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Abstract
Background  Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individu-
alize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonpara-
metric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric 
models of imipenem using data from critically ill patients and compared their results.
Methods  Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median 
estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
equation was 116 mL/min/1.73 m2 (interquartile range 104–124) at inclusion. The usual dosing regimen was 500 mg/500 mg 
four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and 
trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric 
(Pmetrics 1.5.2) popPK software.
Results  For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR 
equation unadjusted for body surface area as a covariate on the elimination rate constant (Ke). The parametric population 
parameter estimates were Ke 0.637 h−1 (between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central 
distribution volume (Vc) 29.6 L (without BSV). The nonparametric values were Ke 0.681 h−1 (34.0% CV) and Vc 31.1 L 
(42.6% CV).
Conclusions  Both models described imipenem popPK well; the parameter estimates were comparable and the included 
covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for 
estimated exposure during dosing simulations and should be further investigated in simulation studies.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​2-020-00859​-1) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Because of increased antimicrobial resistance and few new 
antibiotics making it to market, optimization of antibiotic 
dosing regimens remains an important challenge to improve 
clinical outcomes of infections. Antimicrobial efficacy is 
determined by the susceptibility of a drug in vitro (usually 
expressed as the minimal inhibitory concentration [MIC]) 

and exposure to the drug in vivo, which relies on the phar-
macokinetics (PK) and the dose [1]. Population pharmacoki-
netic (popPK) models describe the variability of exposure 
to a drug and are therefore used to support the optimization 
of dosing regimens with the objective to improve antimi-
crobial efficacy. During the development of new antibiotics, 
popPK models are recommended to support dose regimen 
identification and selection [2]. For already marketed anti-
biotics, popPK models are used in different ways to improve 
antibiotic dosing: individualization of dosing via therapeu-
tic drug monitoring (TDM) software by Bayesian estimation 
and control; optimization of dosing regimens described in 
the package insert (especially for specific subpopulations); 
and setting clinical breakpoints [3]. Clinical breakpoints are 
MICs that define microorganisms as susceptible, intermedi-
ate or resistant to specific antibiotics [4].
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Key Points 

Parametric (NONMEM) and nonparametric (Pmetrics) 
population pharmacokinetic models of imipenem in criti-
cally ill patients treated with imipenem/cilastatin were 
developed.

Both models have the same structure and describe 
imipenem concentrations well. The identical covariate 
results (absolute Chronic Kidney Disease Epidemiology 
Collaboration equation on the elimination rate constant) 
of the two different modelling methods strongly support 
the findings in this population.

The parameter estimates of both models are comparable, 
except for the estimated between-subject variability, 
which was higher in the nonparametric model. Conse-
quences for estimated exposure should be further investi-
gated in simulation studies.

studies the estimates were incomparable due to a different 
model structure [17, 18], and in one study no parameter esti-
mates were reported [19]. However, less similarity among 
methods was noticed for the BSV of parameters. The BSV is 
defined as the percent coefficient of variation (CV%), which 
is the standard deviation (SD) divided by the parameter 
mean. Three studies showed a higher BSV for the nonpara-
metric model [12, 13, 16], one study showed similar BSV 
[14], and, for another study, the BSV of the nonparametric 
model was not reported [15]. Only one comparison study 
[18] presented goodness-of-fit (GOF) plots and visual pre-
dictive checks (VPCs) of both models. The other studies 
[12–17, 19] showed either GOF or VPC plots of both mod-
els, displayed the plots of only one method, or did not show 
any GOF or VPC plots.

Many parametric and nonparametric popPK models have 
been published in the literature and are often accompanied by 
dosing recommendations based on simulations of the model 
[3]. Differences in modelling results between these methods 
may have consequences for simulation findings and may 
therefore also influence dosing recommendations. Different 
parameter value probability distributions may influence dosing 
recommendations based on popPK models in TDM software.

To investigate the advantages and disadvantages of both 
modelling methods in practice, we developed both para-
metric and nonparametric popPK models using the same 
data, and compared the results. We used imipenem PK data 
from critically ill patients, given this population’s known 
PK variability for several antibiotics [20]. Imipenem is a 
carbapenem antibiotic administered in combination with 
cilastatin to prevent degradation by dehydropeptidase-I in 
the kidneys. When combined with cilastatin, approximately 
70% of imipenem is recovered in the urine within 10 h and 
the rest is excreted as inactive metabolites via the urine [21]. 
The half-life is 1 h in patients with normal renal function, 
but is extended in patients with renal dysfunction [21]. Pro-
tein binding is reported as 10–20% [22].

Although it is known that the correlation between meas-
ured creatinine clearance (CLcr) and estimated glomerular 
filtration rate (eGFR) equations is weak [23], these equa-
tions are used in daily practice in many intensive care units 
(ICUs). In our study population, measured CLcr was unavail-
able, therefore we decided to test several eGFR equations 
during covariate model building to find the most suitable 
one in our population.

2 � Methods

2.1 � Study Population

Imipenem PK data from a previously published prospec-
tive cohort study [24] conducted between 2010 and 2013 in 

While individual PK methods analyze the concentration-
time profiles per individual subject, popPK methods analyze 
these profiles of a population as a whole. PopPK models 
describe and explain different types of PK variability, such 
as between-subject variability (BSV) and residual variability. 
PopPK modelling methods are classified as either paramet-
ric or nonparametric methods, which can each be divided in 
maximum likelihood or Bayesian approaches [3]. Bayesian 
popPK methods are used much less often than maximum 
likelihood popPK methods. Most published popPK models 
are based on parametric maximum likelihood methods (e.g. 
Monolix, NONMEM and Phoenix NLME), which estimate 
the set of PK parameters that maximize the joint likelihood of 
observations. Parametric methods assume that the population 
parameter distribution is known with population parameters 
to be estimated [5]. An example of nonparametric maximum 
likelihood software is the NPAG algorithm in the R package 
Pmetrics [6]. Nonparametric methods make no assumption 
about the shapes of the underlying parameter distributions. 
Another difference is that nonparametric methods use an 
exact likelihood function, while most parametric methods use 
an approximation. A disadvantage of nonparametric meth-
ods in the past was that confidence intervals about parameter 
estimates could not be easily determined [5, 7]. However, 
Pmetrics can estimate credibility intervals around median 
parameter estimates using a bootstrap method.

