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Abstract

In statistical ecology, state-space models are commonly used to represent the

biological mechanisms by which population counts – often subdivided according to

characteristics such as age group, gender or breeding status – evolve over time. As

the population counts are typically only noisily or partially observed, the informa-

tion from the count data alone is not sufficient for sensibly estimating demographic

parameters of interest. Thus, the count data are combined with additional ecolog-

ical observations to form an integrated data analysis. Unfortunately, fitting inte-

grated models can be challenging, especially if the constituent state-space model

is non-linear/non-Gaussian. We first propose an efficient particle Markov chain

Monte Carlo algorithm to estimate demographic parameters without the need for

resorting to linear or Gaussian approximations. We then incorporate this algorithm

into a sequential Monte Carlo sampler in order to perform model comparison with

regards to the dependence structure of demographic parameters. In particular, we

exploit the integrated model structure to enhance the efficiency of both algorithms.

We demonstrate the methods on two real data sets: little owls and grey herons. For

the owls, we find that the data do not support an ecological hypothesis found in the

literature. For the herons, our methodology highlights the limitations of existing

models which we address through a novel regime-switching model.
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1 Introduction

State-space models are becoming an increasingly common and useful representation of

many ecological systems (???). For example, they are used to describe population

count data (???); telemetry data (???); longitudinal growth data (?); fisheries data

(?); capture-recapture data (???).

Unfortunately, fitting state-space models leads to computational challenges as the

likelihood – expressible only as integral or sum over the latent (unobserved) states – is

typically intractable unless: the states take values in a small, finite set; or the model is

linear Gaussian in which case the likelihood is evaluated via the Kalman filter (??). Two

approaches are typically applied to circumvent this problem. The first is to approximate

the state-space model with a model that is linear and Gaussian, e.g. as in ?. Unfortu-

nately, such approximations introduce a bias which is difficult to quantify. The second is

to impute the unobserved states alongside the model parameters within a Markov chain

Monte Carlo (MCMC) approach. Unfortunately, such data-augmentation schemes – in

particular as normally implemented in BUGS (?) or JAGS (?) (see e.g. ?) – can be slow

and poorly mixing if the system states and parameters are highly correlated because only

(small) subsets of them are updated individually (?).

To avoid the problems with these approaches, (??) proposed particle Markov chain

Monte Carlo (PMCMC) algorithms (see ? for a recent application in ecology). Such

algorithms replace the intractable likelihood in the Metropolis–Hastings algorithm with

an unbiased estimate obtained through a sequential Monte Carlo (SMC) algorithm (or

“particle filter”). PMCMC methods do not require a modification of the model and,

despite replacing the likelihood with an approximation, do not introduce bias.

Integrated population models. In this work, count data are available on some

species of interest, i.e. estimates of population sizes over discrete times (???). These

count data are modelled as a state-space model to account for measurement errors. In
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addition to the count data, other types of data are available on the species, e.g. capture-

recapture, ring-recovery or nest-record data. To utilise all available information for es-

timating demographic parameters of interest, it is necessary to combine these different

data sets within a single integrated population model. Unfortunately, fitting such mod-

els is challenging, since they inherit all the above-mentioned difficulties with fitting the

constituent state-space model.

Contributions. In this work, we devise efficient methodology for performing full

Bayesian parameter estimation and model comparison in integrated population models

without the need for linear or Gaussian approximations to the state-space model.

• In Section 3, we first review standard PMCMC methods for Bayesian parameter es-

timation in models with intractable likelihoods. Then, in Subsection 3.2, we exploit

the integrated-model structure to reduce the computational cost of the PMCMC

algorithm through a delayed-acceptance (?) technique.

• In Section 4, we first incorporate our PMCMC methodology into SMC samplers

(????) so that we can estimate posterior model probabilities (Bayes factors) across

a set of different integrated population models. This permits Bayesian model com-

parison without the need for reversible-jump MCMC (?) which often mixes poorly

and can be difficult to implement and tune. Then, in Subsection 4.3, we again

exploit the integrated-model structure to reduce the computational burden of the

SMC sampler by separately tempering the different likelihood terms.

• In Sections 5 and 6, we apply the proposed methodology to two real data sets re-

lating to little owls and grey herons. In both applications, our methodology yields

reliable estimates of the model evidence, even in moderately high dimensions. In

the case of owls, we find that some models proposed in the literature may be unnec-

essarily over-parametrised. For instance, we find no evidence for the hypothesis in

? that the immigration rate of owls depends on the abundance of voles – their main

prey. We also demonstrate the utility of the delayed-acceptance approach. In the

case of herons, we show that state-of-the-art models used in the literature, such as
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the threshold model from ?, fit poorly; to remedy this, we propose a novel regime-

switching state-space model which significantly outperforms all existing models in

terms of model fit and model evidence.

2 Integrated model

2.1 Data

We combine multiple data sets, one of which being count data, obtained from a single

population, within a single integrated model. Let y = {y1, . . . , yT} denote count data

collected at times t = 1, . . . , T . Here, yt is the observation (subject to measurement

error) of the true population size at time t. The observed counts may be multivariate,

e.g. counts for males and females or juveniles and adults, though in all the examples we

consider later the count data are univariate. Let w denote all additional data available

such as capture-recapture data, ring-recovery or nest-record data. The aim of this work

is then to perform inference based on all data z = {y,w}. To illustrate the methodology,

we consider two data sets relating to little owls and grey herons.

