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Resumo 
 

Compreender a divergência e especiação entre espécies próximas sempre foi um tema desafiador no 

âmbito da biologia evolutiva. Os marcadores de DNA citoplasmáticos, os quais muitas vezes são usados 

em investigações no contexto de marcadores moleculares, nem sempre deram resultados bem-sucedidos 

que conseguissem resolver as respetivas filogenias e outras questões. 

 

Nos últimos anos, com o surgimento da Nova Geração de Tecnologias de Sequenciação e técnicas 

associadas que tiram partido de uma reduzida representação do genoma, é agora possível responder a 

questões relacionadas com a divergência populações e especiação. 

 

Aqui retratamos o potencial de uma dessas técnicas – Restriction-site Associated DNA (RAD) 

Sequencing -, para contribuir para a resolução de algumas questões no âmbito da especiação de um 

grupo particular de insetos, as cigarras mediterrânicas do género Tettigettalna. 

 

A técnica RAD sequencing tira partido da Illumina, uma das Tecnologias da Nova Geração de 

Sequenciação, para gerar dados genómicos de zonas adjacentes a locais de corte de restrição por enzimas 

(RAD tags). Isto permite simultaneamente identificar e marcar milhares de SNPs espalhados por todo o 

genoma, de qualquer tamanho, em centenas de indivíduos e para organismos modelo ou não. Como a 

RAD-Seq é uma técnica de sequenciação de reduzida representação do genoma, é claro que o seu uso 

tem muitas mais vantagens em comparação com técnicas de sequenciação de todo o genoma. Isto 

permitiu que a RAD-Seq se tenha tornado a metodologia genómica mais usada para a descoberta de 

SNPs em estudos filogenéticos e de evolução de organismos não-modelo como é o caso das espécies de 

cicadas do género Tettigettalna. 

 

Este género constitui um complexo de espécies de cigarras intimamente relacionadas que divergiram 

recentemente. Elas são morfologicamente semelhantes o que as torna um desafiante grupo taxonómico. 

Adicionalmente, o canto de chamamento produzido pelos machos é a principal característica que permite 

a distinção entre as espécies. 

 

Na Península Ibérica, a diversidade das cigarras foi amplamente subestimada até à recente descrição e 

revisão taxonómica de nove espécies de cicadas de pequeno porte pertencentes ao género Tettigettalna: 

Tettigettalna mariae, Tettigettalna argentata, Tettigettalna aneabi, Tettigettalna josei, Tettigettalna 

defauti, Tettigettalna armandi, Tettigettalna helianthemi, Tettigettalna boulardi e Tettigettalna 

estrellae. 

Algumas das espécies mencionadas são restritas a Espanha, sendo que apenas uma delas, Tettigettalna 

estrellae, é restrita a Portugal. Tettigettalna argentata é a única que para além da Península Ibérica se 

estende para mais países Europeus.  

 

Alguns estudos focados nas espécies da zona do Mediterrâneo pertencentes a este género evidenciaram 

a ocorrência de simpatria entre algumas espécies de Tettigettalna do sudoeste da Península Ibérica. As 

populações de Tettigettalna argentata têm uma distribuição que faz com que por vezes se sobreponham 

com outras populações de outras espécies. No Algarve (Portugal), as populações de Tettigettalna mariae 

e Tettigettalna argentata podem ser encontradas em simpatria ou parapatria. Estas duas espécies são 

consideradas um complexo de espécies gémeas, sendo morfologicamente muito semelhantes e apenas 

se distinguindo pelo seu canto de chamamento. 
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Trabalhos baseados na análise de sequências mitocondriais (COI) permitiram a separação de populações 

de Tettigettalna argentata em clade do norte e clade do Sul. Adicionalmente, este clade do Sul revelou 

não ser geneticamente distinto dos espécimenes de Tettigettalna mariae, com o qual partilha a maior 

parte dos haplótipos. Assim, é muitas vezes impossível discriminar os espécimenes de T. mariae dos 

espécimenes de T. argentata (clade do Sul) com base apenas na análise de sequências COI. 

 

Como referido, as espécies de Tettigettalna podem ser distinguidas através dos sons produzidos pelos 

machos, pelo que se pensa que estes sinais acústicos possam ter um papel preponderante no isolamento 

reprodutivo das espécies. Na verdade, estudos baseados em dados de acústica revelam que diferentes 

espécies têm diferentes padrões acústicos. Porém, outros trabalhos com dados genéticos não esclarecem 

várias questões. Nomeadamente, se a partilha de haplótipos entre o clade Sul de Tettigettalna argentata 

e as Tettigettalna mariae será devida a introgressão (existência de fluxo genético entre populações) ou 

“Incomplete Lineage Sorting”, (segregação imperfeita de alelos em linhagens bem definidas). 

 

Os trabalhos realizados apontam assim para a necessidade de uma metodologia multilocus que possa ser 

uma melhor abordagem a adotar, por forma a responder às questoes acima mencionadas. 

 

Neste trabalho, utilizámos então uma abordagem multilocus, ou seja, dados de RAD-Seq das cigarras 

do género Tettigettalna. Com este tipo de dados e utilizando ferramentas de limpeza e filtragem dos 

dados, como o Ipyrad, VCFtools e outros scripts, foi assim possível gerar resultados que permitiram 

responder melhor a questões que até agora não tinham sido respondidas à luz de abordagens single locus 

e/ou com dados de outras naturezas. 

 

Com esta nova abordagem mostrámos que os dados RAD-Seq tornam evidentes os padrões de 

distribuição geográficos das espécies/populações das cigarras do género Tettigettalna, bem como 

parecem indicar que a partilha de haplótipos entre Tettigettalna argentata e Tettigettalna mariae de 

populações simpátricas na região Algarvia, é explicada pelo fenómeno de introgressão. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-chave: RAD-Sequencing, Tettigettalna, Península Ibérica, introgressão e incomplete lineage 

sorting.  
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Abstract 

 
Understanding population divergence and speciation among closely related species has long been a 

challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used in the 

context of molecular barcoding, have not always proved successful in resolving phylogenies and other 

related questions.  

 

With the advent of Next-Generation Sequencing technologies and associated techniques of reduced 

genome representation, not only the phylogenies of closely related species are now being resolved at a 

much greater detail, but are also allpwing a much better understanding on divergence and speciation 

patterns and processes.  

