presents a theoretical

and practical framework for feature selection based on a conditional mutual in-55

formation criterion. [35, 50] focus on the chemotherapy effectiveness problems

solved by means of ranking (SVM-RFE) and fuzzy if-then rules, respectively.

Moreover, the paper of [31] combines a Difference of Convex functions Algo-

rithm (DCA) with a double-regularized SVM formulation to select the most
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important features.60

Dimensionality reduction techniques, based on the projection of the functional

data on lower-dimensional spaces have also been considered. These include,

among others, Functional Principal Component Analysis (FPCA) [30], Partial

Least Squares (PLS) [37], and B-splines functions [47]. For other dimension-

ality reduction techniques in functional data, see [48]. In this paper, however,65

we focus on a different approach of dimensionality reduction based on variable

selection. Our goal is, as mentioned before, to select the most informative time

instants in order to obtain good classification rates. In such a context of variable

selection, some regression papers should be mentioned. In [49] for instance, the

standard LASSO and Dantzig selector procedures are proposed. Moreover, [25]70

focuses on the interpretability of the coefficient function, whereas [17] work with

nonlinear models.

On univariate functional classification, some multivariate techniques have been

directly applied to select the relevant features. This is the case, for example,

of [22] where new covariates, e.g. mean, maximum and minimum value, are75

extracted from the functional data in order to select the most important vari-

ables based on a mutual information criterion. In the work in [29], one single

time instant is sought. As admitted in the paper, it is not possible to generalize

their methodology to search a set of more time instants. With respect to the

selection of time instants, we should emphasize the recent works of [4, 6, 43, 44],80

where greedy approaches, yielding local optima, are used. These papers follow a

combinatorial approach: such time instants are assumed to belong to the finite

set of instants at which actual measurements exist.

Variable selection for multivariate functional data has not been analyzed in the

literature, to the best of our knowledge. Therefore, the main contribution of85

this paper is to provide a new strategy able to seek the most informative time

instants to achieve good classification rates in multivariate functional data. Con-

trary to what is usually done in the literature, [4, 6, 43, 44], we consider the

time as a continuous variable, and we search for the global solution using a

surrogate of the number of misclassified data, namely the correlation between90
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the SVM score and the actual class. See [41, 44] for a deeper analysis. Finding

such optimal time instants amounts to solving a continuous smooth optimization

problem. Moreover, our algorithmic strategy is improved thanks to the defini-

tion of nested models of increasing complexity, following the idea in [8, 11].

Finally, our approach involves a framework which can accommodate from one to95

several functions, allowing one to address in the very same way univariate and

multivariate functional data. In particular, one can easily include in the model

high-order information (monotonicity, convexity, ...) by replacing each single-

variate functional datum by a multivariate functional datum, corresponding to

the functional datum itself and its derivatives. The information provided by100

the derivatives has been utilized in the clustering context, [23], with outstand-

ing results.

The remainder of this paper is structured as follows. Section 2 explains the

details of the SVM model applied to functional data. In Section 3 the opti-

mization method used in our approach, as well as the solving strategy and some105

improvements of the method, are detailed. Section 4 is focused on the numerical

experiments, and finally, Section 5 is devoted to present some conclusions and

extensions.

2. Variable Selection with Functional SVM110

In this section, the SVM problem for multivariate functional data is intro-

duced. For a deeper analysis of SVM, the reader is referred to [14]. Section 2.1

explains the notation used in this paper and details how the high-order infor-

mation can be included in the multivariate data structure. In Section 2.2 the

basic concepts of the linear and nonlinear SVM are explained. Finally, Section115

2.3 is devoted to the details of the kernel function employed along this work.

2.1. Some Notation and High-Order Information

We assume given a sample s of individuals, where each instance i ∈ s is

associated to the pair (Xi, Yi). The datum Xi ∈ X = Fp is composed by
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p functional features, i.e. Xi = (Xi1(t), . . . , Xip(t)), with Xiv : [0, T ] → R,

v = 1, . . . , p belonging to the class F of d−times continuously differentiable

functions on the time interval [0, T ]. Furthermore, Yi ∈ {−1,+1} denotes the

class label of the observation i ∈ s. Our aim is to find a classification rule which

allows us to infer the class Y of a new functional observation X ∈ X .

