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23 ABSTRACT

24 The subsidence and exhumation histories of the Qiangtang Basin and their 

25 contributions to the early evolution of the Tibetan plateau are vigorously debated. 

26 This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 

27 eleven selected composite stratigraphic sections and constrains the first stage of 

28 cooling using apatite fission track data. Facies analysis, biostratigraphy, 

29 paleo-environment interpretation, and paleo-water depth estimation are integrated to 

30 create eleven composite sections through the basin. Backstripped subsidence 

31 calculations combined with previous work on sediment provenance and timing of 

32 deformation, show that the evolution of the Mesozoic Qiangtang Basin can be divided 

33 into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a 

34 retro-foreland basin. In contrast, the South Qiangtang was a collisional pro-foreland 

35 basin. During Middle Jurassic to Early Cretaceous times, the North Qiangtang is 

36 interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the 

37 South Qiangtang was controlled by subduction of Meso-Tethyan Ocean lithosphere 

38 and associated dynamic topography combined with loading from the Central Uplift. 

39 Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early 

40 to Late Cretaceous (120.9-84.1 Ma) and Paleogene-Eocene (65.4-40.1 Ma). Thermal 

41 history modelling results record Early Cretaceous rapid cooling; the termination of 

42 subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the 

43 accumulation of crustal thickening in central Tibet probably initiated during Late 

44 Jurassic-Early Cretaceous times (150-130 Ma), involving underthrusting of both the 
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45 Lhasa and Songpan-Ganze terranes beneath the Qiangtang terrane, or the collision of 

46 Amdo terrane.

47 Keywords: Qiangtang, Subsidence, Apatite fission track, Crustal thickening

48 INTRODUCTION

49 The collision of India with Asia is the most important driving force for the 

50 growth of the Tibetan plateau (Argand, 1922; Dewey et al., 1988; Yin & Harrison, 

51 2000), with the onset of collision at about 55±10 Ma promoting significant changes in 

52 Tibetan plateau height and relief (Currie et al., 2005; Rowley & Currie, 2006; Ding et 

53 al., 2014, 2017; Wang et al., 2014; Leary et al., 2017). Evidence shows that 

54 deformation in the hinterland of the plateau occurred before collision (Murphy et al., 

55 1997; Kapp et al., 2005). However, uncertainty remains as to whether this early 

56 shortening resulted in moderate or high elevations within the Tibetan plateau prior to 

57 the India-Asia collision (Zhang et al., 2012 and references therein). It is reasonable to 

58 speculate that the crustal thickening in the central region of the Tibetan plateau had 

59 started before Cenozoic times (Zhao et al., 2017). The Qiangtang Basin developed on 

60 the overriding plate between two major suture zones (the Bangong Lake-Nujiang 

61 suture zone, BNSZ, to the south and the Jinsha River suture zone, JRSZ, to the north, 

62 respectively), and is considered to record the early growth of the central Tibetan 

63 plateau (Song, 2012; Ren et al., 2015; Zhao et al., 2017). However, Early Mesozoic 

64 subsidence and pre-Cenozoic exhumation histories of the Mesozoic marine Qiangtang 

65 Basin are unclear, which hinders understanding of the early history of crustal 

66 thickening in central Tibet. This is due in large part, to the extremely remote locations 
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67 and the strong Cenozoic structural deformation of the stratigraphic successions (Kapp 

68 et al., 2003, 2005). Therefore, understanding of the Mesozoic history of the Qiangtang 

69 Basin is variable. The proposed mechanisms for basin subsidence are dominated by 

70 two competing models. It is proposed that either the basin formed in an extensional 

71 setting on the southern margin of Eurasia during Late Triassic to Early Cretaceous 

72 times (e.g., Wang et al., 2004a; Song, 2012), or that it represents a foreland basin (e.g. 

73 Wang et al., 2001; Li et al., 2002). Published thermochronologic data from the 

74 Qiangtang Basin come mainly from the Qiangtang culmination (Rohrmann et al., 

75 2012; Zhao et al., 2017), and sparsely from detrital sandstones (Wang et al., 2008a; 

76 Wang & Wei, 2013; Ren et al., 2015). Cooling ages of different thermochronometers 

77 range from Early Jurassic to Cenozoic, and the initial timing of plateau growth is 

78 thought to range from Early Cretaceous to Paleogene (Wang et al., 2008a; Rohrmann 

79 et al., 2012; Zhao et al., 2017).

80 Present-day stratigraphic thicknesses are the products of cumulative changes in 

81 rock volume through time caused by subsidence and burial (Allen & Allen, 2005). 

82 Reconstructing the subsidence histories of sedimentary basins provides data to 

83 directly interrogate the tectonic evolution of a basin (e.g. Brunet et al., 2003; Carrapa 

84 & Garcia-Gastellanos, 2005; Abadi et al., 2008; Holt et al., 2010, 2015; Kuhn et al., 

85 2010; Sciunnach & Garzanti, 2012; Abdullayev et al., 2017; Dressel et al., 2017; 

86 Silvia et al., 2017; Tozer et al., 2017). The most commonly applied method to recover 

87 the 1-D subsidence history of a sedimentary basin is “backstripping” (Watts & Ryan, 

88 1976; Sclater & Christie, 1980), which relies on physical properties of the 
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89 stratigraphic sequences (thickness and porosity), combined with depositional ages, 

90 paleobathymetry and eustsay at the time of accumulation. The exhumation of 

91 sedimentary basins is usually related to tectonic evolution, surface erosion and deep 

92 geological processes (Bernet et al., 2001; Reiners & Brandon, 2006). Various 

93 thermochronometric systems have been used to provide important information on the 

94 timing and duration of cooling events that can be related to rock uplift and erosion of 

95 a sedimentary basin (Naeser et al., 1989; Cederbom et al., 2004; Armstrong, 2005).

96 This study carried out subsidence analysis of the Mesozoic Qiangtang Basin 

97 using stratigraphic successions obtained from geological surveys during the last three 

98 decades. New subsidence curves of the Qiangtang Basin established in this study 

99 suggest a transition from a foreland basin on the south of the JRSZ during Triassic 

100 times, to a hinterland basin (Horton, 2012) from Middle Jurassic to Early Cretaceous 

101 times. The cooling history of the basin is constrained using apatite fission track data 

102 from sandstones with modelling results indicating Early Cretaceous basin inversion 

103 and exhumation, which we interpret to be related to the collision of the Amdo 

104 basement or the initial amalgamation between the Lhasa and Qiangtang terranes. Our 

105 results contribute to the understanding of the evolution of the Qiangtang Basin and 

106 have implications for the Mesozoic growth of the Tibetan plateau.

107 GEOLOGIC BACKGROUND

108 The Tibetan plateau consists of several tectonic terranes, including the 

109 Himalayas, Lhasa, Qiangtang, Songpan-Ganze, and Kunlun-Qaidam, divided by 

110 several nearly east-west suture zones (Yin & Harrision 2000; Dai et al., 2011; Zhang 
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111 et al., 2012). The Qiangtang terrane, located in the central part of the plateau, is 

112 delimited by the JRSZ to the north and the BNSZ to the south (Fig. 1a). The JRSZ is 

113 considered to represent the closure of the Palaeo-Tethys Ocean in Permian to Late 

114 Triassic times, which opened probably in Early Carboniferous or earlier (Dewey et al., 

115 1988; Pearce & Houjun, 1988; Kapp et al., 2003; Zhai et al., 2015). Middle to Upper 

116 Triassic deep-marine turbidites derived from surrounding blocks are preserved in the 

117 triangle-shaped Songpan-Ganze terrane north of the JRSZ (Nie et al., 1994; Weislogel 

118 et al., 2006; Ding et al., 2013a). The Songpan-Ganze terrane was strongly deformed 

119 in the Late Triassic during closure of Paleo-Tethys (Chang, 2000; Roger et al., 2011). 

120 Meanwhile, suturing along the JRSZ had taken place by Late Triassic (Norian) times, 

121 supplying a source of sediment southwards to the Qiangtang Basin (Li et al., 2003). 

122 New geophysical and geochemical evidence reveal that the Songpan-Ganze complex 

123 may have subducted southward beneath the Qiangtang terrane along the JRSZ during 

124 Late Triassic (Zeng et al., 2015; Lu et al., 2017).

125 The BNSZ represents the closure of the Meso-Tethyan seaway along the 

126 southern margin of the Qiangtang terrane during Late Jurassic to Late Cretaceous 

127 times, resulting in amalgamation of the Lhasa and Qiangtang terranes (Fig. 1a) (Yin & 

128 Harrison, 2000; Kapp et al., 2007; Zhu et al., 2013, 2016; Fan et al., 2015; 2016; Li et 

129 al., 2016; Yan et al., 2016; Chen et al., 2017a; Huang et al., 2017; Li et al., 2017a; 

130 Liu et al., 2017). Ophiolite fragments and Mesozoic clastic units (Li et al., 2017b) 

131 within the BNSZ are tectonically superimposed. The Amdo basement (Fig. 1b) may 

132 have been isolated as a microcontinent or a continental arc during the formation of the 
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133 Bangong-Nujiang Meso-Tethyan Ocean ophiolites (Guynn et al., 2006; Zhang et al., 

134 2014). 