 

Here we examine the potential of one of such techniques - Restriction-site Associated DNA (RAD) 

sequencing -, in disentangling questions related to the divergence and speciation of a particular group 

of insects, the meditteranean cicadas from the Tettigettalna genus. This genus constitutes a complex of 

closely related and recently diverged species. They are morphologically similar what makes them a 

taxonomical challenging group. The calling songs are the main character used for their identification.  

 

 

Work focused on the Mediterranean species of this genus revealed the accurance of sympatric 

populations among some of the southern Iberian Tettigettalna species. In fact, Tettigettalna mariae and 

Tettigettalna argentata populations can be found in sympatry or close parapatry. As already referred, 

these two species are morphologically very similar and only distinguishable by their calling songs. 

However, mitochondrial COI studies also showed that these species share haplotypes but the results 

couldn’t reveal if this sharing was due to introgression (existence of gene flow between populations) or 

incomplete lineage sorting (defective segregation of alleles into well-defined lineages). 

 

The present multilocus approach with RAD-Seq data, not only revealed a better understanding of the 

geographical patterns of distribution of the Tettigettalna species and populations, but also gave evidence 

that it is the phenomenom of introgression that explains the sharing of haplotypes between Tettigettalna 

argentata and Tettigettalna mariae, when in sympatry.  

 

Therefore, the use of the Next-Generation sequencing data, in particular RAD-seq data, in this thesis 

has reinforced the utility of the methodology applied to solve problems related to recent diverged 

complexes of species, such our study group of insects in which we were able to give a significant 

contribution to a better understanding of its divergence and speciation. 

 

Keywords: RAD-Sequencing, Tettigettalna, Iberian Peninsula, introgression and incomplete lineage 

sorting. 
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Chapter 1  

Introduction 

 

1.1  Sequencing Technologies: from the early DNA discovery to present 

day research tools 

 
 

Determining the sequence of nucleic acids residues in biological samples is an integral component of a 

large variety of research applications since it gives the information for the hereditary and biochemical 

properties of terrestrial life. DNA sequencing plays such an important role as it allows measuring one 

of the major properties at which the life forms can be defined and differentiated from each other (Heather 

& Chain, 2016). 

 

Over the last half century, a large number of researchers have invested a great deal of time and resources 

to the development and improvement of the sequencing technologies. Therefore, we have witnessed 

tremendous challenges over those years, moving from sequencing short sequences (gene scale) to 

millions of bases (whole genome scale) (Heather & Chain, 2016). 

 

Hence, the evolution of DNA sequencing has a rich story full of several generations of sequencing 

technology that can be characterized in terms of their nature and the output generated by them (McGinn 

& Gut, 2013). 

 

The history behind Next-Generation Sequencing (NGS), also known as high-throughput sequencing 

(HTS) techniques, goes back to the discovery of the double-helix DNA structure in 1953 (Watson & 

Crick, 1953). Some years later, Robert Holley and colleagues were able to produce the first whole 

nucleic acid sequence and structure, namely the 77 ribonucleotides of alanine tRNA from 

Saccharomyces cerevisiae, opening the door for others to determine the sequence of not only other 

RNAs but also DNA (Holley, Madison, & Zamir, 1964; Holley et al., 1965). 

 

In 1977, Frederick Sanger was the first to sequence a complete DNA genome of bacteriophage X 174 

and was the pioneer of the Sanger method, the known first-generation technique of sequencing (Sanger 

et al., 1977a; Sanger, Nicklen, & Coulson, 1977b). In fact, he was the first to realise the importance of 

genome sequencing on the biological studies, like he said: 
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“…[A] knowledge of sequences could contribute much to our understanding of living matter.” 

[Frederick Sanger] (Heather & Chain, 2016) 

 

Next-Generation Sequencing refers to the deep, high-throughput DNA sequencing technologies 

developed after the Sanger sequencing method first emerged in 1977 (Sanger et al., 1977a). 

 

Also referred as the Sanger DNA chain-termination method or dideoxy method, it has remained the most 

frequently used DNA sequencing technology for 30 years (McGinn & Gut, 2013). 

 

1.1.1  The Sanger Sequencing: the first sequencing method 

 

The chain-termination method (see Figure 1.1) is based on the DNA polymerase-dependent synthesis 

of a complementary DNA strand in the presence of natural deoxynucleotide triphosphates (dNTPs) and 

dideoxynucleotide triphosphates (ddNTPs) (Sanger et al., 1977a). 

 

The ddNTPs are modified nucleotides that lack the 3’- OH group that is required for the establishment 

of the phosphodiester bonds between nucleotides (Chidgeavadze et al., 1984) during strand elongation. 

Hence, the lack of it makes them, during the elongation process, being responsible for the DNA synthesis 

termination, once one is incorporated by the DNA polymerase (Morozova & Marra, 2008).  

 

By performing four parallel reactions, the products are then separated by size using a polyacrylamide 

gel electrophoresis and the DNA sequence of the template strand is revealed with the use/principle of 

autoradiography (Heather & Chain, 2016; Morozova & Marra, 2008). 

 

 
Figure 1.1 Sanger Sequencing 

(1) Single-stranded DNA with an unknown sequence (blue) serves as a template. (2) Four reaction mixtures are prepared, one 

for each nucleotide, in the presence of a DNA polymerase, a radioactively labelled primer, dNTPs (“normal” nucleotides) and 

ddNTPs (modified nucleotides), which allows the DNA synthesis in vitro of the complementary strand. (3) After the DNA 

synthesis, a gel electrophoresis is performed followed by autoradiography. (4) The new strand sequence is read from the gel 

electrophoresis, and the sequence of the template is deduced from the previous one. Adapted from 

https://www.onlinebiologynotes.com/sangers-method-gene-sequencing/ in March 2019. 

 

A number of improvements throughout the years were made to the classical Sanger sequencing 

technique. The most relevant improvements made to the classical Sanger sequencing method were 

incrementing the read length of the sequences, lower error rates of sequencing (Heather & Chain, 2016; 
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Morozova & Marra, 2008) and improving detection with the use of capillary gel electrophoresis and the 

use of fluorescent dyes of different colours (Smith et al., 1986). Hence, those improvements made the 

accuracy, the simplicity and robustness of the classical Sanger’s method made it the pioneer technology 

for DNA sequencing (Heather & Chain, 2016). 

 

1.1.2  Human Genome Project 

 

The Sanger sequencing method was used to complete Human Genome Sequencing initiatives led by the 

International Human Genome Sequencing Consortium and Celera Genomics (Consortium, 2004; Venter 

et al., 2001). 

