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General introduction
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During anesthesia the depth of hypnosis is mostly evaluated by the skill and knowledge 

of the anesthesiologist. Clinical tools developed to assess the depth of hypnosis are 

generally cumbersome to use during a surgical procedure and are less reliable in 

patients receiving neuromuscular-blocking agents. Accidental awareness during general 

anesthesia in children has been reported to be 0.2% to 1.2% [1]. About 50% develops 

long-term psychological effects, while some develop PTSD further in their life with 

varying degree of disabilities [1]. 

There is also potential harm in giving too deep (i.e. too much) anesthesia, as it can result 

in hemodynamically instability or respiratory adverse effects (e.g. bronchospasm with 

desflurane). Concerns have been raised about possible neurotoxicity of anesthetics in the 

developing brain of children [2]. Animal model studies observed behavioral changes and 

increased neuro-apoptosis when administering anesthetics for a prolonged period [3]. 

These effects of anesthetics also seem to be more prominent with increasing doses [4].

It is unknown how to interpret and extrapolate these results in humans. A large 

international randomized controlled trial revealed that sevoflurane anesthesia for a short 

duration (less than 1 hour) did not impair the cognitive function of children at the age of 

2 and 5 years old [5,6]. 

Whether these results can be generalized to longer durations of anesthesia or a mixture 

of anesthetics remain unknown. However, studies comparing hypnosis monitor guided 

anesthesia with conventional anesthesia demonstrate a reduction in cumulative anesthetic 

dose administered in adults and children [7-9]. Therefore, if the anesthetic depth can be 

reliably assessed and monitored, the exposure to potential harmful anesthetics can be 

reduced to a minimum level while maintaining an appropriate depth.

The discovery of the relationship between EEG patterns and the depth of hypnosis 

evolved the method used to monitor it. The B-Aware trial demonstrated a reduction of 

82% in accidental awareness in the adult population [10], indicating that using a depth 

of hypnosis monitor might also improve the quality of anesthesia for children. Different 

commercially available devices exist to continuously monitor the depth of hypnosis. 

Most of these devices analyze the spontaneous EEG and calculate by algorithm an index 

value representing the depth of hypnosis. Along the EEG, mid-latency auditory evoked 

potentials (MLAEP) are also possible to be used to generate an index value. However, 

great heterogenicity exists in how to interpret and respond to these generated index 

values (EEG derived as well as MLAEP derived). There are also controversies about the 

reliability of such a monitor for different age groups and different anesthetics. What 

do anesthesiologists think about using depth of hypnosis monitoring in children? How 
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does this relate to the current literature? What do we currently know about the MLAEP in 

children during general anesthesia? How does a MLAEP based hypnosis monitor perform 

in children during anesthesia with commonly used anesthetics in our daily practice?

Commonly used EEG monitors analyze the whole EEG while filtering the noise. While 

these monitors are also widely used in the pediatric population, one cannot deny the 

differences between the EEG of an adult and one of a child as the EEG does not mature 

before adulthood [11]. The MLAEP on the other hand, which is a part of an EEG, mature 

earlier in life. Just like the EEG, an index value can be derived by analyzing the MLAEP 

waveform. It is induced by a sound stimulus and appears at about 40ms until 50ms after 

it. The waveform usually consists of two peaks (P) and three troughs (N) being named 

N0, P0, Na, Pa and Nb. Its relationship with the depth of hypnosis has been studied in 

children revealing a reasonable correlation [12-15]. These studies show that an increasing 

dose of anesthetics results in an increased time until specific waveforms appear, i.e. the 

latency, and a decreased amplitude of the waveforms [16-18]. In children however, few 

studies concerning the performance of such a monitor during anesthesia are available 

of which most of them are conducted with legacy devices or experimental setups not 

readily available to the anesthesiologist for daily practice. 

Finally, we will assess the performance of the currently only commercially available 

MLAEP based monitor, the aepEX plus monitoring system, in children during propofol, 

sevoflurane and desflurane anesthesia. Studies concerning the aepEX monitor in the 

adult population demonstrated a reasonable detection of return of consciousness after 

anesthesia with propofol and sevoflurane [19-22], while the same studies in children were 

lacking. It is also unknown whether the results from the studies conducted in the adult 

population and previously conducted studies in children with other MLAEP monitors 

could be extrapolated to the aepEX monitor. This is especially true due to the fact that 

algorithms of these devices are undisclosed to the public.
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AIMS OF THIS THESIS

■■ To assess the thoughts and opinions of (pediatric) anesthesiologists about the use of 

depth of hypnosis monitoring in children receiving anesthesia.
■■ To inventory the perceived need for a reliable depth of hypnosis monitor for children.
■■ To review the current literature concerning the use of MLAEP in children receiving 

anesthesia.
■■ To evaluate the performance of the aepEX monitor (since this is currently the only 

commercially available MLAEP based hypnosis monitor) in children receiving 

anesthesia with commonly available hypnotics.

OUTLINE OF THIS THESIS

Chapter 2 will set out the thoughts, practice, opinions and (mis)understandings towards 

depth of hypnosis monitoring during anesthesia in children. An attempt to answer 

research questions concerning the use of depth of hypnosis monitoring such as: “Why 

do they use it?”, “Why don’t they use it?”, “When do they use it?”, “Are there any particular 

paradigms obstructing an informed decision for its use?”. We will also try to gauge the 

opinions about the shortcomings of the currently available depth of hypnosis monitors 

and what an ideal monitor should be capable of which might give direction for further 

development in this field.

MLAEP has a theoretically advantage over EEG based depth of hypnosis monitors. In 

chapter 3 we will review the current literature concerning MLAEP in children during 

anesthesia, addressing the following research questions: “Does the MLAEP consistently 

change when different anesthetics are administered?”, “How reliable can you assess the 

depth of hypnosis with an MLAEP based monitor?” and “Does MLAEP guided anesthesia 

make our anesthesia more efficient, i.e. do we need less anesthetics, can we reduce the 

recovery time?”.

In the following chapters the aepEX plus monitoring system will be evaluated for its 

performance as a depth of hypnosis monitor in children. Chapter 4 will describe its 

performance during propofol anesthesia, guided by the Paedfusor target controlled 

infusion model. In chapter 5 the aepEX monitor will be assessed during sevoflurane 

anesthesia. The aepEX monitor is evaluated during desflurane anesthesia in chapter 6. 

In chapter 7 we will discuss the main findings and conclusions from this thesis. 
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ABSTRACT

BACKGROUND: To assess the thoughts of practicing anaesthesiologists about the use of 

depth of hypnosis monitors in children. 

METHODS: Members of the European Society for Paediatric Anaesthesiology were invited 

to participate in an online survey about their thoughts regarding the use, applicability 

and reliability of hypnosis monitoring in children.

 

RESULTS: The survey achieved a response rate of 30% (n=168). A total of 138 completed 

surveys were included for further analysis. Sixty-eight respondents used hypnosis 

monitoring in children (Users) and 70 did not (Non-users). Sixty-five percent of the 

Users reported prevention of intra-operative awareness as their main reason to apply 

hypnosis monitoring. Among the Non-users, the most frequently given reason (43%) 

not to use hypnosis monitoring in children was the perceived lack or reliability of the 

devices in children. Hypnosis monitoring is used with a higher frequency during propofol 

anaesthesia than during inhalation anaesthesia. Hypnosis monitoring is furthermore 

used more frequently in children >4 years than in younger children. An ideal hypnosis 

monitor should be reliable for all age groups and any (combination of ) anaesthetic drug. 

We found no agreement in the interpretation of monitor index values and subsequent 

anaesthetic interventions following from it.

CONCLUSIONS: Prevention of intraoperative awareness appears to be the most important 

reason to use hypnosis monitoring in children. The perceived lack of reliability of hypnosis 

monitoring in children is the most important reasons not to use it. No consensus currently 

exists on how to adjust anaesthesia according to hypnosis monitor index values in 

children.

Keywords: Child; Consciousness Monitors; Infant; Surveys and Questionnaires.
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BACKGROUND

With the introduction of processed electroencephalography, about 20 years ago, the 

electroencephalogram (EEG) became feasible to be used to easily monitor depth of 

hypnosis (DoH) in patients receiving general anaesthesia [1]. Whether or not DoH-

monitors (DoH-M) have a beneficial impact on peri-operative outcomes, remains subject 

to discussion [2]. What all currently commercially available DoH-M have in common is that 

they have been developed for use in adult patients. Clear recommendations regarding 

the use of the currently available DoH-monitors in paediatric patients are still lacking [3].

The Paediatric Anaesthesia Research Group at Sophia Children’s Hospital in Rotterdam 

designed and launched an online survey [4] to assess the thoughts of the members of the 

European Society for Paediatric Anaesthesiology (ESPA) regarding the use, applicability 

and reliability of DoH-monitoring in children. Besides general aspects regarding the use 

of DoH-M in children, we were also interested in the thoughts of ESPA members regarding 

the requirements of an ideal paediatric DoH-M and whether demographic characteristics 

of the anaesthesiologist (age, working experience, etc.) influenced their vision regarding 

DoH-monitoring in children.

METHODS

According to the Dutch regulations, questionnaire research does not fall under the 

scope of the Medical Research Involving Human Subjects Act (WMO), as declared by 

the Central Committee on Research Involving Human Subjects (http://www.ccmo.nl/

en/questionnaire-research). Therefore, formal ethics approval was deemed unnecessary 

according to national regulations and was not obtained.

During the development of the survey, it was evaluated and tested by anaesthesiologists 

of our paediatric anaesthesia department. The survey consisted of two major parts, 

beginning with questions concerning the respondents’ demographics, workplace, annual 

personal case-loads and availability of DoH-M at their institutions. The second part was 

related to the thoughts of the respondents regarding their personal practice of DoH-

monitoring in children and their thoughts about paediatric DoH-monitoring in general. 

In order to minimize possible bias, the order of the answers to any of our multiple-

choice questions were randomized for each respondent. The entire survey is available as 

supplementary content (see appendix).
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On our request, ESPA invited their members (n=553) by email to participate in our survey. 

A single reminder was send by e-mail three weeks after the initial invitation. The survey 

was accessible online in the period from June 28, 2013 until August 18, 2013.

Statistical Analysis
Respondents were allocated to two groups; “Users” and “Non-users” of DoH-M in children. 

Non-users were excluded from further analysis when their only reason to not use DoH-M 

in children was due to the unavailability of a DoH-M in their institution since this was 

considered a circumstantial reason rather than a personal choice. For nominal data 

Pearson’s Chi-Square or Fisher’s test were used to analyse the differences between DoH-M 

Users and Non-users. When needed, data was recoded to maintain a minimum expected 

count of 5 to facilitate the Pearson’s Chi-Square or, if applicable, the Fisher’s Exact test. The 

Mantel-Haenszel test [5], labelled as a ”Linear-by-Linear Association” in SPSS, was used for 

ordinal data (e.g. work experience, age or frequency of giving anaesthesia to certain age 

groups). P-values <0.05 were considered statistically significant. 

The margin of error for our survey data, including a 95% confidence level was computed 

using an online-tool provided by SurveyMonkey [4]. The margin of error is an estimate 

of the appropriateness of the sample size to represent the whole population (ESPA 

members).

All analyses were performed using SPSS (IBM SPSS Statistics, version 21).

RESULTS

We received a total of 168 (30%) responses, of which 14 were incomplete and excluded 

from analysis. Sixteen respondents didn’t use DoH-M in children due to the unavailability 

of any DoH-M in their institution and were excluded from further analyses. The margin of 

error of our sample size was 6%.

Our respondents came from 40 different countries. To present the data in a more 

comprehensible manner, we categorized them into continents. The majority (n=115; 83%) 

came from Europe. Baseline characteristics, i.e. professional title, age, type of institution 

they work in, years of experience in anaesthesiology, of the Users (n=68) and Non-users 

(n=70) are summarized in Table 1.
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Table 1. Respondents’ baseline characteristics.

Users (n=68) Non-users (n=70) P-value

Professional title 0.366*

Anaesthesiologist 67 (99%) 66 (94%)

Anaesthesiologist in training 
(resident)

1 (1%) 4 (6%)

Practicing in n/a

Europe 57 (84%) 58 (83%)

Middle East 6 (9%) 4 (6%)

East Asia 1 (1%) 2 (3%)

Australia 1 (1%) 3 (4%)

South Americas 2 (3%) 1 (1%)

North Americas 1 (1%) 2 (3%)

Works in 0.064a

(university) children hospital 41 (60%) 31 (44%)

non-children’s hospital 27 (40%) 39 (56%)

Years of practice 0.898b

<10 years 17 (25%) 20 (29%)

11–20 years 27 (40%) 24 (34%)

>20 years 24 (35%) 26 (37%)

Age 0.908b

<40 years 20 (29%) 20 (29%)

41–50 years 25 (37%) 28 (40%)

>51 years 23 (34%) 22 (31%)

Comparison of baseline characteristics of respondents either using (Users) or not using (Non-users) depth 
of hypnosis monitoring in children.
a Fisher’s Exact test
b Mantel-Haenszel test

The workplace distribution was 60% children’s hospital and 40% general hospital among 

DoH-M Users. For the Non-users the distribution was 44% children’s hospital and 56% 

general hospital. Though not reaching statistical significance (Fisher’s exact test, p= 0.064), 

these results indicate a weak evidence that anaesthesiologists working in children’s 

hospitals are more likely to use DoH-M than those working in general hospitals.

Both Users (94%) and Non-users (86%) were “most” familiar with the Bispectral Index 

(BIS) monitor (p=0.09), followed by Entropy (Users 37%, Non-users 26%; p=0.11), the 

Narcotrend (Users 18%, Non-users 17%; p=0.56) and the AEP-monitor/2 (Users 13%, Non-
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users 10%; p=0.37). The BIS monitor was used most frequently (77%), followed by Entropy 

(10%), Narcotrend (6%) and the Cerebral State Index, CSI (4%).

In order of descending frequency, DoH-M was used during major surgery (96%), 

neurosurgery (53%), minor surgery (32%), cardiac surgery (22%) and procedural sedation 

(19%). 

A total of 70 respondents reported to never use DoH-M in children. The majority of 

them (49%) reported that they think DoH-M was unreliable and/or not validated for 

use in children. Other reasons were that using a DoH-M wouldn’t affect their method of 

anaesthesia (30%) and the cost of using DoH-M (24%). 

Prevention of intraoperative awareness was the most frequently reported primary reason 

to apply DoH-M, whereas preventing (possible) side effects of anaesthetic agents were 

most frequently reported as least relevant (for details see Figure 1).

Ranked 2nd

38%

22%

22%

18%

To enable use of
less anaesthetic
agents

Prevention of (possible)
side effects of
anaesthetic agents

Decrease time
to awakening

Prevention of
intra-operative
awareness

Ranked 3rd

40%

25%

23%

12%

Ranked 4th

44%

35%

15%

6%

Ranked 1st

65%
22%

10%
3%

Figure 1. Reasons for hypnosis monitoring. Percentage Users reported their reasons to use depth of 
hypnosis monitoring in children ranked 1st, 2nd, 3rd and 4th.
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The frequency of using DoH-M ranged from 25% in pre-term infants to 98% in teenagers. 

About 10% of the Users reported to apply DoH-M almost always in patients older than 4 

years. Details are given in Figure 2.

Pre-term
neonates

<1 month 1 -12
months

1 - 3
years

4 - 6
years

7 - 12
years

13 - 18
years

Adult
0

10

20

30

40

50

60

70

80

90

100

Frequently
(Almost) always

Occasionally
Never

U
se

rs
 (%

)

Figure 2. Hypnosis monitoring and age. Patient population in which depth of hypnosis monitoring is being 
used.

All Users reported to use DoH-M during propofol anaesthesia. DoH-M was less frequently 

used during inhalation anaesthesia (see Figure 3).

