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Female Reproductive Performance 
and Maternal Birth Month: A 
Comprehensive Meta-Analysis 
Exploring Multiple Seasonal 
Mechanisms
Mary Regina Boland   1,2,3,4*, Martin Fieder5, Luis H. John6, Peter R. Rijnbeek6 & 
Susanne Huber5

Globally, maternal birth season affects fertility later in life. The purpose of this systematic literature 
review is to comprehensively investigate the birth season and female fertility relationship. Using 
PubMed, we identified a set of 282 relevant fertility/birth season papers published between 1972 
and 2018. We screened all 282 studies and removed 131 non-mammalian species studies on fertility 
and 122 studies that were on non-human mammals. Our meta-analysis focused on the remaining 29 
human studies, including twelve human datasets from around the world (USA, Europe, Asia). The main 
outcome was change in female fertility as observed by maternal birth month and whether this change 
was correlated with either temperature or rainfall. We found that temperature was either strongly 
correlated or anti-correlated in studies, indicating that another factor closely tied to temperature may 
be the culprit exposure. We found that rainfall only increases fertility in higher altitude locations (New 
Zealand, Romania, and Northern Vietnam). This suggests the possibility of a combined or multi-factorial 
mechanism underlying the female fertility – birth season relationship. We discuss other environmental 
and sociological factors on the birth season – female fertility relationship. Future research should focus 
on the role of birth season and female fertility adjusting for additional factors that modulate female 
fertility as discussed in this comprehensive review.

Over 12% of reproductive age women (15–44 years) in the United States of America suffer from infertility or 
impaired fecundity1, with some estimates as high as 16%2. European countries show similarly high infertility rates 
with Great Britain at 17%3. In developing countries, the rate of infertility is estimated at 1 in 4 couples4,5. In addi-
tion to rising infertility rates among humans, increases in infertility and reproductive disorders were observed in 
dairy cows6. Dairy researchers found that a cool, low-temperature, environment appeared to preserve fertility and 
reduce the risk of reproductive disorders6 furthering support for a relationship between temperature and female 
fertility. Although at least one study points to other factors besides temperature that play a role more significant 
role at the country-level on female fertility7.

Maternal birth season effects female fertility outcomes8, including in both hunter/gather societies (e.g., Hiwi 
of Venezuela)9 and industrialized societies8,10. Birth season can affect later risk of disease through alterations in 
the prenatal environment that alter growth patterns and processes11. In addition, the known relationship between 
temperature and fertility6 could also manifest itself in a birth season relationship.

The main biological mechanism underlying a birth season relationship with female fertility remains the 
hypothesis that oocytes’ exposure to high temperatures at birth and shortly thereafter results in increased oocyte 
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loss early in life10,12–14. Importantly, the female reproductive system, unlike males, is established early with females 
being born with their lifetime maximum number of oocytes15–17. Oocyte count is thought to be linked to fertil-
ity18. Therefore, researchers posit that this initial reduction in oocyte volume at the time of the woman’s birth 
thereby reduces a woman’s fertility when she goes to bear children of her own later in life. In addition, there are 
many studies among cows kept for dairy purposes, demonstrating the important role of temperature in female 
conception rates19–21.

This systematic review will comprehensively explore the literature underlying the maternal birth season – 
impaired female fertility paradigm while drawing from research conducted in humans. We will also discuss 
hypotheses supported by the literature and corresponding biological mechanisms to understand the effects 
observed in the literature and to place these findings in broader scientific context.

Methods
This project was conducted using PRISMA guidelines22.

Systematic review of literature.  Our literature review focuses on fertility effects resulting from birth sea-
sonal mechanisms. Therefore, we searched for relevant literature articles in PubMed as it is a freely and publically 
accessible database. All research funded by the National Institutes of Health within the United States of America 
are required to be deposited within PubMed. We used PubMed Central, an open access subset of PubMed, to 
obtain the full text of articles when possible. We also used site licenses from the University of Pennsylvania librar-
ies to obtain the full texts of manuscripts retrieved via our initial query from PubMed. The following search query 
was used to identify relevant fertility/birth season papers:

“("fertility" OR "reproductive") AND ("birth season" OR "birth month" OR 
"high stress season")”.

We decided on the query detailed above after iteratively refining our query based on preliminary review of 
the search results obtained. The query interface within PubMed automatically maps the terms to their respective 
Medical Subject Headings (MESH) terms using PubMed Automatic Term Mapping23. After querying PubMed 
using the query detailed above, we then manually reviewed all retrieved abstracts and titles to identify the species 
studied in the papers. In addition to the species information and species type (e.g., primate, mammal), we also 
captured the location where the study was conducted (which can differ from the affiliations of the research-
ers), the time-scale of seasonal information captured (e.g., 12-month season, 4-month season, 2-month season), 
whether the study was a laboratory study, field research or epidemiological study, and whether the full-text of the 
paper was available and whether the data was readily available. These details were annotated by two personnel 
(MRB and a work study assistant) for all studies retrieved using the query above by two personnel.