Little owls. In Section 5, we consider little-owl data described by ? and subsequently

analysed in ?. The count data represent the number of breeding females at nest boxes

near Göppingen, South Germany, observed anually from 1978 to 2003 (i.e. T = 26).

The nest boxes were checked multiple times annually and data were recorded relating to

overall population size (number of occupied nest boxes and number of breeding females),

capture-recapture histories of individuals observed at nest boxes and reproductive success

of the nests. In addition, time-varying covariate information about the abundance of voles

– the primary prey for little owls – is available. For further details see ?.

Grey herons. In Section 6, we consider grey-heron data previously presented and

analysed by ???. The count data correspond to the estimated number of female herons

(or breeding pairs) in the UK, from 1928 to 1998, i.e. for T = 71 time periods. Within

our application we also have ring-recovery data for individuals released between 1955 and

1997.
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2.2 Model structure

Given unknown model parameters θ ∈ Θ, the likelihood of the count data y and addi-

tional data w is p(z|θ) = p(y|θ,w)p(w|θ). To simplify the notation, and consistent with

ecological practice (see e.g. ?), we assume that the count data are independent of the

additional data given the parameters, i.e. p(y|θ,w) = p(y|θ) (see ? for a justification).

However, we stress that this conditional independence is purely a modelling choice and

our methodology remains applicable without it. Our methodology only requires that the

additional data are modelled in such way that p(w|θ) can be evaluated pointwise.

The count data are modelled as a state-space model as follows. Let x = {x1, . . . ,xT} ∈

XT (for some space X) denote the true (unobserved) population counts with initial density

µθ(x1) and transitions fθ(xt|xt−1). Furthermore, let gθ(yt|xt) be the density of the tth

observed count given xt. Then, conditionally on θ, the joint distribution of y and x is:

p(y,x|θ) = µθ(x1)gθ(y1|x1)
T∏
t=2

fθ(xt|xt−1)gθ(yt|xt).

The (marginal) count-data likelihood is thus given by the integral (or sum, if X is discrete)

p(y|θ) =

∫
XT

p(y,x|θ) dx. (1)

Throughout this work, we assume that this integral (sum) is intractable as is usually

the case unless X is finite and sufficiently small or the state-space model is linear and

Gaussian in which case (1) can be evaluated using the Kalman filter.

Let p(θ) denote the prior distribution of the parameters then the (marginal) posterior

distribution of the parameters θ (given the full data z) is given by

π(θ) := p(θ|z) =
p(z|θ)p(θ)
p(z)

; p(z) :=

∫
Θ

p(z|θ)p(θ)dθ, (2)

where p(z) in the denominator is the evidence for the model. This quantity plays a key

rôle in Bayesian model comparison as outlined in Section 4. The posterior distribution

is typically intractable as the integrals in (1), (2) are not of closed form. Instead, we

approximate it via Monte Carlo methods as described in the next section.
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3 Parameter estimation

3.1 Particle MCMC

In this section, we describe MCMC methods for approximating the posterior distribution

of the model parameters. We also propose modifications which exploit the structure of

integrated models to improve efficiency of the algorithm. For now, we assume that the

model is known – model uncertainty is dealt with in Section 4.

As the count-data likelihood p(y|θ) (thus, also the overall likelihood p(z|θ)) is in-

tractable, we cannot implement the idealised Metropolis–Hastings algorithm which, at

each iteration, proposes new parameters ϑ ∼ q(ϑ|θ) and accepts them with probabil-

ity (w.p.) min
{

1, q(θ|ϑ)
q(ϑ|θ)

p(ϑ)
p(θ)

p(z|ϑ)
p(z|θ)

}
. A common solution is to use data-augmentation ap-

proaches that impute the latent variables x (alongside the parameters). However, the

number of states is typically large so that single-site updates are required. This ap-

proach, commonly used in ‘black-box’ samplers such as BUGS or JAGS, can lead to poor

mixing if highly correlated variables or parameters are updated separately.

To avoid such problems, we employ particle Markov chain Monte Carlo (PMCMC)

algorithms (?). These replace p(y|θ) in the acceptance ratio of the idealised Metropolis–

Hastings algorithm with an unbiased estimate p̂(y|θ) obtained through a sequential Monte

Carlo (SMC) methods. Crucially, the resulting algorithm still targets the correct posterior

distribution.

Before stating the PMCMC algorithm, we review SMC algorithms. Comprehensive

discussions of the application of SMC to state-space models – usually termed particle

filters (PFs) in this setting – can be found in ??. A simple PF is outlined in Algo-

rithm 1, where we use the convention that actions prescribed for the nth particle are to

be performed independently for all n ∈ {1, . . . , N}.

1 Algorithm (particle filter).

(1) Sample xn1 ∼ µθ(x1) and set wn1 := gθ(y1|xn1 ).

(2) At Steps t = 2, . . . , T ,
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(a) sample ant−1 = l w.p. W l
t−1 := wlt−1/

∑N
k=1w

k
t−1,

(b) sample xnt ∼ fθ(xt|x
ant−1

t−1 ) and set wnt := gθ(yt|xnt ).