Being asked whether either the actual value of a DoH-Index or its trend over time best 

reflect the DoH, 62% of the Users preferred to rely on a combination of the actual index 

value and its trend. Such a combination would result in various drug interventions, such 

as increasing the hypnotic agent concentration (27%), analgesic agent application (3%), 

or both (60%), while 10% would not react without additional changes in physiological 

parameters, i.e. heart rate or blood pressure. Twenty-nine percent of the Users found the 

DoH best represented by the trend. In the case of an increasing trend they would increase 

the hypnotic drug concentration (35%), or give additional analgesic drugs (4%) or both 

(46%), while 13% would only react to the increasing trend when combined with changes 

in physiological parameters. Another 7% relied only on increases of the actual DoH-index 

value, resulting in increasing hypnotic drug concentration (24%), additional analgesic 

drug application (3%) or both (41%), with 31% of them also requiring physiological 

alterations for an intervention (1% answered “other”). 
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Figure 3. Hypnosis monitoring and anaesthetic. Percentage respondents who “never”, “sometimes”, 
“regularly” or “always” use depth of hypnosis monitoring with different anaesthetics.

According to all respondents, applicability in all patient age groups, reliability for any 

(combination of ) anaesthetic drug, and low-cost disposables were the three most 

important requirements of a theoretical ideal DoH-M. For more details see Figure 4.

Eighty percent of the respondents (n=110) agreed that there is a need for a monitor which 

specifically measures analgesia. Fourteen of the respondents (10%) agreed to the need for 

a separate analgesia monitor, 43 (31%) preferred a combined analgesia/DoH-M monitor 

and 53 (38%) agreed to both options. Another fourteen (10%) respondents held a neutral 

position (“not knowing”) and 14 (10%) disagreed with both types of analgesia monitors. 

With respect to their thoughts about the need for analgesia monitoring devices, a Mantel-

Haenszel test revealed that Users are more optimistic towards it (p=0.04), while no 

evidence of a difference between DoH-M Users and Non-users regarding their thoughts 

about a stand-alone analgesia monitor (p=0.63) or a combined DoH/analgesia-monitor 

(p=0.12) was observed.
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Figure 4. The ideal hypnosis monitor. Features of an ideal depth of hypnosis monitor ranked 1st, 2nd, 3rd, 4th, 
5th and 6th by percentage Users and Non-users.

DISCUSSION

Practicing anaesthesiologists dedicated to paediatric anaesthesia perceive the avoidance 

of intraoperative awareness as the most important reason to use DoH-M in children. The 

most cited reasons of not using DoH-M in children were serious concerns regarding the 

reliability of the currently available devices in paediatric patients.

This survey gives an overview of the thoughts and attitudes of (European) anaesthesio-

logists affiliated with the ESPA concerning the use of DoH-M in children. 

Not unexpectedly, the BIS monitor was the device most widely available, regardless of 

the personal preference to use it or not. Working experience (Table 1) and familiarity with 

DoH-M were not related to its use in children.

As expected, DoH-M was most often applied in older children, whereas its use in 

(preterm) neonates was infrequent (see Figure 2). This pattern is in accordance with a 

recommendation made by Davidson [3], who reported increasing evidence that DoH-M 

devices do not work in infants, while there is also increasing evidence they may work in 

older children.
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Interestingly, despite the absence of scientific publications investigating the effect 

of DoH-M on the incidence of intraoperative awareness in children, this remains the 

most common indication reported by DoH-M Users to apply this technology. What we 

currently know, is that the incidence of awareness in children (approximately 1% [6]) is 

significantly higher than in adults (approximately 0.1–0.2 % [7]). In addition, the big trials 

performed in adult patients investigating the impact of BIS monitoring on the incidence 

of awareness showed conflicting results, reporting both a reduction of awareness cases 

[7] and no beneficial effect [8]. Use of less anaesthetics and decreased time to awakening, 

both reported in paediatric studies [9-12], were ranked 2nd and 3rd in the decision finding 

process to use DoH-M. At least 44% of the Users chose “prevention of (possible) side effect 

of anaesthetic agents” as the least important argument for using DoH-M. Bearing in mind 

the ongoing discussion about the safety and possible neurotoxicity of anaesthetic drugs 

in the developing brain [13-15], we regard this as an unexpected finding. 

Not surprisingly, 39% of the Non-Users chose “Applicability in all age groups” as their 

most important feature of a hypothetical ideal DoH-M. Users on the other hand chose 

“prevention of intra-operative awareness” and “To enable use of less anaesthetic agents” 

as their main reason to use DoH-M in children. These opinions were also reflected by their 

preferences regarding the most important features of an ideal DoH-M, i.e. “Applicability in 

all age groups” and “Reliability for any (combination of ) anaesthetic drug”.

Index values are helpful and practical to make the EEG understandable during anaesthesia. 

However, subtle EEG-information will be lost. With no doubt, a raw EEG display on a DoH-M 

could contribute to assessing the DoH, under the prerequisite that the anaesthesiologist 

has at least some basic knowledge of clinical encephalography [16]. The latter applies 

only to a minority of clinical anaesthesiologists. Therefore, it is not at all surprising that 

this feature was ranked only 5th by most of the respondents.

All Users applied DoH-monitoring, with frequencies varying from “sometimes” to “always” 

during propofol anaesthesia. This is in accordance with recent UK guidelines published 

by the National Institute for Health and Care Excellence (NICE), recommending the use of 

DoH monitoring in all patients receiving total intravenous anaesthesia [17]. DoH-M was 

used much less frequently during inhalation anaesthesia. This could be due to the fact 

that it is nowadays well known that end-tidal concentrations of inhalation anaesthetics 

are closely linked to the likelihood of being awake. For paediatric patients the minimal 

alveolar concentration of sevoflurane associated with wakefulness (MACawake) has been 

found to be as low as 0.2–0.3% [18].
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The survey also showed disparities in how to interpret the index values and how to 

intervene. While the device manufacturers typically advise to keep the values of their DoH-

Index within a predefined range, the majority of our respondents (62%) believed that the 

combination of the actual index value and its trend best indicates DoH. In a recent study, 

performed in adult patients, Schneider et al. [19] demonstrated that combining the BIS 

with standard anaesthesia parameters (i.e. heart rate) resulted in a prediction probability 

[20] value of 1.0 to detect consciousness. This suggests that this combination is the perfect 

indicator of DoH; at least when assuming DoH equals losing and regaining consciousness. 

Being asked how to react on increasing DoH-index values, our respondents’ answers 

showed a huge variability, ranging from increasing the hypnotic drug concentration, 

giving additional analgesic drugs, increasing both hypnotics and analgesics or even 

deciding not (yet) to intervene at all. An analgesia monitor could assist in deciding which 

intervention is probably needed and most respondents agreed with the need for an 

analgesia monitor. 

Since the majority of the ESPA members did not voice their opinions (30% response rate), 

we have to bear in mind that the results of this survey could be biased. On the other hand, 

the relatively low margin of error indicates that our sample size represents 95% of the all 

ESPA members with a ±6% margin. The low response rate can be regarded as a result in 

its own right. This could be interpreted as if the majority of paediatric anaesthesiologists 

have either significant reservations regarding the reliability and/or applicability of 

DoH-M in children or, more generally a low level of interest in this subject. We cannot 

claim to present data which is representative for the European paediatric anaesthesiology 

community. Nonetheless, we still consider our results relevant, because they very well 

reflect the tenor of the usual informal inter-collegial conversation regarding paediatric 

DoH-M during conferences or daily practice.

There is at least a theoretical possibility that respondents who did not have DoH-M 

available at their institutions would have favoured use of these devices, if given the 

choice. The design of our survey did not take into account this possibility, which could 

be regarded as a shortcoming. On the other hand, it would not be correct to assign these 

respondents to the Non-user group, which consisted by default of respondents who had 

DoH-M available but decided not to use them in children.

As long time users of various DoH-monitoring devices in children we would like to 

share our vision on this controversial topic with our readers and provide the following 

recommendations: In accordance with the current UK NICE guidelines [17] we highly 

recommend the use of DoH-monitoring during propofol anaesthesia in all paediatric 
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patients beyond infant age [3]. In children receiving inhalational anaesthesia we 

recommend the use of DoH-monitoring devices which provide the anaesthesiologist 

with additional information regarding the raw-EEG. This information is vital to prevent 

the child, in particular of the youngest age group, from EEG burst suppression patterns, 

indicating anaesthetic drug overdose.

Future research in this field should focus on the youngest patient age group. A very 

promising recent approach is the interpretation of the EEG power spectrum, displayed 

as Density Spectral Array (DSA). The major advantage of DSA is that it uses raw-EEG 

information in real time and that drug specific EEG-signatures have been identified [21], 

even for paediatric patients [16,22]. This new technology is already implemented in several 

commercially available DoH-monitors.

CONCLUSIONS

In conclusion, for ESPA affiliated anaesthesiologists who filled in our survey, prevention of 

intraoperative awareness was the most important reason to use DoH-M in children. The 

perceived lack of reliability of the currently available devices, when used in children, was 

the most important reason for not using DoH-M. No consensus currently exists on how to 

adjust anaesthesia according to DoH-M indices in children. According to the respondents 

to this survey an ideal DoH-M should be reliable for all age groups and any (combination 

of ) anaesthetic agent. 
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APPENDIX

The survey as presented to our respondents.

Dear colleague, 

 

Thank you very much for agreeing to complete our survey on depth of anaesthesia 

monitoring in children.  Your input is highly appreciated. 

We estimate that it will take you approximately 7 minutes to complete the survey. 

 

Sincerely, 

 

Yuen M. Cheung 

Frank Weber 

 

Paediatric Anaesthesia Unit 

Sophia Children’s Hospital 

Erasmus University Medical Center 

Rotterdam 

The Netherlands 

 

e-mail: paediatric.anaesthesia.research@erasmusmc.nl 
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1. What is your professional title

❍❍ Anaesthesiologist
❍❍ Anaesthesiologist in training (resident)
❍❍ Nurse Anaesthetist
❍❍ Physician Assistant
❍❍ Other (please specify)

2. What is your age?

❍❍ <30 years
❍❍ 30–40 years
❍❍ 41–50 years
❍❍ 51–60 years
❍❍ >60 years

3. In which country are you presently working?

4. In which hospital do you give your most anaesthetics?

   

5. How many years have you been practicing anaesthesiology? 

<5 5–10 11–20 >20

Years of pracatice ❍ ❍ ❍ ❍



Use, applicability and reliability of Depth of Hypnosis monitors in children 29

2

6. How often do you give anaesthesia for the following different patient age groups?

Never Occasionally Frequently

Pre-term neonates

Full-term neonates to 1 month

Infants 1 month to 1 year

1–3 years

4–6 years

7–12 years

13–18 years

Adult patients (>18 years)

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

7. How often do you give anaesthesia for the following types of surgery in paediatric 
patients

Never Occasionally Frequently (Almost) always

Minor surgery

Major surgery

Neurosurgery

Cardiac surgery

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

8. Which of the following depth of anaesthesia monitors are you familiar with? 
(you can choose multiple answers)

❍❍ Bispectral Index
❍❍ Entropy (Datex Ohmeda/ GE)
❍❍ aepEX
❍❍ cAAI
❍❍ AEP-monitor/ 2
❍❍ Cerebral State Index
❍❍ Narcotrend
❍❍ I don’t know any depth of anaesthesia monitor
❍❍ Other (please specify)
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9. Which of the following depth of anaesthesia monitors are available at your 
institution? (you can choose multiple answers)

❍❍ Bispectral Index
❍❍ Entropy (Datex Ohmeda/ GE)
❍❍ aepEX
❍❍ cAAI
❍❍ AEP-monitor/ 2
❍❍ Cerebral State Index
❍❍ Narcotrend
❍❍ I don’t know any depth of anaesthesia monitor
❍❍ Other (please specify)

10. Do you use depth of anaesthesia monitoring in pediatric patients? (respondents 

were redirected to question 12 when answered “yes”)

❍❍ Yes
❍❍ No

11. What is/are your reason(s) for not using depth of anaesthesia monitoring in 
paediatric patients? (you can choose multiple answers) (respondents were redirected to 

question 23 after completing this question

❍❍ It’s too expensive
❍❍ It’s unreliable
❍❍ It doesn’t effect my method of anaesthesia
❍❍ No particular reason
❍❍ Other (please specify)
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12. How often do you use depth of anaesthesia monitoring in the following age 
groups?

Never Occasionally Frequently (Almost) 

always

Pre-term neonates

Full-term neonates to 1 month

Infants >1 month <1 year

1–3 years

4–6 years

7–12 years

13–18 years

Adult patients (>18 years)

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

13. For which of the following procedures do you use depth of anaesthesia 
monitoring? (you can choose multiple answers)

❍❍ Minor surgery
❍❍ Procedural sedation
❍❍ Major surgery
❍❍ Cardiac surgery
❍❍ Neurosurgery
❍❍ Other (please specify)
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14. Please rank the following monitors in order from those most to least frequently 
used in your personal practice (you can drag and drop the options)

Bispectral Index ❑
Not 
available

Entropy (Datex Ohmeda/GE) ❑
Not 
available

aepEX ❑
Not 
available

CAAI ❑
Not 
available

AEP-monitor/2 ❑
Not 
available

Cerebral State Index ❑
Not 
available

Narcotrend ❑
Not 
available

15. Please rank the following reasons for using depth of anaesthesia monitoring in 
order from the most to least important for you (you can drag and drop the options)

To enable use of less anaesthetich agents

Preventrion of intra-operative awareness

Decrease time to awakening

Preventrion of (possible) side effects of anaesthetic agents
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16. Do you have any other reasons for using depth of anaesthesia monitoring?

❍❍ Yes
❍❍ No

17. What is/are your additional reason(s), in order of decreasing importance, for 
using depth of anaesthesia monitoring in paediatric patients?

Reason 1

Reason 2

Reason 3

Reason 4

18. Which aspect of the index value do you think best indicates to the depth of 
anaesthesia?

❍❍ The trend (i.e. decreasing trend or increasing trend)
❍❍ The exact values
❍❍ The trend and exact values (depends on the monitor)
❍❍ Other (please specify)

19. How would you intervene if ONLY the trend of the index values is increasing?

❍❍ Increase the hypnotics
❍❍ Increase analgesics
❍❍ Combination of hypnosis and analgesics
❍❍ �Do nothing; I only intervene when also other variables change (e.g. resp rate, 

pulse, bp etc)
❍❍ Other (please specify)
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20. How would you intervene if ONLY the exact value of the index values is too high?

❍❍ Increase the hypnotics
❍❍ Increase analgesics
❍❍ Combination of hypnosis and analgesics
❍❍ �Do nothing; I only intervene when also other variables change (e.g. resp rate, 

pulse, bp etc)
❍❍ Other (please specify)

21. How would you intervene if the index value is increasing and too high?

❍❍ Increase the hypnotics
❍❍ Increase analgesics
❍❍ Combination of hypnosis and analgesics
❍❍ �Do nothing; I only intervene when also other variables change (e.g. resp rate, 

pulse, bp etc)
❍❍ Other (please specify)

22. With which of the following anaesthetic drugs do you use depth of anaesthesia 
monitoring in paediatric patients?

Never Sometimes Regularly Always Not applicalbe

propofol

sevoflurane

desflurane

isoflurane

halothane

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍
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23. Do we need the following devices in paediatric anaesthesia?

Completely 

disagree

Disagree I don’t  

know

Agree Completely 

agree

Separate analgesia monitor

Combined analgesia & 

depth of hypnosis monitor

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

24. Please rank the following requirements for your ideal depth of anaesthesia 
monitor in the order from those most (1) to least (6) important. (you can drag and 
drop the options)

Applicability in all age groups

Low costs disposables

Reliability for any (combination of ) anesthetic drug

Lightweight device

Raw EEG display

Advanced artefact rejection protocol

This was our last question. We thank you for taking the time to fill in our survey.
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ABSTRACT

BACKGROUND: The aepEX Plus monitor (aepEX) utilizes a mid-latency auditory evoked 

potential-derived index of depth of hypnosis (DoH).

OBJECTIVE: This observational study evaluates the performance of the aepEX as a DoH 

monitor for pediatric patients receiving propofol–remifentanil anesthesia.

METHODS: aepEX and BIS values were recorded simultaneously during surgery in three 

groups of 25 children (aged 1–3, 3–6 and 6–16 years). Propofol was administered by 

target-controlled infusion. The University of Michigan Sedation Scale (UMSS) was used 

to clinically assess the DoH during emergence. Prediction probability (pk) and receiver 

operating characteristics (ROC) analyses were performed to assess the accuracy of both 

DoH monitors. Nonlinear regression analysis was used to describe the dose-response 

relationships for the aepEX, the BIS, and propofol plasma concentrations (Cp).