We then chose to focus on human-only studies and to exclude studies involving non-human mammals and 
non-mammals (e.g., plants, fish). If the full-text of the manuscript was unavailable after multiple avenues had 
been explored (e.g., JSTOR, requesting manuscript from authors) then the manuscript was not included in our 
review. We also excluded studies where birth month was used as a control variable because in those studies the 
relationship between birth month/season and fertility was not being studied explicitly (although the effect was 
being removed via a covariate in a model).

Selection of studies for inclusion in meta-analysis.  We investigated all studies involving human data 
as these were the focus on this research. We also gleaned some helpful insights from the non-human mammal 
studies where appropriate. However, we used very specific criteria for a study to be included in our meta-analysis. 
First the study had to involve human data (we excluded all non-human mammals, primates, and other species). 
Second, the study had to involve a seasonal investigation on a 12-month time scale (therefore we excluded studies 
using 2-month and 4-month seasonal windows). Seasonal studies on a 2-month season (e.g., monsoon vs. dry 
season) are not readily translatable to a 12-month timescale without making a series of assumptions and therefore 
these were excluded from the meta-analysis. Third the study had to have data readily accessible to our research 
team. This could be in the form of a figure detailing the rates by 12-month season, or in the form of a table or 
downloadable.csv or.txt file that contained information at the 12-month timescale.

Meta-Analysis of studies for birth season – fertility effect and environmental exposures.  
Meta-analysis was used to determine whether or not the birth season results reported demonstrated an over-
all correlation with temperature across all datasets included. The DerSimonian-Laird (DSL) random-effect 
meta-analytical method24 was used to compute the correlation between the exposure (e.g., temperature, rainfall) 
and female fertility. The DSL method transforms each datasets correlation coefficient to a Fisher Z value with a 
standard error determined by the site-specific sample size. Using the sample size allows sites with larger sample 
sizes for the female fertility outcome to be weighted higher than sites with lower sample sizes. A summary corre-
lation coefficient was computed and represents the overall correlation obtained from the meta-analysis across all 
sites included from the retrieved studies. We used the DSL method incorporated in the R ‘metacor’ library25 with 
widespread use among the research community26 and implemented based on Schulze method27.

Humidity is another important factor in the female fertility – birth season relationship28,29. However, data on 
humidity was not available across all included sites and therefore rainfall was used instead. We also investigated 
the relationship between rainfall as measured in millimetres (mm) per month and female fertility outcomes. The 
same meta-analysis method was used (DSL) to investigate the relationship between rainfall and female fertility.
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Results
Systematic review.  Our method for selecting and including studies in our review is shown in Fig. 1 accord-
ing to PRISMA guidelines22. This resulted in an initial set of 280 papers. We added two birth season studies that 
we know to have fertility-related birth month data, but were from studies exploring multiple birth season out-
comes in general and not explicitly ‘fertility’ and ‘reproductive’ studies10,30. Our final dataset contained 282 stud-
ies. Within these 282 reviewed studies, 122 were non-human mammalian studies that we excluded. In addition, 
131 studies were investigating birth season affects in either non-mammalian species (e.g., marsupials, reptiles, 
fish) or plant species (N = 49 studies). We excluded these from further analysis because the underlying biological 
mechanisms underlying the role of a birth season mechanism on fertility were morphologically distinct. In total 
29 studies were conducted in humans, we further reviewed these for inclusion in our meta-analysis.

Six studies were excluded from the 29 human studies because either a.) birth month was used as a control var-
iable or b.) it was not possible to access the text. Of the remaining 23 relevant human studies, one was about the 
birth seasonality of males and its effects on reproductive performance. While the focus of this study is on female 
reproductive performance and birth season, we discuss male studies in section 4.10 because male factor infertility 
contributes to the total number of offspring born to a woman. However, a sub-analysis of male studies was not 
possible because of the paucity of studies on male birth season and fertility later in life.