Some studies comparing parametric and nonparamet-
ric models are available in the literature. Precluding stud-
ies with currently outdated modelling software [8–11], we 
found eight comparison studies [12–19]. Four of these stud-
ies showed comparable parameter estimates of both models 
[12–15], one study showed different estimates [16], for two 



Parametric and Nonparametric PopPK of Imipenem in Critically Ill Patients

the ICU of the Geneva University Hospitals (Geneva, Swit-
zerland) were used for this popPK study. The usual dos-
ing regimen for imipenem/cilastatin was 500 mg/500 mg 
four times daily, administered by intermittent intravenous 
infusion of 30 min. Inclusion criteria were suspected or 
documented severe bacterial infection and age 18–60 years, 
while exclusion criteria were eGFR < 60 mL/min (meas-
ured by the Cockcroft–Gault [CG] equation [25]), body 
mass index < 18 or > 30 kg/m2, and pregnancy. The study 
protocol was approved by the University Hospital’s Ethics 
Committee (NAC 09-117). Given its observational nature, 
the Committee waived the requirement for informed consent 
from patients who were unconscious or otherwise unable to 
understand the study protocol.

Among the 54 critically ill patients from the Swiss study 
who were receiving imipenem therapy, the last 27 patients 
could be included because exact dosing and blood sampling 
times were known, in contrast to the first 27 patients, for 
whom levels were labelled only as trough, intermediate or 
peak. After excluding one subject because of missing height 
[26], data from the remaining 26 patients were included in 
the popPK study. None of these patients received probene-
cid, the only drug known to influence imipenem concentra-
tions [21].

2.2 � Study Procedures

Patients were included on their first or second day of imipe-
nem therapy. Blood samples were planned on days 1, 2, 3, 4 
and 6 of therapy, although in some patients not all planned 
samples were realized, e.g. due to discontinuation of therapy 
or problems with blood drawing. Imipenem TDM included 
peak (approximately 15–30 min after the end of the infu-
sion), intermediate (midway between two sequential admin-
istrations, approximately 30 min) and trough (approximately 
15 min before the next dose) concentrations. Creatinine was 
monitored daily.

Imipenem blood samples were drawn and immediately 
placed on ice, then transported to the laboratory for centrifu-
gation. MOPS [3-(N-morpholino)propanesulfonic acid], a 
stabilizing buffer that protects imipenem from degradation 
[27], was added to an equivalent volume of plasma. Stabi-
lized imipenem samples were subsequently stored at – 80 °C 
for a maximum of 1 month.

Imipenem plasma concentrations were analyzed by high-
performance liquid chromatography (HPLC) with ultravio-
let (UV) detection at 298 nm. Ceftazidime was used as an 
internal standard in the HPLC-UV analysis. Acetonitrile was 
added to the stabilized plasma for deproteinization. The cali-
bration curve was linear from 0.5 to 80 mg/L. Limit of detec-
tion (LOD) and limit of quantification (LOQ) were 0.2 mg/L 
and 0.5 mg/L, respectively [24].

2.3 � Parametric Population Pharmacokinetic 
(popPK) Analysis (NONMEM)

Parametric popPK analyses were performed using nonlin-
ear mixed-effects modelling (NONMEM version 7.2; ICON 
Development Solutions, Ellicott City, MD, USA). The Intel 
Visual Fortran Compiler XE 14.0 (Santa Clara, CA, USA) 
was used. The first-order conditional estimation method 
with interaction (FOCE-I) was used throughout the model-
building process. Tools used to evaluate and visualize the 
model were RStudio (version 1.1.456), R (version 3.5.1), 
XPose (version 4.6.1) and PsN (version 4.6.0), all with the 
graphical interface Pirana [28] (version 2.9.4).

General model selection criteria were decrease in objec-
tive function value (ΔOFV), GOF plots and VPCs. A 
decrease in the OFV of 3.84 units was considered statisti-
cally significant (p < 0.05, degrees of freedom [df] = 1) in a 
nested model [29]. For each VPC, a set of 1000 simulated 
datasets was created to compare the observed concentra-
tions with the distribution of the simulated concentrations. 
A numerical predictive check (NPC) of the final model was 
created to compare with the NPC of the final nonparametric 
model.

During modelling, only lower bounds (of 0) and no upper 
bounds were set for each parameter [29]. One-, two-, and 
three-compartment distribution models were evaluated [30]. 
Databases with untransformed and logarithmic transformed 
concentrations were compared by assessing GOF plots and 
parameter estimates. For both databases, residual unex-
plained variability was tested with proportional and com-
bined (additive and proportional) error models [31]. The 
proportional (exponential) error model of the final NON-
MEM model with log-transformed data is shown in Eq. (1). 
The observed concentration (OBS) consisted of the individu-
ally predicted concentration (IPRED) with added residual 
unexplained variability ε (epsilon, fixed to 1 in our model) 
weighted by an estimated error parameter:

Variability of a popPK parameter was estimated using 
an exponential variance model (individual popPK param-
eter = population popPK value × eη). Eta (η) is a random 
variable drawn from a normal distribution with a mean of 
0 and a variance of omega (ω2) [32]. The BSV (CV%) of a 
population parameter is calculated by Eq. (2) [33]. The SD 
is subsequently calculated by multiplying the CV% with the 
population parameter estimate.

