

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Subsidence and exhumation of the Mesozoic Qiangtang Basin: Implications for the growth of the Tibetan plateau

Citation for published version:

Zhang, J, Sinclair, H, Li, Y, Wang, C, Persano, C, Qian, X, Han, Z, Yao, X & Duan, Y 2019, 'Subsidence and exhumation of the Mesozoic Qiangtang Basin: Implications for the growth of the Tibetan plateau', *Basin Research*, vol. 31, no. 4, pp. 754-781. https://doi.org/10.1111/bre.12343

Digital Object Identifier (DOI):

10.1111/bre.12343

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Basin Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Subsidence and exhumation of the Mesozoic Qiangtang Basin: Implications for the growth of the Tibetan plateau

Journal:	Basin Research
Manuscript ID	BRE-020-2018.R3
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Zhang, Jiawei; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology; Institute of Geology, China Earthquake Administration, State Key Laboratory of Earthquake Dynamics Sinclair, Hugh; The University of Edinburgh, Grant Institute, School of GeoSciences Li, Yalin; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Wang, Chengshan; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Persano, Cristina; University of Glasgow College of Science and Engineering Qian, Xinyu; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Han, Zhongpeng; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Han, Zhongpeng; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Han, Zhongpeng; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Yao, Xiang; China University of Geosciences Beijing, State Key Laboratory of Biogeology and Environmental Geology Yao, Xiang; China University of Geosciences Beijing, State Key Laboratory of Geological Processes and Mineral Resources Duan, Yaoyao; Chengdu Centre of Geology and Mineral Resources
Keywords:	Qiangtang, Subsidence, Apatite fission track, Crustal thickening

Basin Research

2		
4 5	1	Subsidence and exhumation of the Mesozoic Qiangtang Basin: Implications for
5 6 7	2	the growth of the Tibetan plateau
8 9 10	3	
10	4	Liouvoi Zhange b. Uvah D. Singloir Valin Lie* Changebon Wange Cristing
12 13	4	Jawei Zhang ^{*, *} Hugh D. Sincian [*] Fann Li ^{*,*} Chengshan wang [*] Cristina
14 15 16	5	Persano ^d Xinyu Qian ^a Zhongpeng Han ^a Xiang Yao ^e Yaoyao Duan ^f
17 18	6	
19 20 21	7	^a State Key Laboratory of Biogeology and Environmental Geology, China University
22 23	8	of Geosciences (Beijing), Beijing 100083, China
24 25 26	9	^b Now at State Key Laboratory of Earthquake Dynamics, Institute of Geology, China
27 28	10	Earthquake Administration, Beijing 100029, China
29 30 31	11	° School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8
32 33	12	9XP, Scotland, UK
35 36	13	^d School of Geographical and Earth Sciences, College of Science and Engineering,
37 38 30	14	University of Glasgow, Glasgow G12 8QQ, Scotland, UK
40 41	15	^e State Key Laboratory of Geological Processes and Mineral Resources and College of
42 43 44	16	Geosciences and Resources, China University of Geosciences (Beijing), Beijing
45 46	17	100083, China
47 48 49	18	^f Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, China
50 51	19	* Corresponding author.
52 53 54	20	Tel.: +086 10 82321586
55 56 57	21	Fax: +86 10 82321612
58 59 60	22	E-mail address: liyalin@cugb.edu.cn (Yalin Li)

23 ABSTRACT

The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Oiangtang Basin with eleven selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, paleo-environment interpretation, and paleo-water depth estimation are integrated to create eleven composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation, show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro-foreland basin. In contrast, the South Qiangtang was a collisional pro-foreland basin. During Middle Jurassic to Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso-Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9-84.1 Ma) and Paleogene-Eocene (65.4-40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic-Early Cretaceous times (150-130 Ma), involving underthrusting of both the

Basin Research

45 Lhasa and Songpan-Ganze terranes beneath the Qiangtang terrane, or the collision of46 Amdo terrane.

47 Keywords: Qiangtang, Subsidence, Apatite fission track, Crustal thickening

48 INTRODUCTION

The collision of India with Asia is the most important driving force for the growth of the Tibetan plateau (Argand, 1922; Dewey et al., 1988; Yin & Harrison, 2000), with the onset of collision at about 55 ± 10 Ma promoting significant changes in Tibetan plateau height and relief (Currie et al., 2005; Rowley & Currie, 2006; Ding et al., 2014, 2017; Wang et al., 2014; Leary et al., 2017). Evidence shows that deformation in the hinterland of the plateau occurred before collision (Murphy et al., 1997; Kapp et al., 2005). However, uncertainty remains as to whether this early shortening resulted in moderate or high elevations within the Tibetan plateau prior to the India-Asia collision (Zhang et al., 2012 and references therein). It is reasonable to speculate that the crustal thickening in the central region of the Tibetan plateau had started before Cenozoic times (Zhao et al., 2017). The Qiangtang Basin developed on the overriding plate between two major suture zones (the Bangong Lake-Nujiang suture zone, BNSZ, to the south and the Jinsha River suture zone, JRSZ, to the north, respectively), and is considered to record the early growth of the central Tibetan plateau (Song, 2012; Ren et al., 2015; Zhao et al., 2017). However, Early Mesozoic subsidence and pre-Cenozoic exhumation histories of the Mesozoic marine Qiangtang Basin are unclear, which hinders understanding of the early history of crustal thickening in central Tibet. This is due in large part, to the extremely remote locations

FOR REVIEW PURPOSES ONLY

and the strong Cenozoic structural deformation of the stratigraphic successions (Kapp et al., 2003, 2005). Therefore, understanding of the Mesozoic history of the Qiangtang Basin is variable. The proposed mechanisms for basin subsidence are dominated by two competing models. It is proposed that either the basin formed in an extensional setting on the southern margin of Eurasia during Late Triassic to Early Cretaceous times (e.g., Wang *et al.*, 2004a; Song, 2012), or that it represents a foreland basin (e.g. Wang et al., 2001; Li et al., 2002). Published thermochronologic data from the Qiangtang Basin come mainly from the Qiangtang culmination (Rohrmann et al., 2012; Zhao et al., 2017), and sparsely from detrital sandstones (Wang et al., 2008a; Wang & Wei, 2013; Ren et al., 2015). Cooling ages of different thermochronometers range from Early Jurassic to Cenozoic, and the initial timing of plateau growth is thought to range from Early Cretaceous to Paleogene (Wang et al., 2008a; Rohrmann et al., 2012; Zhao et al., 2017).

Present-day stratigraphic thicknesses are the products of cumulative changes in rock volume through time caused by subsidence and burial (Allen & Allen, 2005). Reconstructing the subsidence histories of sedimentary basins provides data to directly interrogate the tectonic evolution of a basin (e.g. Brunet et al., 2003; Carrapa & Garcia-Gastellanos, 2005; Abadi et al., 2008; Holt et al., 2010, 2015; Kuhn et al., 2010; Sciunnach & Garzanti, 2012; Abdullayev et al., 2017; Dressel et al., 2017; Silvia et al., 2017; Tozer et al., 2017). The most commonly applied method to recover the 1-D subsidence history of a sedimentary basin is "backstripping" (Watts & Ryan, 1976; Sclater & Christie, 1980), which relies on physical properties of the

FOR REVIEW PURPOSES ONLY

Page 5 of 78

Basin Research

stratigraphic sequences (thickness and porosity), combined with depositional ages, paleobathymetry and eustsay at the time of accumulation. The exhumation of sedimentary basins is usually related to tectonic evolution, surface erosion and deep geological processes (Bernet *et al.*, 2001; Reiners & Brandon, 2006). Various thermochronometric systems have been used to provide important information on the timing and duration of cooling events that can be related to rock uplift and erosion of a sedimentary basin (Naeser *et al.*, 1989; Cederbom *et al.*, 2004; Armstrong, 2005).

This study carried out subsidence analysis of the Mesozoic Qiangtang Basin using stratigraphic successions obtained from geological surveys during the last three decades. New subsidence curves of the Qiangtang Basin established in this study suggest a transition from a foreland basin on the south of the JRSZ during Triassic times, to a hinterland basin (Horton, 2012) from Middle Jurassic to Early Cretaceous times. The cooling history of the basin is constrained using apatite fission track data from sandstones with modelling results indicating Early Cretaceous basin inversion and exhumation, which we interpret to be related to the collision of the Amdo basement or the initial amalgamation between the Lhasa and Qiangtang terranes. Our results contribute to the understanding of the evolution of the Qiangtang Basin and have implications for the Mesozoic growth of the Tibetan plateau.

107 GEOLOGIC BACKGROUND

108 The Tibetan plateau consists of several tectonic terranes, including the 109 Himalayas, Lhasa, Qiangtang, Songpan-Ganze, and Kunlun-Qaidam, divided by 110 several nearly east-west suture zones (Yin & Harrision 2000; Dai *et al.*, 2011; Zhang

2	
4	
5	
6	
7	
, פ	
0	
9 10	
10	
11	
12	
13	
14	
15	
10	
17	
10	
19	
20	
∠1 22	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

et al., 2012). The Qiangtang terrane, located in the central part of the plateau, is 111 delimited by the JRSZ to the north and the BNSZ to the south (Fig. 1a). The JRSZ is 112 considered to represent the closure of the Palaeo-Tethys Ocean in Permian to Late 113 Triassic times, which opened probably in Early Carboniferous or earlier (Dewey et al., 114 1988; Pearce & Houjun, 1988; Kapp et al., 2003; Zhai et al., 2015). Middle to Upper 115 Triassic deep-marine turbidites derived from surrounding blocks are preserved in the 116 triangle-shaped Songpan-Ganze terrane north of the JRSZ (Nie et al., 1994; Weislogel 117 et al., 2006; Ding et al., 2013a). The Songpan-Ganze terrane was strongly deformed 118 119 in the Late Triassic during closure of Paleo-Tethys (Chang, 2000; Roger et al., 2011). Meanwhile, suturing along the JRSZ had taken place by Late Triassic (Norian) times, 120 supplying a source of sediment southwards to the Qiangtang Basin (Li et al., 2003). 121 122 New geophysical and geochemical evidence reveal that the Songpan-Ganze complex may have subducted southward beneath the Qiangtang terrane along the JRSZ during 123 Late Triassic (Zeng et al., 2015; Lu et al., 2017). 124

The BNSZ represents the closure of the Meso-Tethyan seaway along the 125 southern margin of the Qiangtang terrane during Late Jurassic to Late Cretaceous 126 times, resulting in amalgamation of the Lhasa and Qiangtang terranes (Fig. 1a) (Yin & 127 Harrison, 2000; Kapp et al., 2007; Zhu et al., 2013, 2016; Fan et al., 2015; 2016; Li et 128 al., 2016; Yan et al., 2016; Chen et al., 2017a; Huang et al., 2017; Li et al., 2017a; 129 Liu et al., 2017). Ophiolite fragments and Mesozoic clastic units (Li et al., 2017b) 130 within the BNSZ are tectonically superimposed. The Amdo basement (Fig. 1b) may 131 have been isolated as a microcontinent or a continental arc during the formation of the 132

FOR REVIEW PURPOSES ONLY

Bangong-Nujiang Meso-Tethyan Ocean ophiolites (Guynn *et al.*, 2006; Zhang *et al.*,
2014).

The Qiangtang Basin is subdivided into the North Qiangtang sub-basin, the Central Uplift, and the South Qiangtang sub-basin (Fig. 1b, Wang et al., 2004b). The Central Uplift is composed of blueschist-bearing metamorphic mélange (Kapp et al., 2000; Zhang et al., 2006; Pullen & Kapp, 2014), Paleozoic low-grade strata (Kapp et al., 2000), and Late Triassic intermediate to felsic intrusive rocks (Kapp et al., 2000; Li et al., 2015a). The contacts between metamorphic rocks and overlying Paleozoic-Triassic low-grade strata are low-angle normal faults (Kapp et al., 2000, 2003). The formation of the Central Uplift is still an enigma, with interpretations ranging from an in-situ suture (Longmucuo-Shuanghu suture zone, LSSZ) (e.g., Li et al., 1995; Zhang et al., 2006; Liu et al., 2011; Zhao et al., 2014, 2015; Zhai et al., 2015; Yan et al., 2016; Liang et al., 2017) to the underthrust model that the mélange was thrust beneath the Qiangtang terrane from the north and exhumed to the surface by large-scale core complexes (e.g., Yin & Harrison, 2000; Kapp et al., 2000, 2003; Pullen & Kapp, 2014).

Despite the fact that the tectonic significance of the Central Uplift is debated, the Mesozoic stratigraphic sequences in both the North and South Qiangtang are well documented. In the North Qiangtang region they are separated by two major unconformities in Upper Triassic to Lower Jurassic and the Lower Cretaceous; while in the South Qiangtang region, the Mesozoic strata are complete until the Lower Cretaceous (Fig. 2). Lower and Middle Triassic strata are sparse throughout the entire

Qiangtang Basin. Upper Triassic sediments are represented by offshore to shallow marine limestones (Juhuashan Fm. of the North Qiangtang), deep marine flysch (Zangxiahe Fm.), and deltaic and littoral sandstones, siltstones and mudstones (Riganpeicuo Group of the South Oiangtang). The Nadigangri volcanic rocks overlie the paleo-weathering crusts in some places in the North Qiangtang (Fu et al, 2007; Wang et al., 2007). This set of volcanic rocks was considered to record the onset of filling of the Mesozoic Qiangtang Basin (Wang et al., 2004b; Fu et al., 2010), and assigned to an Early Jurassic (Zhu et al., 1996, 1997) or Middle Jurassic age (Wang et al., 2001) until Zhai & Li (2007), Wang et al. (2008b) and Fu et al. (2010) presented SHRIMP zircon U-Pb ages of 219±4 Ma, 216±4.5 Ma and 220.4±2.3 Ma, respectively.

The Jurassic sequences are complete in both the northern and southern portions of the Qiangtang Basin, except that the Lower Jurassic units are missing in the North Qiangtang, while contemporaneous sequences in the South Qiangtang are represented by coastal black shales interbedded with limestones and gypsum (Quse Fm., Fig. 2). The earliest Middle Jurassic successions include tidal or deltaic coarse sediments (Qumocuo Fm. of the North Qiangtang) and shallow-marine black shales with limestones (Sewa Fm. of the South Qiangtang) (Wang et al., 2004b). The upper sequences of the Middle Jurassic consist of marine platform limestones, dolomites (Buqu Fm., Ding et al., 2013b) and regressional semi-closed tidal flat sediments (Xiali Fm., Song et al., 2017). The Upper Jurassic unit is represented by intra-platform littoral-neritic carbonate rocks and black shales deposited in a closed,

deep and static marine environment (Suowa Fm., Wang *et al.*, 2013).

During latest Jurassic to earliest Cretaceous times, the stratigraphic sequences are represented by clastic-carbonate sediments. The marine sedimentation in the North Oiangtang during the Early Cretaceous is represented by Xueshan Fm. and diachronous Bailongbinghe, Suowa and Xiali formations (Li & Batten, 2004; Yang et al., 2017). Although Zhang (2000) and Zhang et al. (2004) asserted that the southern half of Qiangtang terrane was an area of marine sedimentation during Early Cretaceous, the marine sediments prevailed in its southern margin, close to the BNSZ. They have closer affinity to the BNSZ (Li et al., 2017b) and are divided into different stratigraphic divisions (Mugagangri stratigraphic area) from the Jurassic sediments in the South Qiangtang. Overlying the repeated transgressive and regressive sequences (Ding et al., 2013b) is a Lower Cretaceous unconformity. Upper Cretaceous alluvial and fluvial red sediments (Abushan Fm.) occupied the South Qiangtang depression, but are not found in its northern counterpart (Fig. 2). Its age has been defined to 102-75 Ma (Late Cretaceous) by different geochronological methods (Li et al., 2013; Wu et al., 2014; Li et al., 2015c; Chen et al., 2017b). Cenozoic terrestrial deposits unconformably overlie these Upper Cretaceous sequences.

194 METHODS

195 Backstripping and Data

The principle of backstripping analysis is an inverse modelling approach
utilizing the stratigraphic record (Watts & Ryan, 1976; Sclater & Christie, 1980).
Both the total and backstripped subsidence curves are time versus depth diagrams. In

the actual operating process, the first step is stratigraphic correlations and age
assessment, after which combining decompaction, palaeobathymetry and eustasy
yield the total subsidence history. By removing the subsidence generated by sediment
and water loads, the component of subsidence driven by tectonic forcing remains
(Magoon & Dow, 1994; Stapel *et al.*, 1996). We used a MATLAB program (Yao *et al.*, 2017) to calculate the final tectonic subsidence and error bars.