Meta-Analysis results of female fertility and temperature.  Of the 29 human studies, 6 were not 
relevant because either a.) birth month was used as a control variable or b.) it was not possible to access the full 
text, resulting in 23 human studies with accessible data. Of these 23 relevant human studies, one was about the 
birth seasonality of males and its effects on reproductive performance while the remaining 22 studies were on 
females. We were focusing our meta-analysis on the relationship between female birth month and later fertility. 
We carefully reviewed each of these 22 studies and included all studies reporting data at the 12-month level that 

Figure 1.  Diagram of the Study Selection Process for the Systematic Review and Meta-analysis According to 
PRISMA.
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were investigating the effect of maternal birth month on either: a.) total number of offspring or b.) risk of having a 
child (i.e., giving birth or delivering). From the 22 studies, we were able to extract data on female birth month (in 
12-month increments) and later fertility from 6 distinct studies. These 6 studies contained 11 separate datasets. 
To augment our analyses, we included an additional dataset from our collaborators (co-authors LHJ and PRJ). 
In total, our meta-analysis consisted of twelve datasets for use in investigating the role of maternal birth season, 
temperature and rainfall.

Four datasets contain sites from the Asia and the Pacific, four datasets contain sites from Europe and four 
datasets contain data from the United States of America. Data from 5 sites were reported as the relative risk (RR) 
of birth given the population (Table 1). For purposes of our meta-analysis, the sample size of women giving birth 
(i.e., the case sample size) was included for those 5 sites reporting the RR by maternal birth month. The overall 
population size is also given in Table 1 because those not giving birth were used as controls. This also normalizes 
for the background birth rate by birth month found at different locations. In the literature, the main reported 
outcome thought to explain the relationship between female fertility and birth season is temperature. We used the 
DSL method to compute an overall correlation between temperature and female fertility in humans (R = 0.230, 
p = 0.135). The individual site-specific correlations and p-values are given in Table 2.

Figure 2 shows the relationship between temperature and female fertility outcomes. The seasonality of temper-
ature is shown in dark orange while the birth season – fertility relationship is shown in black (Huber et al. studies) 
or purple (Boland et al. studies). Six studies demonstrate positive correlation between temperature and female 
fertility with perinatal increases in temperature increasing the woman’s fertility later in life (six datasets on the 
right-hand side of Fig. 2). On the other hand, six studies demonstrated negative correlation between temperature 
and female fertility with perinatal increases in temperature reducing the woman’s fertility later in life (six datasets 
on the left-hand side of Fig. 2).

Meta-Analysis results of female fertility and rainfall.  We also investigated the relationship between 
rainfall and female fertility because humidity was another important factor in the female fertility – birth season 
relationship28,29. Because humidity was not directly available, we used the average rainfall in millimetres (mm). 
Depending on the climate for a given region, some regions are very moist (i.e., high humidity and/or rainfall) and 
cold while other climates are moist and hot31. Similarly, there are climates that are dry and hot and others that are 
dry and cold. Therefore, the relationship between temperature and humidity depends on the climate of the region, 
and are not necessarily directly correlated31.

Figure 3 shows the relationship between rainfall and fertility at the dataset level. Romania, New Zealand and 
Seattle, Washington all demonstrated positive correlations between increases in rainfall and increases in female 
fertility. The overall correlation was not significant with an R = 0.158, p = 0.187. The meta-analysis results for 

Location
Number with 
Delivery

Total 
Population

Age 
(median)

% 
White

Original Study 
Reported Findings Ref.

United States of America

Columbia University Medical 
Center, New York City, NY, USA 60,584 1,749,400 38 38% Inversely Correlated with 

Temperature
10

Mount Sinai Hospital, New York 
City, NY, USA 9,136 1,169,599 53 36% Female Fertility 

Outcomes Not Discussed
30

University of Washington, Seattle, 
WA, USA 8,458 1,770,510 48 56% Female Fertility 

Outcomes Not Discussed
30

Vanderbilt University, Nashville, 
TN, USA 9,472 3,051,997 44 54% Female Fertility 

Outcomes Not Discussed
30

Europe

Rotterdam, The Netherlands 32,336 2,018,869 47 NA From Collaborators

Austria 2,839 Inversely Correlated with 
Temperature

8

Romania, Low Education 294,026 NA NA Positively Correlated 
with Temperature

34

Romania, High Education 116,858 NA NA
Trend towards positive 
correlation with 
temperature

34

Asia

North Vietnam 196,752 NA NA Positively Correlated 
with Temperature

33

South Vietnam 181,835 NA NA Positively Correlated 
with Temperature

33

Central Vietnam 115,266 NA NA Positively Correlated 
with Temperature

33

Australasia

New Zealand 50,000* NA NA Inversely Correlated with 
Temperature

32

Table 1.  Female Fertility and Birth Season Studies In Humans Included in Meta-Analysis (N = 6 Studies and 12 
Datasets). *Sampling with Replacement.
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temperature are given in Fig. 4A and for rainfall are given in Fig. 4B. These results together appear to suggest the 
possibility of a combined mechanism between temperature and rainfall where rainfall only increases fertility in 
higher altitude locations (New Zealand, Romania, and Northern Vietnam).