 

The Human Genome Project (HGP) was initiated in 1990 and required 13 years until the sequence was 

published. (Consortium, 2001). This project was the proof that sequencing an entire genome is 

achievable but at in high cost level and with limitations in the throughput (McGinn & Gut, 2013).  

 

Sanger’s method limitations and the associated Human Genome Project have aroused the need of better 

sequencing technologies not only for sequencing human genomes but also other genomes (Barba, 

Czosnek, & Hadidi, 2013). Following the publication in 2004 of the human genome sequence 

(Consortium, 2004), the National Human Genome Research Institute have invested 70 million in a DNA 

sequencing initiative with the goal of  having a human genome sequence in 10 years possible at a most 

reducible cost (Reuter, Spacek, & Snyder, 2015). This triggered in 2005 the rise of the beginning of the 

revolutionary Next-Generation Sequencing technologies (McGinn & Gut, 2013). 

 

 

1.1.3  Next-Generation Sequencing technologies 

 

The Next-Generation Sequencing technologies refer to all the technologies that followed the first-

generation of sequencing – the Sanger Sequencing technique.  

 

Hence, both 2nd generation of sequencing and 3rd generation of sequencing technologies refers to 

technologies that belong to the next-generation technologies. In the 2nd generation of sequencing, the 

main technologies are 454 pyrosequencing technology, Illumina sequencing technology, SOLiD 

sequencing technology, Ion Torrent sequencing technology and Single Molecule Real Time (SMRT) 

sequencing technology. For the 3rd generation of sequencing, the most notable technology of this 

generation is the Oxford Nanopore sequencing technology. 

 

Here, it will be described not only an overall review of the chemistry of the sequencing method for each 

technology, the improvements that were made to the methods, but also their advantages/disadvantages.  

 

The aim of these sequencing methods of the Next-Generation of Sequencing technologies was producing 

big volume of data (large amounts of DNA reads) and deliver fast and accurate genome information at 

a low cost (Barba et al., 2013; McGinn & Gut, 2013) which would have a dramatic impact on genomic 

research. Each technology associated with the platforms available determines the quality, quantity and 
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biases of the output generated which is essential to be able to know which platform to use depending 

with the type of output data pretended (Reuter et al., 2015). Since, the platform applications will be later 

discussed, after understanding, first of all, the sequencing principles of each technology. 

 

 

2nd Generation Sequencing 

 

There are several High-Throughput Sequencing platforms available in the market that used second 

generation sequencing methods (McGinn & Gut, 2013). This generation methods’ workflow  are similar: 

library preparation, amplification and several rounds of enormously parallel sequencing (Reuter et al., 

2015). 

However, the main characteristics of this generation of sequencing is the use of many clonal templates 

in parallel and the use of enzymatic replication system to determine the sequence (McGinn & Gut, 2013). 

 

 

Roche/454 pyrosequencing technology 

  

The previous presented Sanger sequencing method had the limitation of requiring in vivo amplification 

of the DNA fragments to be sequenced, which were performed in bacterial hosts. However, this cloning 

process is labour intensive, lengthy and have error biases associated (Hall, 2007).  

 

In the 454-pyrosequencing technology, the first of the next-generation sequencing technologies released 

at the market, there is no need of cloning amplification in a host like on Sanger’s sequencing (Tawfik & 

Griffiths, 1998). Furthermore, the nucleotide inference is in real-time and there is no use of modified 

dNTPs  (Nyrén, 1987; Ronaghi et al., 1996; Ronaghi, Uhlén, & Nyrén, 1998). 

Despite the differences, both Sanger and pyrosequencing methods are sequence-by-synthesis techniques 

because both of them require action of DNA polymerase (Heather & Chain, 2016). Furthermore, 

pyrosequencing provides intermediate read lengths and price per base compared to Sanger sequencing 

in one hand, and Illumina and SOLid platforms on the other hand (Barba et al., 2013). 

 

In pyrosequencing sequencing (see  

 

Figure 1.2) technologies, after the library preparation, the DNA amplification is done in vitro in a 

method called Emulsion PCR (EmPCR) (Tawfik & Griffiths, 1998). In EmPCR, a huge number of 

copies of a unique template DNA per bead is obtained (Morozova & Marra, 2008). The clonal templates 

are then sequenced using the pyrosequencing method, at which dNTPs are added one at time. Whenever 

a nucleotide is incorporated, the release of pyrophosphate (PPi) occurs and it’s detectable by light 

produced by a chemiluminescent enzyme present in the reaction. The sequence of the DNA template is 

then taken (Morozova & Marra, 2008). 
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Figure 1.2 454 pyrosequencing  

(1) Preparation of Adapter ligated single-stranded DNA Library (A-[insert]-B). (2) In vitro Emulsion PCR (EmPCR) in beads 

in water-in-oil microreactors that allows DNA amplification. Each bead contains clonal sequences of a unique template. (3) 

Beads with clonally amplified template DNAs are deposited in a picotiter plate with sequencing enzymes. (4) The 

pyrosequencing starts with the sequential addition of dNTPs. The release of PPi detectable by light, once a dNTP is 

incorporated, allows the determination of the template sequence. Adapted from (Leong, Skinner, & Love, 2014; Margulies et 

al., 2005; Metzker, 2009; Voelkerding, Dames, & Durtschi, 2009). 

 

The first high-throughput sequencing device to be available in the market was from 454 Corporation, 

was in 2005-2006. It was called the GS 20 and was capable of producing 20 Mbp. The 454 Corporation 

was later bought by Roche and the technology evolved in 2007 to the Roche GS FLX, which offered 

greater number of reads because of the increment of the number of wells in the picotiter plate as well as 

better quality data. In 2008 the upgraded 454 GS-FLX+ Titanium was available which was capable of 

producing over 600 Mbp of sequence data in a single run (Barba et al., 2013). 

 

The Roche technology have then demonstrated that mass parallelisation of reactions to sequence data is 

possible in only one run (Margulies et al., 2005).  

 

Illumina/Sequencing by synthesis with reversible terminators technology 
 

Following the success of 454 pyrosequencing, a several number of parallel sequencing techniques 

sprung up (Voelkerding et al., 2009). The most important among them was the Solexa method of 

sequencing that released the Genome Analyzer in 2005, and which was later, in 2007, acquired by 

Illumina (Barba et al., 2013). 