135 The Qiangtang Basin is subdivided into the North Qiangtang sub-basin, the 

136 Central Uplift, and the South Qiangtang sub-basin (Fig. 1b, Wang et al., 2004b). The 

137 Central Uplift is composed of blueschist-bearing metamorphic mélange (Kapp et al., 

138 2000; Zhang et al., 2006; Pullen & Kapp, 2014), Paleozoic low-grade strata (Kapp et 

139 al., 2000), and Late Triassic intermediate to felsic intrusive rocks (Kapp et al., 2000; 

140 Li et al., 2015a). The contacts between metamorphic rocks and overlying 

141 Paleozoic-Triassic low-grade strata are low-angle normal faults (Kapp et al., 2000, 

142 2003). The formation of the Central Uplift is still an enigma, with interpretations 

143 ranging from an in-situ suture (Longmucuo-Shuanghu suture zone, LSSZ) (e.g., Li et 

144 al., 1995; Zhang et al., 2006; Liu et al., 2011; Zhao et al., 2014, 2015; Zhai et al., 

145 2015; Yan et al., 2016; Liang et al., 2017) to the underthrust model that the mélange 

146 was thrust beneath the Qiangtang terrane from the north and exhumed to the surface 

147 by large-scale core complexes (e.g., Yin & Harrison, 2000; Kapp et al., 2000, 2003; 

148 Pullen & Kapp, 2014).

149 Despite the fact that the tectonic significance of the Central Uplift is debated, the 

150 Mesozoic stratigraphic sequences in both the North and South Qiangtang are well 

151 documented. In the North Qiangtang region they are separated by two major 

152 unconformities in Upper Triassic to Lower Jurassic and the Lower Cretaceous; while 

153 in the South Qiangtang region, the Mesozoic strata are complete until the Lower 

154 Cretaceous (Fig. 2). Lower and Middle Triassic strata are sparse throughout the entire 
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155 Qiangtang Basin. Upper Triassic sediments are represented by offshore to shallow 

156 marine limestones (Juhuashan Fm. of the North Qiangtang), deep marine flysch 

157 (Zangxiahe Fm.), and deltaic and littoral sandstones, siltstones and mudstones 

158 (Riganpeicuo Group of the South Qiangtang). The Nadigangri volcanic rocks overlie 

159 the paleo-weathering crusts in some places in the North Qiangtang (Fu et al, 2007; 

160 Wang et al., 2007). This set of volcanic rocks was considered to record the onset of 

161 filling of the Mesozoic Qiangtang Basin (Wang et al., 2004b; Fu et al., 2010), and 

162 assigned to an Early Jurassic (Zhu et al., 1996, 1997) or Middle Jurassic age (Wang et 

163 al., 2001) until Zhai & Li (2007), Wang et al. (2008b) and Fu et al. (2010) presented 

164 SHRIMP zircon U-Pb ages of 219±4 Ma, 216±4.5 Ma and 220.4±2.3 Ma, 

165 respectively.

166 The Jurassic sequences are complete in both the northern and southern portions 

167 of the Qiangtang Basin, except that the Lower Jurassic units are missing in the North 

168 Qiangtang, while contemporaneous sequences in the South Qiangtang are represented 

169 by coastal black shales interbedded with limestones and gypsum (Quse Fm., Fig. 2). 

170 The earliest Middle Jurassic successions include tidal or deltaic coarse sediments 

171 (Qumocuo Fm. of the North Qiangtang) and shallow-marine black shales with 

172 limestones (Sewa Fm. of the South Qiangtang) (Wang et al., 2004b). The upper 

173 sequences of the Middle Jurassic consist of marine platform limestones, dolomites 

174 (Buqu Fm., Ding et al., 2013b) and regressional semi-closed tidal flat sediments 

175 (Xiali Fm., Song et al., 2017). The Upper Jurassic unit is represented by 

176 intra-platform littoral-neritic carbonate rocks and black shales deposited in a closed, 
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177 deep and static marine environment (Suowa Fm., Wang et al., 2013).

178 During latest Jurassic to earliest Cretaceous times, the stratigraphic sequences are 

179 represented by clastic-carbonate sediments. The marine sedimentation in the North 

180 Qiangtang during the Early Cretaceous is represented by Xueshan Fm. and 

181 diachronous Bailongbinghe, Suowa and Xiali formations (Li & Batten, 2004; Yang et 

182 al., 2017). Although Zhang (2000) and Zhang et al. (2004) asserted that the southern 

183 half of Qiangtang terrane was an area of marine sedimentation during Early 

184 Cretaceous, the marine sediments prevailed in its southern margin, close to the BNSZ. 

185 They have closer affinity to the BNSZ (Li et al., 2017b) and are divided into different 

186 stratigraphic divisions (Mugagangri stratigraphic area) from the Jurassic sediments in 

187 the South Qiangtang. Overlying the repeated transgressive and regressive sequences 

188 (Ding et al., 2013b) is a Lower Cretaceous unconformity. Upper Cretaceous alluvial 

189 and fluvial red sediments (Abushan Fm.) occupied the South Qiangtang depression, 

190 but are not found in its northern counterpart (Fig. 2). Its age has been defined to 

191 102-75 Ma (Late Cretaceous) by different geochronological methods (Li et al., 2013; 

192 Wu et al., 2014; Li et al., 2015c; Chen et al., 2017b). Cenozoic terrestrial deposits 

193 unconformably overlie these Upper Cretaceous sequences.

194 METHODS

195 Backstripping and Data

196 The principle of backstripping analysis is an inverse modelling approach 

197 utilizing the stratigraphic record (Watts & Ryan, 1976; Sclater & Christie, 1980). 

198 Both the total and backstripped subsidence curves are time versus depth diagrams. In 
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199 the actual operating process, the first step is stratigraphic correlations and age 

200 assessment, after which combining decompaction, palaeobathymetry and eustasy 

201 yield the total subsidence history. By removing the subsidence generated by sediment 

202 and water loads, the component of subsidence driven by tectonic forcing remains 

203 (Magoon & Dow, 1994; Stapel et al., 1996). We used a MATLAB program (Yao et 

204 al., 2017) to calculate the final tectonic subsidence and error bars.

205 Stratigraphic units

206 An issue is the poor exposure of the stratigraphic successions in the Qiangtang 

207 Basin where strong weathering and Cenozoic deformation (Kapp et al., 2005) affect 

208 preservation. All the exploration wells, currently, are shallow ones (none deeper than 

209 1.5 km) that encounter only a small part of the Mesozoic successions. Therefore, 

210 subsidence recovery was accomplished using surface sections. Geological survey 

211 institutes from China and our working group have measured up to 235 detailed 

212 stratigraphic sections in the Qiangtang Basin. The first step is integrating scattered 

213 sections into a composite successive column by lithologic or biostratigraphic 

214 correlations (Sciunnach & Garzanti, 2012). As many measured stratigraphic sections 

215 are hard to be integrated into one composite profile, because of the incomplete 

216 exposure of Mesozoic sequences in one depression or severe disturbance caused by 

217 Cenozoic deformation, we managed to restore eleven composite profiles in total (see 

218 the Supporting information for the GPS data of all 235 sections and precise locations 

219 of 11 composite profiles on Google Earth). For each of the eleven selected composite 

220 sections, the average thickness of the various sections was used among the numerous 
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221 profiles in the same depression. The details of thickness of each stratigraphic unit are 

222 given in Table S1.

223 In the North Qiangtang, nine locations were chosen to conduct subsidence 

224 analyses, partly because the North Qiangtang occupies a large portion of the basin 

225 (Fig. 1). Most locations have disrupted sequences, except for Nadigangri and Quemo 

226 Co (Fig. 3). Three major unconformities can be found in strata exposed in the North 

227 Qiangtang (Figs. 2 and 4). All of the sections, at the bottom, are characterized by 

228 Upper Triassic marine limestones (Juhuashan Fm. of Duxue Mt., Shuangquan Lake, 

229 and Zuerkenwula Mt., and Bolila Fm. of Quemo Co), and clastic deposits (Zangxiahe 

230 Fm. of Heihuling and Changshui River, Tumengela Group of Dangmagang, and 

231 Bagong Fm. and Erlongba Fm. of Quemo Co), with the exception of the Nadigangri 

232 and Amugang sections which do not preserve marine deposits. The Amugang section 

233 is represented by Permian metavolcanic rocks which underlie the whole sequence. 

234 The first major gap appears between the marine deposits and overlying volcanic rocks 

235 (Nadigangri Fm.). This unconformity appears only in the western part of the North 

236 Qiangtang (Duxue Mt., Shuangquan Lake, Heihuling and Nadigangri), while the 

237 eastern portion only exhibits the second major unconformity, which is prevalent 

238 across the North Qiangtang. The second major unconformity is between Upper 

239 Triassic and Middle Jurassic strata. The Lower Jurassic units are missing in the North 

240 Qiangtang, suggesting a long-term hiatus or tectonic uplift after the closure of Jinsha 

241 River suture to the north. The Middle Jurassic successions include Qumocuo Fm., 

242 Buqu Fm. and Xiali Fm. (Fig. 4). The Upper Jurassic unit is represented by Suowa 
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243 Fm. During latest Jurassic to earliest Cretaceous, the stratigraphic sequences consist 

244 of clastic sediments, Bailongbinghe and Xueshan formations (Fig. 2). Note that the 

245 Bailongbinghe and Xueshan formations are probably contemporaneous heterotopic 

246 facies so that they are not both recorded in some locations. The last major 

247 unconformity is between Cenozoic fluvial and lacustrine Kangtuo Fm. and latest 

248 Jurassic to earliest Cretaceous sandstones. No Late Cretaceous sediments were 

249 discovered.