Quality assessment of included studies.  Five of the included studies shown in Fig. 2 and Fig. 3 were the 
result of studies by Boland et al.10,30 those studies used data obtained from Electronic Health Records regarding 
conditions diagnosed among women who are delivering babies. The birth months of these women were assessed 
and the curves presented in Figs. 2 and 3 represent the ‘relative risk’ of having a baby by birth month. The other 7 
studies included in this meta-analysis were the result of Huber et al.8,32–35. In the Huber et al. studies the results are 
the average number of live-born children per woman by birth month. The Huber et al. studies followed women 
longitudinally over time and therefore it is likely they have a greater capture over a woman’s lifetime reproductive 
success (i.e., total number of children born to a given woman). Therefore, these two sets of studies differ some-
what in their data collection methods and are not completely comparable. However, it is important to note that 
findings from the NYC CUMC dataset from Boland et al. correlated well with Austria’s data from the Huber et al. 
study indicating that while the studies use different methods the results appear similar.

A major issue recognized by all of the authors of these studies is the lack of adequate confounder adjustment 
with regards to socioeconomic status and a woman’s choice regarding her desire to have a child (or the lack 
thereof). The Huber et al. Romanian study tried to address this issue by separating out the low vs. high education 
women as a proxy for socioeconomic status. However, education as a proxy for socioeconomic status is some-
what limiting. The studies using the Electronic Health Records did not have adequate socioeconomic confounder 
adjustment and therefore this represents a significant confounder in these analyses. Other limitations are dis-
cussed in the limitations section.

Discussion
Our comprehensive review of the literature on the birth season relationship among women with later reproduc-
tive performance has revealed that temperature and rainfall are not enough to explain the relationship observed 
in multiple sites throughout the entire world. However, this review does reveal that there appears to be strong sup-
port for a relationship between temperature and reproductive success, including conception rates in bovines36 and 
humans37. Some studies also point to the role of the photoperiod over temperature itself as the main driver behind 
conception rate increases38. However, conception rates are notoriously difficult to compare. Studies have shown 
that the probability of an offspring being born in certain birth months also depends on the birth month of the 
mother39. The authors demonstrated that while May – July born babies were uncommon in general, women who 
were already born in May – July were more likely to give birth to their offspring during the same months39. It is 
difficult to tease out some of these relationships because foetal loss and conception is generally difficult to capture.

Principal findings.  Our meta-analysis of 12 datasets from around the world has revealed the there is a birth 
seasonal mechanism underlying female fertility. In addition, it does appear to have a negative correlation with 
temperature in some regions (Fig. 2). However, the overall meta-analysis statistic revealed a non-significant posi-
tive correlation (R = 0.230, p = 0.135) between increasing temperature at birth and increased fertility later in life. 

Location
Sample Size 
with Delivery

Total 
Population

Temperature 
Correlation, P-value

Rainfall 
Correlation, P-value Reference

United States of America

Columbia University Medical Center, 
New York City, NY, USA 60,584 1,749,400 −0.5, p = 0.1 −0.3, p = 0.3 10

Mount Sinai Hospital, New York City, 
NY, USA 9,136 1,169,599 −0.4, p = 0.2 0.4, p = 0.4 30

University of Washington, Seattle, 
WA, USA 8,458 1,770,510 −0.4, p = 0.1 0.5, p = 0.1 30

Vanderbilt University, Nashville, 
TN, USA 9,472 3,051,997 −0.2, p = 0.6 −0.1, p = 0.7 30

Europe

Rotterdam, The Netherlands 32,336 2,018,869 0.9, p < 0.05 0.3, p = 0.4 From Collaborators

Austria 2,839 −0.7, p < 0.05 −0.7, p < 0.05 8

Romania, Low Education 294,026 0.9, p < 0.05 0.8, p < 0.05 34

Romania, High Education 116,858 0.3, p = 0.3 0.2, p = 0.5 34

Asia

North Vietnam 196,752 0.7, p < 0.05 0.7, p < 0.05 33

South Vietnam 181,835 0.8, p < 0.05 0.2, p = 0.5 33

Central Vietnam 115,266 0.7, p < 0.05 −0.5, p = 0.1 33

Australasia

New Zealand 50,000 * −0.7, p < 0.05 0.7, p < 0.05 32

Table 2.  Results of Relationship Between Female Fertility and Both Temperature and Rainfall at Birth. (N = 6 
Studies and 12 Datasets).

https://doi.org/10.1038/s41598-019-57377-9


6Scientific Reports |          (2020) 10:555  | https://doi.org/10.1038/s41598-019-57377-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