(1)OBS = IPRED +

√

(

error2
)

× �

(2)CV%(e�) =

√

(

e�
2
− 1

)

× 100%
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First, models with BSV on elimination rate constant (Ke) 
and BSV on V were compared by assessing ΔOFV and GOF 
plots. Subsequently, one-by-one addition of BSV on the 
other parameters was studied. A stepwise covariate model 
building was performed with forward addition at p < 0.05 
(ΔOFV of 3.84 units, df = 1), followed by backward elimina-
tion at p < 0.001 (ΔOFV of 10.83 units, df = 1) [34]. Covari-
ates were tested on parameters with BSV. The tested covari-
ates are described in Sect. 2.5.

The 95% CI of each parameter in the final model was 
determined from a non-parametric bootstrap analysis, in 
which the dataset was resampled 1000 times.

2.4 � Nonparametric popPK Analysis (Pmetrics)

Nonparametric popPK analysis was performed using Pmet-
rics version 1.5.2 (Laboratory of Applied Pharmacokinetics 
and Bioinformatics, Los Angeles, CA, USA) [6] in RStudio 
(version 1.1.456) as a wrapper for R (version 3.5.1), and the 
Intel Visual Fortran Compiler XE 14.0. The Non-Parametric 
Adaptive Grid (NPAG) program was used throughout the 
model-building process. The Iterative 2-Stage Bayesian 
(IT2B) program was used to estimate parameter ranges to 
pass to NPAG.

An NPAG will create a non-parametric popPK model 
consisting of discrete support points, each with a set of esti-
mates for all parameters in the model plus an associated 
probability of that set of estimates (see Fig. 1 for an illustra-
tion of the distribution of a parameter) [6]. The sum of all 
probabilities is 1. There can be a maximum of 1 point for 
each subject in the study population [6]. Besides an over-
view of support points with corresponding parameter esti-
mates, the NPAG output also contains the mean, SD and 
CV% of each parameter. The reported means are weighted 
means that are calculated by multiplying the estimate of 
each support point by the probability of that point and then 
summing up the resulting numbers. The SD is calculated 
from the parameter distribution. The BSV (CV%) of each 
parameter estimate is calculated by dividing the SD by the 
weighted mean.

One-, two-, and three-compartment distribution models 
were evaluated. A stepwise covariate model building was 
performed with forward addition at p < 0.05 (decrease in 
− 2 times the log-likelihood [Δ− 2LL] of 3.84 units, df = 1), 
followed by backward elimination at p < 0.001 (Δ− 2LL of 
10.83 units, df = 1) [34]. Covariates were tested on param-
eters selected after a graphical examination of possible 
covariate–parameter relationships. The tested covariates are 
described in Sect. 2.5.

Each observation in Pmetrics is weighted by 1/error2. 
Both gamma and lambda error models were tested (see 

Eqs. 3 and 4). The SD of an observation is based on the 
assay error polynomial (see Eq. 5) [6]; however, because 
the assay error polynomial was unavailable in our study, 
we estimated the error coefficients, with C0 = 0.5 × LOQ, 
C1 = 0.1, C2 = 0 and C3 = 0 as a starting point.

Model selection criteria were decrease in − 2LL, bias, 
imprecision, GOF plots and VPCs. A decrease in the 
− 2LL of 3.84 units was considered statistically signifi-
cant (p < 0.05, df = 1) in a nested model. For each VPC, a 
set of 1000 simulated datasets was created to compare the 
observed concentrations with the distribution of the simu-
lated concentrations. An NPC of the final model was created 
to compare with the NPC of the final parametric model. The 
raw VPC and NPC data were imported into PsN (version 
4.6.0) using the Pirana interface [28] to generate plots with 
a similar layout as the parametric plots. VPC and NPC plots 
were created using XPose (version 4.6.1) within RStudio 
(version 1.1.456). Bias (mean weighted prediction error) and 
imprecision (bias-adjusted mean weighted squared predic-
tion error) are automatically calculated by Pmetrics accord-
ing to Eqs. (6) and (7), for both population and posterior 
predictions:

(3)error = SD × gamma

(4)error =
√

SD2 + lambda2

(5)SD = C0 + C1 × OBS + C2 × OBS2 + C3 × OBS3
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Fig. 1   Distribution of Ke in the NONMEM and Pmetrics popPK 
models. NONMEM: normal distribution (mean 0.637  h−1 and SD 
0.121  h−1 [CV 19.0%]). Pmetrics: marginal distribution of 16 sup-
port points with 11 unique values for Ke (weighted mean 0.681 h−1 
and SD 0.232 h−1 [CV 34.0%]). Ke elimination rate constant, popPK 
population pharmacokinetics, SD standard deviation, CV coefficient 
of variation
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The 95% CI of each parameter in the final model was 
determined using a Monte Carlo simulation approach by cre-
ating 1000 samples with replacement for each support point 
[35], resulting in the 2.5th, 50th and 97.5th percentiles of the 
weighed median and the median absolute weighted deviation 
(MAWD). The SD was estimated by multiplying the MAWD 
by 1.4826 [36], while the CV% was calculated by dividing 
the SD by the 50th percentile of the weighted median.