RESULTS: The pk for the aepEX and BIS was 0.36 and 0.21, respectively (p=0.010). 

ROC analysis showed an area under the curve of 0.77 and 0.81 for the aepEX and BIS, 

respectively (p=0.644). At half-maximal effect (EC50), Cp of 3.13 µg·ml-1 and 3.06 µg·ml-1 

were observed for the aepEX and BIS, respectively. The r2 for the aepEX and BIS was 0.53 

and 0.82, respectively.

CONCLUSIONS: The aepEX performs comparable to the BIS in differentiating between 

consciousness and unconsciousness, while performing inferior to the BIS in terms of 

distinguishing different levels of sedation and does not correlate well with the Cp in 

children receiving propofol-remifentanil anesthesia.

Key words: Adolescent. Children, preschool. Consciousness Monitors. Evoked Potentials, 

Auditory/drug effects. Infant. Propofol
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BACKGROUND

The aepEX Plus monitoring system (Medical Device Management Ltd., Essex, UK), 

designed to monitor the depth of hypnosis (DoH) in anesthetized patients, has recently 

become available in Europe. It is currently the only commercially available monitor, 

which processes mid-latency auditory evoked potentials (MLAEP). The computer analysis 

produces an index value called aepEX, which ranges from 0 to 99. MLAEP is a promising 

physiological variable to assess the DoH [1-3]. There are, however, few published studies 

concerning the use of the aepEX Plus (aepEX) as a DoH monitor in clinical anesthesia, and 

to our knowledge, these have only been conducted in the adult population [4-7]. In this 

observational study, we investigated the performance of the aepEX as a DoH device in 

pediatric patients anesthetized with propofol and remifentanil. Simultaneously Bispectral 

Index (BIS) data were collected as a means of reference.

METHODS

After obtaining Institutional Review Board approval (ErasmusMC, Rotterdam, the 

Netherlands, MEC2011-104, NL 35976.078.11), written informed consent was obtained 

from the patient’s parents or guardians. Additionally, written assent was obtained from 

patients older than 12 years.

Seventy-five pediatric patients, scheduled for plastic, urological, orthopedic, or general 

surgery, were eligible for inclusion in the study. Patients were divided into three age 

groups of 25 patients aged 1–3, 3–6, and 6–16 years.

Patients were primarily excluded when they had clinically significant hearing impairments, 

EEG affecting conditions, taking EEG affecting drugs, needed admittance for the 

pediatric intensive care unit (PICU) and known allergies for propofol, sevoflurane and/or 

remifentanil.

After successful cannulation, a bolus of 0.5 µg·kg-1 remifentanil was given over 15 s 

followed by a continuous infusion of 0.1 µg·kg-1·min-1. Propofol was administered by a 

target-controlled infusion (TCI) pump (Alaris PK Syringe Pump, CareFusion, Houten, the 

Netherlands) programed with the Propofol Paedfusor pharmacokinetic model [8,9] and 

was initially set at a target propofol concentration (Cp) of 6.0 µg·ml-1. 
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In case of inability to secure an i.v. access in the awake child, anesthesia induction 

was performed by mask with sevoflurane followed by i.v.-cannulation. Propofol-TCI 

and continuous remifentanil infusion were started as soon as possible. Subsequently, 

sevoflurane was stopped and washed out with high fresh-gas flow (10 l·min-1).

The airway was secured by a laryngeal mask airway. Patients were connected to a 

semiclosed anesthetic circuit (Primus®, Draeger, Lübeck, Germany) and primarily allowed 

to breath spontaneously. In case of hypoventilation, mechanical ventilation was used to 

re-establish and maintain normocapnia.

The attending anesthesiologist could apply a localregional technique suitable for the 

type of surgery. Surgery was allowed to commence at least 10 min after the application 

of a local-regional technique. If needed, additional remifentanil could be given before 

intraoperative measurements were made.

Intraoperatively, the Cp were gradually decreased from 6.0µg·ml-1 to a minimum of 

2.0 µg·ml-1 in steps of 0.5 µg·ml-1. After each step, Cp were allowed to stabilize for at least 

1min.

If the patient showed signs of inadequate depth of anesthesia, that is, tachycardia, 

tachypnea, sweating, involuntary movements, or hypertension, during the decrease in Cp, 

the Cp and/or remifentanil could be increased.

At the end of the procedure, remifentanil and propofol administration was discontinued, 

which marked the emergence. The University of Michigan Sedation Scale (Table 1) was 

applied to assess the patient’s consciousness until a UMSS of 1 by a single researcher (Y.C.)

[10].

All patients received standard anesthesia monitoring, consisting of ECG, pulse 

oximetry, noninvasive blood pressure measurement at 5-minute intervals, temperature, 

capnography, inspired and endtidal concentrations of oxygen and, in case of inhalation 

induction, inspired and endtidal sevoflurane concentration.
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Table 1. University of Michigan Sedation Scale.

0 Awake/ Alert

1 Minimally Sedated: Tired/ sleepy, appropriate response to verbal conversation and/ or sounds.

2 Moderately Sedated: Somnolent/ sleeping, easily aroused with light tactile stimulation.

3 Deeply Sedated: Deep sleep, arousable only with significant physical stimulation.

4 Unarousable

aepEX- and BIS-monitoring
Before applying the DoH monitor sensors, the skin was swabbed with alcohol and 

abraded with Sensor Prep (Medical Device Management, Essex, UK). Attachment of the 

sensors was in accordance with the recommendations of the manufacturers. We attached 

the aepEX sensors on the left side and the BIS electrodes on the right side of the patient’s 

head. At the midline, the BIS electrode was attached above the aepEX electrode. Sensor 

placement and skin preparation were repeated until the impedance was below the 

required value as indicated by the monitors. Prior to induction of anesthesia, no baseline 

data were collected for analysis.

aepEX monitoring and data processing
To evoke MLAEP, the aepEX produces 1ms short click sounds with an intensity of 90 dB at 

a frequency of 6.9 Hz, which were delivered via a pair of headphones (MDR-V150; Sony 

Europe, London, UK). These headphones made the monitor more suitable for our pediatric 

study population than the aepEX standard silicone earphones.

The aepEX algorithm calculates the MLAEP waveform by averaging 256 cortical responses 

(sweeps) to the applied click sounds. Due to a moving time-averaging technique, the 

aepEX value is updated every 0.3 s instead of (256 sweeps / 6.9 Hz) 37s.

We used the aepEX logger software (Medical Device Management, Essex, UK, version 

1.3) to store aepEXvalues to a personal computer. Values contaminated with artifacts as 

flagged by the artifact detection routine of aepEX were excluded from further analysis.

BIS monitoring and data processing
We used a BIS Vista monitor (Aspect Systems International, de Meern, the Netherlands, 

software version 2.02) with smoothing rate set to 15s. Recordings were exported directly 

to a USB drive for subsequent offline analysis. Values having a signal quality lower than 
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50%, as reported by the BIS, were considered too heavily contaminated with artifacts and 

were discarded from further analysis.

DoH monitoring was performed throughout anesthesia until the patient regained 

consciousness. For analysis, index values of 10 s were averaged.

During emergence, index values just before every UMSS score were averaged to minimize 

interference by UMSS assessment. To prevent interobserver variability, one single 

researcher (Y.C.) collected all DoH-monitoring data and made all UMSS observations. The 

attending anesthesiologist was blinded for both monitors during the study.

Statistics
Continuous data were validated for normality by visual inspection in combination with 

the D’Agostino and Pearson omnibus normality test. Unless stated otherwise, variables 

were presented as mean (SD). Nonparametric analyses were performed with the Kruskal-

Wallis test with Dunn’s posthoc test for unpaired data, for example, differences between 

age groups, and Wilcoxon matched-pairs signed rank test for paired data, for example, 

differences between aepEX and BIS. Multiple testing of paired data was corrected with a 

posthoc Bonferroni’s correction.

Nonlinear regression calculations were used to investigate the relationship between 

index values and Cp by fitting the data in an inhibitory sigmoid Emax model:

E = E0 +
(Emax – E0)

1 + 10(logEC50–x)y

where E is the index value as shown by the DoH monitors, EC50 the Cp with half-maximal 

effect on the DoH monitors, x the Cp as indicated by the TCI pump and γ the Hillslope 

which was variable to optimize for the best fit. E0 and Emax were constrained to 0 and 

100. Only intraoperative DoH data were used for this analysis, as we could not let the Cp 

stabilize for one minute during the emergence period due to ethical reasons.

Evaluation of the predictive value of the DoH monitors for the UMSS was performed 

by calculating the prediction probability (pk) as proposed by Smith et al. [11]. A custom 

spreadsheet macro, pk MACRO, provided and described by them [11], was used for analysis. 

The pk value ranges from 0.0 to 1.0 and is calculated from index values of at least three 

different UMSS scores. A value of 0.5 means that in 50% of the cases, the DoH monitor 
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correctly predicts the clinically observed UMSS. If the device predicts the UMSS 100% 

correctly, the pk value would be 1.0. Values below 0.5 describe an inverse relationship.

To investigate the reliability of the monitors in distinguishing between consciousness 

and unconsciousness, dichotomized UMSS scores (UMSS >1 indicating unconsciousness, 

UMSS ≤1 indicating consciousness) were used to perform a paired receiver operating 

characteristic (ROC) analysis for both monitors. ROC analysis for each DoH monitor and 

age group was performed to calculate sensitivity and specificity. All ROC analyses were 

calculated using MEDCALC for Windows, version 12.3.0.0 (MedCalc Software, Mariakerke, 

Belgium). Other analyses were calculated by GRAPHPAD Prism 5 for Mac OS X, version 

5.0d (GraphPad Software, San Diego, California, USA). P-values <0.05 were considered 

statistically significant.

RESULTS

We were able to complete the registration of aepEX and BIS values until awakening in 

69 patients. In four patients (group 6–16), the Cp and/or remifentanil administration was 

increased. Data recording could not be completed due to technical or logistical difficulties 

in three, one, and two patients from groups 1–3, 3–6, and 6–16, respectively. In one patient 

(group 6–16), artifactfree aepEX values were only available during emergence. Two study 

patients (groups 1–3 and 6–16) received premedication and were excluded from further 

analysis. No patient received neuromuscular blocking agents.

For caudal blocks (n=61), ropivacaine 0.2% was administered at a dose of 1.0–1.25 ml·kg-1, 

up to a maximum of 25 ml. In two patients, a penile block was performed with bupivacaine 

0.5%, 0.2 ml·kg-1. Peripheral loco-regional techniques were applied under ultrasound 

guidance, and volumes <5 ml of ropivacaine 0.2% were injected. Demographic data of 

the patients are shown in Table 2.

Figure 1 illustrates the means of the index values of both DoH monitors during the various 

measurement points.
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Table 2. Baseline Characteristics of patients receiving propofol-remifentanil anesthesia.

1–3 years 3–6 years 3–6 years 1–18 years

(n=24) (n=25) (n=24) (n=73)

Mean age in months [IQR] 23 [14–34] 57 [43–72] 107 [74–176] 62 [14–176]

Weight in kg (mean ± SD) 12.00 ± 1.92 18.86 ± 4.01 33.19 ± 13.22 21.32 ± 11.85

Male/female 23/1 23/2 22/2 68/5

Mean duration of surgery in minutes [IQR] 87 [40-210] 87 [45-215] 87 [45-155] 87 [40-215]

Procedure

Subumbilical 21 (88%) 25 (100%) 24 (100%) 70 (96%)

Upper extremity 3 (13%) 0 (0%) 0 (0%) 3 (4%)

Locoregional technique

No block 2 (8%) 2 (8%) 2 (8%) 6 (8%)

Caudal block 21 (88%) 20 (80%) 20 (83%) 61 (84%)

Penile block 0 (0%) 1 (4%) 1 (4%) 2 (3%)

Ileoinguinal block 0 (0%) 2 (8%) 0 (0%) 2 (3%)

Axillary block 1 (4%) 0 (0%) 0 (0%) 1 (1%)

Sciatic and femoral block 0 (0%) 0 (0%) 1 (4%) 1 (1%)
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Figure 1. Mean aepEX (● blue) and BIS (● red) index values with 95% confidence intervals at 
different propofol concentrations (Cp) and UMSS scores of all groups.
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Non-linear regression analysis revealed a median EC50 of 3.13 µg·ml-1 (IQR: 1.94–3.96) and 

3.06 µg·ml-1 (IQR: 2.46–3.43) for the aepEX and BIS, respectively (p=0.949). Comparisons 

between different age groups within and between both monitors revealed no significant 

differences. Table 3 summarizes the results derived from the nonlinear regression analysis.

Paired comparison of pk values was possible for 26 patients. The mean pk value for the 

aepEX (PkaepEX 0.36; 95% CI: 0.28–0.45) was significantly higher than for the BIS (PkBIS 0.21; 

95% CI: 0.17– 0.25) (p=0.010).

ROC analysis for patients at the start of the emergence compared with patients assigned 

to UMSS1 revealed an area under the curve (AUC) of 0.77 (95% CI: 0.68–0.85) and 0.81 

(0.74–0.87) for the aepEX and BIS, respectively. Specificity was 2% and 16% for the aepEX 

and BIS, respectively, at 100% sensitivity. At 100% specificity, sensitivity was 14% and 15% 

for the aepEX and BIS, respectively (Figures 2 and 3).

Maximum sensitivity and specificity were, respectively, 77% and 71% for the aepEX and 

66% and 93% for the BIS at index values of, respectively, >55 and >70. The results of the 

unpaired ROC analyses are illustrated in Figures 2 and 3.
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Figure 2. The sensitivity (● red) and specificity (● blue) of the aepEX monitor to detect 

consciousness (UMSS of 1) from various index values.
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Figure 3. The sensitivity (● red) and specificity (● blue) of the BIS monitor to detect consciousness 
(UMSS of 1) from various index values.

DISCUSSION

This study is, to our best knowledge, the first to evaluate the applicability of the aepEX in 

pediatric surgical patients. We found that the aepEX performs comparable to the BIS in 

detecting UMSS ≤1. The aepEX was furthermore less related to Cp and performed inferior 

to the BIS in discriminating subtle differences in DoH.

Figure 1 illustrates the relationship between index values at different measurement 

moments. As opposed to the BIS, the aepEX was less affected by different Cp (see Figure 1), 

whereas at emergence from anesthesia,transition from unconsciousness to consciousness 

resulted in a significant increase in index values. This same response pattern of the 

aepEX was also reported in other studies, which were performed in adult patients [6,12]. 

Interestingly, the AEP monitor/2, which also processes MLAEP, has been reported to 

produce a comparable increase in index values at awakening [5,13-15].

The relatively constant aepEX value during maintenance and the abrupt increase at UMSS 

1 suggests that the aepEX has a weak correlation with the actual Cp, but rather with the 

clinical endpoints consciousness vs unconsciousness. This weak correlation corresponds 

with the rather low r2 (0.53) of the nonlinear regression model. The observed r2 of the 

BIS is in agreement with the current literature [16-18] and suggests a more accurate 

prediction of BIS values at different Cp. The EC50 ranging from 2.46 to 3.43µg·ml-1 propofol 

for the BIS is comparable with published adult data (see Table 3) [17–20]. Rigouzzo et al. 
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demonstrated that the EC50 for the BIS was significantly higher in prepubertal patients 

than in postpubertal patients [16]. As we mostly had prepubertal patients, this effect, that 

is, decreasing EC50 with increasing age was not observed in our study.

Table 3. Half maximal effective concentrations derived from non-linear regression analysis of 
propofol on aepEX and BIS index values.

  1–3 years 3–6 years 6–18 years 1–16 years

aepEX

EC50* (median [IQR]) 3.24 [1.34–3.93] 2.77 [2.24–3.93] 2.97 [2.01–5.88] 3.13 [1.94–3.96]

r2 (mean ± SD) 0.49 ± 0.30 0.53 ± 0.36 0.57 ± 0.34 0.53 ± 0.33

BIS

EC50 (median [IQR]) 3.09 [2.34–3.66] 3.17 [2.94–3.61] 2.55 [2.35–3.30] 3.06 [2.46–3.43]

r2 (mean ± SD) 0.78 ± 0.22 0.87 ± 0.10 0.83 ± 0.16 0.82 ± 0.17

* EC50; Half maximal effective concentration in µg·ml-1.