In Illumina sequencing method (see Figure 1.3), instead of parallelising by performing bead-based 

emulsion PCR, adapter linked DNA molecules are passed over a lawn of complementary 

oligonucleotides bound to a flow cell. Following a solid phase PCR, it produces neighbouring clusters 

of clonal populations from each of the individual original flow cell binding DNA strands (Bentley et al., 

2008; Fedurco et al., 2006), a process called bridge amplification. This name is due to the replicating 

DNA strands have to arch over to prime the next round of polymerisation of neighbouring surface-bound 

oligonucleotides (Voelkerding et al., 2009). 

 

The sequencing is achieved using a sequencing-by-synthesis (SBS) approach using fluorescent 

reversible-terminator dNTPs, which can not immediately bind further nucleotides as the fluorophore 

occupies the 3’ hydroxyl position; this must be cleaved away before polymerisation can continue, which 
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allows the sequencing to occur in a synchronous way (Turcatti et al., 2008). The modified dNTPs and 

the DNA polymerase are washed over the primed, single stranded flow-cell bound clusters in cycles. At 

each cycle, the identity of the incorporating nucleotide can be monitored with a  charge-coupled device 

(CCD) camera by exciting the fluorophores with appropriate lasers, before enzymatic removal of the 

blocking fluorescent moieties and continuation to the next position (Heather & Chain, 2016). 

 

 
Figure 1.3 Illumina sequencing  

(1) DNA fragmentation and in vitro adaptor ligation. (2) Solid-phase bridge amplification. (3) Sequencing obtained with the 

use of fluorescent reversible-terminators nucleotides (labelled nucleotides), primers and DNA polymerase. (4) After laser 

excitation, an image per cycle is obtained by a CCD camera allowing the identification of the base incorporated by the emitted 

fluorescence. The sequence cycles are repeated to determine the sequence of the templates, one base at time. Adapted from 

(Leong et al., 2014; Margulies et al., 2005; Voelkerding et al., 2009). 

 

The first Genome Analyzer machines were initially only capable of producing very short reads (up to 

35 bp long) but they had an advantage in that they could produce paired-end data, in which the sequence 

at both ends of each DNA cluster is recorded. Having paired-end data, it provides a greater amount of 

information, which improves the accuracy when mapping reads to reference genomes, especially across 

repetitive sequences and aids detection of spliced exons and rearranged DNA or fused genes (Heather 

& Chain, 2016). 

 

The standard Genome Analyzer was latter followed by the HiSeq, a machine capable of even greater 

read length and depth, and then the MiSeq, which was a lower-throughput but lower cost machine with 

faster turnaround and longer read lengths (Balasubramanian, 2011; Quail et al., 2012). HiSeq 2500 series 

platform has a particular capacity that allow sequencing a human genome in 24 hours, the namely 

“Genome in a day” (Barba et al., 2013). 

 

Across all Illumina models the overall error rates are bellow 1% and the most common type of error is 

substitution (Dohm et al., 2008), however they currently dominated the High-Throughput Sequencing 

market (Reuter et al., 2015). 
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ABI/SOLiD sequencing by ligation technology 

 

The SOLiD technology was released by Applied Biosystems, which became Life Technologies 

following a merger with Invitrogen (McKernan et al., 2009) . 

In 2007, the first SOLiD sequencing system was released, followed by the SOLiD 5500w and 5500 xlw 

sequencing systems in 2010. The last has read lengths of 85 bps with 99,99% of accuracy and a data 

output of 30 Gb per run. Applications of SOLid include analysis of whole genome clusters with runs 

being finished in a week (Barba et al., 2013). The results of sequencing in terms of quantities and length 

are comparable to Illumina sequencing described before (Barba et al., 2013). 

 

In the Sequencing by Oligonucleotide Ligation and detection (SOLiD) system, as it name suggests the 

sequencing process does not occurs by synthesis (with a polymerase) but by ligation, using a DNA ligase 

(Shendure et al., 2005).  

Libraries preparation begin with an emulsion PCR, the amplification step similar to that one used in the 

454 technology.  The PCR products are then sequenced in sequential rounds of hybridization and ligation 

of 16 dinucleotide combinations labelled by four fluorescent dyes (each dye is used to label 4 

dinucleotides) on a glass surface. Using the four-dye encoding scheme, each position is probed twice 

and the identification of the nucleotide is determined by analysing the colour that results from two 

successive ligation reactions (Morozova & Marra, 2008). 

 

Due to this two-base encoding system, an inherent accuracy check is built into the technology which 

allows 99,99% of accuracy. The chemistry of the system also means that it is not hindered by 

homopolymers unlike the Roche 454 FLX system, then large and difficult homopolymer repeats are no 

longer a problem to sequence. The technology is then used to sequence DNA but the particular feature 

of high parallelisation nature makes it also applicable in transcriptomics and epigenomics (Morozova & 

Marra, 2008). 

 

 

Life Technologies/Ion Torrent sequencing technology 

 

Ion Torrent is the first so-called “post-light” sequencing method as it uses neither fluoresce nor 

luminescence, which speeds sequencing and reduces costs (Rothberg et al., 2011).  

 

The template preparation and sequencing are similar to the 454-pyrosequencing method (Mellmann et 

al., 2011). An emulsion PCR is used to clonally amplify adaptor-ligated DNA fragments on beads. The 

beads are distributed on wells where sequencing-by-synthesis occurs. The difference is that, instead of 

base incorporation with production of light, the Ion torrent sequencing measures pH changes induced 

by the release of H+ during DNA extension. Those pH changes, with the sequential addition of individual 

nucleotides during each sequencing cycle, are detected by a sensor and converted into a voltage signal. 

Since it is proportional to the number of bases incorporated it allows fast base discrimination (Reuter et 

al., 2015; Rothberg et al., 2011). 

 

In 2010, Life Technologies released the Ion Torrent sequencing technology in the form of a benchtop 

Ion Personal Genome Machine (PGM) sequencer. A second machine was released in 2012, the Ion 

Proton with its increments of the output generated (10 Gb) over the PGM (1 Gb). However, Ion Proton 
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sequencer features a maximum of 200 bp read lengths as opposed to 400 bp for the PGM (Reuter et al., 

2015). 

 

In what refers to their applications, Proton is more useful for exome sequencing and whole-

transcriptome analysis, and PGM for targeted resequencing projects and small genome analysis (Reuter 

et al., 2015). The speed of sequencing, two to eight hours depending of the machine and chip used, make 

these sequencers particularly useful for clinical applications (Mellmann et al., 2011). Error rates, instead, 

emerge by the presence of homopolymer repeats longer than six bp (Rothberg et al., 2011), insertions 

and deletions (Liu et al., 2012) on the data to be sequenced. 