It is worthwhile to mention that our methodology is not only restricted to pure

multivariate functional data. Indeed, the approach here proposed can be directly

applied to univariate functional data, X(t) ∈ F . More specifically, apart from

the straightforward case in which one just considers p = 1, we can also make a

pre-processing which transforms the univariate data into multivariate by taking

advantage of the high-order information throughout the usage of the derivatives

of X. This process yields data of the form:

(X(t), X ′(t), . . . , Xd)(t)), (1)

where Xd)(t) denotes the d−th derivative of X(t). Moreover, the information

provided by the derivatives can also be added to the pure multivariate functional

case, yielding

(X1(t), . . . , Xp(t), X
′
1(t), . . . , X ′p(t), . . . , X

d)
1 (t), . . . , Xd)

p (t)), (2)

The numerical experience in Section 4 shows that the high-order information

will be crucial in the classifier performance.

120

2.2. SVM Classification for Functional Data

Regarding the SVM classification, when the instances in the training sample

are linearly separable, SVM provides an optimal hyperplane 〈w, Xi〉 + b, sep-

arating both classes, where w ∈ X , b ∈ R and 〈·, ·〉 denotes the inner product

in the functional space X . Such hyperplane is obtained by maximizing the so

called margin, i.e. the distances to the closest positive and negative training

data. The maximal margin is provided by the element w with minimum norm

such that Yi (〈w, Xi〉+ b) ≥ 1, ∀i ∈ s. Furthermore, since perfect classification
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of the training sample is quite rare, some classification errors are allowed thanks

to the artificial variables ξi introduced for all i ∈ s. In that case, the optimal

solution of the linear SVM is obtained by solving the following optimization

problem: 
min
w,b,ξ

〈w,w〉+ C
∑
i∈s

ξi

s.t. Yi (〈w, Xi〉+ b) ≥ 1− ξi, i ∈ s,

ξi ≥ 0, i ∈ s

(3)

The parameter C is a regularization parameter, to be tuned, that penalizes the

existence of misclassified observations in the training sample [45]. Larger val-

ues of C yield smaller-margin hyperplanes, whilst smaller values of C result in

larger-margin hyperplanes, even if they misclassify more data. In order to tune125

the parameter C, k-fold crossvalidation with a grid search on a sufficiently large

interval is usually applied. See [13] for further information.

The procedure above defines a linear classification rule: given w, optimal solu-

tion of (3), a score Ŷ (X) = 〈w, X〉 is associated to each functional data X, and

thus X is classified in class +1 if and only if Ŷ (X) > β, where β is a prefixed130

threshold value. To gain versatility in the procedure, records are mapped to a

higher dimensional space by a nonlinear feature map, and a so-called kernel K

is defined in the space of functions X , [45]. Instead of solving (3), the following

quadratic concave maximization problem with linear constraints is solved:


max
α

∑
i∈s

αi − 1
2

∑
i,j∈s

αiαjYiYjK(Xi, Xj)

s.t.
∑
i∈s

αiYi = 0

αi ∈ [0, C], i ∈ s,

(4)

This way, a nonlinear classification rule is obtained: given α, optimal solution

of (4), a score Ŷ (X) in (5) is associated with each functional data X,

Ŷ (X) =
∑
i∈s

αiYiK(X,Xi), X ∈ X , (5)

and thus X is classified in class +1 if and only Ŷ (X) > β.135
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2.3. Kernel Function

Several kernel functions have been proposed in the literature for finite di-

mensional data, e.g., the linear kernel, [14], the polynomial kernel, [34, 40], or

the Gaussian (RBF) kernel, [11, 14].