Pk analysis revealed a PkaepEX value of 0.36 indicating an inverse correlation with the UMSS, 

in other words, the aepEX predicts 64% of the UMSS correctly. The BIS had a higher 

predictive value of 79% (p=0.010).

To our best knowledge, there are currently no published studies dealing with PkaepEX 

values in pediatric patients. Two recently published studies from our own research group 

reported a pk value of 0.74 for the AEP monitor/2 calculated for 45 and 20 pediatric 

patients [13,14].

Struys et al. reported a pk value of 0.89 for the MLAEP derived A-Line Index in 20 adult 

patients receiving propofol anesthesia [21]. The differences in the observed pk values 

could, at least partially, be explained by differences in the applied study designs and the 

use of different DoH monitors.

Our own research group revealed a PkBIS of 0.74 and 0.75 in previous studies [13,14], which 

is close to our currently observed PkBIS value of 0.79.

Although pk values of only 26 patients could be calculated in this study, the PkBIS of 0.79 

seems to be in accordance with those in previously published pediatric studies; PkBIS of 

0.74 and 0.75 [13,14].
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We could not detect an age dependency for the EC50 (see Table 3) and pk values. This could 

be a type II error because we had not performed a power analysis for these parameters.

Using a precommercialized version of the aepEX, Doi et al. demonstrated that it does 

not correlate well with the Cp, whereas a sudden increase in aepEX values was observed 

when patients regained consciousness [12]. This behavior might suggest that the aepEX 

monitor does not measure a depth, but rather a clinical state (UMSS≥1). As the pk value 

describes the accuracy to predict every UMSS, this could explain the rather lower PkaepEX 

value.

In a recent editorial, Sleigh questioned the model of ‘depth of anesthesia’ in favor of a 

simple on–off switchboard mechanism theory [22]. Although solely a theory, it seems to 

match our observations of the aepEX during propofol anesthesia.

Considering the aepEX’s binary behavior, a (binary) ROC analysis could theoretically be 

more appropriate than a pk analysis. Compared with our findings, Gajraj et al. observed 

at 100% specificity, a significantly higher sensitivity for the precommercialized aepEX 

monitor (14% vs 60%) and a comparable sensitivity for the BIS (15% vs 14%) [23]. At a 

sensitivity of approximately 85%, they reported a higher specificity compared with our 

findings for the aepEX (53% vs 85%) and BIS (45% vs 80%). In a previous study by our 

own group, the BIS had a sensitivity of 12%, 85%, and 100%, respectively, at 100%, 61%, 

and 9% specificity [13]. The discrepancy found between our study and Gajraj et al., could 

be explained by the large difference in age of the study populations. ROC analyses of 

the aepEX and BIS showed no significant differences in the AUC between the three age 

groups and the groups as a whole (p=0.644).

We did not analyze the relationship between the index values and Cp during emergence, 

due to the continuous decline of Cp at that moment. The 20 s averaged index values would 

therefore not represent one Cp, but rather a range.

Our study applied the Paedfusor pharmacokinetic model to calculate the expected 

Cp based on age and weight. Cp, however, is an indirect measurement of the propofol 

concentration at the effect site, the brains. For that reason, it would have been preferable 

to assess the DoH monitors with a TCI pump programed with a pediatric effect-site 

model. Unfortunately, no such model is commercially available at this moment. Our study 

population consisted only of pediatric patients receiving propofol with remifentanil 

anesthesia and, while the effect of remifentanil on the aepEX should be minimal [24], 

extrapolations to other combinations of anesthetics with opioids for children should be 

carried out cautiously.
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Loco-regional anesthesia could have an effect on DoH. Davidson et al. demonstrated that 

a caudal block was associated with a five points decrease in BIS values compared with 

patients without a caudal block. The authors also pointed out that the clinical relevance 

of a decrease in five points is questionable [25].

In accordance with Absalom et al., who found no impact of aep monitoring on BIS values 

during propofol anesthesia, we assume that interference of aepEX- and BIS-monitoring is 

rather unlikely [26].

Having the headphones on did not give problems for UMSS assessment. The same 

headphones were used in a previously published study concerning the A-line monitor 

and UMSS, which also posed no problems in UMSS assessment [27].

We assumed that patients not known with hearing impairment would be suitable for 

aepEX monitoring. During our interaction with the patients, we did not observe any signs 

for hearing impairments and 69 patients were successfully scored with a UMSS of 1, which 

meant they had an adequate response to sound.

The investigator who collected the DoH data also made the UMSS assessments. This 

might lead to the possibility of a slight bias. We certainly would have preferred to let the 

UMSS assessments be carried out by another person. However, this was not possible for 

logistical reasons.

In conclusion, we have observed that in pediatric patients, under propofol-remifentanil 

anesthesia the aepEX performs comparably to the BIS in distinguishing consciousness 

from unconsciousness, while the aepEX is inferior to the BIS in detecting different UMSS. 

The aepEX was unaffected by age and, unlike the BIS, also Cp. The sudden increase in index 

values of the aepEX when patients regained consciousness comply with the intriguing 

hypothetic ‘switchboard-theory’ by Sleigh [22].
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ABSTRACT

BACKGROUND: The aepEX is a measure of depth of hypnosis (DoH), derived from 

processed mid-latency auditory evoked potentials.

OBJECTIVES: To evaluate the aepEX as a measure of DoH in children receiving sevoflurane–

remifentanil anesthesia.

METHODS: aepEX and bispectral index (BIS) were recorded simultaneously in 75 

children, (1–3, 3–6, and 6–18 years), receiving sevoflurane at endtidal concentrations 

(Etsevo) between 1.5 and 0.5 MAC. The Etsevo at which the aepEX and BIS had a value of 50 

(EC50aepEX and EC50BIS) was calculated by nonlinear regression analysis. The accuracy of 

aepEX and BIS to predict the DoH was assessed by prediction probability (pk) and receiver 

operating characteristics (ROC) analysis.

RESULTS: Seventy-four children were included for analysis. The EC50aepEX (2.68%) and 

EC50BIS (2.10%) were comparable; the same accounts for the EC50aepEX of the different 

age groups and the EC50aepEX and EC50BIS of corresponding age groups. The EC50BIS in 

children aged 1–3 years was lower than in the older age groups (p<0.05). Pk values of the 

aepEX (0.32, CI 95% 0.08–0.56) and BIS (0.47, CI 95% 0.19–0.75) were comparable. The 

area under the ROC curve was 0.72 (CI 95%: 0.62–0.82) and 0.67 (CI95%: 0.56– 0.77) for 

the aepEX and BIS, respectively (p=0.54). Optimal cutoff values were >60 (aepEX) and 

>68 (BIS), with corresponding specificities 91%, CI 95%: 80–97% (aepEX) and 66%, CI 95%: 

52–77% (BIS).

CONCLUSIONS: In this study with children receiving sevoflurane anesthesia, the aepEX 

outperformed the BIS in distinguishing unconsciousness from consciousness. Both 

indices performed equally bad in differentiating different levels of DoH.

Keywords: Adolescent; Child; Child, Preschool; Consciousness Monitors; Evoked Potentials, 

Auditory; Drug Effects; Infant; Sevoflurane
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BACKGROUND

Monitoring the depth of hypnosis (DoH) in pediatric surgical patients is both necessary 

and challenging. All currently available EEG-derived DoH monitors are primarily designed 

for use in adult patients. The EEG of a child has different characteristics than the adult 

EEG, the younger the child, the more pronounced the differences. Therefore, the use of 

EEG-derived DOH monitors is not recommended in children younger than two years [1].

Another approach to monitoring DoH is the analysis of mid-latency auditory evoked 

potentials (MLAEP) [2]. A potential advantage of MLAEP over the EEG in terms of their 

applicability as a measure of DoH in children is, that the differences between children and 

adults appear to be less pronounced [3].

The recently marketed aepEX Plus monitor (Medical Device Management Ltd., Essex, 

UK) processes midlatency auditory evoked potentials (MLAEPs) resulting in the so-called 

aepEX index, representing a measure of depth of hypnosis (DoH).

In this prospective observational study, we evaluated the performance of the aepEX 

monitor to detect the DoH in children of different age groups receiving sevoflurane–

remifentanil anesthesia. bispectral index (BIS) recordings were simultaneously collected 

and compared to the aepEX as a means of reference.

METHODS

After IRB approval (ErasmusMC, Rotterdam, the Netherlands, MEC 2011-104, NL 

35976.078.11) and written informed consent of the parents and patients older than 12 

years were obtained, pediatric patients aged between 1 and 18 years and scheduled for 

elective plastic, urological, orthopedic, or general surgery were eligible for inclusion in 

this study. 75 patients were stratified for age into three groups of 25 (1–3, 3–6, and 6–18 

years). Clinically significant hearing impairments, EEG affecting conditions, use of EEG 

affecting drugs (premedication included), need for admittance to the pediatric intensive 

care unit, and/or known allergies for sevoflurane and/or remifentanil served as primary 

exclusion criteria.

For induction of general anesthesia, it was first attempted to obtain and secure peripheral 

intravenous access. A slow bolus of 0.5 µg·kg-1 remifentanil was administered over 15 s 

followed by a continuous infusion of 0.1 µg·kg-1·min-1, followed by propofol (3–5 mg·kg-1) 
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or sevoflurane (without nitrous oxide) by mask. If intravenous access could not be obtained 

under awake conditions, anesthesia induction was performed by mask with sevoflurane, 

followed by i.v. access and remifentanil as described above. A laryngeal mask airway was 

used to secure the airway. Patients were connected to a semi-closed anesthetic circuit 

(Primus, Draeger, Lubeck, Germany) and primarily allowed to breathe spontaneously. In 

case of hypoventilation (endtidal CO2 >6.0 kPa), mechanical ventilation was used to re-

establish and maintain normocapnia (endtidal CO2 of 4.5–6.0 kPa).

If possible, patients received locoregional blocks for both intra- and postoperative pain 

relief. Peripheral low volume loco-regional techniques were applied under ultrasound 

guidance, using ropivacaine 0.2%. For caudal blocks, plain ropivacaine 0.2% was used at 

a volume of 1.00–1.25 ml·kg-1. For penile nerve blocks, bupivacaine 0.5% 0.2 ml·kg-1 was 

administered. If local regional techniques were not an option, remifentanil was increased 

to 0.3–0.4 µg·kg-1·min-1. Furthermore, i.v. paracetamol 15 mg·kg-1 and i.v. diclofenac 

2 mg·kg-1 were given.

Etsevo was initially adjusted to 3.9%, equivalent to 1.5 MAC values [4], in a mixture of oxygen 

and air, and subsequently decreased by steps of 0.5% at least every 5 min to a minimum 

of 1.8% to maintain an adequate DoH during the surgical procedure. A further decrease 

to 1.3% (0.5 MAC) was achieved at the start of wound closure.

Etsevo and/or remifentanil could be increased if the attending anesthesiologist had 

reason to suspect inadequate depth of anesthesia, i.e., tachycardia, tachypnea, sweating, 

involuntary movements, or hypertension.

At the end of the procedure, sevoflurane and remifentanil administration was discontinued 

and the fresh gas flow was set to 10 lmin1, which marked the start of the emergence 

period. The University of Michigan Sedation Scale [5] (UMSS, see Table 1) was used to 

assess the DoH until a score of ≤1 was reached. 

All patients received standard anesthesia monitoring consisting of ECG, pulse oxymetry, 

noninvasive blood pressure measurement, temperature, capnography, and inspired and 

endtidal concentrations of oxygen and sevoflurane.
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aepEX and BIS monitoring
The skin on the forehead was first swabbed with alcohol and abraded with Sensor Prep 

(Medical Device Management, Essex, UK). Then, the aepEX sensors were attached on the 

left side and the BIS electrodes on the right side of the patient’s head according to the 

manufacturers’ recommendations. The aepEX sensor was attached just below the BIS 

electrode at the center of the forehead.

To not distress the child unnecessarily, no baseline data of both DoH monitors were 

collected from the patients prior to the induction of anesthesia.

In patients who had an i.v.-induction with propofol, intraoperative aepEX and BIS 

measurements were postponed for 15 min after the last bolus of propofol.

Intraoperatively, values from both DoH monitors were collected at least 5 min after every 

decrease in Etsevo during the emergence period values recorded just before every UMSS 

score were used for analysis. Analyses were performed with averaged index values of 10s.

To prevent interobserver variability, one single researcher (Y.C.) collected all DoH-

monitor’s data and made the UMSS assessments. During the whole study-period, the 

attending anesthesiologist was blinded to the screens of both DoH monitors.

Table 1. University of Michigan Sedation Scale.

0 Awake/alert

1 Minimally sedated: tired/sleepy, appropriate response to verbal conversation, and/or sounds.

2 Moderately sedated: somnolent/sleeping, easily aroused with light tactile stimulation.

3 Deeply sedated: deep sleep, arousable only with significant physical stimulation.

4 Unarousable.

aepEX monitoring and data processing
The aepEX delivers click sounds with a duration of 1 ms, an intensity of 90 dB, and a 

frequency of 6.9 Hz through a pair headphones to provoke MLAEPs. As the standard 

earplugs are unsuitable for small children, we connected the aepEX to a commercially 

available over-the-ear headphone (MDR-V150; Sony Europe, London, UK).

The aepEX algorithm calculates the MLAEP waveform by averaging 256 cortical responses 

(sweeps) to the applied click sounds. The aepEX value is updated every 0.3 s by moving 
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time average technique. aepEX values were recorded to a personal computer using the 

AEPEX LOGGER software (Medical Device Management, version 1.3). Values that were 

marked by the aepEX’s artifact detection protocol were manually excluded from further 

analysis.

BIS monitoring and data processing
The BIS VISTA monitor (Aspect Systems International, de Meern, the Netherlands, software 

version 2.02) was used. The smoothing rate was set to 15 s, and BIS values were exported 

directly to a USB drive. BIS values having a signal quality of <50% were manually discarded 

from subsequent analysis.

Statistics
To investigate the relationship between DoH index values and Etsevo, the data were fitted 

in an inhibitory sigmoid Emax model:

E = E0 +
(Emax – E0)

1 + 10(logEC50–x)y

E is the index value as shown by the DoH monitors; EC50 represents the Etsevo with half-

maximal effect on the DoH monitors, x the Etsevo and γ the variable Hillslope, to optimize 

for the best fit. E0 and Emax were constrained to 0 and 100, representing the range of 

the DoH monitors. The EC50 of every individual patient was calculated separately and 

summarized according to whether the data were (non)parametric (median or mean). Only 

intraoperative DoH data were used for this analysis.

Prediction probabilities (pk) for the DoH monitors were calculated according to the method 

described by Smith et al. [6], using the custom spreadsheet macro, pk-MACRO, provided 

by the authors. The pk value describes how good a DoH index predicts the clinical DoH of 

a patient. It ranges from 0.0 to 1.0 and is calculated from index values of at least 3 different 

clinical DoH stages, in our study the UMSS. If a monitor always predicts the correct UMSS, 

the pk is 1.0. pk values below 0.5 describe an inverse relationship between the index and 

the UMSS, which is the same as 1.0 pk. A DoH monitor with a pk of 0.5 predicts only 50% 

of the clinically observed UMSS of the patient correctly, which is no better than chance.

We also performed paired and unpaired receiver operating characteristic (ROC) analyses 

and calculated the corresponding area under the curve (AUC) to evaluate the monitors’ 

performance in distinguishing between unconsciousness (UMSS >1) and consciousness 

(UMSS ≤1). The optimal combination of the sensitivity and specificity was defined as ‘max 

(Sensitivity + Specificity –1).’ ROC analyses were calculated using MEDCALC for WINDOWS, 

version 12.7.0.0 (MedCalc Software, Mariakerke, Belgium). Other analyses were calculated 
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by GRAPHPAD PRISM 5 for Mac OS X, version 5.0d (GraphPad Software, San Diego, CA, USA). 

Continuous data, for example, pk and EC50, were tested for normality by the D’Agostino 

& Pearson omnibus normality test and visual inspection. Unpaired nonparametric data 

were analyzed with the Kruskal-Wallis test combined with Dunn’s posthoc analysis, for 

example, EC50 of the different age groups. The Wilcoxon matched-pairs signed rank test 

was applied to analyze paired nonparametric data, for example, EC50 and pk of the same 

groups, and if appropriate with Bonferroni correction for multiple testing. Parametric data 

were analyzed with paired or unpaired t tests combined, in case of multiple tests with 

Bonferroni correction.