205 Stratigraphic units

An issue is the poor exposure of the stratigraphic successions in the Qiangtang Basin where strong weathering and Cenozoic deformation (Kapp et al., 2005) affect preservation. All the exploration wells, currently, are shallow ones (none deeper than 1.5 km) that encounter only a small part of the Mesozoic successions. Therefore, subsidence recovery was accomplished using surface sections. Geological survey institutes from China and our working group have measured up to 235 detailed stratigraphic sections in the Qiangtang Basin. The first step is integrating scattered sections into a composite successive column by lithologic or biostratigraphic correlations (Sciunnach & Garzanti, 2012). As many measured stratigraphic sections are hard to be integrated into one composite profile, because of the incomplete exposure of Mesozoic sequences in one depression or severe disturbance caused by Cenozoic deformation, we managed to restore eleven composite profiles in total (see the Supporting information for the GPS data of all 235 sections and precise locations of 11 composite profiles on Google Earth). For each of the eleven selected composite sections, the average thickness of the various sections was used among the numerous

Basin Research

profiles in the same depression. The details of thickness of each stratigraphic unit aregiven in Table S1.

In the North Qiangtang, nine locations were chosen to conduct subsidence analyses, partly because the North Qiangtang occupies a large portion of the basin (Fig. 1). Most locations have disrupted sequences, except for Nadigangri and Quemo Co (Fig. 3). Three major unconformities can be found in strata exposed in the North Qiangtang (Figs. 2 and 4). All of the sections, at the bottom, are characterized by Upper Triassic marine limestones (Juhuashan Fm. of Duxue Mt., Shuangguan Lake, and Zuerkenwula Mt., and Bolila Fm. of Quemo Co), and clastic deposits (Zangxiahe Fm. of Heihuling and Changshui River, Tumengela Group of Dangmagang, and Bagong Fm. and Erlongba Fm. of Quemo Co), with the exception of the Nadigangri and Amugang sections which do not preserve marine deposits. The Amugang section is represented by Permian metavolcanic rocks which underlie the whole sequence. The first major gap appears between the marine deposits and overlying volcanic rocks (Nadigangri Fm.). This unconformity appears only in the western part of the North Qiangtang (Duxue Mt., Shuangquan Lake, Heihuling and Nadigangri), while the eastern portion only exhibits the second major unconformity, which is prevalent across the North Qiangtang. The second major unconformity is between Upper Triassic and Middle Jurassic strata. The Lower Jurassic units are missing in the North Qiangtang, suggesting a long-term hiatus or tectonic uplift after the closure of Jinsha River suture to the north. The Middle Jurassic successions include Qumocuo Fm., Buqu Fm. and Xiali Fm. (Fig. 4). The Upper Jurassic unit is represented by Suowa

> Fm. During latest Jurassic to earliest Cretaceous, the stratigraphic sequences consist of clastic sediments, Bailongbinghe and Xueshan formations (Fig. 2). Note that the Bailongbinghe and Xueshan formations are probably contemporaneous heterotopic facies so that they are not both recorded in some locations. The last major unconformity is between Cenozoic fluvial and lacustrine Kangtuo Fm. and latest Jurassic to earliest Cretaceous sandstones. No Late Cretaceous sediments were discovered.

Two sites were considered ideal for modelling of subsidence histories of the South Qiangtang, the Biluo Co and Dazhuoma sections (Figs. 1 and 5). Mesozoic sequences are more complete than that of the North Qiangtang, with only one or two major unconformities recognized (Fig. 5). The Late Triassic sequences are represented by fine-grained clastic deposits (Riganpeico Group of Biluo Co and Adula Fm. of Dazhuoma), sandstones (Duogaila Fm. of Dazhuoma), and limestones (Suobucha Fm. of Biluo Co). It is noticeable that the Biluo Co section is complete, while the Dazhuoma section has an obvious unconformity between the Jurassic Quemocuo Fm. and the Triassic sandstones. This indicates an east-west difference in the paleogeography of the South Qiangtang. The early stage of the Jurassic sequences seems to record contemporaneous heterotopic facies in Biluo Co (Quse Fm. and Sewa Fm.) and Dazhuoma (Quemocuo Fm.), respectively. The discrepancy lies in the grain size and thickness where the Biluo Co section is finer and thicker (Fig. 5). The rest of the Jurassic sequences are characterized by limestones interbedded with sandstones, siltstones and mudstones. The lower limestone unit, Bugu Fm., preserves dolomites

Page 13 of 78

Basin Research

and gypsum, reflecting an arid period during a marine transgression-regression cycle.
The upper limestone unit, Suowa Fm., is characterized by darker bioclastic limestone.
The interbedded clastic unit is relatively fine grained. A regional unconformity
appears above the upper limestone unit, with latest Jurassic to earliest Cretaceous
clastic deposits missing in the South Qiangtang compared to that of the North
Qiangtang (Figs. 4 and 5). The Late Cretaceous Abushan Fm. is only recognized in
the South Qiangtang, which is unconformably overlay by Cenozoic Kangtuo Fm.

272 Age constraints

Hundreds of samples from regional geological surveys were studied for biostratigraphy (e.g., ammonoids, bivalves, corals, brachiopods, foraminifers, radiolarians, fusulinids, etc., see Table S2 in Supporting material for details about fossils and their constrained biostratigraphy), resulting in reliable biostratigraphic control (e.g., Chen et al., 2016; Yin, 2016; Yin & Chandler, 2016) and refined palaeoenvironmental and palaeowater-depth interpretations. All Jurassic strata contain abundant bivalves to constrain ages (Table 1). In addition, ages of Jurassic sequences are constrained by magnetostratigraphy of Fang et al. (2016) (Fig. 2).

The accuracy of subsidence history plots heavily depends on the precision of age assessment. The choice of timescale is important when transforming relative ages derived from biotas into numerical ages. However, there are a few differences in recent timescales by different authors, and so we adopt the standard timescale of Gradstein *et al.* (2004) and Ogg *et al.* (2008).

286 Decompaction

The quantitative analysis of total subsidence history relies mainly on stepwise decompaction of stratigraphic units (Bond & Kominz, 1984). The principle of decompaction is based on the reduction of porosity with depth (Allen & Allen, 2005 and references therein). Generally the porosity decreases exponentially with depth (Steckler & Watts, 1978; Sclater & Christie, 1980): $\Phi = \Phi_o e^{-cy}$ (1)where Φ_o is the surface porosity, Φ is the porosity at the given depth y, and c is a lithology-dependent coefficient. The standard Φ_o and c values for different lithologies used in this study come from Sclater & Christie (1980). In the decompaction process, when recovering the depths y_1 and y_2 of the sedimentary unit to its initial uncompacted depths y_1 ' and y_2 ' (Fig. 6), the decompacted thickness *H*, will be the following result (Allen & Allen, 2005): $H = y_2' - y_1' = y_2 - y_1 + \Phi_o[(e^{-cy1'} - e^{-cy2'}) - (e^{-cy1} - e^{-cy2})]/c$ (2) where $\Phi_o(e^{-cyl'} - e^{-cyl'})/c$ is the pore volume after decompaction, and $\Phi_o(e^{-cyl} - e^{-cy'})/c$ is the pore volume before decompaction. Backstripping

The total subsidence is divided into two parts, one resulting from the tectonic driving forces and the other caused by sediment and water loads. The subsidence

FOR REVIEW PURPOSES ONLY

Page 15 of 78

Basin Research

curve obtained after decompaction is the total subsidence (Watts et al., 1982; Busby & Ingersoll, 1995). Sediment load must be subtracted by means of isostatic models (Einsele, 1992). An Airy isostastatic model was adopted in this study. In an Airy isostastatic model, the tectonic subsidence, D, can be backstripped from *H* using the equation given by Watts & Ryan (1976): $D=H(\rho_m-\rho_s)/(\rho_m-\rho_w)$ (3) where ρ_m , ρ_s , and ρ_w are densities of lithospheric mantle, sediments and water, respectively. Values for ρ_m and ρ_w are constant and we adopt 3.33 and 1.035 g/cm³ for each of them. Values for ρ_s are calculated in terms of weighted mean average densities of different lithologies during progressive decompaction using the following equation (Allen & Allen, 2005): $\rho_s = \sum \{ [\Phi_i \cdot \rho_w + (1 - \Phi_i) \rho_{sgi}] / H \} Y_i'$ (4)

where Φ_i is the porosity of a specific layer, ρ_{sgi} is the sediment grain density of one layer, and Y_i is the thickness of layer *i*.

327 Boundary conditions

Sea-level changes and paleo-water depths are usually used as boundary conditions in modelling. Although regional sea-level changes often differ from global scales, global sea-level curves are used in many cases. We adopt the eustatic sea-level curves of Miller *et al.* (2005) for Mesozoic eustatic corrections. The eustasy data aregiven in Table S1.

Paleo-water depth often has a wide range of uncertainty (e.g., Bertram & Milton, 1988) and are derived primarily from fossils, sedimentary structures, geochemical signatures (values and ratios of trace, transition and rare earth element, etc.), and depositional environment interpretations (Sciunnach & Garzanti, 2012) (Fig. 7). For instance, the biomarkers of the Middle Jurassic Bugu Formation indicate an offshore to shallow marine environment (Chen et al., 2014), which suggested a paleo-water depth of 0-150 m. All the paleo-water depths used in the modelling are listed in Table S1 in Supplementary material.

After corrections for paleo-water depth and variations in sea-level change are conducted, the Airy compensated tectonic component of basement subsidence, *Y*, is (Sclater & Christie, 1980):

345
$$Y = D + W_d - \Delta_{sl} \cdot \rho_m / (\rho_m - \rho_w)$$
(5)

where W_d is the assumed paleo-water depth, and Δ_{sl} is paleo-sea level relative to the present.

349 The uncertainties of backstripping methods

Generally, the uncertainty of stratigraphic thickness is small. It mostly comes from the unknown amount of erosion at unconformities. The apatite fission track analyses could constrain the erosion thickness in the Dazhuoma section (Figs. 1 and 5; Page 17 of 78

Basin Research

Table 2). However, it can not be applied to the other sections. As a result, this correction was neglected, as assessment of the amounts of erosional removal are not accessible in these sections; it is recognized that this provides uncertainty in the final subsidence calculation.

Age assessment has a large uncertainty because most of the age constraints derive from biostratigraphy. Only the volcanic rocks of Late Triassic Nadigangri Fm. are constrained by U-Pb zircon dating. The uncertainty in age assessment causes little change to the shape of subsidence curves. The biostratigraphy information of all the sequences are tabulated in Table S2 in Supplementary material.

Paleo-water depth often has a wide range of uncertainty, especially for deep-water units (Sciunnach & Garzanti, 2012). In our study, paleo-water depths are based on the interpretation of paleo-environment and have large errors on them. Sea-level corrections are based on curves generated from the Atlantic passive margin (Miller *et al.*, 2005), which may differ from regional sea-level histories linked to variations in the geoid.

Finally, the use of a simple Airy isostatic correction is applied as there is uncertainty around the flexural rigidity of the plate during the Mesozoic loading. The implication is that the rates of tectonically induced subsidence following backstripping would have been greater, but the pattern of subsidence unchanged (Allen and Allen, 2005).

373 Apatite Fission Track Thermochronology

374 Materials and methods

2	
3	
4	
5	
6	
7	
א	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
 ⊿∧	
44	
40	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1

12 sandstone samples were collected for apatite fission track (AFT) analyses (Fig. 375 1; GPS coordinates are given in Table S3 in Supplementary material). Seven samples 376 came from the Amugang, Biluo Co and Dazhuoma sections (Figs. 4 and 5). The other 377 five were from geological surveys. Fission track ages, track lengths, and Dpar (etched 378 pits of fission tracks on a polished surface) measurements were performed at the 379 University of Glasgow using the external detector method (Gleadow, 1981; Donelick 380 et al., 2005) and the zeta calibration technique (Huford & Green, 1983), following the 381 techniques provided by Persano et al. (2005). Apatite grains were etched for 20 s in 382 383 5.0 M HNO₃ at room temperature (~20°C). Mica detectors were etched with HF for 25 min. Samples were irradiated at Oregon State TRIGA Reactor, USA. Apatites were 384 irradiated together with IRMM 540R dosimeter glasses to check the constancy of the 385 386 neutron flux. The samples and standards were counted under a Carl Zeiss Axio Imager M1m optical microscope at $1250 \times \text{magnification}$ and the FTStage 4.04 387 system by Trevor Dumitru. All AFT data were processed and plotted using TrackKey 388 software (Dunkl, 2002); their populations were analyzed using Density Plotter 389 (Vermeesch, 2012). The χ^2 test (Galbraith, 1981; Green, 1981) was performed on all 390 samples to determine the populations in a grain-age distribution. 391

392 Thermal History Modelling

HeFTy, a Monto Carlo approach to data interpretation (Ketcham *et al.*, 2005), was used to decipher thermal history. Fission track age and track length were modelled using the multi-kinetic annealing model of Ketcham *et al.* (2007), using *D*par as a kinetic parameter (Donelick *et al.*, 2005). Inverse thermal history modelling

Basin Research

was run until 100 good paths were obtained, which in all cases resulted >10000 acceptable paths. RESULTS **Subsidence History** Subsidence history of the nine locations in the North Qiangtang and two in the South Qiangtang were generated (Fig. 8). A total decompacted subsidence curve and a backstripped, tectonic subsidence curve were obtained for each site. All curves of the North Qiangtang show two stages of concave-up subsidence, a lower magnitude during Late Triassic and a more pronounced stage during Middle Jurassic to Early Cretaceous. In the first stage, rapid tectonic subsidence was recorded during middle Late Triassic, followed by a deceleration or termination in tectonic subsidence. To more clearly understand the latter stage of subsidence history, we focus on the subsidence curves from ~ 172 Ma to 120 Ma (Fig. 9). This stage of subsidence started at around 172 Ma, with subsidence curves that are either concave or nearly liner (e.g., Duxue Mt. and Shuangquan Lake). The last phase of most subsidence curves decelerate with time with the exception of Duxue Mt. and Shuangquan Lake (Fig. 9). A suspension was recorded in the Heihuling profile at about 165 Ma. Two sites in the South Qiangtang show distinct subsidence patterns. The

Two sites in the South Qiangtang show distinct subsidence patterns. The subsidence rate of Biluo Co accelerated with time at first, and then decelerated in the Late Jurassic (Fig. 8). In contrast, the subsidence curve of Dazhuoma shows a two-stage evolution, which is similar to those in the North Qiangtang.

419	Apatite	Fission	Track
-----	---------	---------	-------

Central ages of all sandstone samples range from 120.9 ± 5.5 to 40.1 ± 2.6 Ma (Table 2), which are much younger than the stratigraphic ages (Triassic-Cretaceous). The grain-age distributions can be divided into two groups. One is late Early to Late Cretaceous (120.9-84.1 Ma) and another is Paleogene-Eocene (65.4-40.1 Ma). Four samples (ED0616, EP1502, EP1504-17 and PQ1503) failed the χ^2 test, suggesting that the apatite composition may vary significantly within each sample (O'Sullivan & Parrish, 1995) and they may have multiple age populations. The age dispersion of these four samples are moderate to high (> 20%) (Table 2). Despite failing the χ^2 test, a mixture model (Galbraith & Green, 1990) does not show two populations for the majority of samples, with exception of sample EP1502 (Fig. 10). The relatively short mean horizontal confined track lengths (MTLs) range from 9.26 \pm 0.39 to 13.75 \pm 0.48 µm (Table 2). This pattern suggests that these samples were buried within the partial annealing zone of AFT, or reheated for a long time before exhumed to the surface. Most samples have limited amount of horizontal confined tracks. Therefore, it is difficult to extract useful information from MTLs. Dpar values range from 1.74 to 3.49 μ m, with many incomparable with Durango apatite (2.05±0.16 μ m, Sobel & Seward, 2010), which means many samples have different compositionally controlled annealing properties compared with Durango apatite. The relatively large Dpar values reflect the high values of Cl wt% (>1-2 wt%, Donelick et al., 2005 and references therein) in these samples, which suggests relatively slow annealing of apatite grains (Donelick et al., 2005; Galbraith, 2005).

441	Thermal	History	Modelling
-----	---------	---------	-----------

Three initial constraints were applied to four sandstone samples that were selected to run modelling: (1) temperature of 5 ± 5 °C for the present surface; (2) temperature of 20 ± 20 °C for the depositional ages, which were constrained by magnetostratigraphy of Fang et al. (2016); (3) temperature of 120-200 °C between 160-120 Ma, which is constrained by subsidence history, adopting a geothermal gradient of 30 °C/km (He et al., 2014). Modelling results of four samples (ED0616, EP1502, PQ1503 and PQ1506) from the Qiangtang Basin indicate a relatively simple cooling history (Fig. 11; see Figure S1 for all thermal history models). After deposition, all samples reached maximum temperature 150-170 °C at about 150-130 Ma, which is much higher than the base of the apatite partial annealing zone (110 ± 10) °C, Ketcham et al., 1999), suggesting entire reset apatite fission track ages. Cooling started at about 140-130 Ma, which is coincident with the timing of crustal thickening inferred from the subsidence history. After ca. 100 Ma, all the samples present protracted cooling histories, followed by increase in cooling rates, up to 2-5 °C Myr⁻¹, at ca. 25-10 Ma.