 

 

PacBio/SMRT sequencing technology 

 

The  Single Molecule Real Time (SMRT) sequencing technology commercialized by Pacific 

Biosciences is sometimes referred as a 3rd generation technology because it allows sequencing single 

molecules in real-time with no need of previous amplification (Reuter et al., 2015), however it satisfies 

the 2nd generation characteristic of using an enzymatic replication system to sequence the data (Schadt, 

Turner, & Kasarskis, 2010). Because of this duality, it was stablished that this sequencing technology is 

an intermediate state of the 2nd and 3rd generations, because in fact, it goes beyond the 2nd generation 

characteristics (McGinn & Gut, 2013). 

 

In PacBio technology, the SMRT sequencing is a parallelized sequencing method that utilizes SMRT 

cells with a lot of zero-mode waveguides. Each zero mode waveguides (ZMW) have a single DNA 

polymerase that is affixed at its bottom with a single molecule of DNA as the template (Levene et al., 

2003). Throughout this complex, light can penetrate and create a visualization chamber that allows 

monitoring the activity in real-time of the polymerase enzyme at a single molecule level (Eid et al., 

2008). Each of the four bases are labelled with fluorescent dyes and added simultaneously, and whenever 

a nucleotide is incorporated into the growing strand, the fluorescent tag is cleaved off providing 

detectable fluorescence signals by a sensor which results in DNA sequencing in real-time. The speed of 

sequencing is much faster compared to the technologies where individual nucleotides are flushed 

sequentially (Kulski, 2016; McGinn & Gut, 2013). 

 

The commercially available device from Pacific Biosciences, the PacBio RS II, was released in 2010, 

which evolved through the years with improvements in the number of zero mode waveguides with a 

performance of an average of more than 14 kb of read lengths but it can be until 60 kb, generating then 

1 Gb of data in 4 hours  (McGinn & Gut, 2013). There are errors also associated with the method and 

the fact of avoiding the amplification step turns it is less sensitive to GC content, comparing to other 

platforms (Loomis et al., 2013).  

However, SMRT sequencing characteristics makes it particularly useful for producing kinetic data and 

applied in projects involving de novo assemblies (English et al., 2012). 
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3rd Generation Sequencing 

 

The third-generation sequencing technologies have emerged in a continuously effort to reduce the price 

of sequencing and became preparatory procedures and sequencing methods even more simpler 

(Metzker, 2009; Schadt et al., 2010). 

 

There is a discussion about what is the “line” that separates second-generation sequencing methods and 

the third-generation sequencing methods. However, there are arguments that allowed a division between 

them, namely the fact that the third-generation is characterized by the possibility of sequencing single 

molecules (single molecule sequencing – SMS), sequencing in real-time and the most remarkable 

characteristic, the absence of a replication enzymatic system which means there is no requirement for 

DNA amplification in those methods (Gut, 2013; Niedringhaus et al., 2011; Schadt et al., 2010). 

 

Oxford Nanopore Technology and its sequencing method 

 

Nanopore sequencing method is a typical example of a third-generation sequencing method that was led 

by the Oxford Nanopore Technologies, the first company that released in the market the first 

commercially nanopore based platforms like GridION and MinION. The last one is an USB portable 

sequencer device that was available at the market in 2014 (Clarke et al., 2009; Eisenstein, 2012; Loman 

& Quinlan, 2014). 

 

The principle of nanopore sequencing is simple and essentially consists of a synthetic or biological 

bilayer membrane immersed in salt solution and perforated by biologic nanopores (Bayley, 2006; Reuter 

et al., 2015). 

 

The library preparation of the biomolecules to be sequenced is reduced only with DNA fragmentation 

and with ligation by enzyme proteins of adapters being then unwinded and guided to the nanopore with 

the help of a protein on the top of the nanopore. This library preparation doesn’t require PCR 

amplification, and it’s designed to allow sequencing of both strands of the DNA which improves 

accuracy (Ashton et al., 2014; Quick, Quinlan, & Loman, 2014; Reuter et al., 2015). 

An application of an electrical current to this system drives ions through the nanopore, and the arrival 

of a biomolecule such as DNA base create resistance in the flow of the ions which causes changes in the 

electrical current that can be measured. The distinct four DNA bases when passing through the nanopore 

promote different changes in the electrical current and, because of that, DNA sequencing is 

accomplished. (Bayley, 2006) 

 

Although this method has error rates quite high (Jain et al., 2015), it makes possible, comparing to the 

previous next-sequencing methods, sequencing at faster rates and at low costs of long DNA reads bigger 

than two kilobases (kb), even RNAs and allows also parallelization (Branton et al., 2008; Derrington et 

al., 2010). 

 

The MinIon device which technology of sequencing is the nanopore sequencing (deals with long reads 

length) was, in one of its first applications, used in combination with the short-read sequencing methods 

(high read depth and accuracy) to generate position and structure of a bacterial genome sequence. This 
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proved that combination of sequencing methods is plausible and very effective to get the best 

characteristics of both methods used (Loman, Quick, & Simpson, 2015; Quick et al., 2014).   

1.2  Platform selection and RAD-Seq applications 

 

There are important factors to be considered before choosing an adequate sequencing platform. The 

choice depends on the size or expected size of the genome being studied, its complexity like GC content 

and the depth of coverage and accuracy needed (Barba et al., 2013). 

 

For de novo genome sequencing which is our case of the data to be treated and analysed, longer read 

length may be appropriate; for fast turnover times and limited throughput, smaller laboratory bench top 

platforms may offer greater flexibility (Loman et al., 2012); for amplicon sequencing, Roche 454 

platform is suitable because of its longer reads, however its currently expensive. Recently, platforms 

like Illumina MiSeq and Ion PGM platforms are suitable for sequencing amplicons; for RNA-

Sequencing and projects that require high depths of coverage, Illumina and SOLiD platforms offer the 

best cost, accuracy and throughput (Radford et al., 2012). 

Summarizing, the Roche 454 has the longest read length, Illumina HiSeq 2500 features the biggest 

output and lowest sequencing cost and SOLiD 5500 xlw the highest accuracy (Liu et al., 2012). 

 

Biologists have always dreamed of a day when perfect genetic knowledge would be available for almost 

any organism (Etter et al., 2011a).  