We also investigated the relationship between rainfall at the time of birth and later female fertility and found that 
at the meta-analysis level there was no relationship (R = 0.158, p = 0.187), however certain sites did show strong 
positive correlation between increased rainfall at birth and later fertility (Fig. 3). In particular, New Zealand, 
Romania, Northern Vietnam and Seattle Washington appeared to demonstrate correlations between rainfall and 
female fertility. Each of these regions is mountainous, which could suggest a combined relationship between 
altitude, and rainfall. Overall, we did not find a single climate variable that could explain the birth seasonality of 

Figure 2.  Relationship between Perinatal Temperature and Female Fertility Outcomes. The seasonality of 
temperature is shown in dark orange while the birth season – fertility relationship is shown in black (Huber et 
al. studies) or purple (Boland et al. studies).

Figure 3.  Relationship between Perinatal Monthly Rainfall (mm) and Female Fertility Outcomes. The 
seasonality of rainfall is shown in dark blue while the birth season – fertility relationship is shown in black 
(Huber et al. studies) or purple (Boland et al. studies).
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female fertility across all of the datasets indicating that the relationship between female fertility and birth season 
is highly complex. The remaining of our discussion focuses on birth season mechanisms that affect female fertility 
as described in the literature.

Assessing the etiologies of birth season - female fertility associations.  Birth season has been 
linked with female fertility in multiple studies. In addition, while not statistically significant, there appears to 
be correlation in certain sites between a.) increased temperature at birth and later reductions in fertility and b.) 
increased rainfall at birth and increased fertility later in life. Therefore, we synthesize the literature on the birth 
season – female fertility relationship to explore other factors that modulate this relationship that have not been 
investigated in current human fertility-birth season studies.

Differences between seasonal conception rate and maternal birth month.  The seasonality of female 
fertility varies by region. A Tanzanian study in humans found that conceptions were highest among the hot months 
when compared to the rainy season (Tanzania only has 2-seasons)37. Others have found seasonal changes in environ-
mental light intensity preceded changes in conception rates in both Germany and the Netherlands38. These findings 
point to the photoperiod being the primary driver underlying differences in conception rates across the seasons40. 
These studies were investigating conception rate and how it varies seasonally. However, our primary interest is the 
relationship between maternal birth season and later fertility outcomes. Perhaps women born in less favoured sea-
sons (i.e., birth seasons corresponding to a less-favoured conception season) are biological different then those from 
favoured seasons (i.e., birth seasons corresponding to a successful conception season). Some research suggests that 
successful conceptions that occur in less biologically favoured time periods (i.e., conceiving in a low conception rate 
month) may have different characteristics, which could possibly explain some birth season effects39.

Timing of menarche and menopause depends on birth season.  Other fertility-related processes 
have been linked to birth season including the time of menarche41 and menopause42 in women. A study con-
ducted in China consisting of 132,373 females with natural menopause investigated the relationship between 
birth season and both age at menopause (i.e., cessation of monthly menses) and reproductive timespan43. In addi-
tion, they had 285,186 females with timing of menarche (i.e., first monthly menses) to investigate any relationship 
between menarche and birth season43. They found that timing of both menarche and menopause was birth season 
dependent with those born in the spring months (March, April and May) having early menarche and early meno-
pause43. This would likely indicate that these women had shorter reproductive timespans. Our meta-analysis did 
not include the timing of menarche or menopause because these data were not collected for the datasets included 
in our study. This is a factor to consider in future birth season studies.

Maternal birth season determines timing of marriage, schooling and fertility effects.  The com-
pleted fertility of a given woman (i.e., the total number of children born to a woman at the end of her reproductive 
years) is affected by a number of sociological factors, including a woman’s choice or desire for children. Furthermore, 
timing of school and age relative to one’s peers has been shown to affect timing of marriage44, which affected the age 
of the woman at the time of her first childbirth. Therefore, studies that investigate the relationship between maternal 
birth month and probability of having one child will likely show a birth month relationship. This is because there is a 

Figure 4.  Correlation between Perinatal Temperature (A) and Rainfall (B) with Female Fertility Outcomes 
Across All 12 Datasets. Four datasets contain sites from the Asia and the Pacific, four datasets contain sites 
from Europe and four datasets contain data from the United States of America. Larger squares in Fig. 4 denote 
correlations with larger confidence intervals while those with smaller squares represent tighter correlations. 
Therefore, smaller squares typically denote sites where the sample size was large.
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relationship between the first-born child and maternal birth month but not completed fertility rate. The completed 
fertility rate is the total number of children born to a woman at the time when she enters menopause (i.e., she is no 
longer fertile). The completed fertility rate was not affected by birth month indicating that women can ‘catch up’ 
later in life by having more children in their later years44. Some studies included in our meta-analysis consisted of 
the total number of offspring born per woman, which is believed to be the completed fertility rate (i.e., Huber et al. 
studies in Figs. 2 and 3). However, other studies included in the meta-analysis investigate the risk of having a child 
per maternal birth month (i.e., Boland et al.), which may be affected by the timing of marriage (this information was 
not available to the study authors). Importantly, birth season associations were found in the Huber et al. studies for 
completed fertility, which appears to contradict the findings from this Swedish study44.