Variables were presented as mean (SD) unless otherwise stated. P-values <0.05 were 

considered statistically significant.

RESULTS
Complete datasets, suitable for subsequent analysis, could be obtained in 69 of 75 

patients. Patient characteristics are given in Table 2. One patient (group 1–3 years) received 

midazolam preoperatively and was primarily excluded from the study. An increase in 

sevoflurane during intraoperative measurements was not needed in any patient. Propofol 

was administered in three patients (group 3–6 years) during emergence due to extreme 

agitation (n=2) and laryngospasm (n=1). In one patient (group 3–6 years), conversion to 

laparoscopy after the initial operation, during which all intraoperative measurements 

were completed, required tracheal intubation. Another patient (group 6–16) pulled off the 

electrodes during emergence. As only data from the emergence period were corrupted 

and/or missing, intraoperative data from these five patients were still included for further 

analyses. 

aepEX
BIS

60

50

40

In
de

x 
va

lu
e

3.9 3.4 2.9 2.4 1.9 1.8 1.3 

Figure 1. Mean aepEX (● blue) and bispectral index (● red) values with standard error of the 

mean at different endtidal sevoflurane concentrations (Etsevo) of all groups.
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Figure 2. Mean aepEX (● blue) and bispectral index (● red) values with standard error of the 

mean at different university of Michigan Sedation Scale scores of all groups. 

The EC50aepEX (2.68%; CI 95%: 2.24–3.86%) and the EC50BIS (2.10%; CI 95%: 1.35–3.19%) 

were not significantly different (p=0.065, after correction for multiple testing). The EC50BIS 

in the youngest patient group (1–3 years was higher) was higher than in older patients 

(p<0.05), whereas the EC50aepEX was not age dependent. For details, see Table 2 and 

Figure 1.

Due to artifact contamination of the MLAEP data during emergence, paired pk analysis 

was possible in 10 patients only. Pk values for the aepEX (PkaepEX) and BIS (PkBIS) were 

respectively 0.32 (CI 95%: 0.08–0.56) and 0.47 (CI 95%: 0.19–0.75) (p=0.23). See also 

Figure 2. The paired ROC analysis showed an AUC of 0.72 (CI 95%: 0.62–0.82) and 0.67 

(CI 95%:0.56–0.77) for the aepEX and BIS, respectively (p=0.54). At 100% sensitivity, the 

aepEX and BIS had respectively a specificity of 2% and 0%, while at 100% specificity, the 

sensitivity was respectively 31% and 21%. Maximum sensitivity and specificity for the 

aepEX were at 64% (CI 95%: 46– 79%) and 91% (CI 95%: 80–97%), respectively, at a cutoff 

index value of >60. The BIS had a maximum sensitivity and specificity of respectively 

70% (CI95%: 57– 81%) and 66% (CI 95%: 52–77%) at an index value >68. The AUC of the 

different age groups with the same monitor and AUC of same age groups with different 

monitors were not different.
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Table 2. Patient characteristics.

1–3 years 3–6 years 6–18 years 1–18 years

(n=24) (n=25) (n=25) (n=74)

Mean age in months [Range] 20 [13–29] 54 [38–66] 137 [77–188] 71 [13–188]

Weight in kg (mean ± SE) 11.3 ± 0.4 18.6 ± 0.7 43.0 ± 2.9 24.6 ± 1.9

Male/female, no 23/1 22/3 22/3 67/7

Mean duration of surgery in minutes 
[Range]

82 [32–184] 71 [15–147] 66 [20–183] 73 [15–184]

Procedures, no (%)

Subumbilical 19 (79%) 23 (92%) 24 (96%) 66 (89%)

Upper extremity 5 (21%) 1 (4%) 1 (4%) 7 (10%)

Combination of subumbilical  
and upper extremity

0 (0%) 1 (4%) 0 (0%) 1 (1%)

Locoregional technique, no (%)

Axillary block 0 (%) 0 (0%) 1 (4%) 1 (1%)

Caudal block 15 (63%) 18 (72%) 12 (48%) 45 (61%)

Epidural catheter 0 (0%) 0 (%) 1 (4%) 1 (1%)

Ileoinguinal block 0 (0%) 4 (16%) 4 (16%) 8 (11%)

Dorsal nerve of penis block 0 (0%) 1 (4%) 0 (0%) 1 (1%)

Popliteal block 0 (0%) 0 (0%) 1 (4%) 1 (1%)

Pudendal nerve block 1 (4%) 0 (0%) 0 (0%) 1 (1%)

Radial nerve block 1 (4%) 0 (0%) 0 (0%) 1 (1%)

Supraclavicular block 1 (4%) 0 (0%) 0 (0%) 1 (1%)

Infiltration by surgeon 1 (4%) 1 (4%) 1 (4%) 3 (4%)

Femoral and popliteal block 0 (0%) 0 (0%) 1 (4%) 1 (1%)

Femoral and sciatic block 0 (0%) 0 (0%) 2 (8%) 2 (3%)

Ilioinguinal and pudendal nerve 
block

1 (4%) 1 (4%) 0 (0%) 2 (3%)

No block 4 (17%) 0 (0%) 2 (8%) 6 (8%)
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DISCUSSION

In this study of children under sevoflurane–remifentanil anesthesia, the aepEX and the 

BIS perform comparably in terms of pk and AUC, whereas the aepEX outperforms the BIS 

with respect to its specificity at optimal cutoff values.

This is, to our best knowledge, the first pediatric study to examine the pharmacodynamic 

relationship between sevoflurane and the aepEX. We observed a tendency of decreasing 

EC50aepEX with age, however not statistically significant, and a significantly higher EC50BIS 

for children aged 1–3 years compared to the two older age groups (see Table 3). McCann 

et al. [7] reported an EC50BIS of 1.48% sevoflurane in oxygen/nitrous oxide mix in children 

with a mean age of 3.3 years. In terms of MAC equivalents, this is 0.74, which lies close to 

the EC50BIS of 2.10% (0.8MAC) in our study.

Table 3. Half-maximal effective concentrations derived from nonlinear regression analysis of 
sevoflurane on aepEX and BIS index values.

1–3 years 3–6 years 6–16 years 1–18 years

aepEX

EC50
a (median [IQR]) 2.29 [1.20–5.50] 2.73 [1.82–3.40] 2.11 [1.41–3.27] 2.68 [1.63–3.91]

r2 (mean ± SD) 0.34 ± 0.33 0.70 ± 0.33 0.49 ± 0.34 0.51 ± 0.36

BIS

EC50 (median [IQR]) 2.56 [2.10–3.62]* 2.04 [1.33–2.27] 1.74 [1.15–2.34] 2.10 [1.45–2.62]

r2 (mean ± SD) 0.72 ± 0.22 0.54 ± 0.31 0.70 ± 0.19 0.65 ± 0.26

aEC50; Half-maximal effective concentration in endtidal volume%.

*Significantly different from age groups 3–6 and 6–18 years (p<0.05).

It might be regarded as a shortcoming of our study that we excluded the emergence 

period from the pharmacodynamic analysis. During the emergence period, a high 

fresh gas flow of 10 l·min1 was applied to achieve a rapid washout of sevoflurane. As a 

consequence, it was technically impossible to reliably link Etsevo to the aepEX and the BIS.

Due to the high incidence of artifacts and the fact that the jackknife method for the pk 

analysis requires index values related to at least three different UMSS scores, computation 

of a pk analysis was possible in no more than 10 patients. Our observed pkaepEX of 0.32 

implies an inverse relation with the UMSS; that is, it can predict the correct UMSS in 68%. 

The BIS had an even worse prediction probability of 53%, which is just a little better than 
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pure chance. We did not observe a difference between the pkaepEX and pkBIS; however, 

the possibility of a type II error should be considered. In a study of adult patients, Kurita 

et al. [8] observed a pkaepEX (with a precommercialized version aepEX monitor) and a 

pkBIS of respectively 82% and 81%. Unfortunately, they did not report their method of 

analgesia and whether any premedication was administered, which makes it difficult to 

compare their results to ours.

In a recent study [9] we examined the performance of the aepEX in children receiving 

propofol–remifentanil anesthesia and showed a comparable specificity of 2% (vs 2% of 

the current study) for the aepEX and a higher specificity of 16% (vs 0% of the current 

study) for the BIS at 100% sensitivity. At 100% specificity, the sensitivities are 31% and 

21% for the aepEX and BIS monitor, respectively, which are higher than what we had 

previously observed with propofol (14% and 15% for the aepEX and BIS, respectively). The 

AUC of the BIS during propofol–remifentanil anesthesia was higher than observed in our 

present study (0.81 vs 0.67), while the AUC of the aepEX appears to be comparable in both 

studies (0.77 vs 0.72). The comparable AUC of the aepEX during sevoflurane and propofol 

anesthesia may imply that it is less susceptible to the different pharmacodynamics of 

these hypnotics.

Possible effects of remifentanil on the aepEX and the BIS should be considered. Schraag et 

al. [10] could show that remifentanil had no effect on MLAEPs. Guinard et al. reported the 

same for the BIS [11]. We could not find any reason why these findings should not account 

for this study as well.

For intraoperative measurements, we targeted at different Etsevo. Figure 1 shows the 

overall trend of aepEX and BIS values at different Etsevo. During the emergence period, we 

related the UMSS to the values of both monitors (see Figure 2). Although not significant, 

we observed a slight decrease in the aepEX at the beginning of the emergence period 

compared to the intraoperative values related to Etsevo 1.3% from 55 to 50 units. A 

possible explanation for this unexpected phenomenon could be that the aepEX was also 

influenced by surgical stimuli, despite the local regional technique given. Interestingly, 

the BIS did not show the same behavior.

In conclusion, we have observed that, in children receiving sevoflurane–remifentanil 

anesthesia, the aepEX had a better specificity than the BIS in distinguishing unconscious 

from conscious children at their optimal cutoff values. As the sensitivity and specificity 

vary at different cutoff values, it depends on the chosen cutoff values whether the aepEX 
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should be favored above the BIS. With respect to their ability to distinguish between 

different levels of hypnotic depth, both indices performed equally bad.
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ABSTRACT

BACKGROUND: The aepEXplus monitoring system, which uses mid-latency auditory 

evoked potentials to measure depth of hypnosis, was evaluated in pediatric patients 

receiving desflurane-remifentanil anesthesia.

METHODS: Seventy-five patients, 1–18 years of age (stratified for age; 1–3, 3–6, 6–18 

years, for subgroup analyses), were included in this prospective observational study. The 

aepEX and the bispectral index (BIS) were recorded simultaneously, the latter serving as 

a reference. The ability of the aepEX to detect different levels of consciousness, defined 

according to the University of Michigan Sedation Scale, investigated using prediction 

probability (pk), and receiver operating characteristic (ROC) analysis, served as the primary 

outcome parameter. As a secondary outcome parameter, the relationship between end-

tidal desflurane and the aepEX and BIS values were calculated by fitting in a nonlinear 

regression model.

RESULTS: The pk values for the aepEX and the BIS were, respectively, 0.68 (95% CI, 

0.53–0.82) and 0.85 (95% CI, 0.73–0.96; p=0.02). The aepEX and the BIS had an area under 

the ROC curve of, respectively, 0.89 (95% CI, 0.80–0.95) and 0.76 (95% CI, 0.68–0.84; 

p=0.04). The maximized sensitivity and specificity were, respectively, 81% (95% CI, 

61%–93%) and 86% (95% CI, 74%–94%) for the aepEX at a cutoff value of >52, and 69% 

(95% CI, 56%–81%) and 70% (95% CI, 57%–81%) for the BIS at a cutoff value of >65. The 

age-corrected end-tidal desflurane concentration associated with an index value of 50 

(EC50) was 0.59 minimum alveolar concentration (interquartile range: 0.38–0.85) and 0.58 

minimum alveolar concentration (interquartile range: 0.41–0.70) for, respectively, the 

aepEX and BIS (p=0.69). Age-group analysis showed no evidence of a difference regarding 

the area under the ROC curve or EC50.

CONCLUSIONS: The aepEX can reliably differentiate between a conscious and an 

unconscious state in pediatric patients receiving desflurane-remifentanil anesthesia.
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BACKGROUND

Monitoring the depth of hypnosis (DoH) in anesthetized patients provides the 

anesthesiologist with significant additional information, enabling one to adjust the 

dose of anesthetic agents more adequately, according to the needs of the patient. DoH 

monitoring in children has been shown to result in the use of lower doses of anesthetic 

drugs and a faster recovery [1-3]. Bearing in mind the ongoing discussion about potential 

neurotoxic effects of anesthetic drugs on the developing brain, this technology can help 

prevent anesthetic drug overdosing, adding safety to the conduct of pediatric anesthesia.

Mid-latency auditory evoked potentials (MLAEP) can be utilized to measure the DoH 

during anesthesia [4-7]. The developmental time of MLAEP extends through the first 

decade of life [8], as opposed to the raw electroencephalogram (EEG), which is not mature 

before early adulthood. MLAEP are therefore a potentially more useful parameter to 

assess the DoH than EEG in children.

The aepEXplus monitor (aepEX) is a commercially available DoH monitor that utilizes 

MLAEP. In previous studies, the performance of the aepEX was evaluated in children during 

propofol and sevoflurane anesthesia [9,10]. Desflurane, due to its low blood-gas partition 

coefficient, has a unique pharmacokinetic profile, which, from a clinical perspective, can 

best be described as “fast in-fast out.” Desflurane is a challenging drug for DoH monitors 

because they have to calculate their DoH indices in a clinical setting characterized by fast 

changes in hypnotic drug target concentration.

The current study was conducted to assess the performance of the aepEX monitor in 

children during desfluraneremifentanil anesthesia. For means of reference, bispectral 

index (BIS) values were also recorded simultaneously.

The primary objective of this prospective observational study was to assess the ability of 

the aepEX to detect the return of consciousness during emergence from anesthesia. Our 

secondary objective was to assess the relationship between the aepEX and different end-

tidal desflurane concentrations. 
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METHODS

This article adheres to the applicable STrengthening the Reporting of OBservational 

studies in Epidemiology (STROBE) guideline. The study was reviewed and approved 

on May 12, 2011 by the Institutional Review Board of the Erasmus MC, Rotterdam, the 

Netherlands (MEC 2011–104, NL 35976.078.11) and registered in the Dutch trial register 

before inclusion of the first patient (http://www.trialregister.nl/trialreg/admin/ rctview.

asp?TC=2983, NTR2983, principal investigator: Y. M. Cheung, date of registration: July 

12, 2011). Written informed consent was obtained from the participants’ parents or 

guardians. According to the Dutch law, additional written informed assent was collected 

from children ≥12 years of age.

Patients scheduled in the Erasmus MC, Sophia children’s hospital for elective general, 

urologic, plastic, or orthopedic surgery were eligible for inclusion. The entire cohort of 75 

patients was stratified for age into 3 groups of 25 children each (group 1: 1–3 years; group 

2: 3–6 years; and group 3: 6–18 years) to detect possible age-related effects. Exclusion 

criteria consisted of known allergies to any medication in the study protocol (remifentanil, 

desflurane, sevoflurane, and/or propofol), the presence of a clinically significant hearing 

impairment, the use of medication (eg, premedication, antiepileptics), having a condition 

affecting the EEG (to prevent bias), and a planned postoperative admittance to the 

pediatric intensive care unit.

Conduct of Anesthesia
After arrival at the operating room, an intravenous cannula was inserted and remifentanil 

0.5 µg·kg−1 was administered over 15 seconds followed by a continuous infusion of 

0.1 µg·kg−1·minute−1. General anesthesia was induced with propofol 3.0–5.0 mg·kg−1.

When it was not possible to obtain intravenous access in the awake child, induction 

was performed with sevoflurane by facemask, after which an intravenous access was 

obtained in the anesthetized child. Immediately after an intravenous cannula was in 

place, remifentanil was administered according to the same scheme as in awake children. 

After insertion of a laryngeal mask, airway desflurane was slowly washed in to an end-

tidal desflurane concentration (Etdes) of approximately 1 minimum alveolar concentration 

(MAC), adjusted for age [11].