Let H, p ≥ 1 be integers, and consider a kernel K̃ : RHp × RHp −→ R. Given

a vector t = (t1, . . . , tH) of H time instants in [0, T ], we can define a kernel K

for p−variate functional data Xi = (Xi1, . . . , Xip) ∈ X by taking into account

the values of each functional record Xv at time instants t1, . . . , tH , namely,

K(Xi, Xj , t) = K̃((Xi(t1), . . . , Xi(tH)), (Xj(t1), . . . , Xj(tH))), Xi, Xj ∈ X

For instance, from the Gaussian kernel K̃,

K̃((f11, . . . , f1p, . . . , fH1, . . . , fHp),

(g11, . . . , g1p, . . . , gH1, . . . , gHp)) = exp

(
−

p∑
v=1

H∑
h=1

ωv (fhv − ghv)2
)

one obtains the following Gaussian kernel K for p−variate functional data

K(Xi, Xj ,ω, t) = K̃((Xi1(t1), . . . Xip(t1), . . . , (Xi1(tH), . . . Xip(tH)), (6)

(Xj1(t1), . . . Xijp(t1), . . . , (Xj1(tH), . . . Xjp(tH)))) =

= exp

(
−

p∑
v=1

H∑
h=1

ωv(Xiv(th)−Xjv(th))2

)
, Xi, Xj ∈ X .

In this paper, for simplicity, we only focus on the Gaussian kernel, since it

is one of the most used and effective kernels, but the methodology proposed is

easily extended to other classes.

Hence, our objective is to select the time instants that provide the most relevant

information for discriminating between the two groups. A global optimization

approach for this selection will be proposed in the next sections. Two types of

parameters are to be tuned: the vector, t = (t1, . . . , tH), such that

0 ≤ t1 ≤ . . . ≤ tH ≤ T (7)
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and the parameters associated to the SVM problem (4), i.e. the regularization

parameter C and the bandwidth ω. Extra constraints over the parameters can

be easily imposed in the optimization problem. For instance, if we want the H

time instants to be far apart from each other, we may add the constraints

th+1 ≥ th + δ, h = 1, . . . H − 1

for some fixed δ > 0.140

Following the methodology of [8], we propose in this paper to combine a grid

search to tune the parameter C and an alternating procedure to seek the band-

width ω, and the time instants t.

Details about the resulting optimization problem and the solving strategy are

given in Section 3.145

3. A Global Optimization Approach

In this section, the mathematical formulation of the variable selection prob-

lem in SVM classification with functional data is presented. Section 3.1 is

devoted to the problem formulation and how to solve such a problem, whereas150

a nested heuristic is proposed in Section 3.2, in which we take advantage of the

fact that the different time instants t = (t1, . . . , tH) can be easily embedded in

a nested structure of models. Section 3.3 addresses the problem of determining

the number H of time instants.

3.1. The Bilevel Optimization Problem155

As previously mentioned, two different types of decision variables are in-

volved in the variable selection problem for classification of functional data with

SVM. First, the H time instants t = (t1, . . . , tH) satisfying (7), and second, the

parameters C and ω involved in the SVM problem (4), and in the Gaussian

kernel (6), respectively.160

A strategy analogous to the one used in [8] is proposed to find the optimal values
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of C,ω and t. C is obtained by using a standard grid search, while a bilevel

optimization problem is defined to tune the parameters ω and t. In such bilevel

problem, we propose to maximize the Pearson correlation between the class la-

bel Yi of the observation i ∈ s, and the score Ŷ (Xi(t),ω, α) due to two main165

reasons. Firstly, this surrogate has been recently proposed in [8, 41, 44] with

outstanding results, and secondly, such dependency measure yields a smooth

optimization problem, in which gradient information can be used to speed up

convergence. This last issue means a significant advantage over the use of other

performance measures, such as those based on the confusion matrix, which usu-170

ally leads to mixed-integer optimization problems hard to solve for realistic data

sizes.