2.5 � Covariates

The tested covariates for both modelling approaches were 
total body weight (TBW), ideal body weight (IBW) [37], 
lean body weight (LBW) [37], CG eGFR [25], four-variable 
Modification of Diet in Renal Disease (MDRD) Study eGFR 
[38], Chronic Kidney Disease Epidemiology Collabora-
tion (CKD-EPI) eGFR [39], and Jelliffe’s eGFR equation 
for patients with unstable renal function [40]. Per patient, 
one body weight measure was available, while a median 
of three creatinine samples per patient was drawn (see also 
Table 1). The MDRD, CKD-EPI and Jelliffe’s equations pro-
vide eGFR values adjusted for body surface area [BSA; mL/
min/1.73 m2). The BSA-unadjusted (absolute) values (mL/
min) were also calculated by multiplying the original eGFR 
by the individual BSA [41] and evaluated as covariates: 
MDRD-abs, CKD-EPI-abs and Jelliffe-abs. The CG eGFR 
equation is unadjusted for BSA (mL/min) and no adjustment 
was made.

All covariates were evaluated by power models with nor-
malized covariates where the median covariate value was 
taken as the reference value (see Eq. 8). Because multiple 
creatinine samples per patient were collected, which are each 
used to calculate CG, MDRD and CKD-EPI eGFR values, 
eGFR was tested as a time-varying covariate. We also tested 
the possible situation of reaching a maximum value of the 
elimination constant Ke for high (adjusted or unadjusted) 
eGFR values from 150, 120 and 90. For TBW, LBW and 
IBW, both fixed (− 0.25 for Ke and 1 for V) and estimated 
values of the power exponent were evaluated [42]:

where Parind is the individual PK parameter estimate; Par is 
the popPK parameter estimate (for NONMEM) or weighted 

(6)Bias =

∑
��

PRED1 − OBS1

�

∕
�

error2
�

1
+⋯ +

�

PRED
n
− OBS

n

�

∕
�

error2
�

n

�

n

(7)
Imprecision =

∑

�

(PRED1−OBS1)
2

((error2)1)
2 +⋯ +

(PREDn
−OBS

n)
2

((error2)
n
)
2

�

n
− bias2

(8)Parind = Par ×

(

Covind

Covmedian

)power

× e�

median value of the Bayesian posterior distribution (for 
Pmetrics); Covind is the individual covariate value; Covmedian 
is the median covariate value; power is the covariate effect; 
and eη is the individual variability (eη only for NONMEM). 
See Eqs. (9) and (10) in the Results section for further clari-
fication of the differences between equations in the final 
parametric and nonparametric models.

Default covariate settings were used for each modelling 
approach. In NONMEM, by default, the next observation is 

Table 1   Demographic and clinical characteristics of the study popu-
lation (N = 26)

APACHE Acute Physiology and Chronic Health Evaluation, IQR 
interquartile range, eGFR estimated glomerular filtration rate, CG 
Cockcroft–Gault, CKD-EPI Chronic Kidney Disease Epidemiology 
Collaboration, CKD-EPI-abs absolute CKD-EPI (i.e. CKD-EPI mul-
tiplied by BSA), MDRD four-variable Modification of Diet in Renal 
Disease, MDRD-abs absolute MDRD (i.e. MDRD multiplied by 
BSA), Jelliffe-abs absolute Jelliffe (i.e. Jelliffe multiplied by BSA), 
BMI body mass index, BSA body surface area

Parameter Value

Male [n (%)] 18 (69)
APACHE II score [median (IQR)] 22 (17–27)
Age, years [median (IQR)] 51 (39–54)
Creatinine at inclusion, μmol/L [median (IQR)] 59 (46–70)
Creatinine samples per patient [median (IQR)] 3.0 (2.0–4.0)
Creatinine samples per patient per day [median 

(IQR)]
1.5 (1.2–1.8)

eGFR at inclusion
 CG, mL/min [median (IQR)] 146 (123–170)
 CKD-EPI, mL/min/1.73 m2 [median (IQR)] 116 (104–124)
 CKD-EPI-abs, mL/min [median (IQR)] 119 (110–139)
 MDRD, mL/min/1.73 m2 [median (IQR)] 121 (104–159)
 MDRD-abs, mL/min [median (IQR)] 127 (118–162)
 Jelliffe, mL/min/1.73 m2 [median (IQR)] 156 (132–183)
 Jelliffe-abs, mL/min [median (IQR)] 168 (141–202)

Height, cm [median (IQR)] 175 (168–179)
Total bodyweight, kg [median (IQR)] 75 (66–85)
Ideal bodyweight, kg [median (IQR)] 70 (59–73)
Lean bodyweight, kg [median (IQR)] 58 (46–64)
BMI, kg/m2 [median (IQR)] 25 (22–27)
BSA, m2 [median (IQR)] 1.89 (1.72–2.04)
Presumed infection [n (%)]
 Lower respiratory tract infection 16 (62)
 Intra-abdominal infection 4 (15)
 Bloodstream infection 3 (12)
 Surgical site infection 1 (4)
 Meningitis 1 (4)
 Gynecological infection 1 (4)
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carried backward (NOCB) until the time point of the pre-
vious covariate observation. For Pmetrics, covariates are 
applied at each dose event. By default, for missing covari-
ate values, the last observation is carried forward (LOCF) 
until the last dose before the next covariate observation, 
when the last observation is linearly interpolated to the next 
observation.

2.6 � Model Development and Comparison

Both models were developed by a medium-experienced 
NONMEM and Pmetrics modeler (FdV) supervised by 
highly experienced NONMEM (BdW) and Pmetrics (WY, 
MN) modelers. The development of both models occurred 
independently from each other according to a predefined 
study procedure, where the modelling workflow (e.g. model 
selection criteria, building of the structural model and covar-
iate evaluation) was described. During model development, 
the GOF plots and VPCs were assessed in the layout of the 
separate programmes. During writing of the manuscript, 
the raw data of the GOF plots were transferred to Graph-
Pad Prism (version 8.1.1) and the raw VPC and NPC data 
of Pmetrics were transferred to PsN (see Sect. 2.4) to cre-
ate plots with the same layout. The R2 of nonlinear regres-
sion was calculated within GraphPad Prism by the fourth 
equation of Willett and Singer [43] for the GOF plots as 
a description of the graphical fit. R2 was not used during 
model selection.