DISCUSSION

458 Subsidence Analyses of the Mesozoic Qiangtang Basin

Based on the subsidence histories (Figs. 8 and 9) combined with previous work on sediment provenance (Fig. 12) and timing of deformation, we suggest that the evolution of the Mesozoic Qiangtang Basin can be subdivided into two main stages,

462 Late Triassic-Early Jurassic and Middle Jurassic-Early Cretaceous.

463 Late Triassic-Early Jurassic

The North and South Qiangtang may have been separated by the paleo-Tethys Ocean before the Triassic (Li et al., 1995; Song et al., 2017). The North Qiangtang was a foreland basin in the early Late Triassic to the south of the JRSZ (Li et al., 2003; Song, 2012), which resulted from the collision between the Songpan-Ganze and Qiangtang (Yan et al., 2016) (Fig. 13a). Li et al. (2003) proposed that the main paleo-current directions at the northern edge of the North Qiangtang region were southwestward, and the turbidites and delta sandstones transitioned to thinner and finer foredeep sediments from north to south when marine Juhuashan and Zangxiahe formations were deposited. Additionally, the Carnian mudstones were deposited under a collisional setting based on the multi-major elements discriminate plots (Wang et al., 2017a). The subsidence history patterns of the North Qiangtang are concave-upward during early Late Triassic (grey-shaded area in Fig. 8), which is consistent with the characteristics of subsidence curves of retro-foreland basins (Naylor & Sinclair, 2008), though the subsidence is not remarkable and the error bars may make the data less reliable. We interpret that the marine deposits in the North Qiangtang were generated from flexural subsidence by orogenic loading in the JRSZ in the early Late Triassic (Fig. 13a).

Provenance analyses and paleo-current directions indicate that the JRSZ had been a topographic highland and source area by the end of Late Triassic when the Nadigangri volcanic rocks formed (Li *et al.*, 2003). The presence of paleo-weathering crusts (Fu et al, 2007; Wang *et al.*, 2007), marking the termination of early Late Page 23 of 78

Basin Research

Triassic subsidence, means that the North Qiangtang was subaerially exposed in the Late Triassic. The Nadigangri volcanic rocks (~216-220 Ma) unconformably overlay the paleo-weathering crusts after the early Late Triassic subsidence ceased. The majority of these volcanic rocks are felsic, rather than basaltic. As a result, we interpret these, like other bimodal magmatism found in the North Qiangtang (Zhang et al., 2011), to be a result of the detachment and sinking of oceanic lithosphere of the South Qiangtang in the Late Triassic (Zhai & Li, 2007; Zhai et al., 2013) (Fig. 13b), but not as the onset of a rift basin (e.g., Fu et al., 2010). The tectonic subsidence that accommodated the Nadigangri volcanic rocks (Fig. 8) is interpreted as subsidence due to local lithospheric stretching based on geochemical analyses of Fu et al. (2010). The North Qiangtang had been an area of erosion since the paleo-weathering crusts formed and it exhibits unconformities lasting about 50 m.y. on the tectonic subsidence curves (Fig. 8).

Although the large error bars also makes the data less reliable, the accelerating subsidence curve of Biluo Co in the South Qiangtang shows a unique characteristic of collisional pro-foreland basins (Kneller, 1991; Miall, 1995; DeCelles & Giles, 1996; Naylor & Sinclair, 2008) (Fig. 8). One possible explanation is that it evolved on the south of the Central Uplift mountain belt as the South Qiangtang collided with the North Qiangtang. (Li et al., 1995; Liu et al., 2011; Zhao et al., 2014, 2015; Yan et al., 2016; Liang et al., 2017) (Fig. 13a). The convex-upward tract of the subsidence curve for Biluo Co demonstrates that local forces, the northward subduction of the South Qiangtang lithosphere and the growth of Central Uplift, probably played an important

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
50	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

507	role in controlling the development of the basin, just as other collisional foreland
508	basins worldwide (e.g., North Alpine Foreland Basin of Homewood et al. (1986) and
509	Ebro basin of Vergés et al. (1998)). New geochronology shows that the
510	metamorphism in Central Uplift occurred at about 243-233 Ma (Pullen et al., 2008;
511	Dan et al., 2018), marking the collision between the South and North Qiangtang.
512	Subsequent exhumation occurred at 220-202 Ma (Kapp et al., 2003; Dan et al., 2018),
513	which was synchronous with the commencement of subsidence at Biluo Co.
514	Therefore, Late Triassic subsidence in the western part of South Qiangtang is
515	interpreted to be caused by orogenic loading from the Central Uplift and static loads
516	from the slab pull (Figs. 13a, b). However, in the east, the Dazhuoma site in the South
517	Qiangtang shows a concave pattern of subsidence, which is similar to that of the
518	North Qiangtang (Fig. 8). This suggests that there is a significant difference in basin
519	evolution between east and west portions of the South Qiangtang during this time
520	interval. In the eastern part (Dazhuoma), the Central Uplift was not created (Figs. 13a,
521	b) and we interpret the subsidence arose from dynamic subsidence. As the shallowly
522	subducting Paleo-Tethyan oceanic slab approached the South Qiangtang in the eastern
523	part (Lu et al., 2017), it potentially caused viscous mantle flow that drove the
524	subsidence (Fig. 13a). We ascribe differences between the eastern and western
525	portions of South Qiangtang to the irregular shape of continental margin (Zhang &
526	Tang, 2009) and varying subducting angles of Paleo-Tethyan oceanic slab (Lu et al.,
527	2017) (Fig. 13a).

528 Middle Jurassic-Early Cretaceous

Page 25 of 78

Basin Research

The Middle Jurassic to Early Cretaceous is the main period of subsidence in the Mesozoic Qiangtang Basin. The Qiangtang terrane had been entirely accreted onto the southern margin of Eurasia since Early Jurassic (Dewey et al., 1988; Pearce & Houjun, 1988). The Central Uplift has been an area of active exhumation based on provenance analysis and tectonic analyses (Li et al., 2001; Kapp et al., 2003) (Fig. 12). In addition, the denudation of the ultrahigh-pressure (UHP) metamorphic rocks in the Central Uplift is associated with lithospheric detachment and associated orogenic collapse (Zhang & Tang, 2009) (Fig. 13c). The thrust belt loading from both the south and north sides of the North Qiangtang potentially resulted in renewed subsidence. In addition, the northward subduction of Bangong-Nujiang oceanic lithosphere during 180-150 Ma (Liu et al., 2017) may have resulted in viscous corner flow beneath the North Qiangtang (Fig. 13c). The subsidence started at around 172 Ma, and the rapid subsidence of Duxue Mt. and Shuangquan Lake (Fig. 9) may have resulted from additional sediments supply from the Central Uplift (Figs. 1 and 12).

The subsidence patterns resemble exponentially decaying thermal subsidence curves formed in extensional settings (Steckler & Watts, 1978; Christie-Blick & Biddle, 1985) and retro-foreland basins (Naylor & Sinclair, 2008; Sinclair & Naylor, 2012), or are associated with hinterland basins that show fast subsidence in very short time interval (Horton, 2018). Such a high rate of subsidence generated through extension would require β values to be over 2 (assuming homogeneous lithospheric extension of a 33 km thick crust), which would have generated oceanic lithosphere (Kneller, 1991), but no evidence is recorded. Moreover, no evidence of extensional

2	
2	
5	
4	
5	
ç	
0	
7	
0	
0	
9	
10	
10	
11	
12	
12	
13	
14	
15	
13	
16	
17	
10	
18	
19	
20	
20	
21	
22	
~~	
23	
24	
25	
25	
26	
27	
21	
28	
29	
20	
30	
31	
21	
32	
33	
31	
54	
35	
36	
20	
37	
38	
20	
27	
40	
⊿1	
-	
42	
43	
11	
44	
45	
46	
40	
47	
48	
10	
49	
50	
51	
51	
52	
53	
54	
55	
56	
30	
57	
58	
50	
59	
60	
~~	

1

551	structures was found during Middle Jurassic to Early Cretaceous, such as
552	syndepositional normal faults. Currently, all the discovered normal faults in central
553	Tibet formed in Cenozoic times (e.g., Blisniuk et al., 2001; Wang et al., 2010; Ou et
554	al., 2017). In addition, no volcanic rocks, particularly basaltic rocks, are found in the
555	Middle to Late Jurassic deposits. Therefore, we exclude lithospheric extension as the
556	mechanism. Based on the subsidence histories combined with previous work on
557	sediment provenance and timing of deformation, we prefer to interpret this stage of
558	the North Qiangtang as a hinterland basin controlled by renewed crustal thickening,
559	and loading from both the south and northern margins during Middle Jurassic-Early
560	Cretaceous. This interpretation is supported by several lines of evidence. First, Li et al.
561	(2001) reconstructed the paleogeomorphology and palaeogeography, based on
562	paleo-current directions, composition of lithic fragments in sandstones and
563	provenance analysis (Fig. 12). The molasses preserved in the Quemocuo Fm. (Fig. 4)
564	represented the initiation of subsidence in the North Qiangtang. The composition of
565	the overlying sandstones is consistent with deposition in a collisional setting in the
566	light of multidimensional tectonic discrimination based on major element analysis
567	(Wang et al., 2017b). Sandstone modal analyses indicate the influx of sediments from
568	a recycled orogen source (Li et al., 2001). Combined with paleo-current directions,
569	mainly southward and southwestward, the main source of the sediments must be the
570	JRSZ to the north, and some detritus derived from the exhumation of tectonic
571	culmination (the Central Uplift) in the basin (Fig. 12). In addition, the coarse
572	sediments are distributed mainly along the edges of the North Qiangtang, suggesting

Page 27 of 78

Basin Research

the tectonic loads on both sides were the main driving force for subsidence (Li et al., 2001). Second, the thickness of marine sediments is 6-8 km in the north and 4-5 km in the south (Fig. 8). It means that there were other driving forces on the south to accommodate such thick sediments. This could occur in hinterland basins where there is thrust loading from both sides of the basin (Horton, 2012). Additional subsidence in the north may have been generated by dynamic loading, because it is where the corner flow drag is concentrated (Mitrovica et al., 1989) (Fig. 13c). In addition, the flat subduction of Meso-Tethyan Ocean slab potentially transmitted strain in to the hinterland driving renewed crustal thickening, loading and marine transgression. Third, the average accumulation rate of sediments during this time was about 0.2 km/Ma, with some locations (Shuangquan Lake and Duxue Mt.) over 0.45 km/Ma. This accumulation rate is consistent with that obtained for the Buqu Formation at Well QZ11 (0.15-0.395 km/Ma with optimal value of 0.268 km/Ma, Cheng et al., 2017). The high accumulation rates in a short time interval resemble those for Andean hinterland basins (Horton, 2018 and references therein). In summary, the subsidence of the North Qiangtang was controlled by the combined mechanisms of flexural subsidence from both the Jinsha River orogen and the Central Uplift and long-wavelength dynamic subsidence caused by northward shallow subduction of Meso-Tethyan Ocean lithosphere (Fig. 13c).

In the South Qiangtang, the subsidence curves show similar characteristics with
the North Qiangtang during Middle Jurassic to Early Cretaceous times. The
subsidence rates are also equal to those in the south of the North Qiangtang. We

interpret the subsidence in the South Qiangtang came from the subduction of
Meso-Tethyan Ocean lithosphere and tectonic loading from the Central Uplift (Fig.
13c).

The deceleration in the last phase of subsidence might have resulted from the closure of the Bangong-Nujing Ocean or the onset of Lhasa-Qiangtang collision during Late Jurassic to Early Cretaceous (Yan *et al.*, 2016; Zhu *et al.*, 2016; Li *et al.*, 2017b). At about 148 Ma, subsidence terminated across the Qiangtang Basin. The beginning of exhumation of the Qiangtang Basin (Fig. 11) and the termination of subsidence happened simultaneously, probably indicating the onset of crustal thickening in the Qiangtang terrane.

605 Cretaceous

All subsidence curves in the North Qiangtang show the same trend with the Late Jurassic patterns that no subsidence is displayed (Fig. 8). No Late Cretaceous sediments are recorded. It was highly possible that the North Qiangtang started to show first stage of crustal thickening according to the thermal modelling results (PQ1503; Fig. 11).

The South Qiangtang records Late Cretaceous subsidence (Fig. 8). We interpret the Late Cretaceous Abushan Fm. as a response to the collision between Lhasa and Qiangtang terranes to the south (Yin & Harrison, 2000; Kapp *et al.*, 2007; Zhu *et al.*, 2013, 2016) (Fig. 13e), or to the collision of the Amdo terrane (Guynn *et al.*, 2006) (Fig. 13d). The oldest apatite fission track age (120.9 ± 5.5 Ma) may record the collision between the two terranes.

617	Implications fo	or Pre-Cenozoic	Evolution of the	Tibetan Plateau
-----	-----------------	-----------------	-------------------------	-----------------

The timing of the topographic evolution of the Tibetan Plateau is still uncertain, though the general consensus is that central Tibet and surrounding areas had attained high elevation by 45 Ma or earlier (Murphy et al., 1997; Kapp et al., 2005, 2007; Rowley & Currie, 2006; Wang et al., 2008a, 2014; Rohrmann et al., 2012; Chen et al., 2013; Xu et al., 2013; Ding et al., 2014; Tang et al., 2017). Is the India-Asia collision strong enough to produce such high elevation and thickened crust in a very short period of time? The hinterland of the Tibetan plateau shows both a cessation of subsidence and an acceleration of exhumation recorded in zircon (U-Th)/He ages in the South Qiangtang (Zhao et al., 2017) and apatite fission track modelling (Fig. 11), consistent with topographic growth at *ca*. 148 Ma. Mesozoic sediments were exhumed from >6 km depth at about 140-130 Ma, with exhumation rate of 0.1-0.3 mm/a (Fig. 11). This cooling event is also in agreement with accelerated cooling reflected by Late Jurassic-Cretaceous apatite fission ages from sedimentary rocks across the Qiangtang terrane (Wang & Wei, 2013; Ren et al., 2015). This incident may mark the first stage of exhumation driven by crustal thickening in central Tibet (Zhao et al., 2017). We ascribe the exhumation in central Tibet to the onset of continental collision between Lhasa and Qiangtang terranes, probably involving underthrusting of the Lhasa terrane beneath the Qiangtang terrane. Concurrent crustal thickening with collision suggests that the impact of the collision between Lhasa and Qiangtang terranes was potentially more profound than previously thought. The Jinsha River suture zone also played a role that can not be ignored, because both the Songpan-Ganze and Lhasa terranes may

have been involved in underthrusting beneath the Qiangtang terrane. Alternatively, the Late Jurassic-Early Cretaceous exhumation (Fig. 11) or crustal thickening could be related to collision of the Amdo terrane caused by northward continental underthrusting of the Lhasa terrane (Guvnn et al., 2006) (Fig. 13d). The Amdo basement was interpreted to be exposed only at the central part of BNSZ, but buried in all other places (Guynn et al., 2006). Recently, Li et al. (2017c) reported the existence of a destroyed Amdo-Tongka block through study along the eastern segment of BNSZ. Therefore, there may be an unrecognized block south of the Qiangtang terrane. Both scenarios suggest that the underthrusting of the Lhasa terrane contributed to the rapid exhumation or crustal thickening in central Tibet at about 150-130 Ma.

As shown in Figs. 8 and 9, the tectonic subsidence curves show no subsidence since the beginning of the Cretaceous, with cessation of marine deposition. At this time, the North Qiangtang started to record substantial crustal thickening and increased elevations. Cretaceous apatite fission track ages (120.9-84.1 Ma) reflect exhumation caused by a strong compressive episode (Rohrmann et al., 2012; Ren et al., 2015). Large magnitudes of convergence after ~ 100 Ma were documented between Lhasa and Qiangtang using paleomagnetic data (Chen et al., 2017b), which is coeval with protracted cooling histories (Fig. 11). This event slightly lagged behind the closure of the BNSZ south of Qiangtang, which indicates that the crustal thickening of central Tibet was a result of continued convergence between Lhasa and Qiangtang. The cooling ages of Paleogene-Eocene (65.4-40.1 Ma) may reflect the

Basin Research

2	
3	
Δ	
5	
ر د	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
<u>10</u>	
77	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	

60

661 early impact of the India-Asia collision on the Qiangtang, which probably involved
662 underthrusting of greater Indian lithosphere as far north as the Qiangtang terrane
663 (Rohrmann *et al.*, 2012).