It is known that variable selection and parameter tuning may lead to overfitting

when the optimization is directly performed in the whole dataset, Chapter 7

of [21]. To avoid overfitting and obtain more stable solutions, frequently the175

data are randomly divided into training, validation and testing samples. This

process is repeated k times by performing k−fold cross-validation.

In this paper, the parameters and time instants sought, as well as the perfor-

mance estimates of the classifier, are obtained as follows: the database is split

into k folds. Then, k − 1 folds are chosen to be again divided into three parts,180

yielding the samples s1, s2 and s3. Finally, the remaining fold constitutes the

fourth independent sample s4. Samples s1 and s2 act training samples, while

s3 and s4 are the validation and testing samples, respectively. This division

process is repeated one time per fold.

Regarding the role of each sample in the optimization strategy, sample s1 is185

used to obtain the SVM dual variables, α, solving Problem (4) for fixed ω, t

and C. Sample s2 is employed to compute R((Yi, Ŷ (Xi(t,ω, α))i∈s2), i.e. the

correlation between the class labels and the scores. Sample s3 is used to tune

the regularization parameter C, by evaluating the accuracy for all the values of

C in a grid, and keeping the one with the largest value. Finally, the accuracy190

obtained with the optimal parameters is estimated on the independent sample

s4.

10



To sum up, for a fixed C, the resulting bilevel optimization problem is given in

(8)



max
ω,t

R((Yi, Ŷ (Xi(t),ω, α))i∈s2)

s.t. α solves (4) in s1,

ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(8)

Note also that we have emphasized the dependence of the score Ŷ on the time

instants in t, on the bandwidth ω, and on the classification coefficients α in the

notation. When such values are clear, they will be omitted in the notation for

the sake of simplicity.

Problem (8) is a nonlinear problem which can be solved with the techniques de-

scribed in e.g. [12]. For instance, we may mention branch-and-bound schemes

in which the problem is reformulated under some convexity assumptions using

the Karush-Kuhn-Tucker (KKT) conditions. Even with these reductions, the

so-obtained problem is difficult to solve due to the nonconvexities in the com-

plementary and Lagrangian constraints. Penalty function methods can also be

used to solve bilevel problems. Convergence, is however, to stationary points.

Instead, we propose to address the bilevel problem (8) for each C by a proce-

dure consisting in two alternating steps: the SVM step, in which for ω and t

fixed, we solve Problem (4) to obtain the optimal SVM variables α; and the

max-corr step, where for α fixed, one maximizes the Pearson correlation R in

(9) to obtain the optimal bandwidth ω and the time instants t. This correlation

maximization problem can be expressed as:
max
ω,t

R((Yi, Ŷ (Xi(t),ω))i∈s2)

s.t. ωv ≥ 0, v = 1, . . . , p

0 ≤ t1 ≤ . . . ≤ tH ≤ T

(9)

Different strategies are used to solve Problems (4) and (9). The SVM problem195

(4) is a quadratic concave maximization problem with linear constraints. There-

fore, standard local search routines or specific tools, as in [19], can be applied.
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On the other hand, Problem (9) is a continuous optimization problem, where

classic local searches are combined with a multistart approach to avoid getting

stuck at local optima.200

The initial values of ω and t in the first iteration of the alternating approach

are randomly selected in their corresponding domains of definition.

The alternating procedure is running until some stopping criteria, such as the

number of evaluations or the maximum time allowed is reached, yielding certain

values of ω, t and α, for a fixed C. The value of C is chosen by applying a grid205

search, i.e. for each value of C in a grid, the accuracy obtained with the clas-

sification rule that the parameters gives after solving Problem (8), is measured

in sample s3. The parameter C with the largest value in terms of accuracy will

be kept.

