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Abstract

Background: Critically ill patients undergo extensive physiological alterations that will have impact on antibiotic
pharmacokinetics. Up to 60% of intensive care unit (ICU) patients meet the pharmacodynamic targets of beta-
lactam antibiotics, with only 30% in fluoroquinolones. Not reaching these targets might increase the chance of
therapeutic failure, resulting in increased mortality and morbidity, and antibiotic resistance. The DOLPHIN trial was
designed to demonstrate the added value of therapeutic drug monitoring (TDM) of beta-lactam and
fluoroquinolones in critically ill patients in the ICU.

Methods: A multi-centre, randomised controlled trial (RCT) was designed to assess the efficacy and cost-
effectiveness of model-based TDM of beta-lactam and fluoroquinolones. Four hundred fifty patients will be
included within 24 months after start of inclusion. Eligible patients will be randomly allocated to either study group:
the intervention group (active TDM) or the control group (non-TDM). In the intervention group dose adjustment of
the study antibiotics (cefotaxime, ceftazidime, ceftriaxone, cefuroxime, amoxicillin, amoxicillin with clavulanic acid,
flucloxacillin, piperacillin with tazobactam, meropenem, and ciprofloxacin) on day 1, 3, and 5 is performed based
upon TDM with a Bayesian model. The primary outcome will be ICU length of stay. Other outcomes amongst all
survival, disease severity, safety, quality of life after ICU discharge, and cost effectiveness will be included.

Discussion: No trial has investigated the effect of early TDM of beta-lactam and fluoroquinolones on clinical
outcome in critically ill patients. The findings from the DOLPHIN trial will possibly lead to new insights in clinical
management of critically ill patients receiving antibiotics. In short, to TDM or not to TDM?

Trial registration: EudraCT number: 2017–004677-14. Sponsor protocol name: DOLPHIN. Registered 6 March 2018 .
Protocol Version 6, Protocol date: 27 November 2019.
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Background
In intensive care units (ICU) critically ill patients from
all medical specialties are treated. Consequently, the
ICU population is highly heterogeneous and among the
most complex and expensive within healthcare [1]. Re-
sults of a large international prospective trial show that
70% of ICU patients receive antibiotics [2]. However,
both the incidence of infections and associated mortality
in the ICU have not improved over the last 30 years [3–
5]. This indicates that improvements in clinical out-
comes of ICU patients might be possible.
Standard dosing regimens of antibiotics are usually em-

pirically prescribed based upon a most probable diagnosis.
Due to physiological changes in ICU patients, the pharma-
cokinetic (PK) behaviour is different from non-ICU pa-
tients and subject to impressive changes. Augmented
renal clearance is prevalent, even with normal serum cre-
atinine levels [6, 7]. Dosing regimens used are designed
for non-severely ill patients and derived from studies in
healthy volunteers. This might result in inadequate anti-
biotic treatment in critically ill patients. Frequent changes
in the renal function, volume of distribution and extravas-
cular loss of fluids are also prevalent, which results in
pharmacodynamic variability [8]. Furthermore, parameters
frequently used in patients on the regular wards, such as
serum creatinine, might not be reliable in ICU patients.
As a consequence, this results in suboptimal dosing
followed by treatment failure and increased mortality [9].
Dosing of antibiotics is based upon the minimum inhibi-

tory concentration (MIC) of micro-organisms. The actual
MIC is often unknown and unreliable to determine [10].
The epidemiological cut-off values (ECOFF) describes, for
a given species and antibiotic, the highest MIC for organ-
isms devoid of phenotypically-detectable acquired resist-
ance mechanisms. It defines the upper end of the wild-
type distribution [11]. Pharmacokinetic/pharmacodynamic
(PK/PD) relationships have been described for most anti-
microbial classes. These relationships show a marked
consistency, and the pharmacodynamic index values that
result in a certain effect have been determined for most
classes of antibiotics [12]. The pharmacodynamic targets
(PDTs) are the minimum value of the PK/PD index that
are based on preclinical and clinical drug/micro-organism
exposure-response relationships.
Not reaching antibiotic PDTs is associated with thera-