664 CONCLUSIONS

We have conducted backstripping of basin stratigraphy and thermochronological analyses of Mesozoic sandstones to study the subsidence and exhumation of the Qiangtang Basin. The results not only reveal the evolution of the Mesozoic Qiangtang Basin, but also yield insight into the early growth of the Tibetan Plateau.

669 Based on the subsidence histories, combined with previous work on sediment provenance, timing of deformation, and thermochronologic data, we suggest that the 670 evolution of the North Qiangtang sub-basin can be subdivided into two main stages. 671 672 The first stage is Late Triassic to Early Jurassic and the second is Middle Jurassic to Early Cretaceous. In the early Late Triassic, the marine deposits were generated from 673 flexural subsidence by orogenic loading in the JRSZ. Whereas the Nadigangri 674 volcanic rocks were accommodated by thermal subsidence caused by local lithosphere 675 stretching during Late Triassic. During the second stage, the subsidence was 676 controlled by flexural subsidence from active shortening in the Central Uplift and the 677 southern edge of the Jinsha orogeny, combined with long-wavelength dynamic 678 subsidence caused by shallowly northward subduction of Meso-Tethyan Ocean 679 lithosphere. Both stages are characterized by concave-upward subsidence curves. 680 Initiation of exhumation reflected by thermal history modelling in the Early 681 Cretaceous, may represent crustal thickening in central Tibet. 682

The subsidence of the South Qiangtang sub-basin can also be subdivided into two stages. The first stage (Late Triassic-Early Jurassic) in the western part is represented by an accelerating pattern of subsidence, which is typical of a collisional pro-foreland basin. This was caused by orogenic loading from the Central Uplift and static loads from the slab pull. Whereas in the eastern part, the subsidence was interpreted to come from dynamic loading caused by viscous mantle flow. The second stage (Middle Jurassic-Early Cretaceous) was controlled by the subduction of Meso-Tethyan Ocean lithosphere and tectonic loading from the Central Uplift.

The cessation of tectonic subsidence curves and initiation of cooling indicated in the thermal modelling histories may represent the first stage of rapid exhumation or crustal thickening in central Tibet at about 150-130 Ma. The central part of the plateau had probably begun to accumulate substantial crustal thickening and elevation, probably driven by underthrusting of both the Lhasa and Songpan-Ganze terranes beneath the Qiangtang terrane, or the collision of the Amdo terrane. The growth of the Tibetan Plateau may have begun before the India-Asia collision.

699 ACKNOWLEDGEMENTS

We acknowledge Dr. Nadine McQuarrie, Dr. Alexander Robinson, Dr. Paul Kapp, and two other anonymous reviewers for their constructive reviews and feedbacks. We would like to thank Dr. Pengfei Ma for the instructions in modelling. We also thank our Tibetan compatriots, Danzhen and Bazhu, who did a lot of favor in field work. We thank Dr. Zhiming Duan who provided information about boreholes in Page 33 of 78

1 2	
3 4 5	705
6 7	706
8 9 10	707
11 12 13	708
14 15	709
16 17 18	710
19 20	711
21 22 23	712
24 25 26	713
27 28	714
29 30 31	715
32 33	716
35 36	717
37 38 39	718
40 41	719
42 43 44	720
45 46 47	721
47 48 49	722
50 51 52	723
53 54	724
55 56 57	725
58 59 60	726
00	

Qiangtang. This research was financially supported by Ministry of Science and
Technology of the People's Republic of China (2017YFC0601400-05), the China
Geological Survey Project (DD20160027) and National Natural Science Foundation
of China (41572188).

- 710 **REFERENCES**
- ABADI, A.M., WEES, J.-D.V., DIJK, P.M.V. & CLOETINGH, S.A.P.L. (2005)
 Tectonics and Subsidence Evolution of the Sirt Basin, Libya. AAPG Bulletin, 92,
 993-1027.
- ABDULLAYEV, N.A., KADIROV, F. & GULIYEV, I.S. (2017) Subsidence History
 and Basin-Fill Evolution in the South Caspian Basin from Geophysical Mapping,
 Flexural Backstripping, Forward Lithospheric Modelling and Gravity Modelling.
 - 717 Geological Society, London, Special Publications, 427, 175-196.
 - ALLEN, P.A., ALLEN, J.R. (2005) Basin Analysis, Principles and Applications,
 second edn. Blackwell Publishing, Oxford, UK.
- ARGAND, E. (1922). La Tectonique De L'asie. Congrès géologique international(XIIIe session), Belgique.

ARMSTRONG, P.A. (2005) Thermochronometers in Sedimentary Basins. Low-Temperature Thermochronology: Techniques, Interpretations, and Applications, 58, 499-525.

BAI, Y.S., LI, L., NIU, Z.J. & CUI, J.L. (2005) Characteristics and Tectonic Setting
of Erlongba Formation Volcanic Rocks in Geladandong Area of Central

3 4 5	727	Qiangtang. Acta Geosicientia Sinica, 26, 113-120 (in Chinese with English
6 7	728	abstract).
8 9 10	729	BERNET, M., ZATTIN, M., GARVER, J.I., BRANDON, M.T. & VANCE, J.A.
11 12 13	730	(2001) Steady-State Exhumation of the European Alps. Geology, 29, 35-38.
14 15	731	BERTRAM, G.T. & MILTON, N.J. (1988) Reconstructing Basin Evolution from
16 17 18	732	Sedimentary Thickness; the Importance of Palaeobathymetric Control, with
19 20 21	733	Reference to the North Sea. Basin Research, 1, 247-257.
22 23	734	BLISNIUK, P.M., HACKER, B.R., GLODNY, J., RATSCHBACHER, L., BI, S.,
24 25 26	735	WU, Z., MCWILLIAMS, M.O. & CALVERT, A. (2001) Normal Faulting in
27 28	736	Central Tibet since at Least 13.5 Myr Ago. Nature, 412, 628.
29 30 31	737	BOND, G.C. & KOMINZ, M.A. (1984) Construction of Tectonic Subsidence Curves
32 33 34	738	for the Early Paleozoic Miogeocline, Southern Canadian Rocky Mountains:
35 36	739	Implications for Subsidence Mechanisms, Age of Breakup, and Crustal Thinning.
37 38 39	740	Geol. Soc. Am. Bull., 95, 155-173.
40 41	741	BRUNET, M.F., KOROTAEV, M.V., ERSHOV, A.V. & NIKISHIN, A.M. (2003)
42 43 44	742	The South Caspian Basin: A Review of Its Evolution from Subsidence
45 46 47	743	Modelling. Sedimentary Geology, 156, 119-148.
48 49	744	BUSBY, C.J. & INGERSOLL, R.V. (1995) Tectonics of Sedimentary Basins.
50 51 52	745	Blackwell Science, Cambridge.
53 54	746	CARRAPA, B. & GARCIA-GASTELLANOS, D. (2005) Western Alpine
55 56 57	747	Back-Thrusting as Subsidence Mechanism in the Western Po Basin.
58 59 60	748	Tectonophysics, 406, 197-212.

FOR REVIEW PURPOSES ONLY
3 4 5	749	CEDERBOM, C.E., SINCLAIR, H.D., SCHLUNEGGER, F. & RAHN, M.K. (2004)
6 7	750	Climate-Induced Rebound and Exhumation of the European Alps. Geology, 32,
8 9 10	751	709-712.
11 12 13	752	CHANG, E.Z. (2000) Geology and Tectonics of the Songpan-Ganzi Fold Belt,
14 15	753	Southwestern China. Int Geol Rev, 42, 813-831.
16 17 18	754	CHEN, J.L., WU, J.B., XU, J.F., DONG, Y.H., WANG, B.D. & KANG, Z.Q. (2013)
19 20 21	755	Geochemistry of Eocene High-Mg# Adakitic Rocks in the Northern Qiangtang
22 23	756	Terrane, Central Tibet: Implications for Early Uplift of the Plateau. Geol. Soc.
24 25 26	757	Am. Bull., 125, 1800-1819.
27 28	758	CHEN, L., JENKYNS, H.C., XU, G., MATTIOLI, E., DA, X., YI, H., XIA, M., ZHU,
29 30 31	759	Z. & HUANG, Z. (2016) Preliminary Nannofossil and Geochemical Data from
32 33 24	760	Jurassic Black Shales from the Qiangtang Basin, Northern Tibet. J. Asian Earth
35 36	761	Sci., 115, 257-267.
37 38 39	762	CHEN, L., XU, G.W., DA, X.J., JI, C.J. & YI, H.S. (2014) Biomarkers of Middle to
40 41	763	Late Jurassic Marine Sediments from a Canonical Section: New Records from
42 43 44	764	the Yanshiping Area, Northern Tibet. Mar Petrol Geol, 51, 256-267.
45 46	765	CHEN, S.S., FAN, W.M., SHI, R.D., GONG, X.H. & WU, K. (2017a) Removal of
47 48 49	766	Deep Lithosphere in Ancient Continental Collisional Orogens: A Case Study
50 51 52	767	from Central Tibet, China. Geochemistry, Geophysics, Geosystems, 18,
53 54	768	1225-1243.
55 56 57	769	CHEN, W., ZHANG, S., DING, J., ZHANG, J., ZHAO, X., ZHU, L., YANG, W.,
58 59 60	770	YANG, T., LI, H. & WU, H. (2017b) Combined Paleomagnetic and

3 4 5	771	Geochronological Study on Cretaceous Strata of the Qiangtang Terrane, Central
6 7	772	Tibet. Gondwana Research, 41, 373-389.
8 9 10	773	CHENG, L., WANG, J., WAN, Y., FU, X. & ZHONG, L. (2017) Astrochronology of
11 12 13	774	the Middle Jurassic Buqu Formation (Tibet, China) and Its Implications for the
14 15	775	Bathonian Time Scale. Palaeogeography, Palaeoclimatology, Palaeoecology,
16 17 18	776	487, 51-58.
19 20	777	CHRISTIE-BLICK, N. & BIDDLE, K.T. (1985) Deformation and Basin Formation
21 22 23	778	Along Strike-Slip Faults. In: Strike-Slip Deformation, Basin Formation, and
24 25 26	779	Sedimentation (Ed. by K. T. Biddle & N. Christie-Blick), 1-34. Society of
27 28	780	Economic Paleontologists and Mineralogists, Tulsa, OK, USA.
29 30 31	781	DAI, J., WANG, C., HéBERT, R., LI, Y., ZHONG, H., GUILLAUME, R., BEZARD,
32 33	782	R. & WEI, Y. (2011) Late Devonian Oib Alkaline Gabbro in the Yarlung
34 35 36	783	Zangbo Suture Zone: Remnants of the Paleo-Tethys? Gondwana Research, 19,
37 38 30	784	232-243.
40 41	785	DAN, W., WANG, Q., WHITE, W.M., ZHANG, XZ., TANG, GJ., JIANG, ZQ.,
42 43 44	786	HAO, LL. & OU, Q. (2018) Rapid Formation of Eclogites During a Nearly
45 46	787	Closed Ocean: Revisiting the Pianshishan Eclogite in Qiangtang, Central Tibetan
47 48 49	788	Plateau. Chem. Geol., 477, 112-122.
50 51	789	DECELLES, P.G. & GILES, K.A. (1996) Foreland Basin Systems. Basin research, 8,
52 53 54	790	105-123.
55 56 57	791	DEWEY, J.F., SHACKLETON, R.M., CHENGFA, C. & YIYIN, S. (1988) The
58 59 60	792	Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the

3 4 5	793	Royal Society of London A: Mathematical, Physical and Engineering Sciences,
6 7	794	327, 379-413.
8 9 10	795	DING, L., XU, Q., YUE, Y., WANG, H., CAI, F. & LI, S. (2014) The Andean-Type
11 12 13	796	Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene
14 15	797	Linzhou Basin. Earth Planet. Sci. Lett., 392, 250-264.
16 17 18	798	DING, L., YANG, D., CAI, F.L., PULLEN, A., KAPP, P., GEHRELS, G.E., ZHANG,
19 20 21	799	L.Y., ZHANG, Q.H., LAI, Q.Z., YUE, Y.H. & SHI, R.D. (2013a) Provenance
22 23	800	Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet:
24 25 26	801	Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean.
27 28	802	<i>Tectonics</i> , 32, 34-48.
29 30 31	803	DING, W.L., WAN, H., ZHANG, Y.Q. & HAN, G.Z. (2013b) Characteristics of the
32 33 34	804	Middle Jurassic Marine Source Rocks and Prediction of Favorable Source Rock
35 36	805	Kitchens in the Qiangtang Basin of Tibet. J. Asian Earth Sci., 66, 63-72.
37 38 39	806	DONELICK, R.A., O'SULLIVAN, P.B. & KETCHAM, R.A. (2005) Apatite
40 41	807	Fission-Track Analysis. Low-Temperature Thermochronology: Techniques,
42 43 44	808	Interpretations, and Applications, 58, 49-94.
45 46 47	809	DRESSEL, I., SCHECK-WENDEROTH, M. & CACACE, M. (2017) Backward
48 49	810	Modelling of the Subsidence Evolution of the Colorado Basin, Offshore
50 51 52	811	Argentina and Its Relation to the Evolution of the Conjugate Orange Basin,
53 54	812	Offshore Sw Africa. Tectonophysics, 716, 168-181.
55 56 57	813	DUNKL, I. (2002) Trackkey: A Windows Program for Calculation and Graphical
58 59 60	814	Presentation of Fission Track Data. Comput Geosci-Uk, 28, 3-12.

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
 /Q	
40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
27	
60	

- EINSELE, G. (1992) Sedimentary Basins: Evolution, Facies, and Sediment Budget.
 Springer-Verlag, Berlin.
- FAN, J.J., LI, C., LIU, Y.M. & XU, J.X. (2015) Age and Nature of the Late Early
 Cretaceous Zhaga Formation, Northern Tibet: Constraints on When the
 Bangong-Nujiang Neo-Tethys Ocean Closed. *Int Geol Rev*, 57, 342-353.
- 820 FAN, J.J., LI, C., WU, H., ZHANG, T.Y., WANG, M., CHEN, J.W. & XU, J.X.
- (2016) Late Jurassic Adakitic Granodiorite in the Dong Co Area, Northern Tibet:
 Implications for Subduction of the Bangong–Nujiang Oceanic Lithosphere and
 Related Accretion of the Southern Qiangtang Terrane. *Tectonophysics*, 691, Part
 B, 345-361.
- 825 FANG, X., SONG, C., YAN, M., ZAN, J., LIU, C., SHA, J., ZHANG, W., ZENG, Y.,
- WU, S. & ZHANG, D. (2016) Mesozoic Litho- and Magneto-Stratigraphic
 Evidence from the Central Tibetan Plateau for Megamonsoon Evolution and
 Potential Evaporites. Gondwana Research, 37, 110-129.
- FU, X.G., WANG, J., TAN, F.W., CHEN, M. & CHEN, W.B. (2010) The Late
 Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet
 (China): Age and Tectonic Implications. *Gondwana Research*, 17, 135-144.
- FU, X.G., WANG, J., WANG, Z.J. & CHEN, W.X. (2007) Identification of
 Sedimentary Gap between the Late Triassic Nadi Kangri Formation and Its
 Underlying Strata in the Qiangtang Basin, Northern Tibet and Its Geological
 Significance. *Geological Review*, 53, 329-336 (in Chinese with English abstract).
 GALBRAITH, R. (1981) On Statistical Models for Fission Track Counts.