The Swedish study found that women tended to have their first child on average 5.5 years after completing 
their highest level of education44. For example, if a woman were to complete her Medical Degree (MD) at an 
age of 26 years (which is the custom in the United States of America), the data from Sweden would suggest 
that this woman would give birth to her first child at 31.5 years of age. On the other hand, a woman graduating 
with a high-school degree, at 18 years, with no intentions of completing any additional schooling would then be 
expected to have her first child at approximately 23.5 years of age. The age of a woman at the time of her first child-
birth would be expected to affect her total fertility rate with those having their first child at a younger age having 
more children over their lifetime. However, this is not what the researchers found. They found that women having 
children at older ages were able to ‘catch up’ and had similar family sizes to those who gave birth at a younger age. 
However, it is possible that in some countries and areas of the world, it may not be possible for women to ‘catch 
up’ and therefore, birth season effects may still be observed in those regions.

Importantly, the 7 Huber et al. datasets included in our meta-analysis looked at completed fertility (i.e., the 
total number of offspring born to a woman at the completion of her fertility period) while the 5 Boland et al. 
datasets investigated the relative risk (RR) of having a child. The RR of having a child includes those having their 
first child and also those having subsequent children. Therefore, the timing of marriage and the likelihood of 
advanced degrees would be expected to affect the Boland et al. datasets (highlighted in purple in Fig. 2 and Fig. 3). 
However, in general there is agreement between Huber et al. and Boland et al. studies, and the differences appear 
to be more driven by the location and the climate characteristics at those locations. Importantly, one study was 
able to appropriately model martial duration, literacy, nativity, urbanity and birth cohort still found a significant 
birth season effect in female reproductive performance45.

Maternal birth season determines characteristics of offspring.  Several studies have investigated 
the characteristics of the offspring and how this pertains to the maternal birth season. One study, using data 
from Canada, found that maternal birth season affected the sex ratio of the woman’s offspring46. Women born in 
February through April had a lower sex ratio among their offspring than other maternal birth months46. However, 
the father’s season of birth did not affect the sex ratio of the offspring suggesting that the effect is related to a 
maternal birth seasonal mechanism46. Others have shown that there is seasonality in the sex ratio of children born 
in Russia however, the authors did not investigate the relationship between maternal birth season and sex ratio47.

A historical study using French-Canadian data from 1621 through 1765 found that women born in May 
through July were more likely to conceive quickly following marriage48. In addition, women born between May 
– July were more likely to offspring in a random birth month distribution (i.e., not skewed towards certain birth 
months)48. A study in the early twentieth century in Japan, investigating records from 1925 through 1960, found 
that the least common time to be born was May – July49. However, women that were born between May and 
July had offspring that were randomly distributed across the birth months, this result was similar to what was 
observed in the early French-Canadian dataset49. The less season-sensitive women (born between May – July) 
were more fertile overall49, however, there were fewer women born in that period.

The dearth of babies born between May – July could result from selective foetal loss due to some seasonal 
infection or other seasonal mechanisms49. In addition, the authors suggest that perhaps women born between 
May – July are immune to the infection (or other seasonal agent) that predominates in that season. Their jus-
tification for this hypothesis was that while May – July born babies were uncommon in general, women who 
were already born in May – July were more likely to have an offspring also born during the same birth period39. 
Suggesting that women born in that period may be immune to the factors causing spontaneous foetal loss among 
women born during other birth months39.

A separate study with seemingly concordant results conducted in Spain found that large families tended to 
have less variability among birth months then smaller families50. This indicates the possibility of some type of 
family-based birth month selection among larger families50. Taken together with the prior studies conducted in 
French-Canada and Japan, there is the possibility that women born in fertile months (e.g., May through July) are 
having more offspring in general (and having larger families) and are also more likely to carry a baby due in May 
through July to term (i.e., lower rates of foetal loss among May – July offspring born to May – July mothers). All 
of these factors could manifest in a preferential family-based selection of birth months among offspring born in 
large families, as reported in the Spanish study50. However, the lower rates of foetal loss among May – July off-
spring born to May – July mothers indicates that there are birth season affects on the offspring that are due both 
to the child’s birth month and also its’ mothers birth month.