3 � Results

3.1 � Study Population

Demographic and clinical characteristics of the 26 included 
patients are summarized in Table 1. None of the patients 
received continuous renal replacement therapy (CRRT).

3.2 � Imipenem Samples

In total, 138 imipenem blood samples were collected from 
26 patients and were subsequently analyzed. Fewer than 10% 
[30] of all concentrations (13/138, 9.4%) were below the 
limit of quantification (0.5 mg/L) and were excluded from 
the popPK analysis. The average number of levels per patient 
was 5 (range 1–11). Almost half of all samples (65/138, 
47.1%) were drawn on the second day of therapy.

A graph of the analyzed imipenem concentrations 
(n = 125) plotted against the time after dose is shown in 
Electronic Supplementary Fig. 1. These 125 concentrations 
were drawn after 84 individual doses. Following 33 of these 
doses, two or three concentrations were taken, and after the 
other 51 doses, one concentration was drawn. For all PK 

samples, a creatinine concentration was available in the 24 h 
before PK sampling.

3.3 � Parametric PopPK Model

The parametric popPK analysis using NONMEM showed 
that the data were best described by a model with two dis-
tribution compartments, BSV on Ke and CKD-EPI-abs as a 
covariate on Ke. The parameter estimates of the final model 
are displayed in Table 2. Only BSV on Ke was included 
(see also Fig. 1) because BSV on the central distribution 
volume (Vc), rate constant from the central to peripheral 
compartment (Kcp) and rate constant from the peripheral to 
central compartment (Kpc) did not significantly improve the 
model (ΔOFV < 3.84, and no improvement in GOF plots). 
Vc, Kcp and Kpc were the same for each subject (no BSV 
was included, therefore no CV% is shown in Table 2). Eta 
shrinkage was low (14%), and no large correlation (> 0.95) 
between the parameters was detected [29]. The GOF and 
VPC plots (displayed in Figs. 2a, 3a and Electronic Sup-
plementary Fig. 2a) show good predictive performance for 
all concentrations, for the time range after dose and for the 
CKD-EPI-abs range of 18–190 mL/min (except from an out-
lier for the 124–141 mL/min bin). The NPC did not show 
points outside boundaries (data not shown). As shown in 
Table 2, the model-based parameter estimates were similar 
to the bootstrap values, indicating stability of the model.  

A two-compartment model described the data better 
than one- or three-compartment models, according to GOF 
plots and an OFV increase of 22.99 for a one-compartment 
model and 0 for a three-compartment model. The popPK 
parameters of a two-compartment model with logarithmic 
transformed data were comparable to the same model with 
untransformed data. The GOF plots were improved by loga-
rithmic transformation and therefore the following analyses 
were performed with transformed data. An exponential (pro-
portional) error model (see Eq. 1 in Sect. 2.3) was preferred 
to a combined error model due to estimation problems with 
the combined model. This confirmed the findings of the 
untransformed data, where the proportional error model had 
better performance than the combined error model.

Several covariates (as described in Sect. 2.5) were tested 
on Ke, the only parameter with BSV. All tested eGFR covari-
ates on Ke resulted in a significant OFV decrease (ΔOFV 
24.4 until 38.3, p < 0.05) compared with the two-compart-
ment model without covariates. However, the OFV of the 
model with CKD-EPI-abs as a covariate on Ke was sig-
nificantly better than the other eGFR models (for example, 
the second best eGFR was CKD-EPI on Ke, with an OFV 
increase of 4.3 compared with CKD-EPI-abs; p < 0.05). 
Due to the observation of a maximum eta in the eta-eGFR 
plots, implementation of a maximum Ke value for eGFR 
values from 150, 120 and 90 was tested but this did not 
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further improve the model. None of the tested measures 
of body weight improved the model as a covariate on Ke 
(ΔOFV < 3.84) during the univariate analysis.

Equation (9) describes the calculation of individual Ke 
(Kei) values in the final NONMEM model, using the popula-
tion parameter estimates for Ke and Ke(cov) from Table 2, 
the individual CKD-EPI-abs value at a certain time point, 
and eη (individual variability). Eta (η) is drawn from normal 
distribution with a mean of 0 (note Eq. 9, then e0 = 1) and 
variance ω2 (estimated from the data as 0.0354). The cor-
responding BSV for Ke (CV% 19.0%) was calculated from 
Eq. (2):

A plot of the individual Ke against the individual CKD-
EPI-abs (n = 86) is shown in Electronic Supplementary 
Fig. 3a. Simulated concentration-time profiles for CKD-EPI-
abs of 150, 120 and 90 mL/min (n = 1000 for each eGFR) are 
shown in Electronic Supplementary Fig. 4a.

The median (interquartile range) of the untransformed 
residuals (observed minus predicted concentrations) was 
− 0.159 mg/L (− 0.960 to 1.267) for the population predic-
tions and − 0.027 mg/L (− 0.649 to 0.698) for the individual 

(9)Ke
i
= 0.637 ×

(

CKD − EPI − abs
i

119

)0.655

× e�

predictions. Residual plots are shown in Electronic Supple-
mentary Fig. 5a.