FOR REVIEW PURPOSES ONLY

2		
3		
4	837	Mathematical Geology, 13, 4/1-4/8.
5 6		
7	838	GALBRAITH, R.F. (2005) Statistics for Fission Track Analysis. CRC Press.
8		
9	830	GAI BRAITH R F & GREEN P F (1990) Estimating the Component Ages in a
10	033	GALDIA ITTI, K.I. & GALLIN, I.I. (1990) Estimating the Component Ages in a
11		
12	840	Finite Mixture. Nucl Tracks Rad Meas, 17, 197-206.
13		
14	841	GLEADOW, A. (1981) Fission-Track Dating Methods: What Are the Real
15		
10 17	042	Alternatives? Nuclear Treaks 5, 2, 14
17 18	842	Alternatives? Nuclear Tracks, 5, 5-14.
10		
20	843	GREEN, P. (1981) A New Look at Statistics in Fission-Track Dating. Nuclear tracks,
21		
22	Q11	5 77-86
23	044	5, 77-80.
24		
25	845	GRADSTEIN, F.M., OGG, J.G., SMITH, A.G., BLEEKER, W. & LOURENS, L.J.
26		
27	846	(2004) A New Geologic Time Scale, with Special Reference to Precambrian and
28	0.10	
29		
30	847	Neogene. Episodes, 27, 83-100.
31 22		
32	848	GUYNN, J.H., KAPP, P., PULLEN, A., HEIZLER, M., GEHRELS, G. & DING, L.
34		
35	040	(2006) Tibotan Pagamant Paaka naar Amda Payaal "Missing" Magazaia
36	049	(2000) Hottan Dasement Rocks heat Annuo Reveat Missing Mesozoie
37		
38	850	Tectonism Along the Bangong Suture, Central Tibet. <i>Geology</i> , 34, 505-508.
39		
40	851	HE, J.L., WANG, J., TAN, F.W., CHEN, M., LI, Z.X., SUN, T., WANG, P.K., DU,
41		
42		
43	852	B.W. & CHEN, W.B. (2014) A Comparative Study between Present and
44 45		
45 46	853	Palaeo-Heat Flow in the Qiangtang Basin, Northern Tibet, China. Marine and
47		
48	0E /	Patroloum Goology 57 245 258
49	654	1 cubiculii Ocology, 57, 545-556.
50		
51	855	HOLT, P.J., ALLEN, M.B. & VAN HUNEN, J. (2015) Basin Formation by Thermal
52		
53	856	Subsidence of Accretionary Orogens <i>Tectonophysics</i> 639 132-143
54	050	Subsidence of Meetenonary Orogens. Tectonophysics, 059, 152-145.
55		
56	857	HOLT, P.J., ALLEN, M.B., VAN HUNEN, J. & BJØRNSETH, H.M. (2010)
5/		
50 50	858	Lithospheric Cooling and Thickening as a Basin Forming Mechanism.
60		
~~		

Tectonophysics, 495, 184-194.

- HOMEWOOD, P., ALLEN, P.A. & WILLIAMS, G.D. (1986) Dynamics of the
 Molasse Basin of Western Switzerland. In: Foreland Basins (Ed. by P. A. Allen
 & P. Homewood), 199-217. Special Publication of the International Association
 of Sedimentologists, Blackwell Science, Oxford.
 HORTON, B.K. (2012) Cenozoic Evolution of Hinterland Basins in the Andes and
- 865 Tibet. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C. Busby
 866 & A. Azor), 427-444. John Wiley & Sons, Ltd.
 - 867 HORTON, B.K. (2018) Sedimentary Record of Andean Mountain Building.
 868 Earth-Science Reviews, 178, 279-309.
- 869 HUANG, Q.T., LIU, W.L., XIA, B., CAI, Z.R., CHEN, W.Y., LI, J.F. & YIN, Z.X.
- 870 (2017) Petrogenesis of the Majiari Ophiolite (Western Tibet, China):
 871 Implications for Intra-Oceanic Subduction in the Bangong–Nujiang Tethys. J.
 872 Asian Earth Sci., 146, 337-351.
- HURFORD, A.J. & GREEN, P.F. (1983) The Zeta-Age Calibration of Fission-Track
 Dating. Isot Geosci, 1, 285-317.
 - JORDAN, T.E. (1981) Thrust Loads and Foreland Basin Evolution, Cretaceous,
 Western United States. *AAPG bulletin*, 65, 2506-2520.
- 877 KAPP, P., DECELLES, P.G., GEHRELS, G.E., HEIZLER, M. & DING, L. (2007)
- Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the
 Nima Area of Central Tibet. *Geol. Soc. Am. Bull.*, 119, 917-933.
- 880 KAPP, P., YIN, A., HARRISON, T.M. & DING, L. (2005) Cretaceous-Tertiary

Page 41 of 78

1 2		
3 4 5	881	Shortening, Basin Development, and Volcanism in Central Tibet. Geol. Soc. Am.
6 7	882	Bull., 117, 865-878.
8 9 10	883	KAPP, P., YIN, A., MANNING, C.E., HARRISON, T.M., TAYLOR, M.H. & DING,
11 12 13	884	L. (2003) Tectonic Evolution of the Early Mesozoic Blueschist-Bearing
14 15	885	Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22.
16 17 18	886	KAPP, P., YIN, A., MANNING, C.E., MURPHY, M., HARRISON, T.M., SPURLIN,
19 20 21	887	M., LIN, D., DENG, X.G. & WU, C.M. (2000) Blueschist-Bearing Metamorphic
22 23	888	Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of
24 25 26	889	Northern Tibet. Geology, 28, 19-22.
27 28	890	KETCHAM, R.A. (2005) The Role of Crystallographic Angle in Characterizing and
29 30 31	891	Modeling Apatite Fission-Track Length Data. Radiation Measurements, 39,
32 33	892	595-601.
34 35 36	893	KETCHAM, R.A., CARTER, A., DONELICK, R.A., BARBARAND, J. &
37 38 39	894	HURFORD, A.J. (2007) Improved Modeling of Fission-Track Annealing in
40 41	895	Apatite. American Mineralogist. 92, 799-810.
42 43 44	896	KETCHAM, R.A., DONELICK, R.A. & CARLSON, W.D. (1999) Variability of
45 46	897	Apatite Fission-Track Annealing Kinetics: Iii. Extrapolation to Geological Time
47 48 49	898	Scales. Am Mineral, 84, 1235-1255.
50 51 52	899	KNELLER, B.C. (1991) A Foreland Basin on the Southern Margin of Iapetus.
53 54	900	Journal of the Geological Society, 148, 207-210.
55 56 57	901	KUHN, P.P., ECHTLER, H., LITTKE, R. & ALFARO, G. (2010) Thermal Basin
58 59 60	902	Modelling of the Arauco Forearc Basin, South Central Chile-Heat Flow and

903	Active Margin Tectonics. Tectonophysics, 495, 111-128.
904	LI, C., CHENG, L., HU, K., YANG, Z. & HONG, Y. (1995) Study on the
905	Paleo-Tethys Suture Zone of Lungmu Co-Shuanghu, Tibet. Geological
906	Publishing House, Beijing.
907	LI, G.M., LI, J.X., ZHAO, J.X., QIN, K.Z., CAO, M.J. & EVANS, N.J. (2015a)
908	Petrogenesis and Tectonic Setting of Triassic Granitoids in the Qiangtang
909	Terrane, Central Tibet: Evidence from U-Pb Ages, Petrochemistry and Sr-Nd-Hf
910	Isotopes. J. Asian Earth Sci., 105, 443-455.
911	LI, G.M., QIN, K.Z., LI, J.X., EVANS, N.J., ZHAO, J.X., CAO, M.J. & ZHANG,
912	X.N. (2017a) Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang
913	Metallogenic Belt, Central Tibet: Evidence from Petrogeochemistry, Zircon
914	U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41,
915	110-127.
916	LI, H.Q., XU, Z.Q., WEBB, A.A.G., LI, T.F., MA, S.W. & HUANG, X.M. (2017c)
917	Early Jurassic Tectonism Occurred within the Basu Metamorphic Complex,
918	Eastern Central Tibet: Implications for an Archipelago-Accretion Orogenic
919	Model. Tectonophysics, 702, 29-41.
920	LI, J. & BATTEN, D.J. (2004) Early Cretaceous Palynofloras from the Tanggula
921	Mountains of the Northern Qinghai-Xizang (Tibet) Plateau, China. Cretaceous
922	Research, 25, 531-542.
923	LI, S., DING, L., GUILMETTE, C., FU, J., XU, Q., YUE, Y. & HENRIQUE-PINTO,
924	R. (2017b) The Subduction-Accretion History of the Bangong-Nujiang Ocean:

Page 43 of 78

Constraints from Provenance and Geochronology of the Mesozoic Strata near
Gaize, Central Tibet. Tectonophysics, 702, 42-60.
LI, Y., HE, J., HAN, Z., WANG, C., MA, P., ZHOU, A., LIU, SA. & XU, M. (2016)
Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang
Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean
Subduction. Lithos, 245, 34-46.
LI, Y., HE, J., WANG, C., HAN, Z., MA, P., XU, M. & DU, K. (2015c) Cretaceous
Volcanic Rocks in South Qiangtang Terrane: Products of Northward Subduction
of the Bangong-Nujiang Ocean? J. Asian Earth Sci., 104, 69-83.
LI, Y., HE, J., WANG, C., SANTOSH, M., DAI, J., ZHANG, Y., WEI, Y. & WANG,
J. (2013) Late Cretaceous K-Rich Magmatism in Central Tibet: Evidence for
Early Elevation of the Tibetan Plateau? Lithos, 160, 1-13.
LI, Y., WANG, C., DAI, J., XU, G., HOU, Y. & LI, X. (2015b) Propagation of the
Deformation and Growth of the Tibetan-Himalayan Orogen: A Review.
Earth-Science Reviews, 143, 36-61.
LI, Y., WANG, C. & YI, H. (2002) Filled Sequence and Evolution of the Mesozoic
Qiangtang Composite Foreland Basin in the Qinghai-Tibet Plateau. Journal of
Stratigraphy, 26, 62-67 (in Chinese with English abstract).
LI, Y., WANG, C. & YI, H. (2003) The Late Triassic Collision and Sedimentary
Responses at Western Segment of Jinshajing Suture, Tibet. Acta sedimentologica
sinica, 21, 191-197 (in Chinese with English abstract).
LI, Y., WANG, C., YI, H., SHI, H., LIN, J., ZHU, L. & LI, X. (2001) Fill Models of

3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1 2

947	in the Qiangtang Composite Foreland Basin in Qinghai-Xizang Plateau, China.
948	Acta Sedimentologica Sinica, 19, 20-27 (in Chinese with English abstract).
949	LIANG, X., WANG, G., YANG, B., RAN, H., ZHENG, Y., DU, J. & LI, L. (2017)
950	Stepwise Exhumation of the Triassic Lanling High-Pressure Metamorphic Belt in
951	Central Qiangtang, Tibet: Insights from a Coupled Study of Metamorphism,
952	Deformation and Geochronology. Tectonics, 36, 652-670.
953	LIU, D., SHI, R., DING, L., HUANG, Q., ZHANG, X., YUE, Y. & ZHANG, L.
954	(2017) Zircon U-Pb Age and Hf Isotopic Compositions of Mesozoic Granitoids
955	in Southern Qiangtang, Tibet: Implications for the Subduction of the
956	Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41, 157-172.
957	LIU, Y., SANTOSH, M., ZHAO, Z.B., NIU, W.C. & WANG, G.H. (2011) Evidence
958	for Palaeo-Tethyan Oceanic Subduction within Central Qiangtang, Northern
959	Tibet. Lithos, 127, 39-53.
960	LU, L., ZHANG, K. J., YAN, L. L., JIN, X. & ZHANG, Y. X. (2017) Was Late
961	Triassic Tanggula Granitoid (Central Tibet, Western China) a Product of Melting
962	of Underthrust Songpan-Ganzi Flysch Sediments? Tectonics, 36, 902-928.
963	MAGOON, L.B. & DOW, W.G. (1994) The Petroleum System. In: The Petroleum
964	System: From Source to Trap (Ed. by L. B. Magoon & W. G. Dow), 60, 3-24.
965	American Association of Petroleum Geologists Memoir.
966	MIALL, A. (1995) Collision-Related Foreland Basins. In: Tectonics of Sedimentary
967	Basins (Ed. by C. J. Busby & R. V. Ingersoll), 393-424. Blackwell Science,

968 Oxford, UK.

FOR REVIEW PURPOSES ONLY

3 4 5	969	MILLER, K.G., KOMINZ, M.A., BROWNING, J.V., WRIGHT, J.D., MOUNTAIN,
6 7	970	G.S., KATZ, M.E., SUGARMAN, P.J., CRAMER, B.S., CHRISTIE-BLICK, N.
8 9 10	971	& PEKAR, S.F. (2005) The Phanerozoic Record of Global Sea-Level Change.
11 12 13	972	Science, 310, 1293-1298.
14 15	973	MITROVICA, J.X., BEAUMONT, C. & JARVIS, G.T. (1989) Tilting of Continental
16 17 18	974	Interiors by the Dynamical Effects of Subduction. Tectonics, 8, 1079-1094.
19 20 21	975	MURPHY, M.A., YIN, A., HARRISON, T.M., DüRR, S.B., CHEN, Z., RYERSON,
22 23	976	F.J., KIDD, W.S.F., WANG, X. & ZHOU, X. (1997) Did the Indo-Asian
24 25 26	977	Collision Alone Create the Tibetan Plateau? Geology, 25, 719-722.
27 28	978	NAESER, N.D., NAESER, C.W. & MCCULLOH, T.H. (1989) The Application of
29 30 31	979	Fission-Track Dating to the Depositional and Thermal History of Rocks in
32 33 24	980	Sedimentary Basins. In: Thermal History of Sedimentary Basins (Ed. by N.
35 36	981	Naeser & T. Mcculloh), 157-180. Springer.
37 38 39	982	NAYLOR, M. & SINCLAIR, H.D. (2008) Pro- Vs. Retro-Foreland Basins. Basin
40 41	983	Research, 20, 285-303.
42 43 44	984	NIE, S., YIN, A., ROWLEY, D.B. & JIN, Y. (1994) Exhumation of the Dabie Shan
45 46 47	985	Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch
47 48 49	986	Sequence, Central China. Geology, 22, 999-1002.
50 51 52	987	OGG, J.G., OGG, G. & GRADSTEIN, F.M. (2008) The Concise Geologic Time
53 54	988	Scale. Cambridge University Press.
55 56 57	989	O'SULLIVAN, P.B. & PARRISH, R.R. (1995) The Importance of Apatite
58 59 60	990	Composition and Single-Grain Ages When Interpreting Fission-Track Data from

2		
3		
4 5	991	Plutonic Rocks-a Case-Study from the Coast Ranges, British-Columbia. Earth
6		
7	992	Planet. Sci. Lett., 132, 213-224.
8		
9	993	OU O WANG O WYMAN DA ZHANG HX YANG IH ZENG IP
10	555	
11		
12	994	HAO, L.L., CHEN, Y.W., LIANG, H. & QI, Y. (2017) Eocene Adakitic
13		
14 15	995	Porphyries in the Central - Northern Qiangtang Block, Central Tibet: Partial
16		
17	996	Melting of Thickened Lower Crust and Implications for Initial Surface Unlifting
18	550	mening of Thekened Dower Crust and Impleadous for Initial Surface Opnining
19		
20	997	of the Plateau. Journal of Geophysical Research: Solid Earth, 122, 1025-1053.
21		
22	998	PEARCE, J.A. & HOUJUN, M. (1988) Volcanic Rocks of the 1985 Tibet Geotraverse:
23		
24 25	۵۵۵	L has a to Golmud Philosophical Transactions of the Royal Society of London A:
25 26		Endsa to Gonnad. I mosophical Transactions of the Royal Society of Eondon 71.
27		
28	1000	Mathematical, Physical and Engineering Sciences, 327, 169-201.
29		
30	1001	PERSANO, C., STUART, F.M., BISHOP, P. & DEMPSTER, T.J. (2005)
31		
32	1002	Decinhering Continental Breakup in Eastern Australia Using Low-Temperature
33	1002	Decipitering Continental Dreakup in Eastern Australia Osing Low Temperature
34 35		
36	1003	Thermochronometers. Journal of Geophysical Research: Solid Earth, 110.
37		
38	1004	PULLEN, A. & KAPP, P. (2014) Mesozoic Tectonic History and Lithospheric
39		
40	1005	Structure of the Ojangtang Terrane. Insights from the Ojangtang Metamorphic
41	1000	Surveyare of the Quanguang formate. Insights from the Quanguang formationprise
42	1000	
43 44	1006	Belt, Central Tibet. Geological Society of America Special Papers, 50%.
44 45		
46	1007	PULLEN, A., KAPP, P., GEHRELS, G.E., VERVOORT, J.D. & DING, L. (2008)
47		
48	1008	Triassic Continental Subduction in Central Tibet and Mediterranean-Style
49	1000	
50	4000	Classes of the Dalas Tether Ocean Cashers 2(251 254
51	1009	Closure of the Paleo-Tethys Ocean. Geology, 30, 351-354.
52		
55 57	1010	REINERS, P.W. & BRANDON, M.T. (2006) Using Thermochronology to
55		
56	1011	Understand Orogenic Erosion Annu Rev Earth Planet Sci 34 419-466
57		
58	1012	DEN 71 CHI ID IIII CV II TI CHEN C DOU C TIAN T - LUO
59	1012	KEN, Z.L., CUI, J.P., LIU, C.Y., LI, I.J., CHEN, G., DUU, S., HAN, I. & LUU,
60		