At the end of Algorithm 1, an unbiased (?) estimate of p(y|θ) is

p̂(y|θ) :=
T∏
t=1

1

N

N∑
n=1

wnt .

Numerous extensions exist for making Algorithm 1 more efficient. The particular version

of PF we use in our applications is outlined in Web Appendix C.

We now describe the PMCMC algorithm. A single PMCMC update is outlined

in Algorithm 2, where α ∈ [0, 1] is a parameter which will be used by the evidence-

approximation algorithms in Section 4. For the moment simply consider α = 1.

2 Algorithm (particle MCMC). At each iteration, given (θ, p̂(y|θ)),

(1) propose ϑ ∼ q(ϑ|θ) and generate p̂(y|ϑ) using Alg. 1 (wherein θ = ϑ),

(2) return (ϑ, p̂(y|ϑ)) w.p. min{1, r}, where r :=
q(θ|ϑ)

q(ϑ|θ)
p(ϑ)

p(θ)

[
p̂(y|ϑ)p(w|ϑ)

p̂(y|θ)p(w|θ)

]α
;

otherwise, return (θ, p̂(y|θ)).

3.2 Improving PMCMC efficiency for integrated models

The computational cost of the PMCMC update in Algorithm 2 is dominated by the PF

used to evaluate the estimate of p(y|ϑ) for each proposed parameter value ϑ. To improve

the efficiency of algorithm, we utilise a delayed-acceptance (DA) approach (??) based on

the integrated-model structure. The idea is to avoid invoking the PF for proposed values

ϑ which are not compatible with the additional data w and which are therefore likely to

be rejected in Algorithm 2. This can improve efficiency if w is highly informative about

a large proportion of the model parameters. DA was previously combined with PMCMC

updates in ? (though in a slightly different way). Algorithm 3 summarises the approach

whose validity may be established using the arguments of ??. Again, assume for the

moment that α = 1.
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3 Algorithm (delayed acceptance PMCMC). At each iteration, given (θ, p̂(y|θ)):

(1) Propose ϑ ∼ q(ϑ|θ),

(2) Go to Step 3 w.p. min{1, r}, where r :=
q(θ|ϑ)

q(ϑ|θ)
p(ϑ)

p(θ)

[
p(w|ϑ)

p(w|θ)

]α
; otherwise, return

(θ, p̂(y|θ)).

(3) Generate p̂(y|ϑ) using Alg. 1 (with θ = ϑ).

(4) Return (ϑ, p̂(y|ϑ)) w.p. min{1, r}, where r :=

[
p̂(y|ϑ)

p̂(y|θ)

]α
; otherwise, return (θ, p̂(y|θ)).

4 Model comparison

4.1 Posterior model probabilities

Let {Mi : i ∈ I} denote a finite collection of plausible biological models. To indicate the

ith model, we add the model indicatorMi to densities in Section 2. So, the prior of param-

eters θ ∈ Θi is written as p(θ|Mi), the likelihood as p(z|θ,Mi) = p(y|θ,Mi)p(w|θ,Mi)

and the evidence as p(z|Mi) =
∫
Θi
p(z|θ,Mi)p(θ|Mi) dθ. Let p(Mi) denote the prior

probability of the ith model. Bayesian model comparison is based on the posterior model

probabilities (?, Chapter 6)

p(Mi|z) :=
p(Mi)p(z|Mi)∑
j∈I p(Mj)p(z|Mj)

. (3)

Unfortunately, the model evidence p(z|Mi) – hence also the posterior model probabilities

– in (3) is intractable. To perform model comparison, we replace the model evidence

p(z|Mi) with an estimate p̂(z|Mi) obtained via an SMC sampler. As a by-product, the

SMC sampler also yields an approximation of the posterior of θ under the ith model.

4.2 SMC sampler for evidence approximation

For the moment, assume that p(y|θ,Mi) can be evaluated. A simple importance-sampling

approximation of p(z|Mi) is then given by 1
M

∑M
m=1 p(z|θm,Mi), where θ1, . . . , θM are

sampled independently from p(θ|Mi). However, this approach typically performs poorly

8



if there is a strong mismatch between the prior and the posterior (which is common, es-

pecially if θ is high-dimensional or if the data are highly informative). To circumvent this

problem, we employ an SMC sampler (??) which uses successive importance-sampling

steps to approximate a sequence of distributions to smoothly bridge the gap between the

prior and the posterior,

p(θ|Mi) = π0(θ), π1(θ), . . . , πS(θ) = p(θ|z,Mi). (4)

The idea behind SMC samplers is that each individual importance-sampling step (i.e.

proposing samples from πs−1(θ) to approximate πs(θ)) may be feasible even if the gap

between prior π0(θ) and posterior πS(θ) is wide. We use a likelihood-tempering approach,

πs(θ) ∝ p(θ|Mi)p(z|θ,Mi)
αs , (5)

where the temperatures 0 = α0 < α1 < . . . < αS = 1 (and the number of bridging

distributions, S) can then be tuned to ensure that the interpolation between the prior and

posterior in (4) is sufficiently smooth. Of course, in the models considered in this work,

p(y|θ) is intractable and is therefore again approximated using a PF (for any 0 < αs < 1,

the distributions targeted by the algorithm are then actually slightly different from (5)

but we stress that this does not affect the validity of the algorithm). This idea was first

employed by ? and it shares some similarities with the SMC2 approach from ? which we

discuss at the end of this section.