 

The current Next-Generation Sequencing (NGS) technologies are fulfilling that promise and 

revolutionizing the fields of evolutionary biology (Rokas & Abbot, 2009) and biomedical sciences 

(Asmann, Wallace, & Thompson, 2008; Marguerat, Wilhelm, & Bähler, 2008; Mortazavi et al., 2008), 

opening the possibility for genetic analysis at scales not previously possible.  Furthermore, researches 

related to population genomics (Hohenlohe et al., 2010), quantitative trait mapping (Baird et al., 2008), 

comparative genomics and phylogeography (Emerson et al., 2010; Gompert et al., 2010) that were 

unthinkable even a few years ago, are now possible. Perhaps the most critical aspect of these 

breakthroughs is the unshackling of genetic analysis from traditional model organisms, allowing 

genomic studies to be performed in organisms for which few genomic resources presently exist (Mardis, 

2008; Van Tassell et al., 2008).  

1.2.1  Restriction-site Associated DNA (RAD) sequencing 

 

We present here one sequencing technique approach, the Restriction-site Associated DNA (RAD) 

sequencing, a focused reduced-representation methodology that makes use of the Next-Generation 

Sequencing technologies and that speed up this revolution in evolutionary biology.  

 

1.2.1.1 Methodology of RAD-Seq 

 

RAD sequencing uses Illumina next-generation sequencing method to generate sequence data adjacent 

to restriction cut sites (RAD tags), which allows simultaneously discovering and scoring of tens to 
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hundreds of thousands of single-nucleotide polymorphism (SNP) markers (RAD markers) spread 

throughout the genome (of any size) in hundreds of individuals and for any model or non-model 

organism of choice (Baird et al., 2008; Davey et al., 2011; Luikart et al., 2008).  

In the original RAD-seq method (Baird et al., 2008), genomic DNA is digested with one restriction 

enzyme and numerous modifications can be made to the protocol (similar methods) to suit a diversity 

of evolutionary genetic questions, like inferring marker loci and genotypes de novo from RAD tags 

sequences for an organism with no sequenced genome, distinguish SNPs from error and inferring 

heterozygoty in the face of sampling variance (Etter et al., 2011a; Marguerat et al., 2008).  

 

Although the choice of the appropriate method is 

important because it can severally influence all steps of a 

genomic study (Andrews et al., 2016), in general, all the 

RAD-Seq techniques share basic steps. All of them need a 

high-molecular-weight genomic DNA, which is digested 

with one or more restriction enzymes depending of the 

method chosen. As seen on Figure 1.4, an adaptor (P1) is 

ligated to the fragment’s overhanging ends. This adapter 

contains forward amplification and Illumina sequencing 

primer sites, as well as a nucleotide barcode 4 or 5 base 

pair (bp) long for sample identification (Baird et al., 

2008). These barcodes are used to identify individual 

samples that are sequenced together (multiplexed) in a 

single library (Andrews et al., 2016), and differ by at least 

two nucleotides in order to reduce erroneous sample 

assignment (Baird et al., 2008). As soon as barcoded 

adaptors are ligated to each sample, the samples can be 

multiplexed, which can greatly reduce the expense and 

time of the subsequent steps in studies with large numbers 

of samples (Andrews et al., 2016). The adapter-ligated 

fragments are then pooled, randomly sheared and size-

selected. A second adapter (P2) with divergent ends is 

then ligated. The reverse amplification primer is unable to 

P2 unless the complementary sequence is filled in during 

the first round of forward elongation originated from the 

P1 amplification primer. The structure of this adapter 

ensures that only P1 adapter-ligated RAD tags are 

amplified during the final PCR amplification step (Baird 

et al., 2008). In the original RAD-Seq protocol each RAD 

tag has one end defined by the restriction enzyme 

recognition site and the other end defined by random 

shearing.  

 

Figure 1.4 RAD marker library generation  

(A) Genomic DNA was digested with a restriction enzyme and the P1 adapter was ligated to the fragments. The P1 

adapter contains a forward amplification primer site, an Illumina sequencing primer site, and a barcode (coloured boxes 

represent P1 adapters with different barcodes). (B) Adapter-ligated fragments were combined (if multiplexing), sheared and 

(C) ligated to a second adapter (P2, white boxes). The P2 adapter is a divergent “Y” adapter, containing the reverse complement 

of the reverse amplification primer site preventing amplification of genomic fragments lacking a P1 adapter. (D) RAD tags, 

which have a P1 adapter, will be selectively and robustly enriched. Reproduced from (Baird et al., 2008). 
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Thereafter, Etter et al., (2011b) adapted the original protocol to used paired-end reads, in which the two 

ends of a DNA fragment are sequenced and are known to belong to the same fragment. In order to do 

so, the authors altered two keys aspects of the RAD-seq protocol: 1) a wider size range of fragments 

(300-800 bp) was isolated after shearing; 2) a longer, divergent P2 adapter that contains the reverse 

sequencing primer sequence was ligated to the variable end of the RAD tags before amplification, 

allowing the randomly sheared end of the RAD fragments to be sequenced by the second read. This 

small set of sheared-end sequences can be assembled into a larger contig, hence the quality of the entire 

data set improves with a paired-end approach (Etter et al., 2011b). 

 

As RAD-seq is a reduced-representation sequencing approach, it targets a subset of the genome and, 

because of that, it is clear that it provides advantages over whole-genome sequencing. The advantages 

are including a greater depth of cover per locus, which improves confidence in genotype calls; and 

sequencing of greater numbers of samples for a given budget.  

Consequently, because of these advantages RAD-seq has become the most widely used genomic 

approach for high-throughput SNP discovery and genotyping in evolutionary and phylogenetic studies 

of non-model organisms (Andrews et al., 2016). 

 

Despite the applicability and ease of use of RAD and other NGS protocols, a significant continuously 

challenge facing biologists is developing the appropriate analytical and bioinformatics tools for these 

type of data (Etter et al., 2011a). 

 

1.2.1.2 Applications of RAD-Seq 

 

There are various examples of studies in different groups of organisms like birds, plants, molluscs and 

insects where the RAD-seq genomic approach was conducted. They aimed to resolve, not always in a 

straightforward way, some evolutionary questions and phylogenetic relationships, some of them the 

same of ours. 

 

For example, in birds Ng et al., (2017) were worried about understanding the impact of trade on the 

population genomic patterns of connectivity and differentiation under the study organism, a threatened 

songbird – the white-rumped shama Copsychus malabaricus. Previous studies done based on a single 

locus approach (a mitochondrial gene) of the songbird (Lim et al., 2010, 2011), have obtained results 

that were not conclusive and a lot of questions still unresolved. For that purpose, a reduced-

representation library of the bird genome with a reference genome was prepared using a double digest 

restriction-site associated DNA sequencing (ddRAD-seq) protocol (multilocus approach). This 

successful methodology fully solved the questions that were previously not answered yet. 