Other birth season-dependent affects that modulate the mother – offspring relationship include studies con-
ducted on blood type. Seasonal variation among blood types was observed for all ABO blood groups51. The 
ratio of blood type O over A (O/A ratio) was lower among O mothers then A mothers among those born during 
August-January51. Typically, O mothers would be expected to have a higher O/A ratio among their offspring then 
blood type A mothers. Therefore, having a lower ratio among those born during August through January indi-
cates the possibility of some underlying seasonally dependent infection or immunological response51.
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Seasonality of lactation and breast feeding.  An Israeli study of Bedouin Arabs found that infants born 
between January and May were more likely to still be exclusively breastfed (i.e., no supplementation with bottle 
feeding) at 4-months old than those born between July-October with a difference of 29.4% vs. 19%52. The like-
lihood of a primiparous woman to breastfeed also depended on the birth season of her offspring53. They also 
found that women giving birth in the spring-summer months were more likely to report milk insufficiency as the 
reason for introducing bottle feeding54. Furthermore, being breastfed for a longer period of time, which appears 
to be seasonal, has been correlated with a number of beneficial outcomes later in life, including lower burden of 
respiratory illnesses55. Therefore, the seasonality of female fertility and birth season could be related to whether 
or not the female was breastfed as an infant.

Seasonality of success from assistive reproductive technologies.  Studies have shown that in vitro 
fertilization (IVF) success rates depend on season of implantation56. These findings have led some to suggest 
that season of conception should be considered for women who are considering using Assistive Reproductive 
Technologies (ART) in general57. Furthermore, many studies investigating the outcomes of ART now use birth 
season and year to match cases and controls, indicating the importance of these variables in the outcomes58. The 
highest fertilization rates and also quality-A embryo rates were observed during the spring with the lowest rates 
being observed during autumn in humans56.

Birth seasonality of circulating hormones.  Female birth season also affected circulating serum Estradiol 
levels59. Women born in the spring and summer months had higher levels of Estradiol on the 22nd day of their 
cycle and higher levels of Sex Hormone-Binding Globulin (SHBG) on both the 11th and 22nd days of their cycle59. 
Physical activity between 13–15 years of age was inversely related to Estradiol levels, even after controlling for age, 
cycle length, BMI and birth month59.

Circulating hormone levels are important for understanding the role of birth season in increasing female 
fertility. Higher levels of circulating Estradiol were found among women born in spring and summer months59. 
In addition, high Estradiol levels increase the desirability of the female60 and also the likelihood of conception61. 
Therefore, the high Estradiol levels associated with certain birth months may increase female fertility by decreas-
ing the time to marriage, which can affect the total number of children born to a female44.

Seasonality of male fertility.  Among men, birth season is also a significant factor in fertility. One study 
from Austria found that men born in the autumn months had fewer offspring and a higher risk of remaining 
childless than men born in spring35. This was the only study demonstrating a birth seasonal relationship with 
fertility among men in humans.

Interactions between seasonal mechanisms affecting both female and male fertility.  Female 
birth season has been shown to alter Estradiol levels (section 4.8)59. In addition, studies in animals show that 
male birth season affects a plethora of male factors, including sperm motility62 with one human study showing 
that male birth season can affect reproductive performance35. There could be interactions between these two 
mechanisms, resulting in non-random mating between males and females based on their respective hormonal 
signatures. At this point, there are not any well-controlled studies in humans looking into this facet of birth sea-
son effects in depth.

Seasonal environmental covariates that may affect the fertility - birth season paradigm.  
Longevity.  In addition to the role of birth month on female fertility, researchers have also found that birth month 
conferred a survival advantage among women born in a certain region. A study using historical data from the Saint 
Lawrence River region in Canada from women born before the year 1750 found that being born in the winter con-
ferred optimal survival prospects if the child was born in the southern part of the river63. However, if born on the 
northern side of the river, the optimal birth season was during the fall63. Women who migrated to different sides 
of the river appeared to lose their survival advantage indicating that the advantage of birth season on survival may 
be limited to a certain region63. Another group showed that longevity depended on birth month in both men and 
women64. The overall longevity of a woman could impact her complete fertility rate, as she may not live long enough 
to finish having the children she intended to have. The issue of female mortality on overall fertility rates is still dis-
cussed in developing countries65 and would be critically important to consider in those countries.

Air pollution.  Air pollution has also been shown to affect fertility-related outcomes, including pre-term birth66. 
A recent systematic review found that several air pollutants can increase female infertility and related condi-
tions67. A study in Barcelona, Spain found a statistically significant reduction in fertility rates with increases in 
traffic-related air pollution and especially coarse air particulates68. Air pollution is important to consider because 
it also varies seasonally69. Therefore, since air pollution varies seasonally, there could be adverse consequences for 
female babies born in months corresponding to peak exposure to air pollution.