1				
2 3				
4 5	1013	Y.T. (2015) Apatite Fission Track Evidence of Uplift Cooling in the Qiangtang		
6 7	1014	Basin and Constraints on the Tibetan Plateau Uplift. Acta Geol Sin-Engl, 89,		
8 9 10	1015	467-484.		
11 12	1016	ROGER, F., JOLIVET, M., CATTIN, R. & MALAVIEILLE, J. (2011)		
13 14 15	1017	Mesozoic-Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan		
16 17	1018	Plateau (Songpan-Garzê, Longmen Shan Area): Insights from		
19 20	1019	Thermochronological Data and Simple Thermal Modelling. Geological Society,		
21 22 23	1020	London, Special Publications, 353, 9-25.		
24 25	1021	ROHRMANN, A., KAPP, P., CARRAPA, B., REINERS, P.W., GUYNN, J., DING,		
26 27 28	1022	L. & HEIZLER, M. (2012) Thermochronologic Evidence for Plateau Formation		
29 30	1023	in Central Tibet by 45 Ma. Geology, 40, 187-190.		
31 32	1024	ROWLEY, D.B. & CURRIE, B.S. (2006) Palaeo-Altimetry of the Late Eocene to		
33 34	102 1	no (1221, 2.2. & Contain, 2.5. (2000) Funded Finimenty of the Late Locate to		
35 36	1025	Miocene Lunpola Basin, Central Tibet. Nature, 439, 677-681.		
37 38 39	1026	ROYDEN, L. & KEEN, C.E. (1980) Rifting Process and Thermal Evolution of the		
40 41	1027	Continental Margin of Eastern Canada Determined from Subsidence Curves.		
42 43 44	1028	Earth Planet. Sci. Lett., 51, 343-361.		
45 46	1029	SACHSENHOFER, R.F., LANKREIJER, A., CLOETINGH, S. & EBNER, F. (1997)		
47 48 49	1030	Subsidence Analysis and Quantitative Basin Modelling in the Styrian Basin		
50 51	1031	(Pannonian Basin System, Austria). Tectonophysics, 272, 175-196.		
52 53 54	1032	SCIUNNACH, D. & GARZANTI, E. (2012) Subsidence History of the Tethys		
55 56	1033	Himalaya. Earth-Science Reviews, 111, 179-198.		
57 58				
59 60	1034	SCLATER, J.G. & CHRISTIE, P.A.F. (1980) Continental Stretching: An Explanation		

2		
3		
4	1035	of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal
6		
7	1036	of Geophysical Research: Solid Earth, 85, 3711-3739.
8		
9	1037	SILVIA O S RAMON S JOAN G ROBERT O RAMON M JOSÉ A
10	2007	
11	4020	ISADEL S.D. & LUIS M (2017) Subsidence and Thermal History of an
12	1038	ISABEL, S.K. & LUIS, M. (2017) Subsidence and Thermal History of an
15 14		
15	1039	Inverted Late Jurassic-Early Cretaceous Extensional Basin (Cameros,
16		
17	1040	North-Central Spain) Affected by Very Low- to Low-Grade Metamorphism.
18		
19	1041	Desin Descerch 20, 156, 174
20	1041	Dasiii Researcii, 29, 130-174.
21		
22	1042	SINCLAIR, H.D. & NAYLOR, M. (2012) Foreland Basin Subsidence Driven by
23		
25	1043	Topographic Growth Versus Plate Subduction. Geol. Soc. Am. Bull., 124,
26		
27	1044	368-370
28	1044	500-577.
29		
30	1045	SOBEL, E.R. & SEWARD, D. (2010) Influence of Etching Conditions on Apatite
31 32		
33	1046	Fission-Track Etch Pit Diameter. Chem. Geol., 271, 59-69.
34		
35	1047	SONG C ZENG Y YAN M FANG X FENG Y PAN J LIU X MENG O
36		
37	1040	HILC & 740NG S (2017) Sadimentary Conditions of Evaporitas in the Late
38	1048	110, C. & ZHONO, S. (2017) Sedimentary Conditions of Evaporites in the Late
39 40		
41	1049	Jurassic Xiali Formation, Qiangtang Basin: Evidence from Geochemistry
42		
43	1050	Records. Acta Geologica Sinica - English Edition, 91, 156-174.
44		
45	1051	SONG C Y (2012) Evolution of Mesozoic Sedimentary Basin in Olangtang and Its
46	1051	Sorve, C.1. (2012) Evolution of Mesozole Sedimentary Dusin in Quanguing and its
47 78		
49	1052	Significance in Petroleum Geology, Chinese Academy of Geological Sciences,
50		
51	1053	Beijing (in Chinese with English abstract).
52		
53	1054	SONG, P., DING, L., LI, Z., LIPPERT, P.C. & YUE, Y. (2017) An Early Bird from
54		
22 56	1055	Condwana: Palaomagnetism of Lower Parmian Lowes from Northarn Oignatons
57	1022	Sondwana. Falcomagneusin of Lower Fermian Lavas nom Northern Qlanglang
58		
59	1056	(Tibet) and the Geography of the Paleo-Tethys. Earth and Planetary Science
60		

Basin Research

2	
۲ ۲	
4	
5	
6	
7	
, 8	
a	
10	
11	
12	
12	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
20	
27	
28	
29	
30 21	
31	
32	
33 24	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1057 Letters, 475, 119-133.

- STAPEL, G., CLOETINGH, S. & PRONK, B. (1996) Quantitative Subsidence
 Analysis of the Mesozoic Evolution of the Lusitanian Basin (Western Iberian
 Margin). *Tectonophysics*, 266, 493-507.
- 1061 STECKLER, M.S. & WATTS, A.B. (1978) Subsidence of the Atlantic-Type
 1062 Continental Margin Off New York. *Earth Planet. Sci. Lett.*, 41, 1-13.
- 1063 TANG, M., LIU-ZENG, J., HOKE, G.D., XU, Q., WANG, W., LI, Z., ZHANG, J. &
- WANG, W. (2017) Paleoelevation Reconstruction of the Paleocene-Eocene
 Gonjo Basin, Se-Central Tibet. *Tectonophysics*, 712–713, 170-181.
- 1066 TIAN, Y., KOHN, B.P., HU, S. & GLEADOW, A.J.W. (2014) Postorogenic Rigid
 1067 Behavior of the Eastern Songpan-Ganze Terrane: Insights from
 1068 Low-Temperature Thermochronology and Implications for Intracontinental
 1069 Deformation in Central Asia. *Geochemistry, Geophysics, Geosystems*, 15,
- a 1070 453-474.
 - 1071 TOZER, B., WATTS, A.B. & DALY, M.C. (2017) Crustal Structure, Gravity
 1072 Anomalies, and Subsidence History of the Parnaíba Cratonic Basin, Northeast
 1073 Brazil. Journal of Geophysical Research: Solid Earth, 122, 5591-5621.
- U.S. GEOLOGICAL SURVEY (2006) FGDC Digital Cartographic Standard for
 Geologic Map Symbolization (Postscript Implementation). U.S. Geological
 Survey Techniques and Methods 11-A2. http://pubs.usgs.gov/tm/2006/11A02/
- 5 1077 VERGÉS, J., MARZO, M., SANTAEULàRIA, T., SERRA-KIEL, J., BURBANK,
- 1078 D.W., MUñOZ, J.A. & GIMéNEZ-MONTSANT, J. (1998) Quantified Vertical

3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
20	
20	
22	
23	
24	
25	
26	
27	
20	
30	
31	
32	
33	
34 25	
36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
5/	
50 50	
60	

1079	Motions and Tectonic Evolution of the Se Pyrenean Foreland Basin. In:
1080	Cenozoic Foreland Basins of Western Europe (Ed. by A. Mascle, C.
1081	Puigdefàbregas, H. P. Luterbacher & M. Fernàndez), 134, 107-134. Special
1082	Publications, Geological Society of London.
1083	VERMEESCH, P. (2012) On the Visualisation of Detrital Age Distributions. Chem.

1084 Geol., 312-313, 190-194.

1085 WANG, C., DAI, J., ZHAO, X., LI, Y., GRAHAM, S.A., HE, D., RAN, B. & MENG,

J. (2014) Outward-Growth of the Tibetan Plateau During the Cenozoic: A
Review. *Tectonophysics*, 621, 1-43.

1088 WANG, C., YIN, H., LI, Y., DENG, B., LIU, D., WANG, G., SHI, H., LI, Y., MA, R.

& LIN, J. (2001) The Geological Evolution and Prospective Oil and Gas
Assessment of the Qiangtang Basin in Northern Tibetan Plateau. Geological
Publishing House, Beijing.

- 1092 WANG, C.S., ZHAO, X.X., LIU, Z.F., LIPPERT, P.C., GRAHAM, S.A., COE, R.S.,
- YI, H.S., ZHU, L.D., LIU, S. & LI, Y.L. (2008b) Constraints on the Early Uplift
 History of the Tibetan Plateau. *Proc. Natl. Acad. Sci. U. S. A.*, 105, 4987-4992.

WANG, J., FU, X., CHEN, W. & WANG, Z. (2007) The Late Triassic
Paleo-Weathering Crust in the Qiangtang Basin, Northern Tibet: Geology,
Geochemistry and Significance. *Acta Sedimentologica Sinica*, 25, 487 (in
Chinese with English abstract).

1099 WANG, J., FU, X.G., CHEN, W.X., WANG, Z.J., TAN, F.W., CHEN, M. & ZHUO,

1100 J.W. (2008a) Chronology and Geochemistry of the Volcanic Rocks in Woruo

2		
3	1101	Mountain Design Northam Organizana Demossions Implications to the Late
4 5	1101	Mountain Region, Northern Qlangtang Depression. Implications to the Late
6		
7	1102	Irlassic Volcanic-Sedimentary Events. Sci. China Ser. D-Earth Sci., 51,
8		
9	1103	194-205.
10		
12	1104	WANG, J., TAN, F., LI, Y., LI, Y., CHEN, M., WANG, C., GUO, Z., WANG, X.,
13	-	
14	1105	DU B & 7HU 7 (2004b) The Potential of the Oil and Gas Resources in Major
15	1105	DO, D. & ZITO, Z. (20040) The Fotential of the Off and Oas Resources in Major
16		
17	1106	Sedimentary Basins on the Qinghai-Xizang Plateau. Geological Publishing
18		
20	1107	House, Beijing.
21		
22	1108	WANG I TAN F WANG X DU B & CHEN M (2004a) The Sedimentary and
23	1100	White, J., 1111, T., White, A., De, D. & Chilli, W. (2004a) The Sedimentary and
24		
25	1109	Tectonic Characteristics of Qiangtang Basin in the Early Jurassic in Northern
26		
27	1110	Xizang (Tibet). Acta Sedimentologica Sinica, 22, 198-205 (in Chinese with
20 29		
30	1111	English abstract)
31		Englion abbitact).
32	1112	WANG I D. ZHANG VO. CALLI & HAN C.Z. (2012) Characteristics of the
33	1112	WANG, L.B., ZHANG, Y.Q., CAI, J.J. & HAN, G.Z. (2013) Characteristics of the
34		
35	1113	Upper Jurassic Marine Source Rocks and Prediction of Favorable Source Rock
30		
38	1114	Kitchens in the Qiangtang Basin, Tibet. J Earth Sci-China, 24, 815-829.
39		
40	1115	WANG L.C. & WEL Y.S. (2013) Anatite Fission Track Thermochronology Evidence
41	1115	White, E.e. & WEI, T.S. (2013) Aparte Fission Hack Thermoentonology Evidence
42		
43 44	1116	for the Mid-Cretaceous Tectonic Event in the Qiangtang Basin, Tibet. Acta
44 45		
46	1117	Petrologica Sinica, 29, 1039-1047 (in Chinese with English abstract).
47		
48	1118	WANG, O., WYMAN, D.A., LI, Z.X., SUN, W., CHUNG, S.L., VASCONCELOS,
49		
50	1110	PM ZHANG O DONG H VI V & PEARSON N (2010) Eccene
51	1119	$\mathbf{1.M., \ } \mathbf{LHANO, \ } \mathbf{Q., \ } \mathbf{DONO, \ } \mathbf{H., \ } \mathbf{10, \ } \mathbf{1. \ } \mathbf{\alpha} \ \mathbf{TEARSON, \ } \mathbf{N. \ } (2010) \ \mathbf{Eotence}$
52 53		
54	1120	North–South Trending Dikes in Central Tibet: New Constraints on the Timing of
55		
56	1121	East-West Extension with Implications for Early Plateau Uplift? Earth Planet.
57		
58	1122	Sci. Lett. 298 205-216
59 60	± ± 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00		

3 4 5	1123	WANG, Z., WANG, J., FU, X., FENG, X., WANG, D., SONG, C., CHEN, W.,				
6 7	1124	ZENG, S. & YU, F. (2017b) Provenance and Tectonic Setting of the Quemoco				
8 9 10	1125	Sandstones in the North Qiangtang Basin, North Tibet: Evidence from				
11 12 13	1126	Geochemistry and Detrital Zircon Geochronology. Geological Journal,				
14 15	1127	https://doi.org/10.1002/gj.2967.				
16 17 18	1128	WANG, Z., WANG, J., FU, X., ZHAN, W., YU, F., FENG, X., SONG, C., CHEN, W.				
19 20	1129	& ZENG, S. (2017a) Organic Material Accumulation of Carnian Mudstones in				
21 22 23	1130	the North Qiangtang Depression, Eastern Tethys: Controlled by the Paleoclimate,				
24 25 26	1131	Paleoenvironment, and Provenance. Mar Petrol Geol, 88, 440-457.				
27 28	1132	WATTS, A.B. & RYAN, W.B.F. (1976) Flexure of the Lithosphere and Continental				
29 30 31	1133	Margin Basins. Tectonophysics, 36, 25-44.				
32 33	1134	WATTS, A.B., KARNER, G.D. & STECKLER, M.S. (1982) Lithospheric Flexure				
35 36	1135	and the Evolution of Sedimentary Basins. Philosophical Transactions of the				
37 38 39	1136	Royal Society of London A: Mathematical, Physical and Engineering Sciences,				
40 41	1137	305, 249-281.				
42 43 44	1138	WEISLOGEL, A.L., GRAHAM, S.A., CHANG, E.Z., WOODEN, J.L., GEHRELS,				
45 46 47	1139	G.E. & YANG, H. (2006) Detrital Zircon Provenance of the Late Triassic				
47 48 49	1140	Songpan-Ganzi Complex: Sedimentary Record of Collision of the North and				
50 51 52	1141	South China Blocks. <i>Geology</i> , 34, 97-100.				
53 54	1142	WU, Z., WU, X., ZHAO, Z., LU, L., YE, P. & ZHANG, Y. (2014) Shrimp U-Pb				
55 56 57	1143	Isotopic Dating of the Late Cretaceous Volcanic Rocks and Its Chronological				
58 59 60	1144	Constraint on the Red-Beds in Southern Qiangtang Block. Acta Geoscientica				

FOR REVIEW PURPOSES ONLY

1 2		
3		
4 5	1145	Sinica, 35, 567-572 (in Chinese with English abstract).
6 7 8	1146	XU, Q., DING, L., ZHANG, L.Y., CAI, F.L., LAI, Q.Z., YANG, D. & JING, L.Z.
9 10	1147	(2013) Paleogene High Elevations in the Qiangtang Terrane, Central Tibetan
11 12 13	1148	Plateau. Earth Planet. Sci. Lett., 362, 31-42.
14 15 16	1149	YAO, X., LIU, S., BAI, Y. & JI, H. (2017) Neogene Residual Subsidence and Its
17 18	1150	Response to a Sinking Slab in the Deep Mantle of Eastern China. J. Asian Earth
19 20 21	1151	Sci., 143, 269-282.
22 23	1152	YAN, M., ZHANG, D., FANG, X., REN, H., ZHANG, W., ZAN, J., SONG, C. &
24 25 26	1153	ZHANG, T. (2016) Paleomagnetic Data Bearing on the Mesozoic Deformation
27 28 29	1154	of the Qiangtang Block: Implications for the Evolution of the Paleo-and
30 31	1155	Meso-Tethys. Gondwana Research, 39, 25.
32 33 34	1156	YANG, R., CAO, J., HU, G., BIAN, L., HU, K. & FU, X. (2017) Marine to Brackish
35 36	1157	Depositional Environments of the Jurassic-Cretaceous Suowa Formation,
37 38 39	1158	Qiangtang Basin (Tibet), China. Palaeogeography, Palaeoclimatology,
40 41 42	1159	Palaeoecology, 473, 41-56.
43 44	1160	YIN, A. & HARRISON, T.M. (2000) Geologic Evolution of the Himalayan-Tibetan
45 46 47	1161	Orogen. Annu. Rev. Earth Planet. Sci., 28, 211-280.
48 49	1162	YIN, J. (2016) Bathonian–Callovian (Middle Jurassic) Ammonites from Northwestern
50 51 52	1163	Qiangtang Block, Tibet, and the Revised Age of the Suowa Formation.
53 54 55	1164	Proceedings of the Geologists' Association, 127, 245-263.
56 57	1165	YIN, J. & CHANDLER, R.B. (2016) Aalenian to Lower Bajocian Ammonites from
58 59 60	1166	the Qiangtang Block (North Tibet). Proceedings of the Geologists' Association,

2	
3 ⊿	
5	
6	
7 8	
9	
10	
11	
13	
14 15	
15	
17	
18 10	
20	
21	
22	
24	
25	
20 27	
28	
29 30	
31	
32 22	
33 34	
35	
36 37	
38	
39 40	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
50 51	
52	
53 54	
55	
56 57	
57 58	
59	
60	

1167 127, 170-186.