peutic failure and increased microbial resistance [13–15].
Target attainment is reported only in 60% of beta-lactam
use in the ICU [16]. Ciprofloxacin, a fluoroquinolone has
a reported target attainment of respectively 60–80%, and
17–30% for bacteria with MICs of ≤0.25, and 0.5mg/L
[17–20]. As imaginable, therapeutic failure might increase
ICU length of stay (ICU LOS). Prolonged ICU LOS is as-
sociated with higher ICU, hospital, and 1-year mortality
rate [21] as well as greater use of ICU resources [22]. On

the other hand, high dosing regimens might result in
trough levels associated with toxicity [23]. Simply increas-
ing the standard dosing on the ICU is therefore not opti-
mal: the inter- and intrapatient variability is too high.
Therapeutic Drug Monitoring (TDM) might be used

to optimise pharmacological target attainment and
therefore decrease therapeutic failure [24]. Dose adjust-
ments will need to be made in an early phase of treat-
ment, since quick intervention in antibiotics is essential
for patients with sepsis [25]. Usually a trough concentra-
tion (Ctrough) is used for asserting antibiotic effectiveness.
However steady state trough concentrations may not be
reached before four previous doses of medication [26].
To predict those concentrations, model based TDM for
individualized therapy might be a valuable tool [27].
To the best of our knowledge, no RCT has investi-

gated the effect of TDM of beta-lactam and fluoroquino-
lones on clinical outcomes in critically ill patients.

Primary objective
The primary objective of the trial is to determine the ef-
fect of early model-based TDM of beta-lactam and fluor-
oquinolones on clinical outcome in critically ill patients.

Methods and design
The DOLPHIN trial is a prospective, multi-centre, RCT
investigating whether early model-based therapeutic
drug monitoring of beta-lactam and fluoroquinolones is
superior to standard drug dosing on the intensive care.
The two study groups are defined as 1) the intervention
group, which will receive TDM of study antibiotics, and
2) the control group, which will receive treatment as
usual. The trial is anticipated to include 450 patients
from over 8 ICUs in the Netherlands over a 24 month
period. Data analysis will be done based on the
intention-to-treat principle.
Patients will be randomised to one of the study groups

by a 1:1 ratio, assigned by a computerised randomisation
programme (ALEA Randomisation Service). The block
randomisation is stratified by study centre and antibiotic
group.
Study antibiotics are cefotaxime, ceftazidime, ceftriax-

one, cefuroxime, amoxicillin, amoxicillin with clavulanic
acid, flucloxacillin, piperacillin with tazobactam, mero-
penem and ciprofloxacin.

Participants
All patients admitted to the ICU wards and given stand-
ard of care intravenous therapy of the study antibiotics
will be screened against the inclusion criteria. Identifica-
tion of eligible patients will occur on a daily basis by
training research or clinical staff at the participating
study sites. Informed consent is obtained before partici-
pation in the trial by the research staff or responsible
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clinician. If a patient is incapable of giving consent, a
legal representative will be inquired. If possible, in-
formed consent from the patient is obtained at day five
in case of deferred consent by a legal representative.

Inclusion and exclusion criteria
Patients will need to be 18 years or older, receive intra-
venous antibiotic therapy of the study antibiotics and
treatment should be aimed for at least 2 days at time of
inclusion. Patients will be excluded in the case of preg-
nancy, antibiotic cessation before the first blood sample
collection, already being enrolled in this trial or any
other intervention trial, or receiving study antibiotics
only as prophylaxis within the context of selective di-
gestive tract decontamination (SDD). Medium care and
burn wound patients will also be excluded. Patients will
need to fulfil all the inclusion and none of the exclusion
criteria at randomisation.
An inclusion scheme is followed (Appendix 2), in

which per hospital and time period the anticipated inclu-
sion rate is presented.

Sample size calculation
We hypothesized that active TDM versus non-TDM will
decrease median ICU LOS from 7 to 6 days (baseline 7 ±
3.5, data of five hospitals ICU LOS [28, 29]). With alpha
level of 0.05, and power of 0.80, the sample size is calcu-
lated as 192 per group. Considering a drop-out percentage
of approximate 15%, 450 patients are required in total.