 

In plants, Deng et al. (2018) have used the de novo RAD-sequencing genomic approach to resolve the 

phylogenetic relationships’ questions that remained under East Asian evergreen oaks under the genus, 

section Cyclobalanopsis. This genus is phylogenetically challenging due to high intraspecific genetic 

variation, low interspecific differentiation and frequent interspecific gene flow (Denk & Grimm, 2010; 

Hipp, 2015; Kremer et al., 2012; Simeone et al., 2013). The reason why this genomic approach was 

chosen to resolve the genus was because previous studies of application of RAD-sequencing, have 

demonstrated that this genomic approach robustly estimated phylogenetic relationships among older oak 
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clades (Hipp et al., 2014), contrarily to the use of plastid DNA (Manos, Cannon, & Oh, 2008; Pham et 

al., 2017; Simeone et al., 2013; Xing et al., 2014) and ribosomal nuclear markers (Deng, Zhou, & Li, 

2013) where the resolution of the phylogenetic relationships among the genus was not fully resolved. 

The RAD-seq approach results obtained have successfully corroborated previous results by supporting 

the separation the Eurasian and American clades and also provided a valuable framework and the best-

resolved topology to date for understanding the phylogeny of the East Asian evergreen oaks in Eurasian 

clade. 

 

Besides, Curto et al., (2018) performed a study interested in obtaining a more comprehensive picture of 

the evolutionary history of a plant genus Micromeria. The species from this genus are morphologically 

similar but ecologically diverse on each Canary Island, constituting a great model to investigate niche 

shifts and adaptation within the Canary Archipelago. Previous attempts to reconstruct the phylogenetic 

relationships among the genus did not led to robust phylogenies, presumably due to introgression and/or 

incomplete lineage sorting (Curto, Puppo, Kratschmer, & Meimberg, 2017; Puppo, Curto, & Meimberg, 

2016). Because no genomic information is available for Micromeria to date, the most common reduced-

representation sequencing technique, the RAD-sequencing method (Baird et al., 2008; Cronn et al., 

2012; Elshire et al., 2011) was used. The results obtained corroborated the current reclassification of 

Micromeria and suggested that introgression have played a role in the evolution of the genus as 

suggested previously (Curto et al., 2017; Puppo et al., 2016). However, they recommended, for a more 

detailed understanding the history of the genus, more studies to be performed, since there was a lack of 

outgroups which led to misinterpretations.   

 

In molluscs, Razkin et al., (2016) applied the de novo RAD-Seq approach to assess the phylogenetic 

relationships, interspecific hybridization and species delimitation in the cryptic, non-model land snail 

complex of the genus Pyramidula.  Previous phylogenies  based on mitochondrial COI and 16S and 

nuclear markers showed several unsupported branches and incongruent topologies (Razkin et al., 2016). 

This latter observation was tentatively interpreted as the result of incomplete lineage sorting. Hence, 

further work was needed involving more molecular markers to assess whether, and to what extent, 

processes like interspecific gene flow or incomplete lineage sorting have shaped the phylogenetic 

relationships among Pyramidula species. The RAD-Seq results obtained helped to fully resolved the 

phylogenetic relationships between species. In fact, the tests for intraspecific hybridization have 

successfully revealed that, the incongruences between the mtDNA and nDNA gene trees regarding two 

of the genus’ species, were due to incomplete lineage sorting, which have been also documented in other 

molluscs (Wilding, Grahame, & Mill, 2000). Furthermore, as the two species didn’t live in sympatry, 

the hypothesis of the incongruences being caused by gene flow were less plausible (Ballard & Whitlock, 

2004). 

 

In what refers to insects, Suchan et al., (2017) were interested in disentangling the phylogeny of the fly 

genus Chiastocheta at which there is no reference genome. Previous studies relying on a single, non-

recombinant marker and ignoring potential incongruences between mitochondrial and nuclear loci 

provided an incomplete account of the lineage history of the genus (Després et al., 2002; Espíndola, 

Buerki, & Alvarez, 2012). Suchan et al., (2017) has proven that despite the higher performance of RAD-

seq in terms of species trees resolution compared to cytoplasmic markers, reconstruction of inter-

specific relationships among recent diverged lineages may lie beyond the possibilities offered by large 

data sets of RAD-sequencing markers in cases of strong gene tree incongruence due to incomplete 

lineage sorting.  
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1.2.1.3 A bioinformatics tool for RAD datasets analysis: Ipyrad 

 

RAD-sequencing technique generates thousands of reads per individual, hence the process of analysing 

the data requires high computational tools and takes much more time than the time needed to generate 

the RAD sequence reads (Andrews et al., 2016). 

  

There are several programs designed to analyse RAD-seq data like Stacks (Catchen et al., 2011) and 

Rainbow (Chong, Ruan, & Wu, 2012), however, most of the studies based on assembly of de novo RAD-

seq loci (without reference genome) like (Curto et al., 2018; Deng et al., 2018; Razkin et al., 2016; 

Suchan et al., 2017) for phylogenetic analysis and population genetics used the pyRAD or ipyrad 

program tools.  

 

Ipyrad (Eaton, 2015) is a toolkit specially used for assembly and analysis of genomic RAD-Seq data 

sets. It offers powerful methods to generate output files (assembled data) for forward downstream 

genomic analysis for both population genetics and phylogenetic studies.  

Any type of data generated with restriction digest methods like RAD (Baird et al., 2008), double-digest 

RAD (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) and Genotyping-By-Sequencing; or 

amplification-based processes like Next-RAD and RAPture can be so assembled with this tool in four 

modes of assembly. Both approaches yield data that is anchored on at least one side, so that, reads are 

expected to align fairly close. However, it’s important to have in mind that ipyrad is not intended for 

constructing long contigs from partially overlapping sequences but can accommodate paired-end reads 

and has particular methods for detecting and merging overlaps. For last, it can combine reads of various 

lengths what makes possible the combination of older data with newer data with different lengths. 

 

This tool is very similar to pyRAD (D. Eaton, 2014), being a complete re-write of it but with a different 

approach. Besides ipyrad retains an easy-to-use command-line interface, the notorious power of ipyrad 

comes from its implementation through a Python API, which allows users to write scripts that detail 

complex assemblies able to construct multiple data sets under multiple parameters settings (D. Eaton, 

2015). 