Once the airway was secured, locoregional analgesia was given whenever possible and 

appropriate. Ropivacaine 0.2% was used for low-volume ultrasound-guided peripheral 

locoregional techniques and caudal blocks. Penile nerve blocks were performed with 
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bupivacaine 0.5%. When locoregional analgesia was not an option, for whatever reason, 

remifentanil was increased to a dose of 0.3–0.4 µg·kg−1·minute−1 during the surgery.

During anesthesia, all patients were monitored with our standard equipment, which 

consists of electrocardiogram, pulse oximetry, noninvasive blood pressure measurement, 

temperature, capnography, and inspired and end-tidal concentrations of oxygen, 

sevoflurane, and desflurane.

aepEX and BIS Monitoring
After induction of general anesthesia, the skin on the forehead was swabbed with alcohol 

and abraded with Sensor Prep (Medical Device Management, Essex, United Kingdom) to 

decrease the impedance to a low enough level to allow for both aepEX and BIS monitoring. 

aepEX and BIS electrodes were then attached, respectively, on the left and right sides of 

the patient’s forehead according to the manufacturer’s recommendation. A commercially 

available over-the-ear headphone (MDR-V150; Sony Europe, London, United Kingdom) 

was connected to the aepEX because standard earplugs are unsuitable for small children. 

aepEX index values were transferred to a personal computer at 5-second intervals using 

the aepEX’s logger software (version 1.3, Medical Device Management, Essex, United 

Kingdom). aepEX data labeled with “artefact,” as shown by the aepEX logger software, 

were excluded from subsequent analysis.

The BIS Vista monitoring system (version 2.02, Aspect Systems International, de Meern, 

the Netherlands) was used, with a smoothing rate of 15 seconds. BIS data were directly 

transferred at 1-second intervals to a USB stick plugged into the monitor. BIS values with 

a signal quality <50%, as indicated by the BIS signal quality index, were excluded from 

subsequent analysis.

Data collection for study purposes started 15 minutes after administration of propofol 

or when the end-tidal sevoflurane concentration, in the case of an inhalation induction, 

was 0% as measured by our anesthesia machine (Primus, Draeger, Lübeck, Germany). 

Patients were primarily allowed to breathe spontaneously during the surgical procedure. 

In case of hypoventilation (end-tidal CO2 >6.0 kPa), mechanical ventilation was used to 

reestablish and maintain normocapnia (end-tidal CO2 of 4.5–6.0 kPa). During the surgical 

procedure, Etdes was initially titrated to 1.5 MAC and decreased every 3 minutes by 1 vol% 

to a minimum of 0.7 MAC, corrected for age. According to Taylor and Lerman [11], we 

defined 1 MAC as 8.7%, 8.6%, 8.0%, and 7.5% for children 1–3, 3–5, 5–12, and ≥12 years of 

age. At the start of wound closure, Etdes was decreased to 0.5 MAC. After completion of the 
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surgical procedure, the administration of desflurane was discontinued, and the fresh-gas 

flow was set to 10 L·minute−1 using 100% oxygen.

During the emergency period, the DoH was assessed according to the University of 

Michigan Sedation Scale (UMSS) [12] until the patient had a UMSS ≤1. The UMSS consists 

of 5 levels, including “awake/alert,” “minimally sedated,” “moderately sedated,” “deeply 

sedated,” and “unarousable,” which correspond, respectively, to a UMSS of 0, 1, 2, 3, and 4.

Data analyses were performed with the average index value over 10 seconds before the 

intended time points as described previously.

Statistical Analysis
Primary Outcome — The relationship between the index values and different DoH (UMSS) 

were analyzed by calculating the prediction probability value (pk), which was described 

by Smith et al. [13] A pk value and the area under the curve (AUC) derived from a receiver 

operating characteristic (ROC) analysis are both measures of the discriminative ability 

of a predictor; to set it more precisely, pk is a generalization of the AUC. ROC analyses 

can only be performed with dichotomous outcome parameters, whereas pk also allows 

assessment of the discriminative power of a predictor when there are >2 states. A pk of 1.0 

corresponds with a DoH monitor that always predicts the correct UMSS. If a DoH monitor 

predicts the correct UMSS in only 50% of the cases, then it will have a pk of .5. A pk<.5 

describes an inverse relationship. An inverse relationship will be expressed as 1 − pk for a 

better understanding. Pk values were only computed when ≥3 different UMSS values were 

observed because computing this for only 2 different values would be the same as a ROC 

with its corresponding AUC. For each individual patient, the pk value would be computed, 

after which the mean pk value for its corresponding age group would be calculated.

ROC analyses and its corresponding AUC were performed to investigate the predictive 

capabilities of the DoH monitor to distinguish consciousness from unconsciousness 

using MedCalc for Windows, version 5.6.1 (MedCalc Software, Mariakerke, Belgium). 

The cutoff index value at which both the sensitivity and the specificity was the highest 

was defined as the maximized combination. For analysis, we defined consciousness and 

unconsciousness as a UMSS of, respectively, ≤1 and ≥2.
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Secondary Outcome — aepEX and BIS data were fitted in a nonlinear regression model to 

analyze the relationship between index values and different Etdes. An inhibitory sigmoid 

Emax model was used for this purpose:

E = E0 +
(Emax – E0)

1 + 10(logEC50–x)y

E0 and Emax are, respectively, the minimum and maximum value of the index values, which 

were 0 and 100. The EC50 is the Etdes at which an index value of 50 was reached on the DoH 

monitors. E is the predicted index value during the administration of an Etdes of x, whereas 

γ is the Hillslope, which was variable to optimize the best fit for this model. The EC50 of 

each individual patient was first computed after which the median of the corresponding 

group was calculated.

Continuous data were tested for normality by visual inspection and the D’Agostino & 

Pearson omnibus normality test. To compare the EC50 between the aepEX and BIS (of the 

cohort and different age groups), the Wilcoxon matched-pairs signed rank test was used. 

When comparing the EC50 among different age groups, a Kruskal-Wallis test was used. 

Pk values of the aepEX and BIS (of the cohort and different age groups) were compared 

with a paired t test, while pk values among different age groups were analyzed with 

an unpaired t test. These tests were computed and analyzed with GraphPad Prism for 

Windows, version 6.04 (GraphPad Software, San Diego, CA). The method of DeLong et 

al. [14] was applied for analysis of the (paired) AUC between the aepEX and BIS monitor. 

The comparison of the AUC of different age groups was made according to the method 

of Hanley and McNeil [15]. All analyses among or within the 3 age groups were corrected 

for multiple testing with the Bonferroni correction, except for the KruskalWallis test, for 

which Dunn’s post hoc analysis was applied.

Descriptive analyses were performed with IBM SPSS Statistics for Windows, version 21.0 

(IBM Corp, Armonk, NY). Variables were presented as mean ± standard deviation unless 

stated otherwise. P-values <.05 were considered statistically significant.

A sample size of 25 children per age group and the defined age groups correspond to 

similar published studies concerning DoH monitors [6,16,17]. Previous studies have 

assumed that a reliable pk value can be computed with a sample size of >20 patients [18-

20].
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RESULTS

Between December 2012 and September 2014, a total of 75 patients were included, of 

whom 7 had to be excluded secondarily due to the following reasons: administration 

of premedication (n=1, group 2), tracheal intubation (n=1, group 1), and ventilation 

difficulties before or during the data collection (n=4, group 1; n=1, group 3). Details 

concerning baseline characteristics of the patient are shown in Table 1.

During the wash-in period of desflurane, 28 patients (n=11, group 1; n=8, group 2; n=9, 

group 3) had difficulties maintaining normocapnia, despite mechanical ventilation. 

In these patients, a further increase of desflurane was avoided, and intraoperative 

measurements were started at an end-tidal desflurane concentration <1.5 MAC. In another 

3 patients (n=1, group 1; n=2, group 2), the target MAC of 1.5 could not be reached due 

to an unexpected short surgical procedure. Furthermore, we were unable to collect data 

until a UMSS of 1 was reached in 3 patients (n=2, group 2; n=1, group 3) due to patient 

agitation during emergence. In 1 patient (group 3), the aepEX could not compute any 

index values due to excessive artifact contamination of the signal. From this patient, only 

BIS values from the emergency period were available for analysis.

Data during emergence were available in 45 patients in which ≥3 UMSS values could be 

observed. The quality of the EEG signal was sufficient to compute 13 pk values for the 

aepEX and 37 for the BIS. A paired t test was possible in 12 pk data pairs, resulting in a pk 

value of 0.68 (95% CI, 0.53–0.82) for the aepEX and 0.85 (95% CI, 0.73–0.96) for the BIS 

(p=0.02). Because only 12 pairs of pk values were available for analysis, a subsequent age-

group analysis was abandoned.

The maximized combination of sensitivity and specificity of the aepEX was 81% (95% CI, 

61%–93%) and 86% (95% CI, 74%–94%) at an index value >52. This was for the BIS at an 

index value of >65, during which the sensitivity was 69% (95% CI, 56%–81%) and the 

specificity 70% (95% CI, 57%–81%). A detailed relationship between index value and 

sensitivity and specificity are plotted in Figures 1 and 2.

Paired comparisons of the AUC of the aepEX and BIS monitor showed no evidence for a 

difference between the entire cohort or the different age groups. Details are shown in 

Table 2. We also found no evidence of a difference when comparing AUCs of the 3 age 

groups with each other after correction for multiple testing.
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Figure 1. aepEXplus monitor’s (aepEX) receiver operating characteristic. Sensitivity (solid red lines) and 
specificity (solid blue lines) at different aepEX cutoff values with their respective 95% CIs (dotted red and 
blue lines).

Table 1. Baseline Characteristics.

Characteristics 1–3 y 
(n=20)

3–6 y 
(n=24)

6–18 y 
(n=24)

Entire Cohort
(n=68)

Female, no. (%) 1 (5) 2 (8) 7 (29) 10 (15)

Age, median [range] (mo) 22 [12–35] 54 [37–70] 139 [73–210] 74 [12–210]

Weight, median (IQR) (kg) 12 (10–15) 17 (15–21) 44 (26–59) 17 (14–26)

Procedure, no. (%)

Upper extremity 3 (15) 3 (13) 5 (21) 11 (16)

Subumbilical 17 (85) 20 (83) 19 (79) 56 (82)

Upper and lower extremity 0 (0) 1 (4) 0 (0) 1 (1)

Locoregional analgesia technique, 
no. (%)

Caudal 17 (85) 16 (67) 9 (38) 42 (62)

Brachial plexus 1 (5) 2 (8) 2 (8) 5 (7)

Lumbosacral plexus 0 (0) 2 (8) 10 (42) 12 (18)

Epidural 0 (0) 1 (4) 0 (0) 1 (1)

None 2 (10) 3 (13) 3 (13) 8 (12)

Abbreviation: IQR, interquartile range.
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A total of 569 aepEX values qualified for subsequent analysis (having no artifacts), while 

the BIS provided 632 index values with a signal quality of >50%. These values are plotted 

in Figure 3, describing the relationship between the index values of both DoH monitors 

during different Etdes and UMSS.
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Figure 2. Bispectral index’s (BIS) receiver operating characteristic. Sensitivity (solid red lines) and 
specificity (solid blue lines) at different BIS cutoff values with their respective 95% CIs (dotted 
red and blue lines).

Table 2. Receiver Operator Characteristics Analysis of the aepEX and BIS Monitor.

Age Group AUC of the aepEX
(Mean: 95% CI)

AUC of the BIS
(Mean: 95% CI)

P-value

Group 1 0.76 (0.55–0.90) 0.63 (0.42–0.81) .31a

Group 2 0.95 (0.79–1.00) 0.84 (0.64–0.95) .05a

Group 3 0.99 (0.85–1.00) 0.98 (0.84–1.00) .87a

Entire cohort 0.89 (0.80–0.95) 0.76 (0.68–0.84) .04

Abbreviations: aepEX, aepEXplus monitor; AUC, area under the curve; BIS, bispectral index; CI, confidence 
interval.
a Uncorrected p-value for multiple testing.
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The age-corrected EC50 for the aepEX (EC50aepEX) was 0.59 MAC (interquartile range: 

0.38–0.85; n=57) and for the BIS (EC50BIS) 0.58 MAC (interquartile range: 0.41–0.70; n=63). 

Eleven EC50aepEX could not be computed due to software limitations (unable to converge 

data; n=2, group 1; n=1, group 2; n=1, group 3), too few intraoperative data (n=1, group  1; 

n=1, group 2; n=1, group 3), and data with too many artifacts (n=3, group 2; n=1, group 3).

Software limitations accounted for 2 missing EC50BIS (n=1, group 1; n=1, group 3) and 3 

for having too few intraoperative data (n=1, group 1; n=1, group 2; n=1, group 3). Both 

monitors had a comparable r2: 0.62 (95% CI, 0.54–0.71) for the aepEX and 0.69 (95% CI, 

0.63–0.76) for the BIS. The Kruskal-Wallis tests comparing the EC50 among different age 

groups also showed no evidence of a difference (p=0.27 for the aepEX and p=0.12 for the 

BIS). Paired comparison (n=57) between the EC50aepEX and EC50BIS resulted in a p-value 

of 0.69. The same comparison for age groups 1, 2, and 3 revealed p-values of, respectively, 

0.38, 0.14, and 0.84.
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Figure 3. Trend of aepEXplus monitor (aepEX) and bispectral index (BIS). Mean index values of 
the aepEX (solid lines) and BIS (dashed lines) with their respective 95% CIs related to different 
end-tidal desflurane concentrations and University of Michigan Sedation Scale (UMSS) values. 
MAC indicates minimum alveolar concentration.
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DISCUSSION

Our study demonstrates that the aepEX monitor differentiates between unconscious and 

conscious pediatric patients with a 10% higher sensitivity and specificity than the BIS 

monitor. As opposed to this finding, the aepEX performs inferiorly to the BIS to correctly 

predict different UMSS. We found no evidence of an age-related difference in performance 

of the aepEX, suggesting that the aepEX performs equally in all patients from 1 to 18 years 

of age.

The results of this study are consistent with our findings from the previous study 

investigating the aepEX in children during propofol and sevoflurane anesthesia [9,10]. This 

finding implies that the aepEX monitor also performs equally during different commonly 

used anesthetics in children, that is, propofol, sevoflurane, and desflurane.

As proposed by Smith et al., [13] the pk approach to measure the performance of an 

anesthetic depth indicator is aimed to include different levels of anesthetic depth in the 

analysis. We could, however, only measure 2 levels of anesthetic depth in the majority of 

our patients, which is probably attributable to the properties of desflurane, for example, 

its low blood-gas partition coefficient. Nonetheless, we found evidence of the superiority 

of the BIS over the aepEX in discriminating different UMSS levels.

The concept that consciousness has levels has been accepted for decades. Many different 

clinical observational scales have been designed, validated, and used to assess the level 

of consciousness, among them the Observer’s Assessment of Alertness/Sedation scale 

and the UMSS. All of these scales assume that DoH is graded and that, beginning with 

a fully awake subject, each step of the scale reflects a “lower level of consciousness,” or, 

in the context of anesthesia research, “depth of hypnosis.” By now we are still not sure 

about the true underlying mechanism(s) of our mental states named consciousness 

and unconsciousness. Regarding unconsciousness, it is even possible that the concept 

of “hypnotic depth” is not correct at all, in other words, that we are either conscious 

or unconscious [21]. Therefore, we also performed an ROC analysis as an alternative 

approach to quantify the monitors’ performance. An ROC analysis requires only 2 

different states (“conscious” and “unconscious”) for analysis. Beside this, it also gives 

a more clinically applicable result, that is, a clear cutoff value with its corresponding 

sensitivity and specificity. In our current study, we found that when choosing the maximal 

sensitivity and specificity, the aepEX is superior to the BIS. Choosing the clinically most 

relevant combination of the sensitivity and specificity of the monitors depends on 

personal preferences regarding the most important monitoring target. When prevention 
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of intraoperative awareness is of paramount importance, a DoH monitor with a higher 

sensitivity is favorable. However, if the sensitivity is chosen too high, the resulting low 

specificity would render the monitor useless (Figures 2 and 3).

By definition, the EC50 is the drug concentration needed to achieve 50% of the drug’s 

maximum effect. In our current study, we fitted our intraoperative data in a nonlinear 

regression model to compute the EC50. However, the EC50 can also be measured by 

recording the end-tidal desflurane concentration while maintaining an index value of 50. 