3.4 � Nonparametric PopPK Model

The nonparametric popPK analysis using Pmetrics resulted 
in the same model structure as the parametric analysis: a 
model with two distribution compartments and CKD-EPI-
abs as a covariate on the elimination constant Ke. The mean 
parameter estimates of the final model are displayed in 
Table 2. For example, the mean Kepop value is the mean 
of the support points weighted by population probabilities. 
This is illustrated in Fig. 1. Each individual has a Bayesian 
posterior (i.e. personal or individual) set of support points 
weighted by individual probabilities [6]. No large correla-
tion (> 0.95) between the parameters was detected. The GOF 
and VPC plots (displayed in Figs. 2b and 3b and Electronic 
Supplementary Fig. 2b) show good predictive performance 
for all concentrations, for the time range after dose and for 
the CKD-EPI-abs range of 18–190 mL/min (except from an 
outlier for the 124–141 mL/min bin, similar to the paramet-
ric model). Also similar to the parametric model, the NPC 
did not show points outside boundaries (data not shown). 
As shown in Table 2, the model-based parameter estimates 
were similar to the bootstrap values, indicating stability of 
the model.

Table 2   Population parameter estimates

Vc central distribution volume, Kcp rate constant from the central to peripheral compartment, Kpc rate constant from the peripheral to central 
compartment, Ke elimination rate constant, Ke(cov) covariate effect on Ke, CV coefficient of variation, CI confidence interval

Parameter NONMEM

Final model Bootstrap

Parameter estimate CV (%) Median parameter 
estimate

95% CI parameter 
estimate

Median
CV (%)

95% CI
CV (%)

Vc (L) 29.6 – 29.4 22.9–34.4 – –
Kcp (h−1) 0.166 – 0.169 0.092–0.436 – –
Kpc (h−1) 0.195 – 0.192 0.079–0.604 – –
Ke (h−1) 0.637 19.0 0.634 0.543–0.805 18.6 10.5–27.4
Ke(cov) 0.655 – 0.665 0.474–1.184 – –
Exponential error (mg/L) 0.348 – 0.340 0.281–0.413 – –

Parameter Pmetrics

Final model Bootstrap

Mean parameter 
estimate

CV (%) Median parameter 
estimate

95% CI parameter 
estimate

Median
CV (%)

95% CI
CV (%)

Vc (L) 31.1 42.6 35.1 20.1–38.3 36.3 3.8–62.8
Kcp (h−1) 0.374 81.2 0.347 0.122–0.563 75.2 6.5–169.1
Kpc (h−1) 0.495 72.0 0.387 0.278–0.846 90.1 6.2–157.6
Ke (h−1) 0.681 34.0 0.586 0.533–0.905 47.0 3.1–66.1
Ke(cov) 0.658 55.2 0.791 0.516–1.000 38.3 0.0–82.6
Gamma (error model) 3.40 – – – – –



	 F. de Velde et al.

A two-compartment model described the data better than 
one- or three-compartment models, according to GOF plots 
and a − 2LL increase of 26.5 for a one-compartment model 
and 0.8 for a three-compartment model. The gamma error 
model was preferred to the lambda model (see Eqs. 3 and 
4 in Sect. 2.4). The final values for C0 and C1 in the assay 
error polynomial were both 0.05, and C2 and C3 were both 
0 (see Eq. 5 in Sect. 2.4). Parameter boundaries (Ke, 0–1.5; 
V, 1–70; Kcp and Kpc, 0–1) were set based on an IT2B run.

We evaluated several covariates (as described in Sect. 2.5) 
on Ke and V. All tested eGFR covariates on Ke resulted in 
a significant − 2LL decrease (Δ− 2LL 53.3 until 59.9; 
p < 0.05) compared with the two-compartment model with-
out covariates. The − 2LL value of the four models with the 
largest − 2LL decrease (MDRD, MDRD-abs, Jelliffe-abs 
and CKD-EPI-abs) did not differ significantly from each 
other. The model with CKD-EPI-abs had the lowest bias 
and imprecision compared with the three other models. 
Implementation of a maximum Ke value for eGFR values 
from 150, 120 or 90 did not improve the model. Univariate 

analysis resulted in a further six significant covariates 
(p < 0.05): TBW, IBW and LBW on Ke (Δ− 2LL 4.0 until 
8.8), and CG, Jelliffe and Jelliffe-abs on V (Δ− 2LL 4.6 until 
5.5). After backward elimination at p < 0.001, none of these 
six covariates remained in the final model.

Equation (10) describes the calculation of individual Ke 
values (Kei) in the final Pmetrics model. Contrary to the 
parametric model with equal Ke and Ke(cov) values for each 
individual subject (see Eq. 9), these values are different for 
each individual subject in the nonparametric model. Kei,med 
is the weighted median value of the Bayesian posterior 
distribution for Ke in the ith individual, Ke(cov)i,med is the 
weighted median value of the Bayesian posterior distribu-
tion for Ke(cov) in the ith individual, and CKD-EPI-absi is 
the individual CKD-EPI-abs value at a certain time point:

(10)Ke
i
= Ke

i,med ×

(

CKD − EPI − abs
i

119

)Ke(cov)i,med

Fig. 2   Goodness-of-fit plots 
with observed against predicted 
concentrations of both models. 
a Goodness-of-fit plots of the 
final parametric model. The 
log-transformed concentra-
tions are back-transformed for 
easier comparison with the 
untransformed concentrations 
in Fig. 2b. b Goodness-of-fit 
plots of the final nonparametric 
model. Solid line represents the 
identity (1:1) line, and the dot-
ted line represents the regres-
sion line. Conc. concentration

a Goodness-of-fit plots of the final parametric model. The log-transformed 

concentrations are back transformed for an easier comparison with the 

untransformed concentrations in Fig. 2b 

b Goodness-of-fit plots of the final nonparametric model
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A plot of the individual Ke against the individual CKD-
EPI-abs (n = 86) is shown in Electronic Supplementary 
Fig. 3b. This plot shows a similar Kei versus CKD-EPI-
abs relationship as the parametric model, although the Kei 
distribution is wider for the nonparametric model. A wider 
distribution is also shown in the simulated concentration-
time profiles for CKD-EPI-abs of 150, 120 and 90 mL/min 
(Electronic Supplementary Fig. 4b).