250 Two sites were considered ideal for modelling of subsidence histories of the 

251 South Qiangtang, the Biluo Co and Dazhuoma sections (Figs. 1 and 5). Mesozoic 

252 sequences are more complete than that of the North Qiangtang, with only one or two 

253 major unconformities recognized (Fig. 5). The Late Triassic sequences are 

254 represented by fine-grained clastic deposits (Riganpeico Group of Biluo Co and Adula 

255 Fm. of Dazhuoma), sandstones (Duogaila Fm. of Dazhuoma), and limestones 

256 (Suobucha Fm. of Biluo Co). It is noticeable that the Biluo Co section is complete, 

257 while the Dazhuoma section has an obvious unconformity between the Jurassic 

258 Quemocuo Fm. and the Triassic sandstones. This indicates an east-west difference in 

259 the paleogeography of the South Qiangtang. The early stage of the Jurassic sequences 

260 seems to record contemporaneous heterotopic facies in Biluo Co (Quse Fm. and Sewa 

261 Fm.) and Dazhuoma (Quemocuo Fm.), respectively. The discrepancy lies in the grain 

262 size and thickness where the Biluo Co section is finer and thicker (Fig. 5). The rest of 

263 the Jurassic sequences are characterized by limestones interbedded with sandstones, 

264 siltstones and mudstones. The lower limestone unit, Buqu Fm., preserves dolomites 
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265 and gypsum, reflecting an arid period during a marine transgression-regression cycle. 

266 The upper limestone unit, Suowa Fm., is characterized by darker bioclastic limestone. 

267 The interbedded clastic unit is relatively fine grained. A regional unconformity 

268 appears above the upper limestone unit, with latest Jurassic to earliest Cretaceous 

269 clastic deposits missing in the South Qiangtang compared to that of the North 

270 Qiangtang (Figs. 4 and 5). The Late Cretaceous Abushan Fm. is only recognized in 

271 the South Qiangtang, which is unconformably overlay by Cenozoic Kangtuo Fm.

272 Age constraints

273 Hundreds of samples from regional geological surveys were studied for 

274 biostratigraphy (e.g., ammonoids, bivalves, corals, brachiopods, foraminifers, 

275 radiolarians, fusulinids, etc., see Table S2 in Supporting material for details about 

276 fossils and their constrained biostratigraphy), resulting in reliable biostratigraphic 

277 control (e.g., Chen et al., 2016; Yin, 2016; Yin & Chandler, 2016) and refined 

278 palaeoenvironmental and palaeowater-depth interpretations. All Jurassic strata contain 

279 abundant bivalves to constrain ages (Table 1). In addition, ages of Jurassic sequences 

280 are constrained by magnetostratigraphy of Fang et al. (2016) (Fig. 2).

281 The accuracy of subsidence history plots heavily depends on the precision of age 

282 assessment. The choice of timescale is important when transforming relative ages 

283 derived from biotas into numerical ages. However, there are a few differences in 

284 recent timescales by different authors, and so we adopt the standard timescale of 

285 Gradstein et al. (2004) and Ogg et al. (2008).

286 Decompaction
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287 The quantitative analysis of total subsidence history relies mainly on stepwise 

288 decompaction of stratigraphic units (Bond & Kominz, 1984). The principle of 

289 decompaction is based on the reduction of porosity with depth (Allen & Allen, 2005 

290 and references therein). Generally the porosity decreases exponentially with depth 

291 (Steckler & Watts, 1978; Sclater & Christie, 1980):

292

293 Φ=Φoe-cy                                                          (1)

294

295 where Φo is the surface porosity, Φ is the porosity at the given depth y, and c is a 

296 lithology-dependent coefficient. The standardΦo and c values for different lithologies 

297 used in this study come from Sclater & Christie (1980).

298 In the decompaction process, when recovering the depths y1 and y2 of the 

299 sedimentary unit to its initial uncompacted depths y1’ and y2’ (Fig. 6), the 

300 decompacted thickness H, will be the following result (Allen & Allen, 2005):

301

302 H= y2’- y1’= y2- y1+Φo[(e-cy1’- e-cy2’)-( e-cy1- e-cy2)]/c                         (2)

303

304 where Φo(e-cy1’- e-cy2’)/c is the pore volume after decompaction, and Φo(e-cy1- e-cy’)/c 

305 is the pore volume before decompaction.

306 Backstripping

307 The total subsidence is divided into two parts, one resulting from the tectonic 

308 driving forces and the other caused by sediment and water loads. The subsidence 
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309 curve obtained after decompaction is the total subsidence (Watts et al., 1982; Busby 

310 & Ingersoll, 1995). Sediment load must be subtracted by means of isostatic models 

311 (Einsele, 1992). An Airy isostastatic model was adopted in this study.

312 In an Airy isostastatic model, the tectonic subsidence, D, can be backstripped 

313 from H using the equation given by Watts & Ryan (1976):

314

315 D=H(ρm-ρs)/(ρm-ρw)                                                  (3)

316

317 where ρm, ρs, and ρw are densities of lithospheric mantle, sediments and water, 

318 respectively. Values for ρm and ρw are constant and we adopt 3.33 and 1.035 g/cm3 for 

319 each of them. Values for ρs are calculated in terms of weighted mean average 

320 densities of different lithologies during progressive decompaction using the following 

321 equation (Allen & Allen, 2005):

322

323 ρs
=Σ{[Φi·ρw+(1-Φi) ρsgi]/H}Yi’                                        (4)

324

325 where Φ i is the porosity of a specific layer, ρsgi is the sediment grain density of one 

326 layer, and Yi’ is the thickness of layer i.

327 Boundary conditions

328 Sea-level changes and paleo-water depths are usually used as boundary 

329 conditions in modelling. Although regional sea-level changes often differ from global 

330 scales, global sea-level curves are used in many cases. We adopt the eustatic sea-level 
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331 curves of Miller et al. (2005) for Mesozoic eustatic corrections. The eustasy data are 

332 given in Table S1.

333 Paleo-water depth often has a wide range of uncertainty (e.g., Bertram & Milton, 

334 1988) and are derived primarily from fossils, sedimentary structures, geochemical 

335 signatures (values and ratios of trace, transition and rare earth element, etc.), and 

336 depositional environment interpretations (Sciunnach & Garzanti, 2012) (Fig. 7). For 

337 instance, the biomarkers of the Middle Jurassic Buqu Formation indicate an offshore 

338 to shallow marine environment (Chen et al., 2014), which suggested a paleo-water 

339 depth of 0-150 m. All the paleo-water depths used in the modelling are listed in Table 

340 S1 in Supplementary material.

341 After corrections for paleo-water depth and variations in sea-level change are 

342 conducted, the Airy compensated tectonic component of basement subsidence, Y, is 

343 (Sclater & Christie, 1980):

344

345 Y=D+Wd-Δsl·ρm/(ρm-ρw)                                               (5)

346

347 where Wd is the assumed paleo-water depth, and Δsl is paleo-sea level relative to the 

348 present.

349 The uncertainties of backstripping methods

350 Generally, the uncertainty of stratigraphic thickness is small. It mostly comes 

351 from the unknown amount of erosion at unconformities. The apatite fission track 

352 analyses could constrain the erosion thickness in the Dazhuoma section (Figs. 1 and 5; 
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353 Table 2). However, it can not be applied to the other sections. As a result, this 

354 correction was neglected, as assessment of the amounts of erosional removal are not 

355 accessible in these sections; it is recognized that this provides uncertainty in the final 

356 subsidence calculation.

357 Age assessment has a large uncertainty because most of the age constraints 

358 derive from biostratigraphy. Only the volcanic rocks of Late Triassic Nadigangri Fm. 

359 are constrained by U-Pb zircon dating. The uncertainty in age assessment causes little 

360 change to the shape of subsidence curves. The biostratigraphy information of all the 

361 sequences are tabulated in Table S2 in Supplementary material.

362 Paleo-water depth often has a wide range of uncertainty, especially for 

363 deep-water units (Sciunnach & Garzanti, 2012). In our study, paleo-water depths are 

364 based on the interpretation of paleo-environment and have large errors on them. 

365 Sea-level corrections are based on curves generated from the Atlantic passive margin 

366 (Miller et al., 2005), which may differ from regional sea-level histories linked to 

367 variations in the geoid.

368 Finally, the use of a simple Airy isostatic correction is applied as there is 

369 uncertainty around the flexural rigidity of the plate during the Mesozoic loading. The 

370 implication is that the rates of tectonically induced subsidence following 

371 backstripping would have been greater, but the pattern of subsidence unchanged 

372 (Allen and Allen, 2005).

373 Apatite Fission Track Thermochronology

374 Materials and methods
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375 12 sandstone samples were collected for apatite fission track (AFT) analyses (Fig. 

376 1; GPS coordinates are given in Table S3 in Supplementary material). Seven samples 

377 came from the Amugang, Biluo Co and Dazhuoma sections (Figs. 4 and 5). The other 

378 five were from geological surveys. Fission track ages, track lengths, and Dpar (etched 

379 pits of fission tracks on a polished surface) measurements were performed at the 

380 University of Glasgow using the external detector method (Gleadow, 1981; Donelick 

381 et al., 2005) and the zeta calibration technique (Huford & Green, 1983), following the 

382 techniques provided by Persano et al. (2005). Apatite grains were etched for 20 s in 

383 5.0 M HNO3 at room temperature (~20°C). Mica detectors were etched with HF for 

384 25 min. Samples were irradiated at Oregon State TRIGA Reactor, USA. Apatites were 

385 irradiated together with IRMM 540R dosimeter glasses to check the constancy of the 

386 neutron flux. The samples and standards were counted under a Carl Zeiss Axio 

387 Imager M1m optical microscope at 1250 × magnification and the FTStage 4.04 

388 system by Trevor Dumitru. All AFT data were processed and plotted using TrackKey 

389 software (Dunkl, 2002); their populations were analyzed using Density Plotter 

390 (Vermeesch, 2012). The χ2 test (Galbraith, 1981; Green, 1981) was performed on all 

391 samples to determine the populations in a grain-age distribution.

392 Thermal History Modelling

393 HeFTy, a Monto Carlo approach to data interpretation (Ketcham et al., 2005), 

394 was used to decipher thermal history. Fission track age and track length were 

395 modelled using the multi-kinetic annealing model of Ketcham et al. (2007), using 

396 Dpar as a kinetic parameter (Donelick et al., 2005). Inverse thermal history modelling 
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397 was run until 100 good paths were obtained, which in all cases resulted >10000 

398 acceptable paths.