Finally, we test our approach by measuring the accuracy in a forth sample, s4.210

It is worth-mentioning that calculating the gradient of the objective function

in (9) will reduce the computational effort, since numerical differentiation is

avoided. Just applying the chain rule and taking into account (10) we can eas-

ily obtain an explicit expression for the gradient of the objective function in

(9):215

∂K(Xi, Xj ,ω, t)

∂ωv
= K(Xi, Xj ,ω, t)

−
H∑

h=1

(Xiv(th)−Xjv(th))2

 v = 1, . . . , p

∂K(Xi, Xj ,ω, t)

∂th
= −2K(Xi, Xj ,ω, t)

p∑
v=1

(ωv(Xiv(th)−Xjv(th)))×

×
(
∂Xiv(t)

∂t

∣∣∣
t=th
− ∂Xjv(t)

∂t

∣∣∣
t=th

)
, h = 1, . . . ,H (10)

We recall that, in practice, the original functional data Xi may be only

available throughout a grid of time instants. Therefore, interpolation techniques,

such as cubic splines, [15, 21], should be used as a preprocessing step so that

the functional data can be properly rebuilt. It is important to remark that the

interpolation step recovers the smoothness of the data with respect to ω, t.

Furthermore, if we want to take advantage of the high-order information of the

12



data, it is necessary to get, as pre-processing, the derivatives from the data

X(t). One possible choice would be to compute the derivative of the smoothed

data. Nevertheless, in order to avoid numerical errors from the interpolation,

we suggest using the finite-increments as an approximation of the derivatives.

For instance, if the first derivative of X(t) in the point th should be computed,

one has:

X ′(th) =
X(th)−X(th−1)

th − th−1
(11)

Note that in (11), th, ∀h, indicates the time instants where the functional data

are discretized. The formula in (11) should be reproduced for all the time

points of the discretization, and it is easy to see that it can be extended to any

derivative’s order. After obtaining the discretized derivatives, they should be

smoothed with an interpolation technique, as explained before.220

A pseudocode of our approach is outlined in Algorithm 1, and an extension of

it based on a nested heuristic is detailed in Section 3.2.

3.2. A Nested Heuristic

In this section we enhance the basic heuristic detailed in Algorithm 1. Adopt-

ing the same idea of [8, 11], we propose to define a series of nested models of225

increasing complexity, where the optimal solution of the elementary case is used

as a starting solution in the following more complex model.

The idea is that, in order to find the vector th+1 of h + 1 time instants, one

can use as starting solution a perturbation of th, the solution obtained when

only h time instants are sought. Therefore, if we want to find the H time in-230

stants which best discriminate between two groups, we solve successively the

Alternating Procedure of Algorithm 1 for h = 1 to H, but considering the easy-

to-tune structure of the simple models as a simplification of the complex cases,

in such a way that the (suboptimal) solution K(Xi, Xj ,ω
h, th) is used as initial

solution for kernel K(Xi, Xj ,ω
h+1, th+1). More precisely, in order to build the235

initial solution for the h+1 time instants in th+1, we first select a random value

τ ∈ [0, T ], and then we include it in the appropriate position of the optimal

solution of the level h, thopt, in such a way that th+1 satisfies the conditions in

13



Algorithm 1 Heuristic for variable selection

Input: H

• Randomly split the sample s into s1, s2, s3 and s4.

• Compute the derivatives of the functional data.

• Smooth the data with some interpolation technique.

for C in the grid do

Alternating Procedure

repeat

1. Fixed ω, t, calculate the parameters α of the SVM clasiffier by

solving Problem (4) using s1.

2. Fixed α, calculate ω, t by solving Problem (9) over s2.

until stopping criteria

• Evaluate the accuracy using the sample s3 for the C fixed in the grid.

end for

• The optimal value of C is the one with best accuracy in s3, and the optimal

values of α, ω and t are the parameters associated to the optimal C.

Output: Optimal parameters ω, t, C, α, and the accuracy estimated from s4.

(7), i.e. th+1 := σ(τ, thopt), where σ is the function that sorts in increasing order

the time instants thopt and τ .240

One of the advantages of our nested heuristic is that it allows us to obtain a

trajectory of the accuracy in terms of the number of time instants chosen. This

is a crucial issue, since, in practice, the number H of time instants to consider

may not be fixed, and thus a list of classifiers, with different complexity (H)

and accuracy, can be provided.245

Note that the solution of the level h will be used just as starting point of level

h+ 1, in order to speed the algorithm, but still allows the algorithm to yield a

solution that is very different from the level h solution. In this way, our proposal

clearly differs from [44], where greedy schemes are proposed.