ZENG, S., HU, X., LI, J., XU, S., FANG, H. & CAI, J. (2015) Detection of the Deep Crustal Structure of the Qiangtang Terrane Using Magnetotelluric Imaging. *Tectonophysics*, 661, 180-189.

1171 ZHAI, Q. & LI, C. (2007) Zircon Shrimp Dating of Volcanic Rock from Nadigangri
1172 Formation in Juhuashan, Qiangtang, Northern Tibet and Its Geological
1173 Significance. Acta Geologica Sinica, 81, 795-800 (in Chinese with English
1174 abstract).

- 1175 ZHAI, Q.G., JAHN, B.M., SU, L., WANG, J., MO, X.X., LEE, H.Y., WANG, K.L.
- & TANG, S.H. (2013) Triassic Arc Magmatism in the Qiangtang Area, Northern
 Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics,
 and Tectonic Implications. *J. Asian Earth Sci.*, 63, 162-178.
- 1179 ZHAI, Q.G., JAHN, B.M., WANG, J., HU, P.Y., CHUANG, S.L., LEE, H.Y., TANG,
- S.H. & TANG, Y. (2015) Oldest Paleo-Tethyan Ophiolitic Mélange in the
 Tibetan Plateau. *GSA Bulletin*, 128, 355-373.
- ZHANG, K.J. (2000) Cretaceous Palaeogeography of Tibet and Adjacent Areas
 (China): Tectonic Implications. Cretaceous Research, 21, 23-33.
- 1184 ZHANG, K.J. & TANG, X.C. (2009) Eclogites in the Interior of the Tibetan Plateau
 1185 and Their Geodynamic Implications. *Chinese Sci Bull*, 54, 2556-2567.
- 1186 ZHANG, K.J., TANG, X.C., WANG, Y. & ZHANG, Y.X. (2011) Geochronology,
- 6 1187 Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in
 - 1188 Northern Tibet, Western China: Constraints on the Exhumation of the Central

Page 55 of 78

1

2		
3 4 5	1189	Qiangtang Metamorphic Belt. Lithos, 121, 167-175.
6 7 8	1190	ZHANG, K.J., XIA, B.D., WANG, G.M., LI, Y.T. & YE, H.F. (2004) Early
8 9 10	1191	Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and
11 12 13	1192	Tectonic Setting of Central Tibet, Western China. GSA Bulletin, 116,
14 15	1193	1202-1222.
16 17 18	1194	ZHANG, K.J., ZHANG, Y.X., LI, B., ZHU, Y.T. & WEI, R.Z. (2006) The
19 20	1195	Blueschist-Bearing Qiangtang Metamorphic Belt (Northern Tibet, China) as an
21 22 23	1196	in Situ Suture Zone: Evidence from Geochemical Comparison with the Jinsa
24 25 26	1197	Suture. Geology, 34, 493-496.
20 27 28	1198	ZHANG, K.J., ZHANG, Y.X., TANG, X.C. & XIA, B. (2012) Late Mesozoic
29 30 31	1199	Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian
32 33	1200	Collision. Earth-Science Reviews, 114, 236-249.
34 35 36	1201	ZHANG, X.R., SHI, R.D., HUANG, Q.S., LIU, D.L., GONG, X.H., CHEN, S.S., WU,
37 38	1202	K., YI, G.D., SUN, Y.L. & DING, L. (2014) Early Jurassic High-Pressure
39 40 41	1203	Metamorphism of the Amdo Terrane, Tibet: Constraints from Zircon U-Pb
42 43	1204	Geochronology of Mafic Granulites. Gondwana Research, 26, 975-985.
44 45 46	1205	ZHAO, Z., BONS, P.D., STÜBNER, K., WANG, GH. & EHLERS, T.A. (2017)
47 48 49	1206	Early Cretaceous Exhumation of the Qiangtang Terrane During Collision with
50 51	1207	the Lhasa Terrane, Central Tibet. Terra Nova, 29, 382-391.
52 53 54	1208	ZHAO, Z.B., BONS, P.D., WANG, G.H., LIU, Y. & ZHENG, Y.L. (2014) Origin
55 56	1209	and Pre-Cenozoic Evolution of the South Qiangtang Basement, Central Tibet.
57 58 59 60	1210	Tectonophysics, 623, 52-66.

2		
3 4 5	1211	ZHAO, Z., BONS, P.D., WANG, G., SOESOO, A. & LIU, Y. (2015) Tectonic
6 7 8	1212	Evolution and High-Pressure Rock Exhumation in the Qiangtang Terrane,
9 10	1213	Central Tibet. Solid Earth, 6, 457-473.
11 12 13	1214	ZHU, D.C., LI, S.M., CAWOOD, P.A., WANG, Q., ZHAO, Z.D., LIU, S.A. &
14 15	1215	WANG, L.Q. (2016) Assembly of the Lhasa and Qiangtang Terranes in Central
16 17 18	1216	Tibet by Divergent Double Subduction. Lithos, 245, 11.
19 20 21	1217	ZHU, D.C., ZHAO, Z.D., NIU, Y.L., DILEK, Y., HOU, Z.Q. & MO, X.X. (2013)
21 22 23	1218	The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana
24 25 26	1219	Research, 23, 1429-1454.
27 28	1220	ZHU, T.X., QIN, J.H., ZHANG, Z.G., WANG, X.L., LUO, J.L. & ZHUANG, Z.H.
29 30 31	1221	(1996) The Geological Multi-Engineering of West Qiangtang Basin (Qt96yz-01),
32 33 34	1222	Managing Department of Tibet Oil and Gas Exploration Project, CNPC.
35 36	1223	ZHU, T.X., YU, Q., YONG, Y.Y., JIA, B.J., QIN, J.H., ZHANG, Z.G., WANG, X.L.,
37 38 39	1224	TAN, Q.Y., XIE, Y., LI, M.H., LI, Q.X. & FENG, X.C. (1997) The Tibet
40 41	1225	Petroleumgeological Survey Report (Qz-97-102101), Managing Department of
42 43 44	1226	Tibet Oil and Gas Exploration Project, CNPC.
45		
46 47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
57		
58		
59		

Page 57 of 78

46

Basin Research

Table 1 Biostratigraphy constrained by bivalves in the Quemo Co section and magnetostratigraphy

1				Magnetostratigraphy	
2	Stratigraphy	Bivalves	Biostratigraphy	Age of Fang et al.	Environment
3 ⊿			Age	(2016)	
4 5 7 8 9 10 11 12 13	Xueshan Fm.	Assemblage Radulopecten fibrosus- Gervillella orientalis- Placunopopsis duriuscula Meleagrinella nieniexionglaensis Wen, Radulopecten fibrosus (Sowerby), Miyagipecten lavis (Wen), Placunopsis duriuscula (Phillips), P. sp., Bakevellia (Bakevellia) waltoni (Lycett) Gervillella qinghaiensis Wen, G. orientalis (Douville), G. cf. siliqua (Eudes-Deslongchangs), Plagiostoma cf. channoni Cox, Pseudolimea duplicata (Sowerby), Lopha maliensis Tong, Modiolus (Modiolus) imbricatus Sowerby, Protocardia qinghaiensis Wen, Corbicellopsis laevis (Sowerby), Unicardiopsis cf. acesta (d'Orbigny), Quenstedtia cf. oblita Greppin, Q. cf. dingriensis Wen, Mactromya qinghaiensis Wen, M. gibbasa (Morris et Lycett), Astarte togtonheensis Wen, A. cf. elegans Sowerby, Tancredia triangularis Wen, Pseudotrapezium cordiforme (Deshayes),	Kimmeridgian	<157.5 Ma	Marine
14		Anisocardia (Anisocardia) togtonheensis Wen, A. (Antiquicyprina) cf. trapezoidalis Wen,			
15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37	Suowa Fm.	 Assemblage Myopholas multicostata- Placunopsis duriuscula- Camptonectes (Camptonectes) auritus Palaeonucula sp., Mesosacella morrisi (Deshayes), M. wenquanensis Sha, Fursich, Smith et Wang, Nuculana (Praesacella) cf. ovum (Sowerby), Grammatodon (Grammatodon) cf. clathratum (Leckenby), Pinna sp., Meleagrinella sp., Pteria cf. plana (Morris et Lycett), Miyagipecten laevis (Wen), Radulopecten tipperi Cox, R. vagans (Sowerby), R. tripartitus Sha, Fursich, Smith et Wang, R. fibrosus (Sowerby), R. pamirensis Wen, R. gerzensis Wen, Camptonectes (Camptonectes) auritus (Schlotheim), C. (C.) laminatus (Sowerby), C. (Camptochlamys) clathratus (Roemer), C. (Annulinectes) obscurus (Sowerby), Propeamussium (Propeamussium) cf. pumilum (Lamarck), Placunopsis cf. subelongata (d'Orbigny), Placunopsis cf. socialis Morris et Lycett, P. duriuscula (Phillips), Gervillella qinghaiensis Wen, G. siliqua (Eudes-Deslongchamps), G. sp., Bakevellia? sp., Aguilerella sp., Pseudolimea duplicata (Sowerby), P. tjubegatanica (Repman), P. sp., Plagiosto-ma cf. channoni Cox, Lopha cf. tifoensis Cox, L. cf. maliensis Tong, Liostrea cf. jiangjinensis Wen, L. cf. birmanica (Reed), L. cf. blanfordi Cox, Plicatula sp., Modiolus (Modiolus) imbricatus Sowerby, A. cf. maliensis Tong, Astartoides gambaensis Wen, A. cf. dingriensis Wen, A. (A.) sp., A. (Anitiquicyprina) cf. trapezoidalis Wen, Pseudotineesis Wen, A. (A.) sp., A. (Anitiquicyprina) cf. trapezoidalis Wen, Pseudotaeta Sowerby, A. (A.) sp., A. (Anitiquicyprina) cf. trapezoidalis Wen, Pseudotaeta sp., Neudotoneensis Wen, A. (A.) sp., A. (Anitiquicyprina) cf. trapezoidalis Wen, Pseudotaeta sp., Noticonheensis Wen, C. (Alayami), Platymyoidea sp., Myopholas multicostata (Agassiz), M. percostata Douville, Pleuromya cf. uniformis (Sowerby), P. subelongata (d'Orbigny), P. sp. 	Callovian- Oxfordian	160.1-<157.5 Ma	Marine
 38 39 40 41 42 43 44 45 	Xiali Fm.	Assemblage Pteroperna costatula— Radulopecten vagans Palaeonucula sp., Pinna? sp., Meleagrinella cf. braamburiensis (Phillips), Radulopecten tipperi Cox, R. vagans (Sowerby), R. pamirensis Wen, R. sp., Placuopsis duriuscula (Phillips), Bakevillia (Bakevellia) waltoni (Lycett), Gervillella qinghaiensis Wen, Costigervillia minima Wen, Lopha cf. tifoensis Cox, Liostrea jiangjinensis Wen, Pteria plana Roemer, Pteroperna costatula (Deslongchamps), P. sp., Modiolus (Modiolus) imbrigatus Sowerby Gaugonia cf. yanshipingensis	Bathonian- Callovian	163.3-160.1 Ma	Marine

		Basin Research			Page 58 of 78
1 2 3		Wen, Protocardia (P.) qinghaiensis Wen, P. (P.) stricklandi (Morris et Lycett), Corbicellopsis cf. laevis (Sowerby), Unicardiopsis amdoensis Wen, Corbula yanshipingeusis Wen, C. kidugalloensis Cox, C. sp., Astarte cf. elegans Sowerby, A. sp., Anisocardia (Anisocardia) cf. channoni Cox, A. (A.) rostrata (Sowerby), Pseudotrapezium cordiforme (Deshayes), Amiodon cf. khoratensis (Hayami), Thracia togtonheensis Wen			
5	Buqu Fm.	Assemblage Isognomon (Mytiloperna) bathonicus- Protocardia hepingxiangensis-Praeexogyra cf.	Bathonian	165.5-163.3 Ma	Marine
6 7		acaminata			
8		Liostrea birmanica, Ceratomya undalat, C. concentrica, Grammatodon (Grammatodon) clathratum,			
9		Pinna tibetica, P. nyainrongensis, Radulopecten tipperi, Protocardia hepingxiangensis, Liostrea			
10		jiangjinensis, L. zadoensis, Lopha maliensis, L. baqenensis, Entolium nieniexionglaensis,			
11		Praeexogyra cf. acaminata, Radulopecten shuanghuensis, Gervillella qinghaiensis, Pteria			
13		problematica, Modiolus (Modiolus) trigonus, Mactromya qinghaiensis, Neomiodon yanshipingensis,			
14		A. (Antiquicyprina) trapezoidalis, Pholadomya socialis qinghaiensis			
15 16	Quemocuo Fm.	Quenstedtia? sp.	Bajocian	>171.2-165.5 Ma	Marine
17		Assemblage Undulatula perlonga- Psilunio chaoi			Fresh water
18		Psilunio chaoi Grabau, P. lateriplanus Ma, P. thailandicus (Hayami), P. sinensis Gu, Lamprotula			
19 20		(Eolamprotula) sp., Undulatula perlonga Gu, U. ptychorhyncha Gu, Cuniopsis cf. johannisbohmi			
20 21		(Frech), Solenaia tanggulaensis Wen, Unio cf. obrustschewi Martinson, Margaritifera isfarensis			
22		Chernyshev			
23	Erlongba Fm.	Assemblage Amonotis togtonheensis-Cardium (Tulongocardium) xizhangensis	Norian-	212±1.7 Ma	
24 25			Rhaetian	(Volcanics, Bai et	
26				al., 2005)	
27	Bagong Fm.	Assemblage Halobia superbescens- H. disperseinsecta	Norian		
28		Assemblage Amonotis togtonheensis-Cardium (Tulongocardium) xizhangensis			
29 30	Bolila Fm.	Cassianella cf. berychi, Halobia plicosa, H. superbescens, H. sp., Plagiostoma sp.	Carnian		
31					
32	Bivalves are from Geolo	ogical report of the 1:250, 000 regional geological survey in Chibuzhang Co area.			
33 34					
35					
36					
37 38					
39					

1	
2	
3	
4	
5	Т
6	
/	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25	
20	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41 42	
4∠ ⊿२	
45 44	
45	

Cable 2 Apatite fission track data for the Qiangtang Basin

Sampla	Stratigraphy	ρs ^a	Ma h	ρi ^a	λζh	hod a	Nd b	D(~2) c	Dpar ^d	[<i>U</i>] ^e	Central age ^f	±lσ	Dis. ^g	۸ <i>T</i> h.	MTL	±1σ	Nai
Sample	Stratigraphy	$(10^5 \mathrm{cm}^{-2})$	18 0	$(10^5 \mathrm{cm}^{-2})$	111 0	$(10^5 \mathrm{cm}^{-2})$	Ivu °	$\Gamma(\chi^2)^{\circ}$	(µm)	(ppm)	(Ma)		(%)	IV. "	(µr	n)	<i>IVC.</i> ¹
D0609	J_2x	9.418	728	12.903	1152	12.4	8749	1.00	2.65	17.91	113.6	5.4	0	30	12.17	0.36	20
D0815	J_2x	10.0	148	27.365	405	12.3	8749	0.54	2.84	30.46	65.4	6.3	0	9	/	/	/
ED0616	$J_2 x$	5.403	667	10.726	1324	12.0	8749	0.00	2.00	12.15	90.7	6.8	28	27	11.70	0.31	29
ED0620	T_3d	4.468	652	14.281	2084	12.0	8749	0.24	1.98	15.54	55	2.5	4.7	32	11.71	0.56	28
EP1502	J_2x	4.508	702	14.456	2251	12.2	8749	0.00	2.23	16.84	55.6	3.7	25	28	10.84	0.44	29
EP1503	J_2b	4.775	609	19.247	2445	12.1	8749	0.14	2.20	22.7	44.6	2.3	14	30	9.26	0.39	31
EP1504-09	K ₂ <i>a</i>	5.256	1048	18.776	3744	12.1	8749	0.23	2.55	19.54	49.1	2	10	40	13.4	0.45	15
EP1504-17	K ₂ <i>a</i>	5.848	576	17.188	1693	12.0	8749	0.03	3.49	18.01	62.5	4.2	17	18	14.54	0.32	5
EP1505	T_3d	7.043	836	23.361	2773	12.2	8749	0.40	2.40	28.59	53.7	2.4	9.2	32	12.87	0.29	22
EP1506	T_3d	9.154	638	19.283	1344	12.2	8749	0.93	2.48	22.32	84.1	4	0	30	13.75	0.48	17