Pharmacokinetic sampling
Blood samples will be obtained from the patient at day 1,
3, 5 and 7 (Fig. 1) during the morning round of antibiotic
administration. A Ctrough (30min before antibiotics infu-
sion) and Cmax (30min after completion of antibiotics in-
fusion) will be collected for each measuring moment.
Total and unbound drug concentrations will be measured
in serum by means of a validated LC-MS/MS method in
the Erasmus University Medical Center (Erasmus MC)
[30]. Samples obtained in an external centre will be trans-
ported to the Erasmus MC for analysis. In the intervention
group the analysis will be performed and reported on the
same day. In the control group blood samples will be col-
lected according to the same sampling scheme, and the
samples will be analysed in bulk later.

Modelling
Patient-specific parameters and antibiotic serum levels
will be used to calculated expected antibiotic exposures.
InsightRX™ (version 1.15.16, San Francisco, California), a
cloud-based clinical decision support platform, will be
used to assess individualized dosing regimens using
model-informed precision dosing. For model fitting and
simulation of concentration time courses, validated and

peer-reviewed research of population-based PK/PD
models in ICU patients will be used. Based upon these
models and the serum antibiotic levels, time unbound
levels above MIC (fT >MIC), unbound area under the
curve divided by MIC (fAUC0-24h/MIC) and through
concentrations (Ctrough) will be calculated. Dose adjust-
ment in the intervention group is performed based on
the PK/PD targets and dose reduction thresholds as de-
scribed in Table 1. For each of the antibiotics, the
ECOFF of the presumed pathogen, as defined by the
European Committee on Antimicrobial Susceptibility
Testing (EUCAST), was used [31].

Trial intervention
Based upon the abovementioned calculations, a dosage
recommendation will be communicated on the same day
as sampling to the treating physician by a hospital
pharmacist or trained researcher. In case of under- or
overdosing, the dosage will be increased or decreased as
described in Table 2. Adherence or deviation from this
advice will be registered in the electronic Case Report
File (eCRF).

Data collection
All collected data will be stored into an eCRF. Laboratory
data will include: serum liver enzymes, bilirubin, creatin-
ine, C-reactive protein, procalcitonin, haemoglobin, white
blood cells, albumin and thrombocytes. Clinical data in-
volve the daily Sequential Organ Failure Assessment
(SOFA) score, fluid balance, Acute Physiology and
Chronic Health Evaluation version 4 (APACHE IV) score,
surgery in the 5 days before admission, use of extra-
corporal devices, mechanical ventilation, other antibiotics
next to the study antibiotics and comorbidities. We will
also collect the admission data which includes the admis-
sion diagnosis and reason for starting antibiotics, admis-
sion and discharge dates and 28-day mortality. The most
prevalent and most severe side effects will also be col-
lected. Quality of life will be assessed at 6 months with
EuroQol™ 5D-5 L Questionnaire. The economic evaluation
will be performed from a hospital perspective. Only direct
medical costs will be included. We will use charges as
published in Dutch guidelines as a proxy of real costs.

Statistical analysis
Baseline characteristics
We will include baseline characteristics related to the
patient, the admission, and hospital. A complete over-
view of variables measured in the DOLPHIN trial is pre-
sented in Appendix 3. Continuous variables will be
presented as mean with corresponding standard devi-
ation (SD) if normally distributed, and median with
ranges if data are skewed. Normality will be assessed
using the Shapiro-Wilk test. Categorical variables will be
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given in numbers and percentages. We will assess
whether these baseline characteristics are significantly
different between the two study groups. For continuous
variables we will compare the means using an
independent-sample t-test or Mann Whitney-U test
when normally or non-normally distributed, respectively.

For categorical variables, we will examine statistical dif-
ferences between study groups using a chi-square test.