Water quality.  Variation in water quality can be observed seasonally in many countries70–72. This seasonal var-
iation in water quality may affect the developing foetuses born during certain birth months more than other 
birth months depending on when the exposure occurred (e.g., first or second trimester). This is especially true 
for certain water exposures, such as Arsenic, which are known to affect the risk of certain adverse reproductive 
outcomes (e.g., birth weight, foetal loss) and vary seasonally73,74.
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Food availability and stress.  Food availability in humans is often related to reproductive success75,76. In 
addition, food availability is often seasonally dependent. Therefore, this seasonal process could result in birth 
month affects for offspring born in periods with low food availability. Stress is another major factor affecting 
female reproductive performance. One human study found that stress (as measured using cortisol) was important 
in foetal loss rates77.

Limitations of this review.  A major limitation of this review is our interrogation of two related databases – 
namely PubMed and PubMed Central. PubMed Central contains a subset of papers from PubMed that are open 
access. Our initial query was through PubMed and then we sought to obtain papers that were either open access 
(i.e., in PubMed Central) or obtainable via site license agreements through the University of Pennsylvania librar-
ies. PRISMA guidelines recommend that at least one database we searched for relevant articles78 and we satisfy 
this criterion, however it is still a limitation of our work given that some manuscripts may not appear on PubMed 
Central or PubMed. We were able to locate manuscripts from Austria, Sweden, and many other non-USA coun-
tries suggesting that our use of PubMed and PubMed Central was not USA-centric. The major reason that we 
utilized PubMed and PubMed Central is due to cost, many other online databases such as SCOPUS (https://www.
elsevier.com/solutions/scopus) have heavy licensing fees associated with their usage.

In this meta-analysis, we investigate the relationship between female fertility and birth season in published 
and already collected datasets. We discuss in our discussion section many other variables that were not included 
in our meta-analysis as these data were not readily available to the researchers conducting the prior studies. 
These factors are also important in the female fertility – birth season relationship, including socioeconomic fac-
tors, timing of menarche, timing of menopause, timing of marriage, a woman’s choice regarding her desire for a 
specific number of children and so forth. We discuss these other related studies here in our discussion because 
it is likely that these factors also interact with the female fertility – birth season relationship and may reduce our 
ability to find a statistically significant p-value on a global scale that adequately explains the female fertility-birth 
season relationship. Future studies should investigate more fully how these factors may modulate the female 
fertility-birth season relationship.

Future work.  Future steps should involve research in teasing out the various culprit exposures that appear 
to affect fertility rates, including stress, heat, and air pollution. Also more work should be conducted on the role 
of rainfall and female fertility, as some regions appear to demonstrate positive correlations. It is possible that the 
rainfall in certain regions (Fig. 3), especially mountainous regions (New Zealand, Romania, Seattle Washington) 
could differ from urban areas (e.g., NYC) with respect to either airborne particulates (that are removed from the 
air via rainfall) or waterborne contaminants, such as arsenic or lead (with rainfall either increasing or decreasing 
the exposure). Furthermore, work is needed to investigate if inherited genes are tied to environmental factors and 
whether or not these factors also play a role in lactation and female fertility. More research is warranted to tease 
out the gene-environment interactions that may be underlying the female fertility – birth season associations seen 
throughout the world.

Conclusion
In conclusion, we systematically reviewed the literature on birth season and female reproductive performance. 
We performed a meta-analysis on the relationship between temperature at birth and female fertility later in 
life based on birth month using datasets from 12 sites around the world. We found that temperature at birth 
was strongly negatively correlated with female fertility later in life only in certain regions. However, the overall 
meta-analysis result showed an insignificant positive correlation between increases in temperature at birth and 
increases in female fertility (overall: R = 0.23, p = 0.13). We also investigated the relationship between rainfall at 
birth (in millimetres per month) and female fertility. We found that the overall meta-analysis result was again 
insignificant with a slight positive correlation (overall R = 0.158, p = 0.187). However, we found that rainfall only 
increases fertility in higher altitude locations (New Zealand, Romania, and Northern Vietnam). This suggests the 
possibility of a combined or multi-factorial mechanism underlying the female fertility – birth season relationship. 
We provide an overview of several factors that also vary seasonally by birth month that are involved in the birth 
season – fertility relationship that may alter the effects observed in certain locales. More work is needed to tease 
out any potential gene-environment interactions that may pertain to female fertility and birth season and to fur-
ther explore other confounding variables (e.g., timing of menarche, menopause) that are birth season dependent 
that could modulate the birth season – fertility relationship.
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