The pseudocode of the nested heuristic is shown in Algorithm 2.250
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Algorithm 2 Nested heuristic for variable selection

Input: H, nested kernels K(Xi, Xj ,ω
1, t1) ≺ . . . ≺ KH(Xi, Xj ,ω

H , tH).

• Randomly split the sample s into s1, s2, s3 and s4.

• Compute the derivatives of the functional data.

• Smooth the data with some interpolation technique.

for C in the grid do

Initialization:

• h := 1.

• Randomly select an initial solution ω̃1 ∈ [0,+∞)p and t̃1 := t1 ∈ [0, T ].

• Set (ω, t) := (ω̃1, t̃1).

while h ≤ H do

1. Run the Alternating Procedure of Algorithm 1 for

K(Xi, Xj ,ω
h, th), starting from (ω, t) and yielding (ωhopt, t

h
opt) as

solution, using samples s1 and s2.

2. Randomly generate τ ∈ [0, T ].

3. Set ωh+1 := ωhopt, th+1 := σ(τ, thopt), (ω, t) := (ωh+1, th+1) and

h := h+ 1.

4. Evaluate the accuracy over the sample s3 with C fixed.

end while

end for

• For h fixed, the optimal value of C is the one with the best accuracy in

s3. The optimal values of α, ω and t are the parameters associated to the

optimal C.

Output: Optimal parameters ωhopt, t
h
opt, ∀h, the associated coefficients C,α,

and the accuracy estimated from s4.

3.3. Choice of the number of variables, H

The choice of the optimal number of time instants, H, is a critical issue. The

larger is H, the better is the classification accuracy expected to be obtained,

although the risk of overfit increases. However, the smaller the value of H, the

easier the interpretation of the results obtained.255
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In this paper we propose to follow the common strategy carried out in the

literature, [4, 6, 43, 44], and choose the value of H by estimating the accuracy

on the validation sample s3 with k−fold crossvalidation. The value of H with

the largest accuracy will be kept.

4. Numerical Experiments260

This section details the computational results of our approach, in which

we provide the accuracy obtained when only some selected time instants and

not the whole functional interval [0, T ] is considered. Section 4.1 describes the

settings of the computational experience. The results obtained on the different

databases are presented in Section 4.2.265

4.1. Description of the Experiments

Our proposal has been applied to both univariate and multivariate functional

data. On top of comparing the performance of the SVM based on the full time

interval against the SVM classifier for data measured at just H time instants,

we have also analyzed the improvements in performance obtained when instead270

of the functional data alone, up to d derivatives of the functional data are

also included in the input. For this reason, we have also run Algorithm 2 for

three different values of d, namely d = 0, 1, 2, which correspond respectively

to the cases in which just the information of the functional data, or also its

monotonicity, or both monotonicity and convexity, are considered.275

In order to obtain stable results, k−fold cross-validation is performed. The

number of folds, k, depends on the dataset considered. Particularly, if a database

is small, k coincides with the number of individuals, that is to say, leave-one-out

is applied. On the other hand, for big databases k = 10 has been chosen. In

this paper, we consider that a dataset is small if its cardinal is smaller than280

100 individuals. See Table 1. Algorithm 2 is run k times, one per fold. Each

time, the dataset is divided into four samples s1 − s4 as explained in Section

3.1. To test our results we provide the average of the accuracy across the folds,
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measured on s4. The number of iterations of the multistart is five, the number

of iterations of the Alternating Procedure is eight, and the (maximum) number285

of time instants to be selected, i.e., the number of nested kernels is H = 20.

Finally, the parameter C takes values in the set {2−10, . . . , 210} in logarithmic

scale.

Apart from the experiments explained above, we have also tuned the optimal

number of time instants, H by performing cross-validation on sample s3, as290

explained in Section 3.3.