Primary outcome
The primary outcome is ICU LOS. This outcome is
based on count data which will be analysed using a pois-
son regression. The ICU LOS of patients transferred to
another ICU are calculated between ICU admission and
transfer date. The effect size will be expressed in a crude
relative risk estimate and absolute risk reduction.
Next to the crude study effect, control variables will be

added to the poisson regression model in case baseline
characteristics are statistically significant different with a
P-value < 0.15 in the univariate analysis. This sensitivity

Fig. 1 Diagram of the trial design. Ctrough, trough concentration of study antibiotic; Cmax, maximum concentration of study antibiotic

Table 1 PK/PD targets and thresholds for dose reduction of
antibiotic groups

Antimicrobials Target Threshold dose reduction

Beta-lactams fT above MIC = 100% Ctrough > 10 x MIC

Ciprofloxacin fAUC0-24h/MIC ratio ≥> 100 fAUC0-24h/MIC ratio > 400

Abdulla et al. BMC Infectious Diseases           (2020) 20:57 Page 4 of 9



analysis is performed to adjust for residual (large) base-
line imbalances to assess their impact and to assess the
robustness of the primary analysis.

Secondary outcomes
We identified eight secondary outcomes, namely: (1)
ICU survival; (2) 28 day survival; (3) incidence of most
common side-effects. Regarding the effect of the treat-
ment: (4) antibiotic target attainment; (5) sickness sever-
ity change with delta-SOFA scores between start of
antibiotics and day 5 [32]; (6) changes in infectious pa-
rameters; (7) quality of Life 6 months after admission
with EuroQol™ 5D-5 L Questionnaire; (8) Costs and
cost-effectiveness from a hospital perspective.
Statistically significant differences for continuous and

categorical variables between study groups will be
assessed using an independent sample t-test and chi-
square test, respectively. If a continuous variable is non-
normally distributed, a Mann Whitney-U test will be
employed to assess the statistical differences. In case of
imbalances between the two groups (as assessed by the
univariate analyses), we will switch to poisson regression,
binary logistic regression, or linear regression for count,
binary outcome, or continuous outcomes, respectively.
We will adjust these models for the imbalanced
variables.
The cost-effectiveness of TDM will be assessed by

calculating the incremental cost-effectiveness ratio,
defined as the difference in costs of TDM compared
to usual care, divided by the average change in
effectiveness.

Data monitoring
Because of the nature of the trial with a low risk of inter-
mediate complications, an independent monitor will visit
each study site every 6 months. 25% of all cases are ran-
domly selected for verification by the independent moni-
tor. Informed consent, source data and reported serious
adverse events (SAEs) are reviewed for errors. The data
will be pseudonymised when stored in the database and
then used for analysis.

Serious adverse events
SAEs will be reported to the local medical ethics
committee through an online platform within 7 days
of occurrence. These will include deaths or re-
admissions within the trial period of 6 months follow-
up. Selected adverse drug reactions are reported until
day seven. Research staff is trained how to address
SAEs and how to report these to the coordinating
researcher.

Dissemination
Findings will be submitted to peer-reviewed journals for
publication, and to local and international conferences.
As we have multiple secondary outcomes, we expect to
submit multiple publications to peer-reviewed journals.
Findings will be communicated to the public through
media coverage and personal website(s).

Discussion
It is important to dose antibiotics correctly to prevent
therapeutic failure, toxicity, and antimicrobial resistance.
The DOLPHIN trial, a multi-centre RCT with clinical
outcome as an endpoint, aims to answer the question
whether TDM of beta-lactam and fluoroquinolones in
critically ill patients is of added value. This design is
quite unique in TDM studies. Several studies have retro-
spectively reported a better outcome when beta-lactam
pharmacodynamic targets are attained. However, these
positive effects have never been confirmed in a prospect-
ive clinical trial.
Continuous infusion of antibiotics is being used in

an increasing number of ICUs. The results seem
promising on clinical cure rate and ventilator-free
days [33, 34]. However - with one dose for all pa-
tients - it still does not take the augmented renal
clearance and variability of ICU patients’ pharmaco-
kinetics into account.
TDM is already gaining terrain in guidelines and re-

views, in which TDM of beta-lactam antibiotics is ad-
vised when high PK variability is expected [35, 36].
Nonetheless, these guidelines are not based upon pro-
spective randomised trials.
Patient recruitment is an ongoing challenge in many