399 RESULTS

400 Subsidence History

401 Subsidence history of the nine locations in the North Qiangtang and two in the 

402 South Qiangtang were generated (Fig. 8). A total decompacted subsidence curve and a 

403 backstripped, tectonic subsidence curve were obtained for each site.

404 All curves of the North Qiangtang show two stages of concave-up subsidence, a 

405 lower magnitude during Late Triassic and a more pronounced stage during Middle 

406 Jurassic to Early Cretaceous. In the first stage, rapid tectonic subsidence was recorded 

407 during middle Late Triassic, followed by a deceleration or termination in tectonic 

408 subsidence. To more clearly understand the latter stage of subsidence history, we 

409 focus on the subsidence curves from ~172 Ma to 120 Ma (Fig. 9). This stage of 

410 subsidence started at around 172 Ma, with subsidence curves that are either concave 

411 or nearly liner (e.g., Duxue Mt. and Shuangquan Lake). The last phase of most 

412 subsidence curves decelerate with time with the exception of Duxue Mt. and 

413 Shuangquan Lake (Fig. 9). A suspension was recorded in the Heihuling profile at 

414 about 165 Ma.

415 Two sites in the South Qiangtang show distinct subsidence patterns. The 

416 subsidence rate of Biluo Co accelerated with time at first, and then decelerated in the 

417 Late Jurassic (Fig. 8). In contrast, the subsidence curve of Dazhuoma shows a 

418 two-stage evolution, which is similar to those in the North Qiangtang.
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419 Apatite Fission Track

420 Central ages of all sandstone samples range from 120.9 ± 5.5 to 40.1 ± 2.6 Ma 

421 (Table 2), which are much younger than the stratigraphic ages (Triassic-Cretaceous). 

422 The grain-age distributions can be divided into two groups. One is late Early to Late 

423 Cretaceous (120.9-84.1 Ma) and another is Paleogene-Eocene (65.4-40.1 Ma). Four 

424 samples (ED0616, EP1502, EP1504-17 and PQ1503) failed the χ2 test, suggesting that 

425 the apatite composition may vary significantly within each sample (O'Sullivan & 

426 Parrish, 1995) and they may have multiple age populations. The age dispersion of 

427 these four samples are moderate to high (> 20%) (Table 2). Despite failing the χ2 test, 

428 a mixture model (Galbraith & Green, 1990) does not show two populations for the 

429 majority of samples, with exception of sample EP1502 (Fig. 10). The relatively short 

430 mean horizontal confined track lengths (MTLs) range from 9.26 ± 0.39 to 13.75 ± 

431 0.48 μm (Table 2). This pattern suggests that these samples were buried within the 

432 partial annealing zone of AFT, or reheated for a long time before exhumed to the 

433 surface. Most samples have limited amount of horizontal confined tracks. Therefore, 

434 it is difficult to extract useful information from MTLs. Dpar values range from 1.74 to 

435 3.49 μm, with many incomparable with Durango apatite (2.05±0.16 μm, Sobel & 

436 Seward, 2010), which means many samples have different compositionally controlled 

437 annealing properties compared with Durango apatite. The relatively large Dpar values 

438 reflect the high values of Cl wt% (>1-2 wt%, Donelick et al., 2005 and references 

439 therein) in these samples, which suggests relatively slow annealing of apatite grains 

440 (Donelick et al., 2005; Galbraith, 2005).
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441 Thermal History Modelling

442 Three initial constraints were applied to four sandstone samples that were 

443 selected to run modelling: (1) temperature of 5 ± 5 °C for the present surface; (2) 

444 temperature of 20 ± 20 °C for the depositional ages, which were constrained by 

445 magnetostratigraphy of Fang et al. (2016); (3) temperature of 120-200 °C between 

446 160-120 Ma, which is constrained by subsidence history, adopting a geothermal 

447 gradient of 30 °C/km (He et al., 2014). Modelling results of four samples (ED0616, 

448 EP1502, PQ1503 and PQ1506) from the Qiangtang Basin indicate a relatively simple 

449 cooling history (Fig. 11; see Figure S1 for all thermal history models). After 

450 deposition, all samples reached maximum temperature 150-170 °C at about 150-130 

451 Ma, which is much higher than the base of the apatite partial annealing zone (110 ± 10 

452 °C, Ketcham et al., 1999), suggesting entire reset apatite fission track ages. Cooling 

453 started at about 140-130 Ma, which is coincident with the timing of crustal thickening 

454 inferred from the subsidence history. After ca. 100 Ma, all the samples present 

455 protracted cooling histories, followed by increase in cooling rates, up to 2-5 °C Myr-1, 

456 at ca. 25-10 Ma.

457 DISCUSSION

458 Subsidence Analyses of the Mesozoic Qiangtang Basin

459 Based on the subsidence histories (Figs. 8 and 9) combined with previous work 

460 on sediment provenance (Fig. 12) and timing of deformation, we suggest that the 

461 evolution of the Mesozoic Qiangtang Basin can be subdivided into two main stages, 

462 Late Triassic-Early Jurassic and Middle Jurassic-Early Cretaceous.
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463 Late Triassic-Early Jurassic

464 The North and South Qiangtang may have been separated by the paleo-Tethys 

465 Ocean before the Triassic (Li et al., 1995; Song et al., 2017). The North Qiangtang 

466 was a foreland basin in the early Late Triassic to the south of the JRSZ (Li et al., 2003; 

467 Song, 2012), which resulted from the collision between the Songpan-Ganze and 

468 Qiangtang (Yan et al., 2016) (Fig. 13a). Li et al. (2003) proposed that the main 

469 paleo-current directions at the northern edge of the North Qiangtang region were 

470 southwestward, and the turbidites and delta sandstones transitioned to thinner and 

471 finer foredeep sediments from north to south when marine Juhuashan and Zangxiahe 

472 formations were deposited. Additionally, the Carnian mudstones were deposited under 

473 a collisional setting based on the multi-major elements discriminate plots (Wang et al., 

474 2017a). The subsidence history patterns of the North Qiangtang are concave-upward 

475 during early Late Triassic (grey-shaded area in Fig. 8), which is consistent with the 

476 characteristics of subsidence curves of retro-foreland basins (Naylor & Sinclair, 2008), 

477 though the subsidence is not remarkable and the error bars may make the data less 

478 reliable. We interpret that the marine deposits in the North Qiangtang were generated 

479 from flexural subsidence by orogenic loading in the JRSZ in the early Late Triassic 

480 (Fig. 13a).

481 Provenance analyses and paleo-current directions indicate that the JRSZ had 

482 been a topographic highland and source area by the end of Late Triassic when the 

483 Nadigangri volcanic rocks formed (Li et al., 2003). The presence of paleo-weathering 

484 crusts (Fu et al, 2007; Wang et al., 2007), marking the termination of early Late 
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485 Triassic subsidence, means that the North Qiangtang was subaerially exposed in the 

486 Late Triassic. The Nadigangri volcanic rocks (~216-220 Ma) unconformably overlay 

487 the paleo-weathering crusts after the early Late Triassic subsidence ceased. The 

488 majority of these volcanic rocks are felsic, rather than basaltic. As a result, we 

489 interpret these, like other bimodal magmatism found in the North Qiangtang (Zhang et 

490 al., 2011), to be a result of the detachment and sinking of oceanic lithosphere of the 

491 South Qiangtang in the Late Triassic (Zhai & Li, 2007; Zhai et al., 2013) (Fig. 13b), 

492 but not as the onset of a rift basin (e.g., Fu et al., 2010). The tectonic subsidence that 

493 accommodated the Nadigangri volcanic rocks (Fig. 8) is interpreted as subsidence due 

494 to local lithospheric stretching based on geochemical analyses of Fu et al. (2010). The 

495 North Qiangtang had been an area of erosion since the paleo-weathering crusts 

496 formed and it exhibits unconformities lasting about 50 m.y. on the tectonic subsidence 

497 curves (Fig. 8).

498 Although the large error bars also makes the data less reliable, the accelerating 

499 subsidence curve of Biluo Co in the South Qiangtang shows a unique characteristic of 

500 collisional pro-foreland basins (Kneller, 1991; Miall, 1995; DeCelles & Giles, 1996; 

501 Naylor & Sinclair, 2008) (Fig. 8). One possible explanation is that it evolved on the 

502 south of the Central Uplift mountain belt as the South Qiangtang collided with the 

503 North Qiangtang. (Li et al., 1995; Liu et al., 2011; Zhao et al., 2014, 2015; Yan et al., 

504 2016; Liang et al., 2017) (Fig. 13a). The convex-upward tract of the subsidence curve 

505 for Biluo Co demonstrates that local forces, the northward subduction of the South 

506 Qiangtang lithosphere and the growth of Central Uplift, probably played an important 
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507 role in controlling the development of the basin, just as other collisional foreland 

508 basins worldwide (e.g., North Alpine Foreland Basin of Homewood et al. (1986) and 

509 Ebro basin of Vergés et al. (1998)). New geochronology shows that the 

510 metamorphism in Central Uplift occurred at about 243-233 Ma (Pullen et al., 2008; 

511 Dan et al., 2018), marking the collision between the South and North Qiangtang. 

512 Subsequent exhumation occurred at 220-202 Ma (Kapp et al., 2003; Dan et al., 2018), 

513 which was synchronous with the commencement of subsidence at Biluo Co. 