Algorithm 4 outlines the SMC sampler; we use the convention that any action specified

for the mth particle is to be performed independently for all m ∈ {1, . . . ,M}.

4 Algorithm (SMC sampler).

(1) Sample θm0 ∼ p(θ|Mi) and generate p̂m0 (y|θm0 ,Mi) using Alg. 1 (with θ = θm0 ),

(2) At Step s = 1, . . . , S,

(a) set vms := (ums−1)
αs−αs−1 , where ums−1 := p̂ms−1(y|θms−1,Mi)p(w|θms−1,Mi),

(b) sample bms−1 = l w.p. V l
s := vls/

∑M
k=1 v

k
s ,

(c) sample (θms , p̂s(y|θms ,Mi)) using Alg. 2 (with α = αs; θ = θ
bms−1

s−1 ; p̂(y|θ) = p̂
bms−1

s−1 (y|θb
m
s−1

s−1 ,Mi)).
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We then approximate the evidence p(z|Mi) by

p̂(z|Mi) :=
S∏
s=1

1

M

M∑
m=1

vms .

The algorithm can also be used to infer parameters in the ith model. That is, a pos-

terior expectation E[ϕ(θ)], for θ ∼ p(θ|z,Mi) and test function ϕ, is approximated by∑M
m=1 V

m
S ϕ(θmS ). Numerous extensions can make Algorithm 4 more efficient. The partic-

ular version of SMC sampler we use in our applications is given in Web Appendix C.

Other methods for performing model comparison using SMC samplers can be found

in ? (see also ? for extensions). In addition, ? proposed another special case of the SMC-

sampler framework from ?, called SMC2. This algorithm can be useful when one wishes

to perform inference sequentially because it can incorporate new data points as they

arrive. However, as observed in ?, SMC2 can become unstable when the newly-arrived

observation contains information about the parameters which contradicts the existing

information. In such cases, the likelihood-tempering approach adopted here can lead to

a smoother sequence of target distributions ? and hence more accurate estimates.

4.3 Improving SMC efficiency for integrated models

We are able to exploit the structure of integrated population models to enhance the

efficiency of the SMC sampler for evidence approximation. Firstly, we employ the DA

approach from Subsection 3.2 to reduce the computational cost of the MCMC updates in

the SMC sampler. Secondly, we propose to employ a likelihood-tempering approach which

tempers the different parts of the likelihood separately. That is, for some 1 ≤ S ′ < S,

the SMC sampler targets the distributions

πs(θ) ∝


p(θ|Mi)p(w|θ,Mi)

αs , if 0 ≤ s ≤ S ′,

p(θ|Mi)p(w|θ,Mi)p(y|θ,Mi)
βs , if S ′ < s ≤ S,

where 0 = α0 < α1 < . . . < αS′ = 1 and 0 < βS′+1 < . . . < βS = 1. Of course,

the intractable count-data likelihood is again replaced by an unbiased estimate. The

advantage of this refined tempering scheme is that the approximation of the count-data
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likelihood (obtained via the costly PF) is not needed in the first S ′ steps, so that S ′ can

be taken to be large. Introducing the additional data likelihood first can be especially

beneficial if these data are highly informative about the parameters relative to the count

data. This refined tempering strategy was crucial for obtaining reliable estimates in the

herons example from Section 6; its efficiency gains are also illustrated in Subsection 5.4.

5 Example 1: Little owls

5.1 Parameters

The main model parameters – potentially specific to age group a ∈ {1,A} (1: juvenile,

i.e. first-year, A: adult) and gender g ∈ {m, f} (f: female, m: male) of the owls, and to

time index t ∈ {1, . . . , T} – are

φa,g,t: probability of an owl of gender g surviving until time t + 1 if alive and aged a at

time t;

pg,t+1: probability of observing an owl of gender g at time t+ 1 if alive at time t+ 1;

ρt: productivity rate governing the number of chicks produced per female at time t that

survive to fledgling;

ηt: immigration rate governing the number of female immigrants at time t+1 per female

of the population at time t.

5.2 Model specification

We consider the model defined by ? and subsequently fitted in BUGS by ? – for further

information and biological rationale see these papers.
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5.2.1 Count-data model

The system process, in terms of the true population sizes for the juvenile and adult

females, xt = {x1,t, xA,t}, is described by

x1,t|xt−1, θ ∼ Poisson
(
[x1,t−1 + xA,t−1]ρt−1φ1,f,t−1/2

)
, xA,t = sur t + immt,

where sur t|xt−1, θ ∼ Binomial(x1,t−1 + xA,t−1, φA,f,t−1) is the number of female adults

which survive from time t− 1 to time t, and immt|xt−1, θ ∼ Poisson
(
[x1,t−1 +xA,t−1]ηt−1)

is the number of female adults which immigrate in this period. We take the initial popula-

tion sizes x1,1, xA,1 to be a-priori independently distributed according to a discrete uniform

law on {0, 1, . . . , 50}. The observation process is specified by yt|xt, θ ∼ Poisson(x1,t+xA,t).