FOR REVIEW PURPOSES ONLY

	Basin Research												Page 60 of 7					
2																		
3 4 -																		
5	PQ1503	J_2q	4.492	549	15.921	1946	11.3	6621	0.00	1.74	17.11	40.1	2.6	23	30	12.59	0.14	101
7 3 9	PQ1506	$J_2 x$	9.082	801	12.492	1190	12.4	8749	100	2.15	16.52	120.9	5.5	0	32	12.01	0.22	37
0 1																		
¹² ¹³ $^{a} \rho s$, ρi , ρd are track densities of spontaneous, induced and dosimeter tracks.																		
 ¹⁴ ¹⁵ ¹⁶ Ns, Ni, Nd are the number of spontaneous, induced and dosimeter tracks. ¹⁷ ¹⁸ ^c P(χ2) is the value of chi-square test (Galbraith, 1981; Green, 1981). ²⁰ ²¹ ^d Dpar is the etch pit diameter, which is used as a proxy for the influence of chemical composition on track annealing (Donelick <i>et al.</i>, 2005). 																		
23 24 25	^e Uranium conten	t calculated	with Track	Key (D	unkl, 2002	2).												
26 27	^f Central ages are	calculated u	using Track	Key (D	unkl, 2002	2) with 1	σ standa	rd error.	Ages a	re calcu	lated with	n a ζ=292.4	±17.9 f	òr a st	andar	d IRMN	/1540 g	lass.
28 29 30	^g Dispersion is th	e standard d	eviation of	the true	single-gra	ain ages	as a perc	entage o	of their	central	age (Galb	raith, 2005).					
81 82	^h N. is the numbe	r of grains c	counted for a	age calc	ulation.													
33 34 35	ⁱ Nc. is the number of measured horizontal confined tracks.																	
36 37																		
38 39																		
+0 41																		
42 43 47							FOR RE	VIEW PUR	POSES (ONLY								
45 46																		

Page 61 of 78

Basin Research

1227	Figure legends:
1228	Fig. 1. a, Major terranes and sutures of the Tibetan plateau. b, Geological map of
1229	Qiangtang basin and adjacent terranes (modified after Kapp et al., 2005). WK-ATSZ
1230	= West Kunlun-Altyn Tagh suture zone; SKSZ = South Kunlun suture zone; CQMB =
1231	Central Qiangtang metamorphic belt; JRSZ = Jinsha River suture zone; BNSZ =
1232	Bangong-Nujiang suture zone. Numbers in grey stars represent the localities of
1233	composite sections: 1, Duxue Mt.; 2, Shuangquan Lake; 3, Heihuling; 4, Nadigangri;
1234	5, Changshui River; 6, Amugang; 7, Zuerkenwula Mt.; 8, Dangmagang; 9, Quemo Co;
1235	10, Biluo Co; 11, Dazhuoma.
1236	

Fig. 2. Correlation of sequences, lithologies and paleo-environments of main Mesozoic stratigraphic units of the Qiangtang Basin. Not drawn to scale. The lithologies and interpretations of depositional environment of both the North and South Qiangtang are from field observations and geological reports. The age of Nadigangri Fm. comes from Zhai & Li (2007), Wang et al. (2008b) and Fu et al. (2010). Ages of Jurassic sequences are from magnetostratigraphy of Fang et al. (2016). The age of Abushan Fm. is from Li et al. (2015c). The legend of lithology is same to that of Fig. 4. All symbols are filled using patterns provided by U.S. Geological Survey (2006).

Fig. 3. Remote sensing images of specific profiles of continuous successions inNadigangri (a) and Quemo Co (b) from Google Earth©. Structural dips are labelled

1249	on the strata. The solid lines are boundaries between stratigraphic units. The yellow
1250	dashed lines represent unconformities. T_3nd = Nadigangri Formation; T_3b = Bolila
1251	Formation; T_3bg = Bagong Formation; T_3e = Erlongba Formation; J_2q = Quemocuo
1252	Formation; J_2b = Buqu Formation; J_2x = Xiali Formation; J_3s = Suowa Formation; J_3b
1253	= Bailongbinghe Formation; J_3K_1x = Xueshan Formation; E_2k = Kangtuo Formation.
1254	
1255	Fig. 4. Simplified stratigraphic framework of nine composite sections in the North
1256	Qiangtang sub-basin. The stratigraphic codes are same to those of Fig. 3. Other codes
1257	are: $P_{1-2}l =$ Lugu Formation; $T_3j =$ Juhuashan Formation; $T_3z =$ Zangxiahe Formation;
1258	T_3T = Tumengela Group; E_{2s} = Suonahu Formation; $E_{1-2}t$ = Tuotuohe Formation;
1259	E_{2+3y} = Yulinshan Formation; N_1c = Chabaoma Formation; N_2q = Quguo Formation;
1260	$N_2 sq =$ Shuangquanhu Formation.
1261	
1262	Fig. 5. Simplified stratigraphic framework of two composite sections in the South
1263	Qiangtang sub-basin. The legend, scale and stratigraphic codes are same to those of
1264	Fig. 4. Other codes are: T_3a = Adula Formation; T_3d = Duogaila Formation; T_3R =
1265	Riganpeicuo Group; T_3J_1s = Suobucha Formation; J_1q = Quse Formation; J_2s = Sewa
1266	Formation; K_2a = Abushan Formation.
1267	
1268	Fig. 6. Decompaction scheme (modified after Allen and Allen, 2005).

1270 Fig. 7. Specific indicators for assessment of paleo-water depth in stratigraphic

FOR REVIEW PURPOSES ONLY

Page 63 of 78

Basin Research

sections. (a) Oscillatory ripples preserved in the bottom of tidal sandstones (Late Triassic Duogaila Formation, Dazhuoma; paleo-water depth $\approx 50\pm50$ m). (b) Fining-upward sequence with each starting with conglomerate or pebbled sandstones (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth $\approx 10\pm10$ m). (c) Current bedding limestone (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth $\approx 50\pm50$ m). (d) Ripples in tidal sandstones (Middle Jurassic Xiali Formation, Dazhuoma; paleo-water depth $\approx 50\pm 50$ m). (e) Ammonite in mudstone (Late Jurassic Bailongbinghe Formation, Changshui River; paleo-water depth ≈ 50 m). (f) Directional arrangement of gravels in fluvial sandstones (Late Cretaceous Abushan Formation, Biluo Co; paleo-water depth $\approx 10\pm5$ m).

Fig. 8. Subsidence curves for composite sections in Fig. 1. The thick solid line represents backstripped tectonic subsidence. The thin solid line represents total decompacted subsidence. The grey-shade areas represent the first stage of subsidence from Late Triassic to Early Jurassic based on the subsidence histories, combined with previous work on sediment provenance and timing of deformation. The reference lines representing subsidence rate are shown are each of the plots.

Fig. 9. Magnification of the tectonic subsidence histories from 172 to 120 Ma. The reference lines representing subsidence rate are shown are each of the plots. The shaded area represent the gradual cessation of subsidence across the Qiangtang Basin, with the final termination at about 148 Ma. The subsidence curves in the North

FOR REVIEW PURPOSES ONLY

2	
3	
4	
5	
6	
7	
, 8	
0 0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
37	
25	
26	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1293 Qiangtang are represented by solid lines, while the South Qiangtang are represented1294 by dotted lines.

1295

1

Fig. 10. Radial plots of detrital apatite fission track ages in the Qiangtang Basin usingDensityPlotter (Vermeesch, 2012).

1298

Fig. 11. Weighted mean thermal paths for sandstones in the Qiangtang Basin. The
mélange and granite samples are from the Central Uplift studied by Zhao *et al.* (2017).
All thermal paths display cooling starting from 150-130 Ma. The depth is calculated

1302 by assuming a geothermal gradient of 20 $^{\circ}$ C/km.

1303

Fig. 12. Schematic map showing the paleo-current directions, provenance areas and composition of lithic fragments in sandstones of the Qiangtang foreland basin during the Middle Jurassic to Early Cretaceous time, modified from Li *et al.* (2001).

1307

Fig. 13. Cartoon of tectonic evolution of the Qiangtang Basin and adjacent terranes from Late Triassic to Cretaceous. The extent of each terrane is not strictly to scale and the near surface geometries are vertically exaggerated. The evolution models of Central Uplift during early Late Triassic (a) and Late Triassic-Early Jurassic (b) are modified after Zhang & Tang (2009). Bold black arrows in each cross sections represent the directions of sediment transportation. The mechanisms of subsidence are labelled in red. **Supporting material legends**

Table S3 GPS coordinates of AFT samples

File S1 Stratigraphic sections in the Qiangtang Basin in Google Earth format.

Table S1 Stratigraphic data of eleven composite sections in Qiangtang basin

Table S2 Age constraints from biostratigraphy of strata in Qiangtang basin

Figure S1. Thermal history modeling results of samples from the Qiangtang Basin

2	
3 4	1315
5 6 7	1316
8 9	1317
10 11 12	1318
13 14	1319
16 17	1320
18 19 20	1321
20 21 22	
23 24	
25 26 27	
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52 52	
55 55	
55 56 57	
58	

Fig. 1. a, Major terranes and sutures of the Tibetan plateau. b, Geological map of Qiangtang basin and adjacent terranes (modified after Kapp et al., 2005). WK-ATSZ = West Kunlun-Altyn Tagh suture zone;
SKSZ = South Kunlun suture zone; CQMB = Central Qiangtang metamorphic belt; JRSZ = Jinsha River suture zone; BNSZ = Bangong-Nujiang suture zone. Numbers in grey stars represent the localities of composite sections: 1, Duxue Mt.; 2, Shuangquan Lake; 3, Heihuling; 4, Nadigangri; 5, Changshui River; 6, Amugang; 7, Zuerkenwula Mt.; 8, Dangmagang; 9, Quemo Co; 10, Biluo Co; 11, Dazhuoma.

				Nort	South Qiangtang						
			Age	Stratigraphy	Lithology	Depositional environment	Stratigraphy	Lithology	Depositional environment		
aceous		Upper	102 Ma				Abushan Fm.	0,00	Alluvial and fluvial environment		
Cret		Lower	<138 Ma			~~~~~~					
_	+	_	144 Ma	Xueshan Fm.		Delta, alluvial fan					
		bpe	<157.5 Ma	Bailongbinghe Fm.		Delta	Suowa Em.		Carbonate		
		2	160.1 Ma	Suowa Fm.		Carbonate platform			platform		
sci		dle	163.3 Ma	Xiali Fm.		Tidal flat; littoral	Xiali Fm.		Tidal flat; littoral		
lras		Mid	165.5 Ma	Buqu Fm.		Marine platform	Buqu Fm.		Marine platform		
٦ آ		_	>171.2 Ma	Quemocuo Fm.		Tidal flat; delta	Sewa Fm.		Shallow-marine shelf		
		-ower					Quse Fm.	<u></u>	Lagoon; littoral environment		
_	_	_	210 Ma				Suobucha Fm.		Shallow marine		
		per	220 Ma	Nadigagnri Fm.		Terrestrial environment	Riganpeicuo		Littoral environment		
		Ľ		Juhuashan Zangxiahe Fm. Fm.		Offshore to Deep shallow_marine marine	Group				
Triassic		Middle									
		Lower									

Fig. 2. Correlation of sequences, lithologies and paleo-environments of main Mesozoic stratigraphic units of the Qiangtang Basin. Not drawn to scale. The lithologies and interpretations of depositional environment of both the North and South Qiangtang are from field observations and geological reports. The age of Nadigangri Fm. comes from Zhai & Li (2007), Wang et al. (2008b) and Fu et al. (2010). Ages of Jurassic sequences are from magnetostratigraphy of Fang et al. (2016). The age of Abushan Fm. is from Li et al. (2015c). The legend of lithology is same to that of Fig. 4. All symbols are filled using patterns provided by U.S. Geological Survey (2006).

151x149mm (300 x 300 DPI)

FOR REVIEW PURPOSES ONLY

Fig. 3. Remote sensing images of specific profiles of continuous successions in Nadigangri (a) and Quemo Co (b) from Google Earth©. Structural dips are labelled on the strata. The solid lines are boundaries between stratigraphic units. The yellow dashed lines represent unconformities. T3nd = Nadigangri Formation; T3b = Bolila Formation; T3bg = Bagong Formation; T3e = Erlongba Formation; J2q = Quemocuo Formation; J2b = Buqu Formation; J2x = Xiali Formation; J3s = Suowa Formation; J3b = Bailongbinghe Formation; J3K1x = Xueshan Formation; E2k = Kangtuo Formation.

Nadigangri Changshui River

Amugang

Zuerkenwula Dangmagang Quemo Co Mt.

Shuangquan Lake

Duxue Mt

Heihuling

Fig. 4. Simplified stratigraphic framework of nine composite sections in the North Qiangtang sub-basin. The stratigraphic codes are same to those of Fig. 3. Other codes are: P1-2I = Lugu Formation; T3j = JuhuashanFormation; T3z = Zangxiahe Formation; T3T = Tumengela Group; E2s = Suonahu Formation; E1-2t = Tuotuohe Formation; E2+3y = Yulinshan Formation; N1c = Chabaoma Formation; N2q = Quguo Formation; N2sq = Shuangquanhu Formation.

Fig. 5. Simplified stratigraphic framework of two composite sections in the South Qiangtang sub-basin. The legend, scale and stratigraphic codes are same to those of Fig. 4. Other codes are: T3a = Adula Formation; T3d = Duogaila Formation; T3R = Riganpeicuo Group; T3J1s = Suobucha Formation; J1q = Quse Formation; J2s = Sewa Formation; K2a = Abushan Formation.

Fig. 6. Decompaction scheme (modified after Allen and Allen, 2005).

Fig. 7. Specific indicators for assessment of paleo-water depth in stratigraphic sections. (a) Oscillatory ripples preserved in the bottom of tidal sandstones (Late Triassic Duogaila Formation, Dazhuoma; paleo-water depth $\approx 50\pm50$ m). (b) Fining-upward sequence with each starting with conglomerate or pebbled sandstones (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth $\approx 10\pm10$ m). (c) Current bedding limestone (Middle Jurassic Quemocuo Formation, Amugang; paleo-water depth $\approx 50\pm50$ m). (d) Ripples in tidal sandstones (Middle Jurassic Xiali Formation, Dazhuoma; paleo-water depth $\approx 50\pm50$ m). (e) Ammonite in mudstone (Late Jurassic Bailongbinghe Formation, Changshui River; paleo-water depth ≈ 50 m). (f) Directional arrangement of gravels in fluvial sandstones (Late Cretaceous Abushan Formation, Biluo Co; paleo-water depth $\approx 10\pm5$ m).

Fig. 8. Subsidence curves for composite sections in Fig. 1. The thick solid line represents backstripped tectonic subsidence. The thin solid line represents total decompacted subsidence. The grey-shade areas represent the first stage of subsidence from Late Triassic to Early Jurassic based on the subsidence histories, combined with previous work on sediment provenance and timing of deformation. The reference lines representing subsidence rate are shown are each of the plots.

Fig. 9. Magnification of the tectonic subsidence histories from 172 to 120 Ma. The reference lines representing subsidence rate are shown are each of the plots. The shaded area represent the gradual cessation of subsidence across the Qiangtang Basin, with the final termination at about 148 Ma. The subsidence curves in the North Qiangtang are represented by solid lines, while the South Qiangtang are represented by dotted lines.

FOR REVIEW PURPOSES ONLY

Basin Research

Fig. 11. Weighted mean thermal paths for sandstones in the Qiangtang Basin. The mélange and granite samples are from the Central Uplift studied by Zhao et al. (2017). All thermal paths display cooling starting from 150-130 Ma. The depth is calculated by assuming a geothermal gradient of 20 °C/km.

104x70mm (300 x 300 DPI)

Fig. 12. Schematic map showing the paleo-current directions, provenance areas and composition of lithic fragments in sandstones of the Qiangtang foreland basin during the Middle Jurassic to Early Cretaceous time, modified from Li et al. (2001).

Fig. 13. Cartoon of tectonic evolution of the Qiangtang Basin and adjacent terranes from Late Triassic to Cretaceous. The extent of each terrane is not strictly to scale and the near surface geometries are vertically exaggerated. The evolution models of Central Uplift during early Late Triassic (a) and Late Triassic-Early Jurassic (b) are modified after Zhang & Tang (2009). Bold black arrows in each cross sections represent the directions of sediment transportation. The mechanisms of subsidence are labelled in red.