514 Therefore, Late Triassic subsidence in the western part of South Qiangtang is 

515 interpreted to be caused by orogenic loading from the Central Uplift and static loads 

516 from the slab pull (Figs. 13a, b). However, in the east, the Dazhuoma site in the South 

517 Qiangtang shows a concave pattern of subsidence, which is similar to that of the 

518 North Qiangtang (Fig. 8). This suggests that there is a significant difference in basin 

519 evolution between east and west portions of the South Qiangtang during this time 

520 interval. In the eastern part (Dazhuoma), the Central Uplift was not created (Figs. 13a, 

521 b) and we interpret the subsidence arose from dynamic subsidence. As the shallowly 

522 subducting Paleo-Tethyan oceanic slab approached the South Qiangtang in the eastern 

523 part (Lu et al., 2017), it potentially caused viscous mantle flow that drove the 

524 subsidence (Fig. 13a). We ascribe differences between the eastern and western 

525 portions of South Qiangtang to the irregular shape of continental margin (Zhang & 

526 Tang, 2009) and varying subducting angles of Paleo-Tethyan oceanic slab (Lu et al., 

527 2017) (Fig. 13a).

528 Middle Jurassic-Early Cretaceous
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529 The Middle Jurassic to Early Cretaceous is the main period of subsidence in the 

530 Mesozoic Qiangtang Basin. The Qiangtang terrane had been entirely accreted onto the 

531 southern margin of Eurasia since Early Jurassic (Dewey et al., 1988; Pearce & Houjun, 

532 1988). The Central Uplift has been an area of active exhumation based on provenance 

533 analysis and tectonic analyses (Li et al., 2001; Kapp et al., 2003) (Fig. 12). In addition, 

534 the denudation of the ultrahigh-pressure (UHP) metamorphic rocks in the Central 

535 Uplift is associated with lithospheric detachment and associated orogenic collapse 

536 (Zhang & Tang, 2009) (Fig. 13c). The thrust belt loading from both the south and 

537 north sides of the North Qiangtang potentially resulted in renewed subsidence. In 

538 addition, the northward subduction of Bangong-Nujiang oceanic lithosphere during 

539 180-150 Ma (Liu et al., 2017) may have resulted in viscous corner flow beneath the 

540 North Qiangtang (Fig. 13c). The subsidence started at around 172 Ma, and the rapid 

541 subsidence of Duxue Mt. and Shuangquan Lake (Fig. 9) may have resulted from 

542 additional sediments supply from the Central Uplift (Figs. 1 and 12).

543 The subsidence patterns resemble exponentially decaying thermal subsidence 

544 curves formed in extensional settings (Steckler & Watts, 1978; Christie-Blick & 

545 Biddle, 1985) and retro-foreland basins (Naylor & Sinclair, 2008; Sinclair & Naylor, 

546 2012), or are associated with hinterland basins that show fast subsidence in very short 

547 time interval (Horton, 2018). Such a high rate of subsidence generated through 

548 extension would require β values to be over 2 (assuming homogeneous lithospheric 

549 extension of a 33 km thick crust), which would have generated oceanic lithosphere 

550 (Kneller, 1991), but no evidence is recorded. Moreover, no evidence of extensional 
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551 structures was found during Middle Jurassic to Early Cretaceous, such as 

552 syndepositional normal faults. Currently, all the discovered normal faults in central 

553 Tibet formed in Cenozoic times (e.g., Blisniuk et al., 2001; Wang et al., 2010; Ou et 

554 al., 2017). In addition, no volcanic rocks, particularly basaltic rocks, are found in the 

555 Middle to Late Jurassic deposits. Therefore, we exclude lithospheric extension as the 

556 mechanism. Based on the subsidence histories combined with previous work on 

557 sediment provenance and timing of deformation, we prefer to interpret this stage of 

558 the North Qiangtang as a hinterland basin controlled by renewed crustal thickening, 

559 and loading from both the south and northern margins during Middle Jurassic-Early 

560 Cretaceous. This interpretation is supported by several lines of evidence. First, Li et al. 

561 (2001) reconstructed the paleogeomorphology and palaeogeography, based on 

562 paleo-current directions, composition of lithic fragments in sandstones and 

563 provenance analysis (Fig. 12). The molasses preserved in the Quemocuo Fm. (Fig. 4) 

564 represented the initiation of subsidence in the North Qiangtang. The composition of 

565 the overlying sandstones is consistent with deposition in a collisional setting in the 

566 light of multidimensional tectonic discrimination based on major element analysis 

567 (Wang et al., 2017b). Sandstone modal analyses indicate the influx of sediments from 

568 a recycled orogen source (Li et al., 2001). Combined with paleo-current directions, 

569 mainly southward and southwestward, the main source of the sediments must be the 

570 JRSZ to the north, and some detritus derived from the exhumation of tectonic 

571 culmination (the Central Uplift) in the basin (Fig. 12). In addition, the coarse 

572 sediments are distributed mainly along the edges of the North Qiangtang, suggesting 
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573 the tectonic loads on both sides were the main driving force for subsidence (Li et al., 

574 2001). Second, the thickness of marine sediments is 6-8 km in the north and 4-5 km in 

575 the south (Fig. 8). It means that there were other driving forces on the south to 

576 accommodate such thick sediments. This could occur in hinterland basins where there 

577 is thrust loading from both sides of the basin (Horton, 2012). Additional subsidence in 

578 the north may have been generated by dynamic loading, because it is where the corner 

579 flow drag is concentrated (Mitrovica et al., 1989) (Fig. 13c). In addition, the flat 

580 subduction of Meso-Tethyan Ocean slab potentially transmitted strain in to the 

581 hinterland driving renewed crustal thickening, loading and marine transgression. 

582 Third, the average accumulation rate of sediments during this time was about 0.2 

583 km/Ma, with some locations (Shuangquan Lake and Duxue Mt.) over 0.45 km/Ma. 

584 This accumulation rate is consistent with that obtained for the Buqu Formation at 

585 Well QZ11 (0.15-0.395 km/Ma with optimal value of 0.268 km/Ma, Cheng et al., 

586 2017). The high accumulation rates in a short time interval resemble those for Andean 

587 hinterland basins (Horton, 2018 and references therein). In summary, the subsidence 

588 of the North Qiangtang was controlled by the combined mechanisms of flexural 

589 subsidence from both the Jinsha River orogen and the Central Uplift and 

590 long-wavelength dynamic subsidence caused by northward shallow subduction of 

591 Meso-Tethyan Ocean lithosphere (Fig. 13c).

592 In the South Qiangtang, the subsidence curves show similar characteristics with 

593 the North Qiangtang during Middle Jurassic to Early Cretaceous times. The 

594 subsidence rates are also equal to those in the south of the North Qiangtang. We 
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595 interpret the subsidence in the South Qiangtang came from the subduction of 

596 Meso-Tethyan Ocean lithosphere and tectonic loading from the Central Uplift (Fig. 

597 13c).

598 The deceleration in the last phase of subsidence might have resulted from the 

599 closure of the Bangong-Nujing Ocean or the onset of Lhasa-Qiangtang collision 

600 during Late Jurassic to Early Cretaceous (Yan et al., 2016; Zhu et al., 2016; Li et al., 

601 2017b). At about 148 Ma, subsidence terminated across the Qiangtang Basin. The 

602 beginning of exhumation of the Qiangtang Basin (Fig. 11) and the termination of 

603 subsidence happened simultaneously, probably indicating the onset of crustal 

604 thickening in the Qiangtang terrane.

605 Cretaceous

606 All subsidence curves in the North Qiangtang show the same trend with the Late 

607 Jurassic patterns that no subsidence is displayed (Fig. 8). No Late Cretaceous 

608 sediments are recorded. It was highly possible that the North Qiangtang started to 

609 show first stage of crustal thickening according to the thermal modelling results 

610 (PQ1503; Fig. 11).

611 The South Qiangtang records Late Cretaceous subsidence (Fig. 8). We interpret 

612 the Late Cretaceous Abushan Fm. as a response to the collision between Lhasa and 

613 Qiangtang terranes to the south (Yin & Harrison, 2000; Kapp et al., 2007; Zhu et al., 

614 2013, 2016) (Fig. 13e), or to the collision of the Amdo terrane (Guynn et al., 2006) 

615 (Fig. 13d). The oldest apatite fission track age (120.9 ± 5.5 Ma) may record the 

616 collision between the two terranes.
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617 Implications for Pre-Cenozoic Evolution of the Tibetan Plateau

618 The timing of the topographic evolution of the Tibetan Plateau is still uncertain, 

619 though the general consensus is that central Tibet and surrounding areas had attained 

620 high elevation by 45 Ma or earlier (Murphy et al., 1997; Kapp et al., 2005, 2007; 

621 Rowley & Currie, 2006; Wang et al., 2008a, 2014; Rohrmann et al., 2012; Chen et al., 

622 2013; Xu et al., 2013; Ding et al., 2014; Tang et al., 2017). Is the India-Asia collision 

623 strong enough to produce such high elevation and thickened crust in a very short 

624 period of time? The hinterland of the Tibetan plateau shows both a cessation of 

625 subsidence and an acceleration of exhumation recorded in zircon (U-Th)/He ages in 

626 the South Qiangtang (Zhao et al., 2017) and apatite fission track modelling (Fig. 11), 

627 consistent with topographic growth at ca. 148 Ma. Mesozoic sediments were exhumed 

628 from >6 km depth at about 140-130 Ma, with exhumation rate of 0.1-0.3 mm/a (Fig. 