5.2.2 Capture-recapture model

Capture-recapture data are available in the form of age-group and gender specific matrices

m := {ma,g : a ∈ {1,A}, g ∈ {m, f}}. The tth row, ma,g,t := {ma,g,t,s : 1 < s ≤ T + 1},

corresponds to the tth year of release (t ∈ {1, . . . , T − 1}). That is, ma,g,t,s is the number

of individuals of gender g, last observed at age a at time t, that are recaptured at time

s (if t + 1 ≤ s ≤ T ) or never recaptured again (if s = T + 1). Note that ma,g,t,s = 0 if

s ≤ t. For each year of release, we assume a multinomial distribution for the subsequent

recaptures. The capture-recapture model specified as

ma,g,t|Ra,g,t, θ ∼ Multinomial(Ra,g,t,qa,g,t).

Here, Ra,g,t denotes the number of owls in age group a and of gender g that are recorded

as being observed (either an initial capture or, if a = A, as a recapture) at time t and

subsequently released. The multinomial cell probabilities qa,g,t := {qa,g,t,s : 1 < s ≤ T+1}

are given by

qa,g,t,s :=


0, if 1 < s ≤ t,

φa,g,tpg,s
∏s−1

r=t+1 φA,g,r(1− pg,r), if t < s ≤ T ,

1−
∑T

r=1 qa,g,t,r, if s = T + 1.
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5.2.3 Fecundity model

Nest record data n := {Nt, nt : 1 ≤ t ≤ T} are also available to provide information

relating to the fecundity rate of little owls. Specifically, Nt denotes the number of breeding

females recorded at time t and nt the number of chicks produced that survive to leave

the nest. Following ? we specify nt|Nt, θ ∼ Poisson(Ntρt). With this notation, the set of

all additional data is w = {m,n}.

5.3 Parametrisation and priors

There is additional covariate information about the abundance of voles – the primary

source of prey for little owls – classified as low (volet = 0) or high (volet = 1), for each

year of the study. Following ??, we parametrise

logitφa,g,t = α0 + α1 I{g = m}+ α2 I{a = A}+ α3year t,

log ηt = δ0 + δ1volet,

logit pg,t+1 = β1 I{g = m}+ βt+1,

for t = 1, . . . , T − 1, where the additional covariate year t denotes the normalised year.

Also, we specify log ρt = γt, for 1 ≤ t ≤ T .

For simplicity, we assume that all components of θ have independent Normal(0, 2)

priors, except δ0 for which we use a Normal(−2, 2) prior because preliminary runs of

the algorithm indicated that this parameter is typically very small. We avoided diffuse

priors (a) to improve efficiency of the first few steps of the SMC sampler and (b) to

reduce the impact of the phenomenon known as Jeffreys–Lindley paradox (?) on the

model comparison. We stress that other prior specifications could have been employed

but investigating the choice of priors in integrated population models is beyond the scope

of the work.
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5.4 Results

We end this section by demonstrating the performance gains achievable for the PMCMC

and SMC algorithms through the modifications proposed in Subsections 3.2 and 4.3. We

also perform a model comparison to demonstrate the scientific utility of our methodology.

Delayed acceptance. We first illustrate the performance gains obtained through

the delayed-acceptance (DA) approach proposed in Subsection 3.2. For simplicity, we

only report results for the case that the productivity rate is constant over time and with

immigration independent of the abundance of voles, i.e. γ1 = . . . = γT and δ1 = 0, as this

was one of the specifications which performed best in terms of model evidence. Figure 1

illustrates the utility of DA. It shows that even though DA decreases the acceptance rate

(?), the computational savings due to only invoking the PF for “promising” parameters

more than compensate for this.

Refined tempering. In Table 1, we illustrate efficiency gains attainable through

the refined likelihood tempering scheme (Section 4.3) over standard likelihood tempering

(Section 4.2). For eight different models (specified in Web Appendix A), Table 1 displays

(efficiency gain) =
MSE × (computation time)

MSE × (computation time)

} standard tempering

} refined tempering
. (6)

Here, MSE denotes the average mean-square error (MSE) of the estimate of the posterior

mean based on 20 independent repeats of the SMC samplers (the average is taken over all

components of the vector of model parameters); (computation time) represents the aver-

age computation time over the independent repeats. Since the true posterior means are

intractable, we ran an MCMC algorithm using a large number (10, 000, 000) of iterations

for each model and treated the resulting posterior mean estimates as the true values.

Model comparison. Finally, we perform a model comparison to investigate the

hypothesis from ? that little-owl immigration depends on the abundance of voles – their

main prey. Figure 2 shows estimates of the evidence for the eight models specified in

Web Appendix A in the case that the immigration rate may depend on the abundance of

voles (i.e. δ1 6= 0) and in the case that it is independent of vole abundance (i.e. δ1 = 0).

The results indicate that the hypothesis is not supported by the data.
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6 Example 2: Grey herons

6.1 Parameters

Following ? we specify up to four age categories for the herons in order to account

for different survival probabilities, with younger herons typically having a lower survival

probability than older adults. We indicate the age group by the subscript a ∈ {1, . . . ,A},

where a = 1 represents first-years, a = 2 represents second-years, etc. while a = A

represents all the remaining adults. The main model parameters are then

φa,t: probability of a heron surviving until time t+ 1 if alive and aged a at time t;

ρt: productivity rate governing the number of females produced per female at time t;

λt: probability of recovering a dead heron in [t, t+ 1) if it died in that interval.