The median (interquartile range) of the residu-
als (observed minus predicted concentrations) was 
− 0.045 mg/L (− 0.498 to 1.506) for the population predic-
tions and 0.011 mg/L (− 0.295 to 0.533) for the individual 
predictions. Residual plots are shown in Electronic Supple-
mentary Fig. 5b. These are similar to the parametric plots.

4 � Discussion

The structure and parameter estimates of our two indepen-
dently developed parametric and nonparametric popPK 
models of imipenem in critically ill patients treated with 
imipenem/cilastatin were similar; both included two distri-
bution compartments and CKD-EPI-abs as a covariate on Ke. 
Body weight as a covariate was not found to be a significant 
covariate in either model. Both models described imipenem 
PK well. Two main differences between the models emerged. 
First, the parametric model included BSV for Ke only, while 
the nonparametric model included such variability on all 
popPK parameters. Second, the estimated BSV (defined as 
CV%) for Ke was higher for the nonparametric model (34.0% 
vs. 19.0%). The findings of similar parameter estimates but 
higher BSV for the nonparametric model are in line with 

Fig. 3   VPCs of both models. 
a VPC of the final parametric 
model. The log-transformed 
concentrations are back-trans-
formed for easier comparison 
with the untransformed concen-
trations in Fig. 3b. b VPC of 
the final nonparametric model. 
Circles represent observed 
concentrations; upper, middle 
and lower lines represent the 
95th, 50th and 5th percentile 
of observations, respectively; 
and shaded areas represent the 
95% confidence interval of the 
corresponding percentiles of 
predictions. VPCs visual predic-
tive checks
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two previously published studies comparing parametric and 
nonparametric models of other drugs [12, 13]. These BSV 
differences could be explained by the statistics behind the 
modelling methods. Both models have fixed (no BSV) and 
random (including BSV) parameters. However, while during 
parametric modelling the inclusion of BSV is examined for 
each popPK parameter, all popPK parameters for nonpara-
metric models are, in principle, random parameters, while 
the residual error model is fixed. In addition, while para-
metric methods assume a normal or lognormal distribution 
of parameters, nonparametric methods make no assump-
tion about the parameter distributions, which can cause a 
wider CI of the parameter estimates (e.g. see Fig. 1 for Ke, 
which also clearly shows the differences between the two 
CV% measures, and Electronic Supplementary Fig. 3). The 
simulated concentration-time profiles in Electronic Supple-
mentary Fig. 4 indicate that the concentrations of the 2.5th 
percentile are approximately twofold lower for the nonpara-
metric model. The consequences of this finding (e.g. higher 
or more frequent dosing following the nonparametric model) 
should be further explored by probability of target attain-
ment calculations based on extensive Monte Carlo simula-
tions for several dosing regimens [44].

Our finding of two distribution compartments is in 
accordance with other published popPK models of imipe-
nem in critically ill patients (all with pneumoniae) [45–47]. 
However, our Vc and clearance (CL = Vc × Ke) values were 
higher than previously described [45–47]. This could be 
explained by a higher CLcr in our population, which could 
be attributed to augmented renal clearance (ARC) [48, 49]. 
ARC is defined as increased renal elimination of circulating 
solutes and drugs compared with normal baseline [23] and 
has been reported in approximately 30–65% of critically ill 
patients [48]. Our Kcp (0.2–0.4) and Kpc (0.2–0.5) values 
of both models were similar to the previously published 
parametric model [45], but remarkably different from the 
two nonparametric models (Kcp 3–8 and Kpc approximately 
9) [46, 47]. Possibly, these differences could be explained 
by (unpublished) wider parameter boundaries of their non-
parametric models. The parameter ranges in nonparametric 
software are strict boundaries wherein the optimal values are 
sought. To assist with optimal setting of parameter ranges in 
nonparametric popPK, we used the parametric IT2B module 
in Pmetrics to estimate the parameter ranges to pass to the 
nonparametric NPAG module. During parametric modelling 
with NONMEM, the parameter initial estimate is a starting 
point to search for the optimal value, and setting limits is not 
always necessary [29]. This was underlined by the fact that 
the results of our final NONMEM model with only lower 
boundaries were the same as a model with the same upper 
and lower boundaries as the final Pmetrics model.

Many types of standard GOF plots used for model evalu-
ation are applied both in parametric and nonparametric 

modelling: observed versus population predicted concen-
trations; observed versus individually predicted concentra-
tions; and weighted residual (WRES) plots. The observed 
versus predicted concentration plots of our popPK models 
are comparable. In Pmetrics, the standard layout of these 
plots includes the R2, intercept, slope, bias (mean WRES) 
and imprecision. In NONMEM, these measures are not auto-
matically calculated. A residual is the difference between an 
observed and a predicted concentration. WRESs are used 
in WRES plots, as well as for the calculation of bias and 
imprecision. We did not show WRES plots nor calculated 
weighted bias and imprecision for both methods because of 
two reasons. First, the weighting differs between the two 
modelling methods. In NONMEM, the conditional WRES 
(CWRES) is the residual weighted by the square root of the 
covariance of a FOCE model [50], while in Pmetrics, WRES 
is the residual weighted by the squared error [35]. Second, a 
WRES of logarithmic transformed data (in our NONMEM 
model) is not the same as a WRES of untransformed data (in 
our Pmetrics model). We used weighted bias and impreci-
sion in Pmetrics only to differentiate between four covariate 
models with a − 2LL decrease that did not differ signifi-
cantly from each other. As an alternative to weighted bias, 
we calculated unweighted bias (the unweighted residuals of 
untransformed concentrations), of which the median and 
interquartile range were comparable for both methods.