629 11). This cooling event is also in agreement with accelerated cooling reflected by Late 

630 Jurassic-Cretaceous apatite fission ages from sedimentary rocks across the Qiangtang 

631 terrane (Wang & Wei, 2013; Ren et al., 2015). This incident may mark the first stage 

632 of exhumation driven by crustal thickening in central Tibet (Zhao et al., 2017). We 

633 ascribe the exhumation in central Tibet to the onset of continental collision between 

634 Lhasa and Qiangtang terranes, probably involving underthrusting of the Lhasa terrane 

635 beneath the Qiangtang terrane. Concurrent crustal thickening with collision suggests 

636 that the impact of the collision between Lhasa and Qiangtang terranes was potentially 

637 more profound than previously thought. The Jinsha River suture zone also played a 

638 role that can not be ignored, because both the Songpan-Ganze and Lhasa terranes may 
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639 have been involved in underthrusting beneath the Qiangtang terrane. Alternatively, 

640 the Late Jurassic-Early Cretaceous exhumation (Fig. 11) or crustal thickening could 

641 be related to collision of the Amdo terrane caused by northward continental 

642 underthrusting of the Lhasa terrane (Guynn et al., 2006) (Fig. 13d). The Amdo 

643 basement was interpreted to be exposed only at the central part of BNSZ, but buried 

644 in all other places (Guynn et al., 2006). Recently, Li et al. (2017c) reported the 

645 existence of a destroyed Amdo-Tongka block through study along the eastern segment 

646 of BNSZ. Therefore, there may be an unrecognized block south of the Qiangtang 

647 terrane. Both scenarios suggest that the underthrusting of the Lhasa terrane 

648 contributed to the rapid exhumation or crustal thickening in central Tibet at about 

649 150-130 Ma.

650 As shown in Figs. 8 and 9, the tectonic subsidence curves show no subsidence 

651 since the beginning of the Cretaceous, with cessation of marine deposition. At this 

652 time, the North Qiangtang started to record substantial crustal thickening and 

653 increased elevations. Cretaceous apatite fission track ages (120.9-84.1 Ma) reflect 

654 exhumation caused by a strong compressive episode (Rohrmann et al., 2012; Ren et 

655 al., 2015). Large magnitudes of convergence after ~100 Ma were documented 

656 between Lhasa and Qiangtang using paleomagnetic data (Chen et al., 2017b), which is 

657 coeval with protracted cooling histories (Fig. 11). This event slightly lagged behind 

658 the closure of the BNSZ south of Qiangtang, which indicates that the crustal 

659 thickening of central Tibet was a result of continued convergence between Lhasa and 

660 Qiangtang. The cooling ages of Paleogene-Eocene (65.4-40.1 Ma) may reflect the 
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661 early impact of the India-Asia collision on the Qiangtang, which probably involved 

662 underthrusting of greater Indian lithosphere as far north as the Qiangtang terrane 

663 (Rohrmann et al., 2012).

664 CONCLUSIONS

665 We have conducted backstripping of basin stratigraphy and thermochronological 

666 analyses of Mesozoic sandstones to study the subsidence and exhumation of the 

667 Qiangtang Basin. The results not only reveal the evolution of the Mesozoic Qiangtang 

668 Basin, but also yield insight into the early growth of the Tibetan Plateau.

669 Based on the subsidence histories, combined with previous work on sediment 

670 provenance, timing of deformation, and thermochronologic data, we suggest that the 

671 evolution of the North Qiangtang sub-basin can be subdivided into two main stages. 

672 The first stage is Late Triassic to Early Jurassic and the second is Middle Jurassic to 

673 Early Cretaceous. In the early Late Triassic, the marine deposits were generated from 

674 flexural subsidence by orogenic loading in the JRSZ. Whereas the Nadigangri 

675 volcanic rocks were accommodated by thermal subsidence caused by local lithosphere 

676 stretching during Late Triassic. During the second stage, the subsidence was 

677 controlled by flexural subsidence from active shortening in the Central Uplift and the 

678 southern edge of the Jinsha orogeny, combined with long-wavelength dynamic 

679 subsidence caused by shallowly northward subduction of Meso-Tethyan Ocean 

680 lithosphere. Both stages are characterized by concave-upward subsidence curves. 

681 Initiation of exhumation reflected by thermal history modelling in the Early 

682 Cretaceous, may represent crustal thickening in central Tibet.
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683 The subsidence of the South Qiangtang sub-basin can also be subdivided into 

684 two stages. The first stage (Late Triassic-Early Jurassic) in the western part is 

685 represented by an accelerating pattern of subsidence, which is typical of a collisional 

686 pro-foreland basin. This was caused by orogenic loading from the Central Uplift and 

687 static loads from the slab pull. Whereas in the eastern part, the subsidence was 

688 interpreted to come from dynamic loading caused by viscous mantle flow. The second 

689 stage (Middle Jurassic-Early Cretaceous) was controlled by the subduction of 

690 Meso-Tethyan Ocean lithosphere and tectonic loading from the Central Uplift.

691 The cessation of tectonic subsidence curves and initiation of cooling indicated in 

692 the thermal modelling histories may represent the first stage of rapid exhumation or 

693 crustal thickening in central Tibet at about 150-130 Ma. The central part of the plateau 

694 had probably begun to accumulate substantial crustal thickening and elevation, 

695 probably driven by underthrusting of both the Lhasa and Songpan-Ganze terranes 

696 beneath the Qiangtang terrane, or the collision of the Amdo terrane. The growth of the 

697 Tibetan Plateau may have begun before the India-Asia collision.

698
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Table 1 Biostratigraphy constrained by bivalves in the Quemo Co section and magnetostratigraphy

Stratigraphy Bivalves
Biostratigraphy 
Age

Magnetostratigraphy 
Age of Fang et al. 
(2016)

Environment

Xueshan Fm. Assemblage Radulopecten fibrosus- Gervillella orientalis- Placunopopsis duriuscula
Meleagrinella nieniexionglaensis Wen, Radulopecten fibrosus (Sowerby),  Miyagipecten lavis 
(Wen), Placunopsis duriuscula (Phillips), P. sp., Bakevellia (Bakevellia) waltoni (Lycett) Gervillella 
qinghaiensis Wen, G. orientalis (Douville), G. cf. siliqua (Eudes-Deslongchangs), Plagiostoma cf. 
channoni Cox, Pseudolimea duplicata (Sowerby), Lopha maliensis Tong, Modiolus (Modiolus) 
imbricatus Sowerby,  Protocardia qinghaiensis Wen, Corbicellopsis laevis (Sowerby), 
Unicardiopsis cf. acesta (d’Orbigny), Quenstedtia cf. oblita Greppin, Q. cf. dingriensis Wen, 
Mactromya qinghaiensis Wen, M. gibbasa (Morris et Lycett), Astarte togtonheensis Wen, A. cf. 
elegans Sowerby, Tancredia triangularis Wen, Pseudotrapezium cordiforme (Deshayes), 
Anisocardia (Anisocardia) togtonheensis Wen, A. (Antiquicyprina) cf. trapezoidalis Wen, 
Pholadomya cf. carinata Goldfuss, Pleuromya uniformis (Sowerby), Playtmyoidea sp.

Kimmeridgian <157.5 Ma Marine

Suowa Fm. Assemblage Myopholas multicostata- Placunopsis duriuscula- Camptonectes (Camptonectes) 
auritus
Palaeonucula sp., Mesosacella morrisi (Deshayes), M. wenquanensis Sha, Fursich, Smith et Wang, 
Nuculana (Praesacella) cf. ovum (Sowerby), Grammatodon (Grammatodon) cf. clathratum 
(Leckenby), Pinna sp., Meleagrinella sp., Pteria cf. plana (Morris et Lycett), Miyagipecten laevis 
(Wen),  Radulopecten tipperi Cox, R. vagans (Sowerby), R. tripartitus Sha, Fursich, Smith et 
Wang,  R. fibrosus (Sowerby), R. pamirensis Wen, R. gerzensis Wen, Camptonectes 
(Camptonectes) auritus (Schlotheim), C. (C.) laminatus (Sowerby), C. (Camptochlamys) clathratus 
(Roemer), C. (Annulinectes) obscurus (Sowerby), Propeamussium (Propeamussium) cf. pumilum 
(Lamarck), Placunopsis cf. subelongata (d’Orbigny), Placunopsis cf. socialis Morris et Lycett, P. 
duriuscula (Phillips), Gervillella qinghaiensis Wen, G. siliqua (Eudes-Deslongchamps), G. sp., 
Bakevellia? sp., Aguilerella sp., Pseudolimea duplicata (Sowerby), P. tjubegatanica (Repman), P. 
sp., Plagiosto-ma cf. channoni Cox, Lopha cf. tifoensis Cox, L. cf. maliensis Tong, Liostrea cf. 
jiangjinensis Wen, L. cf. birmanica (Reed), L. cf. blanfordi Cox, Plicatula sp., Modiolus (Modiolus) 
imbricatus Sowerby, M. (M.) cf. trigonus Chen, Myophorella? sp., Protocardia stricklandi (Morris 
et Lycett), P. qinghaiensis Wen, Mactromya cf. qinghaieusis Wen,  Astarte togtonheensis Wen, A. 
cf. elegans Sowerby, A. cf. maliensis Tong, Astartoides gambaensis Wen et Lan, A. cf. dingriensis 
Wen, Anisocardia (Anisocardia) rostrata (Sowerby), A. (A.) cf. channoni Cox, A. (A.) togtonheensis 
Wen, A. (A.) sp., A. (Anitiquicyprina) cf. trapezoidalis Wen, Pseudotrapezium cordiforme 
(Deshayes), Amiodon fengdengensis (Chen), A. cf. khoratensis (Hayami), Platymyoidea sp., 
Myopholas multicostata (Agassiz), M. percostata Douville, Pleuromya cf. uniformis (Sowerby),  P. 
subelongata (d’Orbigny), P. sp.