6.2 Model specification

We follow ? with regard to the model specification, allowing for some judicial changes in

the state-space model specification.

6.2.1 Count-data model

We once again specify state-space model for the count data y = {y1, . . . , yT}. We let xa,t,

denote the true population sizes of herons in age group a at time t. The system process

is then described by

xt,1|xt−1, θ ∼ Poisson(ρt−1φ1,t−1
∑A

a=2 xa,t−1),

xa,t|xt−1, θ ∼ Binomial(xa−1,t−1, φa,t−1), for 1 < a < A,

xA,t|xt−1, θ ∼ Binomial(xA−1,t−1 + xA,t−1, φA,t−1).

For simplicity, we assume that the distribution of each component of the initial state is a

negative-binomial distribution with probability p = 1/100 and size n0 = µ0p/(1− p) for

age groups 1 ≤ a < A and n1 = µ1p/(1−p) for adults, respectively. We specify the means

µ0 = 5000/5 and µ1 = 5000−(A−1)µ0 in such a way that a-priori, E[
∑A

a=1 xa,1|θ] = 5000.
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Such state-space model are typically approximated by a linear-Gaussian model in or-

der to permit inference via the Kalman filter (?). However, the assumption that gθ(yt|xt)

is Gaussian is typically unrealistic, since it implies that the observation error is indepen-

dent of scale and continuous. Alternatively, to incorporate the effect of scale a lognormal

distribution has been applied (?), but this too assumes a continuous distribution for the

discrete observations. Instead, we consider a negative-binomial observation process (with

probability/size parametrisation), such that

yt|xt, θ ∼ Negative-Binomial

(
κ

1− κ

A∑
a=2

xa,t, κ

)
,

for some κ ∈ (0, 1). Notice that E[yt|xt, θ] =
∑A

a=2 xa,t <
∑A

a=2 xa,t/κ = var[yt|xt, θ], so

this specification permits overdispersed observations.

6.2.2 Ring-recovery data model

Recall that count data are available from 1928 to 1998, i.e. for T = 71 time periods. In

contrast, ring-recovery data are only available for individuals released between 1955 and

1997, i.e. released in time period t ∈ {t1, . . . , t2}, where t1 = 28 and t2 = 70. These data

are stored in a matrix w whose tth row is denoted wt = {wt,s : t1 + 1 ≤ s ≤ t2 + 2}.

Here, wt,s indicates the number of individuals released at time t which are subsequently

recovered dead in the interval (s− 1, s]; wt,t2+2 corresponds to the number of individuals

that are released at time t that are not seen again within the study.

For each year of release, we assume a multinomial distribution for the subsequent

recoveries (see e.g. ? for further explanations on the ring-recovery model). Thus, the

model for m is then specified as

wt|Rt, θ ∼ Multinomial(Rt,qt).

Here, Rt denotes the number of herons that are ringed as chicks and released in the tth
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time period. The multinomial cell probabilities qt := {qt,s : t1 < s ≤ t2 + 2} are given by

qt,s :=


0, if t1 < s ≤ t,

(1− φmin{s−t,A},s−1)λs−1
∏s−t−1

a=1 φmin{a,A},t+a−1, if t < s ≤ t2 + 1,

1−
∑t2+1

s=t1+1 qt,s, if s = t2 + 2.

6.3 Parametrisation

6.3.1 Parameters common to all models

We consider additional covariate information to explain temporal variability. The re-

covery probabilities are assumed to be logistically regressed on the normalised covariate

timet which represent the normalised (bird) year t:

logitλt = α0 + β0timet, t = t1, . . . , t2 − 1.

We specify the survival probabilities to be logistically regressed on the normalised covari-

ate fdays t which represents the (normalised) number of days in (bird) year t on which

the mean daily temperature fell below freezing in Central England:

logitφa,t = αa + βafdays t, t = 1, . . . , T − 1. (7)

The free parameter in the negative-binomial observation equation is parametrised as

κ = logit−1(ω) ∈ (0, 1) with ω ∈ R.

6.3.2 Models for the productivity rate

We specify a set of models for which we perform model comparison on the productivity

rates. The unknown parameters are given by θ = {ω, α0, β0, α1, . . . , αA, β1, . . . , βA, ϑ},

where ϑ represents the additional model parameters needed for one of the following models

for the productivity rate.

Constant. We set log ρt = ψ. Thus, ϑ = {ψ}.

Regressed on frost days. We set log ρt = γ0 + γ1fdays t−1. Thus, ϑ = {γ0, γ1}.
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Direct density dependence. We set the log-productivity to be a linear function of

abundance, log ρt = ε0 + ε1ỹt, where ỹt denotes the tth normalised observation.

Thus, ϑ = {ε0, ε1}. This is one of the models considered by ?.