The whole computational experience is executed on a cluster with 2 terabytes

of RAM memory at 6.2 TFlops, running CentOS Linux 7.3, and it is coded in

R, [42].

4.2. Numerical results295

Three univariate (Section 4.2.1) and three multivariate (Section 4.2.2) func-

tional databases have been considered to check the performance of our approach.

Table 1 shows the number of records of each database, the number of time in-

stants in which the records are measured, the number of records of each class

and the number of components of the functional data vector.300

Samples of ten individuals of each dataset are plotted in Figure 1 (univariate

data) and 2 (multivariate data). The records in class −1 are depicted with a

solid black line, whereas the records in class +1 are plotted in red dashed line.

Section 4.2.3 is devoted to the computational experience for the optimal choice

of the number of time instants to be considered, H.305

4.2.1. Results on Univariate Functional Data

First, our methodology is tested in three databases widely used in the liter-

ature, namely growth, [34, 44], phoneme, [5, 20, 21], and tecator, [18, 32, 40, 44].

Table 2 reports the averaged accuracy on the testing sample provided by Al-

gorithm 2 with the information given by the data (d = 0), the first derivative310

(d = 1), and the first two derivatives (d = 2). Leave-one-out is performed on

the growth dataset, whereas 10−fold cross-validation is done in phoneme and
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#records #time instants #records label -1 #records label +1 #components

growth 93 31 54 39 1

phoneme 1717 256 1022 695 1

tecator 215 100 77 138 1

batch 100 101 50 50 3

batch noise 100 101 50 50 3

trigonometric 400 1001 200 200 2

Table 1: Data description summary

tecator. Our results are compared with acc max and acc min, respectively the

best and worst accuracy results obtained with the state-of-the-art methods, as

reported in Tables 2 and 3 of [5].315

The same information shown in Table 2 is depicted in Figure 3. Particularly, the

solid red-circled, blue-triangled and green-crossed lines indicates the averaged

accuracy obtained with d = 0, 1, 2, respectively. The horizontal black solid line

marks the value acc max, whereas the horizontal pink dashed line illustrates the

value acc min.320

Two main conclusions are obtained from our analysis. First, our results are

competitive against the state-of-the-art. Moreover, the use of high-order in-

formation deeply affects the classification performance. This fact is extremely

noticeable in the tecator dataset. Furthermore, in such database we are very

close to the value acc max with just H = 2 time instants and d = 2. If we325

focus on the growth dataset, we realize that with H = 3, 5, 10, 13, 14 and d = 2

we achieve the same accuracy as the value acc max. This fact also happens

with H = 6 or H = 10 and d = 1. Furthermore, our methodology is capable

of improving the value acc max if H = 6 or H = 11 time instants and d = 2

derivatives are considered.330
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Figure 1: Sample of functional data in the univariate datasets analyzed.
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4.2.2. Results on Multivariate Functional Data

Three databases have been analyzed in this section, denoted by batch, Section

4.1 of [46], batch noise, Section 4.2 of [46], and trigonometric, Section 5.2.2 of

[24]. Note that the trigonometric dataset is used in [24] for clustering purposes

with three and five groups. Nevertheless, in our paper, since binary classification335

is studied, we only consider two groups. Furthermore, the authors in [46] take

the lower bound of the time domain as zero and the upper bound is sampled

from a uniform distribution on [0.9, 1.1]. For the sake of simplicity, we assume

that the time interval considered in the datasets batch and batch noise is [0, 1].

Since, to the best of our knowledge, there is no methodology in the literature340

which handles the variable selection problem in classification with multivariate

functional data, in this section, we compare our results with the standard SVM-

classification in which the whole time domain and just the information of the

functional data are considered, i.e. d = 0. More specifically, we run the SVM

problem (4) for the C values in {2−10, . . . , 210}, and ωv ∈ {2−5, . . . , 25}, for345

v = 1, . . . , p, to then keep the best accuracy as reference value. Both standard

SVM and Algorithm 2 have been run using 10−fold cross-validation in all the

datasets.