Callovian-
Oxfordian

160.1-<157.5 Ma Marine

Xiali Fm. Assemblage Pteroperna costatula— Radulopecten vagans
Palaeonucula sp., Pinna? sp., Meleagrinella cf. braamburiensis (Phillips), Radulopecten tipperi 
Cox, R. vagans (Sowerby), R. pamirensis Wen, R. sp., Placuopsis duriuscula (Phillips), Bakevillia 
(Bakevellia) waltoni (Lycett), Gervillella qinghaiensis Wen, Costigervillia minima Wen, Lopha cf. 
tifoensis Cox, Liostrea jiangjinensis Wen, Pteria plana Roemer, Pteroperna costatula 
(Deslongchamps), P. sp., Modiolus (Modiolus) imbricatus Sowerby, Vaugonia cf. yanshipingensis 

Bathonian-
Callovian

163.3-160.1 Ma Marine
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Wen, Protocardia (P.) qinghaiensis Wen, P. (P.) stricklandi (Morris et Lycett), Corbicellopsis cf. 
laevis (Sowerby),  Unicardiopsis amdoensis Wen, Corbula yanshipingeusis Wen, C. kidugalloensis 
Cox, C. sp., Astarte cf. elegans Sowerby, A. sp., Anisocardia (Anisocardia) cf. channoni Cox, A. (A.) 
rostrata (Sowerby),  Pseudotrapezium cordiforme (Deshayes), Amiodon cf. khoratensis (Hayami), 
Thracia togtonheensis Wen

Buqu Fm. Assemblage Isognomon (Mytiloperna) bathonicus- Protocardia hepingxiangensis-Praeexogyra cf. 
acaminata
Liostrea birmanica, Ceratomya undalat, C. concentrica, Grammatodon (Grammatodon) clathratum, 
Pinna tibetica, P. nyainrongensis, Radulopecten tipperi, Protocardia hepingxiangensis, Liostrea 
jiangjinensis, L. zadoensis, Lopha maliensis, L. baqenensis, Entolium nieniexionglaensis, 
Praeexogyra cf. acaminata, Radulopecten shuanghuensis, Gervillella qinghaiensis, Pteria 
problematica, Modiolus (Modiolus) trigonus, Mactromya qinghaiensis, Neomiodon yanshipingensis, 
A. (Antiquicyprina) trapezoidalis, Pholadomya socialis qinghaiensis

Bathonian 165.5-163.3 Ma Marine

Quemocuo Fm. Quenstedtia? sp.
Assemblage Undulatula perlonga- Psilunio chaoi
Psilunio chaoi Grabau, P. lateriplanus Ma, P. thailandicus (Hayami), P. sinensis Gu, Lamprotula 
(Eolamprotula) sp., Undulatula perlonga Gu, U. ptychorhyncha Gu, Cuniopsis cf. johannisbohmi 
(Frech), Solenaia tanggulaensis Wen, Unio cf. obrustschewi Martinson, Margaritifera isfarensis 
Chernyshev

Bajocian >171.2-165.5 Ma Marine
Fresh water

Erlongba Fm. Assemblage Amonotis togtonheensis-Cardium (Tulongocardium) xizhangensis Norian- 
Rhaetian

212±1.7 Ma 
(Volcanics, Bai et 
al., 2005)

Bagong Fm. Assemblage Halobia superbescens- H. disperseinsecta
Assemblage Amonotis togtonheensis-Cardium (Tulongocardium) xizhangensis

Norian

Bolila Fm. Cassianella cf. berychi, Halobia plicosa, H. superbescens, H. sp., Plagiostoma sp. Carnian

Bivalves are from Geological report of the 1:250, 000 regional geological survey in Chibuzhang Co area.
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Table 2 Apatite fission track data for the Qiangtang Basin

ρs a ρi a ρd a Dpar d [U] e Central age f ±1σ Dis. g MTL ±1σ
Sample Stratigraphy

(105 cm-2)
Ns b

(105 cm-2)
Ni b

(105 cm-2)
Nd b P(χ2) c

(μm) (ppm) (Ma) (%)
N. h

(μm)
Nc. i

D0609 J2x 9.418 728 12.903 1152 12.4 8749 1.00 2.65 17.91 113.6 5.4 0 30 12.17 0.36 20

D0815 J2x 10.0 148 27.365 405 12.3 8749 0.54 2.84 30.46 65.4 6.3 0 9 / / /

ED0616 J2x 5.403 667 10.726 1324 12.0 8749 0.00 2.00 12.15 90.7 6.8 28 27 11.70 0.31 29

ED0620 T3d 4.468 652 14.281 2084 12.0 8749 0.24 1.98 15.54 55 2.5 4.7 32 11.71 0.56 28

EP1502 J2x 4.508 702 14.456 2251 12.2 8749 0.00 2.23 16.84 55.6 3.7 25 28 10.84 0.44 29

EP1503 J2b 4.775 609 19.247 2445 12.1 8749 0.14 2.20 22.7 44.6 2.3 14 30 9.26 0.39 31

EP1504-09 K2a 5.256 1048 18.776 3744 12.1 8749 0.23 2.55 19.54 49.1 2 10 40 13.4 0.45 15

EP1504-17 K2a 5.848 576 17.188 1693 12.0 8749 0.03 3.49 18.01 62.5 4.2 17 18 14.54 0.32 5

EP1505 T3d 7.043 836 23.361 2773 12.2 8749 0.40 2.40 28.59 53.7 2.4 9.2 32 12.87 0.29 22

EP1506 T3d 9.154 638 19.283 1344 12.2 8749 0.93 2.48 22.32 84.1 4 0 30 13.75 0.48 17
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PQ1503 J2q 4.492 549 15.921 1946 11.3 6621 0.00 1.74 17.11 40.1 2.6 23 30 12.59 0.14 101

PQ1506 J2x 9.082 801 12.492 1190 12.4 8749 100 2.15 16.52 120.9 5.5 0 32 12.01 0.22 37

a ρs, ρi, ρd are track densities of spontaneous, induced and dosimeter tracks.

b Ns, Ni, Nd are the number of spontaneous, induced and dosimeter tracks.

c P(χ2) is the value of chi-square test (Galbraith, 1981; Green, 1981).

d Dpar is the etch pit diameter, which is used as a proxy for the influence of chemical composition on track annealing (Donelick et al., 2005).

e Uranium content calculated with TrackKey (Dunkl, 2002).

f Central ages are calculated using TrackKey (Dunkl, 2002) with 1σ standard error. Ages are calculated with a ζ=292.4±17.9 for a standard IRMM540 glass.

g Dispersion is the standard deviation of the true single-grain ages as a percentage of their central age (Galbraith, 2005).

h N. is the number of grains counted for age calculation.

i Nc. is the number of measured horizontal confined tracks.
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1227 Figure legends:

1228 Fig. 1. a, Major terranes and sutures of the Tibetan plateau. b, Geological map of 

1229 Qiangtang basin and adjacent terranes (modified after Kapp et al., 2005). WK-ATSZ 

1230 = West Kunlun-Altyn Tagh suture zone; SKSZ = South Kunlun suture zone; CQMB = 

1231 Central Qiangtang metamorphic belt; JRSZ = Jinsha River suture zone; BNSZ = 

1232 Bangong-Nujiang suture zone. Numbers in grey stars represent the localities of 

1233 composite sections: 1, Duxue Mt.; 2, Shuangquan Lake; 3, Heihuling; 4, Nadigangri; 

1234 5, Changshui River; 6, Amugang; 7, Zuerkenwula Mt.; 8, Dangmagang; 9, Quemo Co; 

1235 10, Biluo Co; 11, Dazhuoma.

1236

1237 Fig. 2. Correlation of sequences, lithologies and paleo-environments of main 

1238 Mesozoic stratigraphic units of the Qiangtang Basin. Not drawn to scale. The 

1239 lithologies and interpretations of depositional environment of both the North and 

1240 South Qiangtang are from field observations and geological reports. The age of 

1241 Nadigangri Fm. comes from Zhai & Li (2007), Wang et al. (2008b) and Fu et al. 

1242 (2010). Ages of Jurassic sequences are from magnetostratigraphy of Fang et al. (2016). 

1243 The age of Abushan Fm. is from Li et al. (2015c). The legend of lithology is same to 

1244 that of Fig. 4. All symbols are filled using patterns provided by U.S. Geological 

1245 Survey (2006).

1246

1247 Fig. 3. Remote sensing images of specific profiles of continuous successions in 

1248 Nadigangri (a) and Quemo Co (b) from Google Earth©. Structural dips are labelled 
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1249 on the strata. The solid lines are boundaries between stratigraphic units. The yellow 

1250 dashed lines represent unconformities. T3nd = Nadigangri Formation; T3b = Bolila 

1251 Formation; T3bg = Bagong Formation; T3e = Erlongba Formation; J2q = Quemocuo 

1252 Formation; J2b = Buqu Formation; J2x = Xiali Formation; J3s = Suowa Formation; J3b 

1253 = Bailongbinghe Formation; J3K1x = Xueshan Formation; E2k = Kangtuo Formation.

1254

1255 Fig. 4. Simplified stratigraphic framework of nine composite sections in the North 

1256 Qiangtang sub-basin. The stratigraphic codes are same to those of Fig. 3. Other codes 

1257 are: P1-2l = Lugu Formation; T3j = Juhuashan Formation; T3z = Zangxiahe Formation; 

1258 T3T = Tumengela Group; E2s = Suonahu Formation; E1-2t = Tuotuohe Formation; 

1259 E2+3y = Yulinshan Formation; N1c = Chabaoma Formation; N2q = Quguo Formation; 

1260 N2sq = Shuangquanhu Formation.

1261

1262 Fig. 5. Simplified stratigraphic framework of two composite sections in the South 

1263 Qiangtang sub-basin. The legend, scale and stratigraphic codes are same to those of 

1264 Fig. 4. Other codes are: T3a = Adula Formation; T3d = Duogaila Formation; T3R = 

1265 Riganpeicuo Group; T3J1s = Suobucha Formation; J1q = Quse Formation; J2s = Sewa 

1266 Formation; K2a = Abushan Formation.

1267

1268 Fig. 6. Decompaction scheme (modified after Allen and Allen, 2005).

1269

1270 Fig. 7. Specific indicators for assessment of paleo-water depth in stratigraphic 
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1271 sections. (a) Oscillatory ripples preserved in the bottom of tidal sandstones (Late 

1272 Triassic Duogaila Formation, Dazhuoma; paleo-water depth ≈ 50±50 m). (b) 

1273 Fining-upward sequence with each starting with conglomerate or pebbled sandstones 

1274 (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth ≈ 10±10 m). (c) 

1275 Current bedding limestone (Middle Jurassic Quemocuo Formation, Amugang; 

1276 paleo-water depth ≈50±50 m). (d) Ripples in tidal sandstones (Middle Jurassic Xiali 

1277 Formation, Dazhuoma; paleo-water depth ≈50±50 m). (e) Ammonite in mudstone 

1278 (Late Jurassic Bailongbinghe Formation, Changshui River; paleo-water depth ≈ 50 m). 