Fletcher et al. [17] performed such a study by maintaining a BIS of 60 during pediatric 

scoliosis surgery under desflurane anesthesia. The end-tidal concentration desflurane 

needed to maintain a BIS of 60 can be described as an EC60 for the BIS monitor. Although 

an EC60 is different from an EC50 and our study designs are not comparable, we found 

a similar MAC of 0.58. Caution is needed when comparing both studies; despite the 

aforementioned, their EC60 comes close to the EC50BIS we observed.

Although processed EEG and MLAEP have strong relationships with consciousness level, 

we should not solely rely on computed DoH index values. A recent study by Schneider et 

al. [22] supports this concept. They demonstrated that the combination of the BIS monitor 

with other standard monitoring parameters, for example, heart rate and blood pressure, 

resulted in a pk of 1.0 to detect the return of consciousness in adult patients, emphasizing 

the importance of observing the patient as a whole.

Almost all patients in our study received additional locoregional analgesia before the 

surgical procedure, most often a caudal block. Davidson et al. [16] demonstrated that a 

caudal block resulted in a decrease in BIS value of 5 points. The effect of a caudal block on 

the aepEX has not yet been studied. Although remifentanil decreases the MAC of volatile 

anesthetics, the DoH seems to be unaffected by it, which was demonstrated by Schraag et 

al and Guignard et al. [23,24]. Both studies observed no effect of remifentanil on the aepEX 

and BIS index values, and we assume that this also applies for our study.

Other studies have revealed a pk BIS value of .82 and .89, which is similar to our observed 

pk value of .85 [25,26]. However, these results were observed in the adult population 

and concerned pk values detecting different end-tidal desflurane concentrations or eye 

opening after general anesthesia. Because our observed pk BIS value is not comparable to 

other studies and only 13 paired pk values could be computed in our study, interpretations 

of the pk values of the aepEX and BIS are limited.



98 Chapter 6

The age stratification applied in this study was designed to match similar studies for 

comparison purposes. However, concerns can be made due to the broad range of group 

3 (6–18 years of age). Because the MLAEP is still developing until the first decade of life 

[8], this group consisted of children with developing MLAEP and fully developed MLAEP 

pathways. However, because the development of the MLAEP is a continuous process, we 

would at least expect to find a difference between group 1 (fully undeveloped MLAEP) 

and group 3 (MLAEP in final development combined with fully developed MLAEP) if an 

age-dependent performance for the aepEX exists. It would be interesting to compare 

group 3 with adult data, but unfortunately no such comparable study was published.

Our study population consisted predominantly of male children. However, we believe it is 

unlikely that this factor affected our study.

In conclusion, our current study observed that the aepEX monitor could reliably 

differentiate unconsciousness from consciousness in pediatric patients during 

remifentanil-desflurane anesthesia combined with a locoregional technique.
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Many different scales and measurement methods have been developed to assess the 

anesthetic depth in the past few decades [1]. In general, the depth of anesthesia was 

measured by the response of the patient to a stimulus (tactile/pain or sound). This requires 

the patient to respond physically (movement) or verbally. Verbal response however, is 

not possible when the trachea of the patient is intubated or a laryngeal mask inserted. 

Furthermore, neuromuscular relaxing agents abolish movement of striated muscles and 

analgesics attenuate pain sensation. Without a reliable response from the patient to 

reflect his or her current depth of hypnosis, these scales are difficult if not impossible to 

interpret when balanced anesthesia is applied.

What is the current opinion regarding depth of hypnosis monitoring in 
children?
Depth of hypnosis monitoring devices are expected to be more dependable in these 

situations, since these circumvent the requirement of a (vocal) motor response from the 

patient to a stimulus. Despite the lack of evidence for it, monitoring is traditionally used 

with the intention to prevent intraoperative awareness in children, as was demonstrated 

in our survey amongst ESPA members. 

Despite the fact that there is literature available supporting a faster emergence phase 

when anesthesia was guided by a depth of hypnosis monitor, due to more efficient 

dosing of anesthetics, this was considered a less important reason to use such a monitor 

in children. Avoiding possible side effects of the anesthetic agents by decreasing the dose 

administered, was expected to an important reason to use depth of hypnosis monitoring 

in children, especially considering the current discussion regarding neurotoxicity to the 

developing brain of the child. However, this argument was considered the least important 

according to our the ESPA members as well. 

Our research also revealed that anesthesiologists doubt about whether use of these devices 

can prevent intraoperative awareness in children. This was their main reason not to use it. 

Even ESPA members who did use hypnosis monitoring in children had their reservations 

towards its reliability in younger children and/or the type of anesthetic(s) used. This was 

illustrated by the less frequent use of hypnosis monitoring devices in younger children 

and when anesthesia was maintained by volatile anesthetics. Inadvertently, these two 

items were also ranked as the most important requirements of a hypothetical ideal depth 

of hypnosis monitor to overcome. 
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Besides having doubts towards the reliability of a depth of hypnosis monitor, the lack of 

a consensus in how to interpret its index values also persists according to our survey. The 

thoughts of our respondents however, are mostly based on the BIS monitor, since 77% 

of the “Users” used a BIS monitor to assess the depth of hypnosis in children. This makes 

the results difficult to extrapolate to all depth of hypnosis monitors available. A probable 

downside of using the BIS monitor in children is that the spontaneous EEG, from which 

the BIS monitor computes its index values, matures through middle age [2]. Kanazawa 

et al. demonstrated that young patients (20 to 30 years) had lower BIS values compared 

to middle-aged (31 to 65 years) or elderly (66 to 80 years) patients during 1 minimum 

alveolar concentration (MAC) of sevoflurane and desflurane anesthesia [3]. This might 

suggest that the BIS monitor is less reliable in the youngest of our patients.

What is currently known concerning MLAEP in children during anesthesia?
The MLAEP on the other hand, matures earlier in life [4]. Reviewing the available literature 

concerning MLAEP monitoring peri-operatively yielded only 15 studies who met our 

lenient inclusion criteria, including a few from our own research group. Except for the 

studies from this thesis, all of them were conducted with MLAEP based monitors which 

are no longer commercially available or were experimental setups. In accordance with the 

adult population, the overall MLAEP waveform of children showed increasing latencies 

and decreasing amplitudes with increasing anesthetics given [5-8]. Also, its performance 

to detect different states of consciousness seems to be reasonable in children [9-

15]. Whether a MLAEP based hypnosis monitor will decrease the rate of unintentional 

intraoperative awareness has not been studied.

Published studies investigating the effect of depth of hypnosis monitoring on 

unintentional perioperative awareness show conflicting results and are conducted in 

the adult population [16,17]. The incidence of unintentional intraoperative awareness 

in children is estimated to be 0.74%, which is much higher compared to adults having 

an incidence of 0.1 to 0.2% [17,18]. However, Blusse van Oud-Alblas et al. reported that 

the children who experienced true awareness in their study (n=6) did not seem to be 

traumatized [19], but taking into account that 50% of the patients develop long-term 

psychological effects after enduring accidental awareness, a reliable depth of hypnosis 

monitor (even for children) seems still to be needed [18]. 
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Figure 1. Median and interquartile range of aepEX values during different UMSS values.

How does a MLAEP monitor perform in children during anesthesia?
In this thesis we evaluated the performance of the aepEX monitor, currently the only 

commercially available MLAEP based depth of hypnosis monitor, in measuring the depth 

of hypnosis during anesthesia in children. Using the BIS monitor as a reference, the aepEX 

seems to perform worse in differentiating different UMSS levels (prediction probability 

values) during propofol, sevoflurane and desflurane anesthesia. However, detecting 

the conscious (UMSS ≤1) and unconscious (UMSS >1) states by the aepEX monitor was 

superior to the BIS monitor during desflurane anesthesia, while being comparable with 

each other during propofol and sevoflurane anesthesia.

When aepEX values against different UMSS scores were plotted in a graph, a sudden sharp 

increase was consistently observed during different kinds of anesthetics when an UMSS 

of 1 was reached (Figure 1).

On the other hand, the BIS monitor showed a more gradual increase over the different 

UMSS values (Figure 2). When compared to the BIS values, the sudden increase in median 

aepEX values resulted in a greater difference between values during an UMSS >1 and 

UMSS of 1. This relationship between the different levels of consciousness and aepEX 
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index values could make its interpretation in clinical practice less ambiguous for the 

assessment of the depth of hypnosis in children.

Subgroup analysis showed comparable results for the different age groups for both 

monitors, indicating that both monitors were just as reliable for the different age groups. 

However, a recent study by Scuisco et al. found higher mean BIS index values for toddlers 

aging 13 months to 36 months compared to infants (1 month to 12 months) or children 

(37 months to 144 months) [20]. The study investigated the effect of age on BIS, response 

entropy and state entropy indexes. Anesthesia was given with sevoflurane. However, 

the dose of sevoflurane was “adjusted in response to clinical signs” and no reproducible 

protocol was described. This could probably explain our different findings concerning the 

effect of age on the BIS index values.

There seems to be a lower correlation between the aepEX values and dose of anesthetics 

administered compared to the BIS values. Both show a negative correlation but, the 

aepEX values were less linear with the concentration anesthetics administered. However, 

the clinical relevance to predict the correct concentration of anesthetic administered is 

questionable for a depth of hypnosis monitor. This is especially true during administration 

of volatile anesthetics, during which the end-tidal concentration is measured by any 

standard modern-day anesthesia machine. For volatile anesthetics the administered 

dose is generally guided by its minimum alveolar concentration (MAC) value. The MAC 

is defined as the concentration vapor needed within the alveoli during which 50% of the 

patients do not move in response to a surgical stimulus. While the absence of movement 

despite a significant stimulus, i.e. surgical stimulus, indicates an adequate depth of 

hypnosis for surgery (comparable to an UMSS of 4), 1 MAC value describes that only 50% 

of the patients has reached this level of depth. Therefore, believing that the MAC is a 

measure of depth of hypnosis for the individual patient is a misconception. 

This thesis has described the thoughts, opinions and (mis)understandings of 

anesthesiologists about the use of depth of hypnosis monitoring in children during 

anesthesia. We described the performance of the aepEX monitor during anesthesia in 

children, demonstrating that it has a reasonable accuracy to detect consciousness from 

unconsciousness and that it is feasible for different age groups. 
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Figure 2. Median and interquartile range of BIS values during different UMSS values.

FUTURE PERSPECTIVES

A few questions remain after this thesis. Anesthesia is not administered in a uniform 

method and different combinations of anesthetics and analgesics (systemic or 

locoregional) are used. The effect of combining anesthetics on a MLEAP based hypnosis 

monitor still remains to be answered. Also, its value in prevention of unintentional intra-

operative awareness in children remains to be elucidated.

As the aepEX index monitor can detect the return of consciousness no more than only 

reasonably, it is not the ideal depth of hypnosis monitor in children. Further investigation 

searching for an even more reliable monitor continues, and the answer might still 

be found in the spontaneous EEG. Density spectral array (DSA) is a method to display 

the spontaneous EEG in a graph by color-coding the intensity of different brainwave 

frequencies, i.e. gamma, beta, alpha, theta, delta and slow waves [21]. Compared to EEG 

based hypnosis monitors, the EEG in a DSA is less processed by a computer algorithm and 

therefor the interpretation depends less on what the algorithm computes, i.e. index value. 

Understanding the EEG and the effect of different anesthetics on it, might help to assess 

the state of the brain more accurately and therefore improving anesthesia technique. 
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However, this means anesthesiologists need to have appropriate knowledge concerning 

EEG recordings and its interpretation, just like capnography, plethysmography, and 

electrocardiography. The brain remains to be one of the most important target organs in 

anesthesia. Since this detailed knowledge about the unprocessed EEG is at present not 

a part of the general skill set of anesthesiologists, we should consider to add this to the 

curriculum of anesthesiology training programs.
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Summary

Chapter 1 explains the concerns about unintentional awareness during anesthesia and 

the potential role for a depth of hypnosis monitor to prevent this. The concerns regarding 

neurotoxicity in children receiving anesthesia, as shown in animal studies, might also 

be averted by a reliable hypnosis monitor. Different variables of the brain can be used 

to assess the depth of hypnosis (DoH), from which the electroencephalogram (EEG) is 

the most commonly used. An alternative could be the mid-latency auditory evoked 

potentials (MLAEP), which could have an advantage in children since it matures earlier in 

life compared to the EEG.

In chapter 2 we assessed the thoughts of practicing anesthesiologists about the use of 

depth of hypnosis monitors in children. We developed an online survey and invited the 

members of the European Society for Paediatric Anaesthesiology to participate in this 

survey to share their thoughts regarding the use, applicability and reliability of hypnosis 

monitoring in children. The survey achieved a response rate of 30% (n=168) and a total of 

138 completed surveys were included for further analysis. Sixty-eight respondents used 

hypnosis monitoring in children (users) and 70 did not (non-users). Sixty-five percent of 

the users reported that prevention of intra-operative awareness was their main reason 

to apply hypnosis monitoring. Among the non-users, the most frequently given reason 

(43%) not to use hypnosis monitoring in children was the perceived lack of reliability 

of the devices used in children. Hypnosis monitoring is used with a higher frequency 

during propofol anesthesia than during inhalation anesthesia. Hypnosis monitoring 

is furthermore used more frequently in children >4 years than in younger children. An 

ideal hypnosis monitor should be reliable for all age groups and any (combination of ) 

anesthetic drug. We found no agreement in the interpretation of monitor index values and 

subsequent anesthetic interventions following from it. We concluded that the prevention 

of intraoperative awareness appears to be the most important reason to use hypnosis 

monitoring in children and the perceived lack of reliability of hypnosis monitoring in 

children is the most important reasons not to use it. No consensus currently exists on how 

to adjust anesthesia according to hypnosis monitor index values in children.

The brain is considered as the major target organ of anesthetic agents. Despite that, 

a reliable means to monitor its function during anesthesia is lacking. Several depth of 

hypnosis monitoring devices are available and most of them are EEG derived. In children 

the EEG develops until adulthood, while MLAEP, which are known to be sensitive to 

anesthetic agents, mature during the first decade of life. MLAEP might therefore be a 
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more reliable parameter to measure the state of the brain during anesthesia in pediatric 

patients. The literature concerning MLAEP based hypnosis monitoring during anesthesia 

in children are set out in chapter 3. This chapter reviews the current literature and 

demonstrates that MLAEP analysis is a reasonable method to assess the depth of hypnosis 

in children during anesthesia. Furthermore, its reliability does not depend on the age of 

the child and the type of commonly used anesthetics. 

The aepEX Plus monitor (aepEX) utilizes the mid-latency auditory evoked potentials and is 

currently the only commercially available MLAEP based hypnosis monitor. In chapter 4 the 

performance of the aepEX as a depth of hypnosis monitor for pediatric patients receiving 

propofol-remifentanil anesthesia was evaluated. aepEX and BIS values were recorded 

simultaneously during surgery in three groups of 25 children (aged 1 to 3, 3 to 6 and 6 

to 16 years). Propofol was administered by target-controlled infusion. The University of 

Michigan Sedation Scale (UMSS) was used to clinically assess the DoH during emergence. 

Prediction probability (pk) and receiver operating characteristics (ROC) analyses were 

performed to assess the accuracy of both DoH monitors. Nonlinear regression analysis 

was used to describe the dose-response relationships for the aepEX, the BIS, and propofol 

plasma concentrations (Cp). The study revealed a pk of 0.36 and 0.21 for the aepEX and 

BIS, respectively (p=0.010). ROC analysis showed an area under the curve of 0.77 and 

0.81 for the aepEX and BIS, respectively (p=0.644). At half-maximal effect (EC50), Cp of 

3.13 µg·mL-1 and 3.06 µg·mL-1 were observed for the aepEX and BIS, respectively. The r2 for 

the aepEX and BIS was 0.53 and 0.82, respectively. Therefore, the aepEX seems to perform 

comparable to the BIS in differentiating between conscious and unconscious states, while 

performing inferior to the BIS in terms of distinguishing different levels of sedation. It also 

does not correlate well with the Cp in children receiving propofol-remifentanil anesthesia.