Threshold dependence. ? also investigate models in which the productivity is a step

function with K levels and hence K − 1 thresholds (K itself may be unknown)

which is defined in terms of the observations. More specifically, the productivity

rates are constant between the change-points and monotonically decreasing with

increasing population size, i.e. assuming that K > 1,

ρt =


ν1, if yt < τ1,

νk, if τk−1 ≤ yt < τk for 1 < k < K,

νK , if τK−1 ≤ yt,

where ν1 > ν2 > · · · > νK and τ1 < τ2 < · · · < τK−1. Thus, it is assumed that

larger population sizes induce lower productivity rates. For example, this may be

due to an exhaustion of high quality breeding sites leading to a reduction in the

quantity/quality of young. To ensure these inequalities we set νK = exp(ζK) and

νk =
∑K

l=k exp(ζl); τk = ymin + (ymax − ymin )

∑k
l=1 exp(ηl)∑K
m=1 exp(ηm)

,

for k ∈ {1, . . . , K − 1}, where ymin = min{y1, . . . , yT} and ymax = max{y1, . . . , yT}.

In this case, ϑ = {ζk, ηk : 1 ≤ k ≤ K}.

Regime switching dynamics. To constract a more flexible model for the productivity

rate, we extend the latent states xt by including an additional (unobserved) regime

indicator variable rt which takes values in {1, . . . , K}. Conditional on rt, the pro-

ductivity rate ρt−1 is then defined as ρt−1 = νrt , where ν1, . . . , νK are specified as

in the threshold model, above. The evolution of the latent regime indicator rt is

assumed to be a Markov chain with transition equation

rt|rt−1, θ ∼ Multinomial(K,Prt−1),

where Pk = (Pk,1, . . . , Pk,K) with Pk,l = exp($k,l)/
∑K

m=1 exp($k,m), for 1 ≤ l ≤ K,
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is the kth row of the (K,K)-transition matrix for the regime indicator variable. In

this case, ϑ = {ζk, $k,l : (k, l) ∈ {1, . . . , K}2}.

Finally, we note that we also vary the number of levels, K, and the number of age

groups, A, so that the number of models to be compared is much larger than the five

specifications for the productivity rate summarised above.

6.3.3 Prior specification

We assume that all the model parameters in θ are independent a-priori with Normal(0, 1)

priors, except that ω ∼ Normal(−2, 4). The motivation for this choice of priors is the

same as in Subsection 5.3.

6.4 Results

Estimates of the evidence for the models can be found in Figure 3. The fit of the different

models for the productivity rates is illustrated in Figure 4 below (see also Web Figure 2 in

Web Appendix B). Due to the increased flexibility of the productivity rates, the regime-

switching model leads to a smaller measurement error. In addition, the evidence for the

regime-switching model is much higher than the other models in Figure 3.

Figure 3 supports the finding from ? that modelling the herons using four age groups

is appropriate (though the results with three age groups are similar). However, using

only two age groups drastically reduces the model evidence across all specifications for

the productivity rate. The results also support the findings from ? that the first three

models (with productivity rate constant, regressed on the number of frost days, or density-

dependent) do not explain the data well.

The posterior distribution of the productivity rate (under any of the models) must be

interpreted with care. Indeed, note the sharp decline of the productivity rate in the years

immediately preceding the severe winters of 1946–47 and 1962–63 in Figure 4b. This

indicates that the linear model for the survival rates in (7) may not be flexible enough

to accommodate the drop of the heron population in subsequent years.

19



We also implemented all of the above-mentioned models using a continuous (linear-

Gaussian) approximation to the state-space model for the count data. For the regime-

switching model, a PF is then still necessary to sample the latent regime indicators.

However, as these take values in a small finite set, this can be done highly efficiently

using the discrete PF from ?. The results (omitted here) are relatively similar to the re-

sults obtained for the original models, i.e. the approximation did not affect the ordering

of the models in terms of the evidence. However, the regularising effect of the continu-

ous (linear-Gaussian) approximation artificially increased the evidence for all models by

roughly the same amount. In other words, such linear-Gaussian approximations lead to

an overestimation of the model fit.

7 Conclusion

We have proposed an efficient Monte Carlo methodology for Bayesian parameter estima-

tion and model comparison for integrated population models which have a state-space

model for the noisily observed population sizes as one of their constituent parts. Utilis-

ing PMCMC techniques, our approach can be generally applied to such models, requiring

neither (a) approximate linear or Gaussian modelling assumptions which introduce a bias

that is often difficult to quantify nor (b) data-augmentation schemes which can lead to

poor mixing in MCMC algorithms if highly correlated states or parameters are updated

separately. Incorporating these ideas into an SMC sampler also yields estimates of pos-

terior model probabilities allowing us to perform model comparison, e.g. for the number

of age groups. Finally, we have proposed two extensions which enhance the efficiency of

our methodology by exploiting the structure of integrated population models.