RCTs. We will evaluate the inclusion rate at multiple
time points during the trial. If the inclusion rate is too
low, we will approach additional centres to participate in
the trial.
Until now, the effect of early TDM of beta-lactam and

fluoroquinolones on clinical outcome in the critically ill
has not yet been investigated in a multi-centre RCT.
This makes the DOLPHIN trial unique in its field. Its
findings may lead to new insights and more evidence
based clinical management of the patient receiving anti-
biotics on the ICU.

Table 2 Dosage advice options for intervention

Dosage adjustment Dose recommendations

Dose increase Increase dose administration frequency
by 25–50%

Increase dose by 25–50% with same
dosing frequency

Dose reduction Decrease dose administration frequency

Decrease dose by 25–50% with same
dosing frequency

Withhold administration for 1 day
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Appendix 1

Fig. 2 SPIRIT Figure of the trial procedure timeline. The SPIRIT figure of the DOLPHIN trial. The time path of the enrolment, intervention and
assessments in the trial
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Appendix 3
List of variables measured in the Dolphin trial. This appendix
contains the list of variables measured in the Dolphin trial.
Demographic Data
– Age
– Sex
– Height
– Weight
– Hospital

Clinical data
– ICU admission diagnosis
– Indication for antibiotic therapy
– Comorbidities (Charlson comorbidity index)
– Illness severity scores (APACHE and SOFA)
– Sepsis III criteria
– Daily maximum body temperature
– Presence of extracorporeal circuits (e.g. RRT (renal

replacement therapy), ECMO (extracorporeal
membrane oxygenation))

– Surgery before admission
– ICU mortality
– Hospital mortality
– 6-month mortality
– ICU length of stay
– Hospital length of stay
– Fluid balance
– Most common side effects

Clinical chemistry data
– Kidney related: Creatinine, and Urea
– Liver related: Albumin, ASAT, ALAT, GGT, ALP,

and Total bilirubin
– Infectious related: CRP, Procalcitonin, and White

blood cell count
– Hematological related: Hemoglobin, Trombocytes,

and aPTT

Antibiotic dosing data
– All antibiotic use during 28 day period (target

antibiotic and additional antibiotics)
– Start and end dates
– Initial dose and frequency
– Adjustments to dose and frequency of target

antibiotic
– Time of sampling and antibiotic administration

Other
– Known or presumed pathogen (positive blood

culture and organisms isolated)
– Bacterial susceptibility breakpoints: Minimum

Inhibitory Concentration (MIC)
– Quality of life (EQ-5D-5 L)

Abbreviations
APACHE IV : Acute Physiology and Chronic Health Evaluation IV; AUC0-24h
: Area under the time-concentration curve up to 24 h; AUC0-24h/MIC : Area
under the curve divided by MIC; Cmax : Maximum concentration; CRF : Case
report file; Ctrough : Trough concentration; ECOFF : Epidemiologic cut-off
values of the European Committee on Antimicrobial Susceptibility Testing;
eCRF : Electronic case report file; eGFR : Estimated glomerular filtration rate;
EuroQol: 5D- 5 L 5 level EuroQol 5- Dimensions questionnaire; fAUC0-24h/MIC
: Unbound drug level area under the curve divided by MIC; fT > MIC
: Unbound drug level time above MIC; ICU : Intensive care unit; ICU LOS
: ICU length of stay; LC-MS/MS: Liquid chromatography–mass spectrometry
with second mass spectrometry; MIC : Minimum inhibitory concentration; PD
: Pharmacodynamic; PDT : Pharmacodynamic target; PK : Pharmacokinetic;
PK/PD : Pharmacokinetic/pharmacodynamic; RCT : Randomised controlled
trial; SAEs : Serious adverse events; SD : Standard deviation; SDD : Selective
Digestive tract Decontamination; SOFA : Sequential Organ Failure
Assessment; T > MIC : Time above MIC; TDM : Therapeutic drug monitoring
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