The VPCs of both popPK models indicated a sufficient 
predictive performance. The means of the 95th, 50th and 5th 
percentiles of predictions are comparable for both models, 
but the 95% CIs of these percentiles differ for some bins 
(timeframes) of the VPCs. Most remarkably, the 95% CI of 
the 95th and 50th percentile of the last two bins (4.3–5.8 h 
after dose) is wider for the nonparametric model. This 
could be explained by a higher estimated BSV of Ke in the 
nonparametric model, leading to a wider distribution of 
concentrations in the elimination phase. We did not show 
prediction-corrected VPCs (pcVPCs) because this option 
has been developed for parametric methods [51] and has 
not yet been tested for nonparametric methods. In a pcVPC, 
the variability coming from binning across the independent 
variable, e.g. due to different doses or influential covariates, 
is removed [51]. The pcVPCs of the NONMEM model did 
not show important differences from the traditional VPCs 
(data not shown).

Both models include CKD-EPI-abs as a covariate on Ke. 
Two of the three previous mentioned published popPK mod-
els of imipenem also included renal function as a covariate, 
but other measures were used, i.e. 4 h CLcr in urine [45] and 
the CG equation [47]. Sakka et al. did not find 12 h CLcr in 
urine as a significant covariate [46]. Besides eGFR, other 
covariates were also included in the published models, i.e. 
body weight [45–47], height [46, 47], BSA [46, 47], age [46, 
47], sex [47] and albumin [45]. In our covariate screening 
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plots, sex, age and height did not show a relationship with 
any PK parameters. Body weight did show a relationship 
in the covariate plots, but inclusion as a covariate did not 
improve the model. Albumin data were not available. BSA 
was taken into account during eGFR covariate testing. We 
tested both BSA-unadjusted (mL/min) and BSA-adjusted 
(mL/min/1.73 m2) eGFR equations because the European 
Medicines Agency [52] and the Kidney Disease Improving 
Global Outcomes (KDIGO) guideline [53] recommends to 
base dosing on absolute instead of BSA-normalized eGFR. 
The KDIGO [53] also recommends using the CKD-EPI 
eGFR equation. However, this guideline is based on chronic 
kidney disease, while our study population consisted of 
critically ill patients with a high median CKD-EPI eGFR 
of 116 mL/min/1.73 m2. The correlation between measured 
CLcr and eGFR equations is known to be weak in critically 
ill patients [23, 54]. Nonetheless, the measurement of CLcr 
(as a surrogate for GFR) is time-consuming and is not stand-
ard practice in many ICUs. In daily practice, the eGFR is 
also used for dosing drugs with renal clearance, although 
many patients have a renal function that is not in steady 
state. Therefore, we decided to test several eGFR equa-
tions to find the most suitable one in our population. Min-
ichmayr et al. performed a similar eGFR covariate analysis 
for meropenem in critically ill patients and found that the 
CG equation best described meropenem clearance [55]. We 
observed a maximum in the BSV–eGFR plots; however, the 
implementation of a maximum Ke value for eGFR values 
from 150, 120 and 90 did not further improve the model. As 
already mentioned, the correlation between measured CLcr 
and eGFR equations is weak, but it is also shown that this 
correlation varies over the eGFR range [23]. For example, 
in a previous study it was shown that the CKD-EPI equation 
performed better for measured CLcr < 120 mL/min than for 
CLcr > 120 mL/min [23]. We did not confirm this finding 
in our study (see Electronic Supplementary Fig. 2), which 
could be explained by the different study population.

For both modelling approaches, eGFR was implemented 
as a time-varying covariate using a stepwise (discontinuous) 
approach. The default covariate settings of both methods 
were slightly different (i.e. NOCB without interpolation or 
LOCF with linear interpolation from the last dose before 
the next covariate value). However, the parameter estimates 
of both final models, developed with the default settings, 
were very similar to the same models using LOCF with-
out interpolation. This is explained by the majority (85%) 
of patients having reasonably stable CKD-EPI-abs eGFR 
values around PK sampling, according to the KDIGO defi-
nition of an eGFR drop or rise of < 25% compared with the 
previous value [53]. This stability statement is supported by 
frequent creatinine monitoring. A creatinine concentration in 
the 24 h before TDM was available for all PK samples. Due 

to the stable eGFR values, a continuous covariate approach 
was not necessary.

We performed our study using the most used parametric 
(NONMEM) and nonparametric (Pmetrics) software. For 
approximately a decade, a nonparametric method also exists 
in NONMEM, and some publications [19, 56–58] regard-
ing the evaluation and optimization of this approach are 
available. However, this method is seldom used in clinical 
practice. The parametric module IT2B in Pmetrics is used 
to estimate parameter ranges to pass to NPAG, but under-
performed compared with other parametric algorithms [12].

One of the limitations of our study is that we used eGFR 
equations for a critically ill population with a high fre-
quency of augmented clearance; however, these equations 
are developed for more stable patients with chronic kidney 
disease. Nonetheless, as measured CLcr was unavailable and 
is also not standard practice in many ICUs, we aimed to 
find the eGFR equation that would best describe imipenem 
clearance. Another drawback is that we could not compare 
WRESs because the weighting is different for both methods 
and the residuals of untransformed data (used for the non-
parametric model) are different from transformed data (used 
for the parametric model). Other limitations are the small 
number of subjects and the absence of an external valida-
tion. It would be interesting to compare the predictions of 
both models.

5 � Conclusions

The general structure and the parameter estimates of both 
models were comparable. The identical covariate results 
(CKD-EPI-abs on Ke) of the two different modelling meth-
ods strongly support the findings in this population. The 
nonparametric model included BSV for all parameters, while 
the parametric model only included BSV on Ke. The esti-
mated BSV of Ke was higher in the nonparametric model. 
The consequences of the BSV differences may affect esti-
mated exposure during dosing simulations, and this should 
be further investigated in simulation studies.
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