1279 (f) Directional arrangement of gravels in fluvial sandstones (Late Cretaceous Abushan 

1280 Formation, Biluo Co; paleo-water depth ≈ 10±5 m).

1281

1282 Fig. 8. Subsidence curves for composite sections in Fig. 1. The thick solid line 

1283 represents backstripped tectonic subsidence. The thin solid line represents total 

1284 decompacted subsidence. The grey-shade areas represent the first stage of subsidence 

1285 from Late Triassic to Early Jurassic based on the subsidence histories, combined with 

1286 previous work on sediment provenance and timing of deformation. The reference 

1287 lines representing subsidence rate are shown are each of the plots.

1288

1289 Fig. 9. Magnification of the tectonic subsidence histories from 172 to 120 Ma. The 

1290 reference lines representing subsidence rate are shown are each of the plots. The 

1291 shaded area represent the gradual cessation of subsidence across the Qiangtang Basin, 

1292 with the final termination at about 148 Ma. The subsidence curves in the North 
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1293 Qiangtang are represented by solid lines, while the South Qiangtang are represented 

1294 by dotted lines.

1295

1296 Fig. 10. Radial plots of detrital apatite fission track ages in the Qiangtang Basin using 

1297 DensityPlotter (Vermeesch, 2012).

1298

1299 Fig. 11. Weighted mean thermal paths for sandstones in the Qiangtang Basin. The 

1300 mélange and granite samples are from the Central Uplift studied by Zhao et al. (2017). 

1301 All thermal paths display cooling starting from 150-130 Ma. The depth is calculated 

1302 by assuming a geothermal gradient of 20 °C/km.

1303

1304 Fig. 12. Schematic map showing the paleo-current directions, provenance areas and 

1305 composition of lithic fragments in sandstones of the Qiangtang foreland basin during 

1306 the Middle Jurassic to Early Cretaceous time, modified from Li et al. (2001).

1307

1308 Fig. 13. Cartoon of tectonic evolution of the Qiangtang Basin and adjacent terranes 

1309 from Late Triassic to Cretaceous. The extent of each terrane is not strictly to scale and 

1310 the near surface geometries are vertically exaggerated. The evolution models of 

1311 Central Uplift during early Late Triassic (a) and Late Triassic-Early Jurassic (b) are 

1312 modified after Zhang & Tang (2009). Bold black arrows in each cross sections 

1313 represent the directions of sediment transportation. The mechanisms of subsidence are 

1314 labelled in red.
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1315

1316 Supporting material legends

1317 File S1 Stratigraphic sections in the Qiangtang Basin in Google Earth format.

1318 Table S1 Stratigraphic data of eleven composite sections in Qiangtang basin

1319 Table S2 Age constraints from biostratigraphy of strata in Qiangtang basin

1320 Table S3 GPS coordinates of AFT samples

1321 Figure S1. Thermal history modeling results of samples from the Qiangtang Basin
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Fig. 1. a, Major terranes and sutures of the Tibetan plateau. b, Geological map of Qiangtang basin and 
adjacent terranes (modified after Kapp et al., 2005). WK-ATSZ = West Kunlun-Altyn Tagh suture zone; 
SKSZ = South Kunlun suture zone; CQMB = Central Qiangtang metamorphic belt; JRSZ = Jinsha River 
suture zone; BNSZ = Bangong-Nujiang suture zone. Numbers in grey stars represent the localities of 

composite sections: 1, Duxue Mt.; 2, Shuangquan Lake; 3, Heihuling; 4, Nadigangri; 5, Changshui River; 6, 
Amugang; 7, Zuerkenwula Mt.; 8, Dangmagang; 9, Quemo Co; 10, Biluo Co; 11, Dazhuoma. 
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Fig. 2. Correlation of sequences, lithologies and paleo-environments of main Mesozoic stratigraphic units of 
the Qiangtang Basin. Not drawn to scale. The lithologies and interpretations of depositional environment of 

both the North and South Qiangtang are from field observations and geological reports. The age of 
Nadigangri Fm. comes from Zhai & Li (2007), Wang et al. (2008b) and Fu et al. (2010). Ages of Jurassic 
sequences are from magnetostratigraphy of Fang et al. (2016). The age of Abushan Fm. is from Li et al. 

(2015c). The legend of lithology is same to that of Fig. 4. All symbols are filled using patterns provided by 
U.S. Geological Survey (2006). 
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Fig. 3. Remote sensing images of specific profiles of continuous successions in Nadigangri (a) and Quemo Co 
(b) from Google Earth©. Structural dips are labelled on the strata. The solid lines are boundaries between 
stratigraphic units. The yellow dashed lines represent unconformities. T3nd = Nadigangri Formation; T3b = 
Bolila Formation; T3bg = Bagong Formation; T3e = Erlongba Formation; J2q = Quemocuo Formation; J2b = 
Buqu Formation; J2x = Xiali Formation; J3s = Suowa Formation; J3b = Bailongbinghe Formation; J3K1x = 

Xueshan Formation; E2k = Kangtuo Formation. 
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Fig. 4. Simplified stratigraphic framework of nine composite sections in the North Qiangtang sub-basin. The 
stratigraphic codes are same to those of Fig. 3. Other codes are: P1-2l = Lugu Formation; T3j = Juhuashan 

Formation; T3z = Zangxiahe Formation; T3T = Tumengela Group; E2s = Suonahu Formation; E1-2t = 
Tuotuohe Formation; E2+3y = Yulinshan Formation; N1c = Chabaoma Formation; N2q = Quguo Formation; 

N2sq = Shuangquanhu Formation. 
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Fig. 5. Simplified stratigraphic framework of two composite sections in the South Qiangtang sub-basin. The 
legend, scale and stratigraphic codes are same to those of Fig. 4. Other codes are: T3a = Adula Formation; 

T3d = Duogaila Formation; T3R = Riganpeicuo Group; T3J1s = Suobucha Formation; J1q = Quse Formation; 
J2s = Sewa Formation; K2a = Abushan Formation. 
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Fig. 6. Decompaction scheme (modified after Allen and Allen, 2005). 
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Fig. 7. Specific indicators for assessment of paleo-water depth in stratigraphic sections. (a) Oscillatory 
ripples preserved in the bottom of tidal sandstones (Late Triassic Duogaila Formation, Dazhuoma; paleo-
water depth ≈ 50±50 m). (b) Fining-upward sequence with each starting with conglomerate or pebbled 

sandstones (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth ≈ 10±10 m). (c) Current 
bedding limestone (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth ≈50±50 m). (d) 

Ripples in tidal sandstones (Middle Jurassic Xiali Formation, Dazhuoma; paleo-water depth ≈50±50 m). (e) 
Ammonite in mudstone (Late Jurassic Bailongbinghe Formation, Changshui River; paleo-water depth ≈ 50 
m). (f) Directional arrangement of gravels in fluvial sandstones (Late Cretaceous Abushan Formation, Biluo 

Co; paleo-water depth ≈ 10±5 m). 
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Fig. 8. Subsidence curves for composite sections in Fig. 1. The thick solid line represents backstripped 
tectonic subsidence. The thin solid line represents total decompacted subsidence. The grey-shade areas 

represent the first stage of subsidence from Late Triassic to Early Jurassic based on the subsidence histories, 
combined with previous work on sediment provenance and timing of deformation. The reference lines 

representing subsidence rate are shown are each of the plots. 
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Fig. 9. Magnification of the tectonic subsidence histories from 172 to 120 Ma. The reference lines 
representing subsidence rate are shown are each of the plots. The shaded area represent the gradual 
cessation of subsidence across the Qiangtang Basin, with the final termination at about 148 Ma. The 

subsidence curves in the North Qiangtang are represented by solid lines, while the South Qiangtang are 
represented by dotted lines. 

Page 74 of 78

FOR REVIEW PURPOSES ONLY

Basin Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Fig. 10. Radial plots of detrital apatite fission track ages in the Qiangtang Basin using DensityPlotter 
(Vermeesch, 2012). 
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Fig. 11. Weighted mean thermal paths for sandstones in the Qiangtang Basin. The mélange and granite 
samples are from the Central Uplift studied by Zhao et al. (2017). All thermal paths display cooling starting 

from 150-130 Ma. The depth is calculated by assuming a geothermal gradient of 20 °C/km. 
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Fig. 12. Schematic map showing the paleo-current directions, provenance areas and composition of lithic 
fragments in sandstones of the Qiangtang foreland basin during the Middle Jurassic to Early Cretaceous 

time, modified from Li et al. (2001). 
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Fig. 13. Cartoon of tectonic evolution of the Qiangtang Basin and adjacent terranes from Late Triassic to 
Cretaceous. The extent of each terrane is not strictly to scale and the near surface geometries are vertically 

exaggerated. The evolution models of Central Uplift during early Late Triassic (a) and Late Triassic-Early 
Jurassic (b) are modified after Zhang & Tang (2009). Bold black arrows in each cross sections represent the 

directions of sediment transportation. The mechanisms of subsidence are labelled in red. 
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