Table 3 and Figure 4 give the accuracy values of our method for d = 0, 1, 2,

plotted in solid red-circled, blue-triangled and green-crossed lines, respectively.350

Furthermore, the classification accuracy with all the time instants is depicted

using a horizontal solid black line.

As in the analysis of univariate functional data, using derivatives turns out

to be crucial to enhance classification rates. Moreover, classifying using the

information of the whole time interval yields worse accuracy than using only355

carefully selected time instants. This can be seen, for instance, in the batch noise

dataset, where for H = 7 and d = 0, accuracy is improved in around two points,

or even better with H = 8, and d = 2, where the difference is about ten points.

When d = 2 derivatives are considered, the accuracy values here obtained are

always much better by optimally selecting from H = 1 to H = 20 than when360

20



the whole time domain is taken into account. Focusing on the trigonometric

dataset, the accuracy values are better when more than H = 2 time points are

chosen than when the whole time interval is considered.

4.2.3. Results on the optimal choice of the time instants, H

In order to obtain the best number of time instants, H, we performed cross-365

validation on the validation sample s3, as is detailed in Section 3.3. Thanks to

the nested structure of our algorithm, we are able to build a trajectory, from

h = 1 to h = H, in which the evolution of the optimal number of time instants

can be observed. Particularly, Table 4 shows the average optimal number of

time instants over all the folds in the univariate and multivariate databases.370

Moreover, in Figures 5 and 6 the resulting boxplots are depicted. In the x−axis,

the maximum number of time instants considered when running our heuristic

is given, whereas the y−axis indicates the optimal number of time instants

obtained across the different runs. Boxplots in red, blue and green show the

results when the information of the derivative d = 0, d = 1 or d = 2 is used,375

respectively.

We can observe that, although the experiments are run until H = 20, the

optimal number of time instants to be selected is lower in almost all databases.

Indeed, most of the datasets need between 1 and 8 time instants. It implies that

data information is summarized on a small finite set of time points, which may380

yield good interpretation results.

5. Conclusions and Extensions

We have proposed in this paper a new approach able to optimally select

the most informative time instants in multivariate functional data in order to

get good classification rates. Furthermore, our methodology, by its nature,385

allows the easy usage of high-order information, e.g. monotonicity, or con-

vexity by means of the derivatives. The numerical experience here presented

has shown that the information provided by the derivatives has valuable con-

sequences in the classification performance, yielding competitive results when
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compared against the state-of-the-art in the literature. We have worked under390

the assumption that time is a continuous parameter, and continuous optimiza-

tion tools are then used to optimize the parameters.

The nested structure of the problem improves the current methodology by using

the optimal solutions obtained in simpler models as starting solutions in more

complex models.395

In our analysis, for the sake of simplicity, we have considered the Pearson correla-

tion as the performance measure to be optimized. Nevertheless, other measures

such as the Mutual Information Criterion [22], the Fisher-Correlation Criteria,

[16], the distance covariance [4, 41, 44], or the distance correlation in [44] can be

used. In this paper, we restricted ourselves to the multivariate functional data400

case. The problem of time instants selection in multivariate hybrid functional

data [26] is also worth being analyzed. Possible extension of this work to the

clustering context deserve further study. The extension to the regression area is

being analyzed in [9]. Here, we have just employed the information provided by

the first and second derivatives. Thanks to kernel definition, it is very easy to405

extend our proposal, in order to include the derivatives of order equal or greater

than three.
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Figure 2: Sample of functional data in the multivariate datasets analyzed.
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Figure 2: Sample of functional data in the multivariate datasets analyzed (cont.)
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Figure 3: Average accuracy in the univariate datasets analyzed.
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Figure 4: Average accuracy in the multivariate datasets analyzed.
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Figure 5: Boxplots of the optimal number of time instants in the univariate datasets.
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Figure 6: Boxplots of the optimal number of time instants in the multivariate datasets.
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