We have demonstrated the methodology on two different applications: (1) little owls

and (2) grey herons. For the owls, we found no evidence in favour of some of the more

complex model specifications proposed in the literature, e.g. for the dependence of im-

migration on the abundance of voles proposed in ?. For the herons, we showed that

existing models, including the state-of-the-art threshold model for the productivity from
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?, do not explain the data well. To remedy this problem, we proposed a novel regime-

switching model and demontrated that it is very strongly favoured over the other models

in terms of the Bayes factor. Our methodology is related to the SMC2 algorithm from

?. However, even in low-dimensional settings (i.e. 3-4 unknown model parameters) ?

had to combine SMC2 with another importance-sampling algorithm to obtain evidence

estimates accurate enough for model comparison in some examples (and, as pointed out

by ?, this importance sampling scheme may not be applicable in higher dimensions). In

contrast, in all applications considered in this work, the evidence estimates provided by

our methodology were accurate enough to directly identify the best-performing models

despite the relatively large number of unknown model parameters (i.e. 6–58 for the owls;

8–31 for the herons).
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Figure 1. Autocorrelation (rescaled by computation time) of the estimates of the pa-
rameters α0 and β1 in the little-owls model (with the productivity rates assumed to be
constant, i.e. γ1 = . . . = γT ) and immigration independent of the abundance of voles,
i.e. δ1 = 0. The results are based on two independent repeats (each comprised of 107

iterations) of the MCMC algorithms with and without delayed-acceptance.
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Figure 2. Logarithm of the estimates of the evidence for the eight models for the little
owls with or without dependence of the immigration rate on the abundance of voles.
The results were obtained from 20 independent runs of the adaptive SMC sampler using
10, 000 particles; the particle filters used to approximate the marginal likelihoods use
1, 000 particles. The average computation time for each SMC sampler was around 9–18
hours on a single core (we stress such a relatively large number of particles was only
used to gain accurate evidence estimates in the large models (in terms of the number
of parameters), i.e. in Models 1–5; for the smaller models, i.e. Models 6–8, quite similar
results could have been obtained in 30 minutes by using only 500 particles.

23



L
o
g
-e
v
id
en

ce

-1240

-1230

-1220

-1210

-1200

-1190

-1180

No. of age groups: 2

C
o
n
st
a
n
t

R
eg
re
ss
ed

o
n
n
u
m
b
er

o
f
fr
o
st

d
ay

s

D
ir
ec
t-
d
en

si
ty

d
ep

en
d
en

ce

K
=

2

T
h
re
sh
o
ld

d
ep

en
d
en

ce
K

=
3

K
=

4

K
=

2

R
eg
im

e
sw

it
ch
in
g

K
=

3

K
=

4

Model for the productivity rate

No. of age groups: 3

C
o
n
st
a
n
t

R
eg
re
ss
ed

o
n
n
u
m
b
er

o
f
fr
o
st

d
ay

s

D
ir
ec
t-
d
en

si
ty

d
ep

en
d
en

ce

K
=

2

T
h
re
sh
o
ld

d
ep

en
d
en

ce
K

=
3

K
=

4

K
=

2

R
eg
im

e
sw

it
ch
in
g

K
=

3

K
=

4

No. of age groups: 4

C
o
n
st
a
n
t

R
eg
re
ss
ed

o
n
n
u
m
b
er

o
f
fr
o
st

d
ay

s

D
ir
ec
t-
d
en

si
ty

d
ep

en
d
en

ce

K
=

2

T
h
re
sh
o
ld

d
ep

en
d
en

ce
K

=
3

K
=

4

K
=

2

R
eg
im

e
sw

it
ch
in
g

K
=

3

K
=

4

Figure 3. Logarithm of estimates of the evidence for different models for the grey herons.
Shown are results for the different models for the productivity rate and different numbers
of distinctly modelled age categories (A). For the threshold and regime-switching models,
we also investigate different values for the number of thresholds/regimes (K). Obtained
from 10 independent runs of the adaptive SMC sampler using 1, 000 particles; the PFs
used to approximate the count-data likelihood employed 4, 000 particles. The average
computation time was 42–61 hours for the threshold models, 32–45 hours for the regime-
switching models and 29–48 for the remaining models, the lower numbers corresponding
to A = 2 age categories and the higher numbers to A = 4 age categories.
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a. Threshold dependence (K = 4 levels, i.e. 3 thresholds).

2
0
0
0

4
0
0
0

6
0
0
0

P
o
p
u
la
ti
o
n
(a
g
e
>

1
)

estimated counts (posterior median)

observed count

0
1

2

1930 1940 1950 1960 1970 1980 1990

P
ro
d
u
ct
iv
it
y

estimated productivity rate (posterior median)

b. Regime switching (K = 4 regimes).

Figure 4. Marginal posterior distributions of the estimated heron counts (top rows)
and productivity rates (bottom rows) for the threshold model from ? and the novel
regime-switching model (results for other models are shown in Web Appendix B) with
A = 4 distinct age categories. The shaded areas represent, respectively, the 90 % quantile
and range of all encountered realisations. The shown results display the average over 10
independent repeats of the adaptive SMC sampler (each using 1, 000 particles). The PFs
used to approximate the count-data likelihood use 4, 000 particles.
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Table 1. Average efficiency gain (as defined in Equation (6)) of the refined likelihood
tempering scheme (see Section 4.3 of the main manuscript) over standard likelihood
tempering for different numbers of particles (M). To simplify the presentation, we only
show results for each of the eight models in the case that δ1 6= 0, i.e. we allow for
dependence of immigration on the abundance of voles.

Model 1 2 3 4 5 6 7 8
efficiency gain (M = 1, 000) 14.0 4.7 2.8 2.3 2.9 0.9 0.9 1.2
efficiency gain (M = 10, 000) 19.1 4.5 2.3 2.3 2.5 0.8 1.2 0.6
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