In Chapter 5 we have evaluated the aepEX as a measure of DoH in children receiving 

sevoflurane-remifentanil anesthesia. aepEX and BIS were recorded simultaneously in 75 

children, (1 to 3, 3 to 6, and 6 to 18 years), receiving sevoflurane at end-tidal concentrations 

(Etsevo) between 1.5 and 0.5 MAC. The Etsevo at which the aepEX and BIS had a value of 50 

(EC50aepEX and EC50BIS) was calculated by nonlinear regression analysis. The accuracy 

of aepEX and BIS to predict the DoH was assessed by pk and ROC analysis. Seventy-four 

children were included for analysis. The EC50aepEX (2.68%) and EC50BIS (2.10%) were 

comparable; the same accounts for the EC50aepEX of the different age groups and the 

EC50aepEX and EC50BIS of corresponding age groups. The EC50BIS in children aged 1 to 

3 years was lower than in the older age groups (p<0.05). Pk values of the aepEX (0.32, 

CI 95% 0.08–0.56) and BIS (0.47, CI 95% 0.19–0.75) were comparable. The area under 

the ROC curve was 0.72 (CI 95%: 0.62–0.82) and 0.67 (CI 95%: 0.56– 0.77) for the aepEX 
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and BIS, respectively (p=0.54). Optimal cut-off index values were >60 (aepEX) and >68 

(BIS), with corresponding specificities of 91%, CI 95%: 80–97% (aepEX) and 66%, CI 95%: 

52–77% (BIS). In this study with children receiving sevoflurane anesthesia, the aepEX 

outperformed the BIS in distinguishing unconsciousness from consciousness. Both 

indices performed equally badly in differentiating different levels of DoH.

The performance of the aepEX monitor is again evaluated in chapter 6. Only this time in 

pediatric patients during desflurane-remifentanil anesthesia. Seventy-five patients, 1 to 

18 years of age (stratified for age; 1 to 3, 3 to 6, 6 to 18 years, for subgroup analyses), were 

included in this prospective observational study. The aepEX and the BIS were recorded 

simultaneously, the latter serving as a reference. The ability of the aepEX to detect different 

levels of consciousness, defined according to the University of Michigan Sedation Scale, 

was investigated using pk, and ROC analysis, served as the primary outcome parameter. 

As a secondary outcome parameter, the relationship between end-tidal desflurane and 

the aepEX and BIS values were calculated by fitting in a nonlinear regression model. The 

pk values for the aepEX and the BIS were, respectively, 0.68 (95% CI: 0.53–0.82) and 0.85 

(95% CI: 0.73–0.96; p=0.02). The aepEX and the BIS had an area under the ROC curve of, 

respectively, 0.89 (95% CI: 0.80–0.95) and 0.76 (95% CI, 0.68–0.84; p=0.04). The maximized 

sensitivity and specificity were, respectively, 81% (95% CI: 61%–93%) and 86% (95% 

CI: 74%–94%) for the aepEX at a cut-off value of >52, and 69% (95% CI: 56%–81%) and 

70% (95% CI: 57%–81%) for the BIS at a cut-off value of >65. The age-corrected end-tidal 

desflurane concentration associated with an index value of 50 was 0.59 MAC (interquartile 

range: 0.38 to 0.85) and 0.58 MAC (interquartile range: 0.41 to 0.70) for, respectively, the 

aepEX and BIS (p=0.69). Age-group analysis showed no evidence of a difference regarding 

the area under the ROC curve or EC50. The aepEX appears to reliably differentiate between 

a conscious and an unconscious state in pediatric patients receiving desflurane-

remifentanil anesthesia.

Our findings in this thesis are discussed and put in perspective in chapter 7. There 

seems to be a need for a reliable depth of hypnosis monitoring in children and the most 

commonly used hypnosis monitors are lacking in this as perceived by a large portion 

of anesthesiologists participated in our survey. There is also a lack of consensus in how 

to use and interpret these devices during anesthesia in children. While the literature 

demonstrated that the use of MLAEP as a variable to assess the DoH seemed promising, 

the currently only commercially available MLAEP based DoH monitor appears to be only 

reasonably reliable in distinguishing between the conscious and unconscious states in 

children during different anesthesia. Future research concerning DoH monitoring might 

want to focus on less processed EEG, letting the anesthesiologist him-/herself interpreting 
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the state of the brain during anesthesia, while preventing confounded computer 

algorithms. Anesthesiologists should therefore consider to revise their training program 

by implementing teaching about the unprocessed EEG during anesthesia.
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Samenvatting

Hoofdstuk 1 bespreekt de problemen rondom onbedoelde wakkere patiënten tijdens de 

anesthesie en de potentiele rol van een hypnose diepte monitor om dit te voorkomen. De 

zorgen over neurotoxiciteit bij kinderen die onder narcose gaan, waarvoor aanwijzingen 

zijn in dierenstudies, zou mogelijk voorkomen kunnen worden door een betrouwbare 

hypnose diepte monitor. Verschillende variabelen van het brein kunnen worden gebruikt 

om de diepte van hypnose te meten, waarvan het elektro-encefalogram (EEG) het 

meest gebruikt wordt. Een alternatief hiervoor zouden de mid-latency auditory evoked 

potentials (MLAEP) kunnen zijn. Deze zijn mogelijk betrouwbaarder bij kinderen, omdat 

ze eerder volledig ontwikkeld zijn dan het EEG.

In hoofdstuk 2 evalueren wij de gedachten van praktiserende anesthesiologen over 

het gebruik van hypnose diepte monitoring bij kinderen. De leden van de European 

Society for Paediatric Anaesthesiology waren uitgenodigd om een door ons ontworpen 

online enquête in te vullen, zodat zij hun ideeën over het gebruik, toepasbaarheid en 

betrouwbaarheid van hypnose diepte monitoring bij kinderen met ons te delen. De 

enquête werd ingevuld door 30% (n=168) van de respondenten, waarvan er in totaal 

138 enquêtes volledig waren ingevuld en werden gebruikt voor verdere analyse. Acht-

en-zestig respondenten gebruikten hypnose diepte monitoren bij kinderen (users) en 70 

gebruikte dit niet bij kinderen (non-users). Vijf-en-zestig procent van de users meldden 

dat het voorkomen van onbedoelde intra-operatieve bewustzijn hun belangrijkste reden 

was om een dergelijke monitor toe te passen. Onder de non-users was hun beleving van 

de slechte betrouwbaarheid van een hypnose diepte monitor de meest gegeven reden 

(43%) om deze niet te gebruiken bij kinderen. Hypnose monitoren werden vaker ingezet 

tijdens anesthesie met propofol dan met dampvormige anesthetica. Verder werden 

hypnose monitoren vaker gebruikt bij kinderen >4 jaar dan jongere kinderen. Er werd 

geen consensus gevonden over hoe men een hypnose monitor dient te interpreteren en 

eventueel hoe hierop te reageren. We concluderen dat het voorkomen van onbedoelde 

intra-operatieve bewustzijn de meest belangrijke reden blijkt te zijn om een hypnose 

diepte monitor te gebruiken en dat juist het gevoel van gebrek aan betrouwbaarheid van 

een hypnose diepte monitor bij kinderen de meest belangrijke reden is om deze niet te 

gebruiken. Er is op dit moment geen consensus over hoe de anesthesie aan te passen op 

basis van een hypnose monitor index waarden bij kinderen.
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Het brein wordt gezien als een van de belangrijkste doelorgaan voor de anesthetica. 

Desondanks dat ontbreekt er een betrouwbare methode om de functie van dit orgaan te 

monitoren tijdens de anesthesie. Een aantal hypnose diepte monitoren zijn beschikbaar 

en de meerderheid ervan gebruikt het EEG hiervoor. Bij kinderen ontwikkelt het EEG 

verder tot en met in de volwassenheid, terwijl het MLAEP, waarvan bekend is dat het 

gevoelig is voor anesthetica, volledig ontwikkeld is gedurende de eerste 10 levensjaren. 

Daardoor zou het MLAEP mogelijk een betrouwbaardere variabele kunnen zijn om de 

status van het brein te meten tijdens anesthesie bij kinderen. De beschikbare literatuur 

over MLAEP gebaseerde hypnose diepte monitoring tijdens anesthesie bij kinderen 

worden uiteengezet in hoofdstuk 3. Dit hoofdstuk beoordeelt de huidige literatuur en laat 

zien dat MLAEP-analyse een redelijke methode is om de diepte van hypnose bij kinderen 

tijdens anesthesie te meten. Verder lijkt de betrouwbaarheid ervan niet afhankelijk te zijn 

van de leeftijd en de verschillende veelgebruikte anesthetica.

De aepEX Plus monitor (aepEX) gebruikt mid-latency auditory evoked potentials en is 

op dit moment de enige commercieel beschikbare MLAEP gebaseerde hypnose diepte 

monitor. In hoofdstuk 4 wordt de prestatie van de aepEX als hypnose diepte monitor 

geëvalueerd bij kinderen die propofol-remifentanil anesthesie krijgen. aepEX en BIS 

waarden werden simultaan opgeslagen tijdens de operatie van drie groepen van 25 

kinderen (leeftijd 1 tot 3, 3 tot 6 en 6 tot 16 jaar). Propofol werd toegediend middels target-

controlled infusion. De University of Michigan Sedation Scale (UMSS) werd gebruikt om 

de klinische diepte van hypnose te objectiveren gedurende de uitleiding van de narcose. 

Prediction probability (pk) en receiver operating characteristics (ROC) analyses werden 

gebruikt om de nauwkeurigheid van beide monitors te evalueren. 

Non-lineaire regressieanalyse werd gebruikt om de relatie tussen de plasmaconcentratie 

propofol (Cp) en het effect op de aepEX en BIS monitor te beschrijven. Het onderzoek 

toont een pk van 0.36 en 0.21 voor respectievelijk de aepEX en BIS monitor (p=0.010). ROC 

analyse laat een oppervlakte onder de curve zien van 0.77 en 0.81 voor respectievelijk 

de aepEX en BIS (p=0.644). Op de helft van het maximale effect (EC50), was de Cp voor de 

aepEX en BIS respectievelijk 3.13 µg·mL-1 en 3.06 µg·mL-1. De r2 voor de aepEX en BIS waren 

respectievelijk 0.53 en 0.82. Hieruit lijkt de aepEX vergelijkbaar te presteren met de BIS 

monitor in het differentiëren tussen “wakkere” en “slapende” patiënt, terwijl het slechter 

presteert in het onderscheiden van verschillende niveaus van sedatie ten opzichte van 

de BIS. De aepEX correleert ook matig met de Cp in kinderen onder propofol-remifentanil 

anesthesie. 
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In hoofdstuk 5 hebben wij de aepEX geëvalueerd als een maat voor de diepte van 

hypnose bij kinderen die sevofluraan-remifentanil anesthesie kregen. aepEX en BIS 

waarden werden simultaan verzameld van 75 kinderen (1 tot 3, 3 tot 6 en 6 tot 18 jaar), 

die een endtidal sevofluraan (Etsevo) concentratie kregen tussen 1,5 en 0,5 MAC. De Etsevo 

waarop de aepEX en BIS waarde 50 was (EC50aepEX en EC50BIS) werd berekend middels 

non-lineaire regressieanalyse. De betrouwbaarheid van de aepEX en BIS om de diepte 

van hypnose te voorspellen werd beoordeeld met pk en ROC analyse. Vier-en-zeventig 

kinderen waren geïncludeerd voor analyse. De EC50aepEX (2.68%) en EC50BIS (2.10%) waren 

vergelijkbaar; hetzelfde gold voor de EC50aepEX van de verschillende leeftijdsgroepen 

en tussen de EC50aepEX en EC50BIS van dezelfde leeftijdsgroepen. De EC50BIS was lager 

voor de kinderen van 1 tot 3 jaar vergeleken met de oudere leeftijdsgroepen (p<0.05). 

Pk waarden voor de aepEX (0.32, CI 95% 0.08–0.56) en BIS (0.47, CI 95% 0.19–0.75) 

waren vergelijkbaar. De oppervlakte onder de ROC curve waren respectievelijk 0.72 (CI 

95%: 0.62–0.82) en 0.67 (CI 95%: 0.56–0.77) voor de aepEX en BIS (p=0.54). De optimale 

afkap punten voor de index waarden waren >60 (aepEX) en >68 (BIS), met daarbij de 

corresponderende specificiteit van 91%, CI 95%: 80–97% (aepEX) en 66%, CI 95%: 52–

77% (BIS). In dit onderzoek met kinderen die sevofluraan-remifentanil anesthesie kregen, 

overtrof de aepEX de BIS monitor in het onderscheiden van bewusteloze en bewuste 

patiënten. Beide monitoren presteren even slecht in het differentiëren van verschillende 

niveaus van hypnose diepte.

De prestaties van de aepEX monitor wordt opnieuw geëvalueerd in hoofdstuk 6. Dit keer 

bij pediatrische patiënten die desfluraan-remifentanil anesthesie ondergaan. Vijf-en-

zeventig patiënten, van 1 tot 18 jaar (gestratificeerd op leeftijden, 1 tot 3, 3 tot 6 en 6 tot 

18 jaar, voor subgroep analyse), werden geïncludeerd in dit prospectief observationeel 

onderzoek. De aepEX en BIS waarden werden simultaan verzameld, waarvoor de BIS 

als referentie werd gebruikt. Het vermogen van de aepEX om verschillende niveaus 

van hypnose diepte te meten, gedefinieerd volgens de University of Michigan Sedation 

Scale, werd onderzocht door middel van pk en ROC analyse en diende als de primaire 

uitkomst maat. Als secundaire uitkomst maat werd de relatie tussen endtidal desfluraan 

en de aepEX en BIS waarden gebruikt, welke berekend werd door middel van non-lineaire 

regressieanalyse. De pk waarden van de aepEX en BIS waren respectievelijk 0.68 (95% CI: 

0.53–0.82) en 0.85 (95% CI: 0.73–0.96; p=0.02). De aepEX en BIS hadden een oppervlakte 

onder de ROC curve van respectievelijk, 0.89 (95% CI: 0.80–0.95) en 0.76 (95% CI, 0.68–0.84; 

p=0.04). De maximale combinatie van sensitiviteit en specificiteit waren respectievelijk 

81% (95% CI: 61%–93%) en 86% (95% CI: 74%–94%) voor de aepEX met een afkapwaarde 

van >52, en 69% (95% CI: 56%–81%) en 70% (95% CI: 57%–81%) voor de BIS met een 

afkapwaarden van >65. De endtidal desfluraan concentratie (gecorrigeerd voor leeftijd) 
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waarbij de index waarde 50 was, was voor de aepEX 0.59 MAC (interkwartielafstand: 0.38 

tot 0.85) en voor de BIS 0.58 MAC (interkwartielafstand: 0.41 tot 0.70; p=0.69). Analyse 

van de verschillende leeftijdsgroepen laat geen verschil zien voor de oppervlakte onder 

de ROC curve en EC50. De aepEX lijkt betrouwbaar te differentiëren tussen bewust en 

bewusteloosheid bij pediatrische patiënten die desfluraan-remifentanil anesthesie 

krijgen.

Onze bevindingen van dit proefschrift worden besproken en in perspectief gebracht in 

hoofdstuk 7. Er lijkt vraag te zijn voor een betrouwbare hypnose diepte monitor voor 

kinderen, wat volgens een groot deel van de anesthesiologen, die deel hadden genomen 

in onze enquête, ontbreekt bij de gangbare hypnose diepte monitoren. Er ontbreekt ook 

een consensus over hoe een hypnose diepte monitor gebruikt dient te worden en hoe 

deze geïnterpreteerd moet worden bij kinderen tijdens anesthesie. Hoewel de literatuur 

laat zien dat MLAEP een veel belovende variabele is om de diepte van hypnose te meten, 

lijkt de op dit moment enige commercieel beschikbare MLAEP gebaseerde hypnose diepte 

monitor slechts maar redelijk te kunnen differentiëren tussen bewuste en bewusteloze 

pediatrische patiënten tijdens anesthesie met verschillende anesthetica. Toekomstige 

onderzoeken op het gebied van hypnose diepte monitoring zouden zich mogelijk 

moeten concentreren op minder bewerkte EEG, zodat de anesthesioloog zelf de conditie 

van het brein kan beoordelen tijdens de anesthesie zonder dat deze beïnvloed wordt 

door een computer algoritme. Anesthesiologen zouden daarom moeten overwegen om 

het curriculum uit te breiden met kennis over het onbewerkte EEG tijdens anesthesie.
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