 

Other improvements include: 

• de novo, reference alignments and hybrid modes of assembly (four assembly methods); 

• Parallel implementation using ipyparallel which utilizes MPI allowing use of HPC clusters; 

• Possibility of restarting a script from the point of a job at which an interruption occurred; 

• Faster code and no external installations; 

• Writhe highly reproducible documented code with Jupyter Notebooks. 

 

The typical workflow to move from Fastq formatted input data (dataset) to assembled output files, in 

ipyrad pipeline involves seven sequential steps (assembly steps) under a single set of parameters defined 

in a .txt params file (D. Eaton, 2015). 

 

❖ The RAD sequence data as our dataset, can be received as one giant file or in many smaller 

files. The files may contain data from all of our individuals mixed up together, or as separate 

files for each sample. When mixed up together, the case that the data is not sorted among 
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individuals/samples (raw sequence files), then our data need to be first of all demultiplexed 

based on barcodes or indices. The .txt barcodes file, is then very important in the demultiplexing 

step (D. Eaton, 2014). This file is a simple table linking barcodes to samples. Each line of this 

file should have one name of the sample and then the respective barcode sequence, separated 

by a whitespace. The barcodes can be of varying lengths. 

 

❖ The parameters input file needs to be created on ipyrad and its name includes the prefix “params-

assembly_name.txt”. It lists all of the 29 parameters settings (assembly parameters) that could 

be and should be modified to create assemblies under different combinations of parameter 

settings, on the basis of the recommendations (D. Eaton, 2015). It is crucial to vary the 

parameters used in all steps of the analysis to critically evaluate the sensitivity of the results and 

to optimize the analysis (Andrews et al., 2016), since several publications (Ilut, Nydam, & Hare, 

2014; Mastretta‐Yanes et al., 2015) emphasized the fact that the analytical results can be 

considerably affected by the parameters settings used in de novo assemblies. 

 

The Seven Sequential Steps  

 

The assembly process is separated in steps which is very advantageous, because it allows the process to 

be restarted at any point if interrupted and can be easily branched at different points to create assemblies 

under the different combinations of the parameter settings in the params file (D. Eaton, 2014, 2015). 

 

The seven steps are: 

1. Demultiplexing (separate by barcodes); 

2. Quality filtering and removal of barcodes, cut sites and adapters; 

3. Clustering within samples and alignment; 

4. Joint estimation of heterozygosity and error rate; 

5. Consensus base calling and filtering; 

6. Clustering across samples and alignment; 

7. Filtering and formatting output files. 

 

1.3  The cicada group model in evolutionary studies 

 

Cicadas are a group of insects, belonging to the family Cicadidae, super-family Cicadoidea and the order 

Hemiptera, with more than 2500 species described around the world (Sun et al., 2009). Cicadas have 

long larval stages underground which can be seen on Figure 1.5, which is the case of the periodical 

cicadas, Magicicada spp. that have up to 13 or 17 years synchronized nymph cycles (Cooley et al., 

2001b; Yoshimura, 1997). In the case of the European cicadas, they mostly have a life cycle of two to 

six years. The advantage of having long larval stages underground is that it reduces losses by starving 

their predators and allows their emergence in huge numbers that overwhelms any predators (Williams 

& Simon, 1995). 
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Figure 1.5 Maturation stages of a periodical cicada 

Transformation of the periodical cicada from the mature nymph to the adult. Figure 118. from “Insects, their way and 

means of living”, R. E. Snodgrass (1930). 

 

They are well-known for the male ability to produce loud sounds during summer time by means of a 

tymbal mechanism (Claridge, 1985; Quartau & Boulard, 1995). The tymbal is the sound-specialized 

organ responsible for the production of a variety of calls. As presented on Figure 1.6, the cicada tymbal 

consists on an abdominal membrane attached to the tymbalic muscles which, with each round of 

contraction and relaxation, are able to vibrate on frequencies between 35 and 100 Hz producing sounds 

with frequencies up to 25 kHz, past the human audible frequency (Wessel et al., 2014). 
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Figure 1.6 Morphology of a cicada tymbal  

(A) Ventral view of a male cicada showing the fan-shaped opercula covering the tympana, which the cicada uses to hear. (B) 

Dorsal view of a male cicada showing the tymbals (drums) between the thorax and abdomen. (C) Abdominal cross-section of 

the male cicada showing the tymbalic muscles connected to the tymbals and anchored to the sternal cuticle. (D) Tymbal 

membrane, a convex layer of the cuticle, and often possessing several thin and resilin-coated portions intercalated by thickened 

ribs, as shown. Adapted from Carpenter (1911). 

 

Different types of sounds can be produced, and each has a different function (Boulard & Mondon 1996): 

 

▪ Calling song: the most common call of male cicadas, is used to call the females for pair 

formation and courtship; 

 

▪ Courtship call: is emitted when the singing male is approached by an interested female; 

 

▪ Alarm call: produced when a cicada senses something unusual in its environment; 

 

▪ Protest calls: can be subdivided in: 

 Opposition calls: when multiple males of same species are present in the same area or 

tree; 

 Distress calls: when a male cicada is caught.  

 

 

The calling songs are species-specific (Boulard, 2006; Cooley & Marshall, 2001a). Being a species-

specific character, it can be used to distinguish different species even between closely-related ones. This 

makes it a taxonomical valuable character (Boulard, 1982, 2006; Claridge, 1985; Sueur, 2006) for 

cicadas’ species discrimination. 

 

The Iberian Peninsula have been identified as an area of high diversity and endemism (García‐Barros et 

al., 2002; Jong, 1998), not only for plants (García‐Barros et al., 2002; Medail & Quezel, 1997; Moreno 

Saiz et al., 1998; Mota et al., 2002), amphibians and fishes (Vargas et al., 1998) but also for a lot of 

insects including the cicadas (Jong, 1998; Ribera, 2000). Among the Mediterranean countries, Portugal 
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is placed at the western most point of Europe and is close to the North Africa being affected by the clime 

of both Mediterranean and Atlantic, one of the reasons that allows Portugal to constitute a real hotspot 

for cicada’s diversity (Sueur et al., 2004). The Tettigettalna is the most biodiverse genus of cicads in o 

Portugal giving raise to the particular interest in studying evolutionary questions and speciation of this 

genus. 

1.3.1  The Tettigettalna genus case study 

 

Tettigettalna is a genus of cicadas from south-western Europe that occur in typical Mediterranean 

landscapes. This genus constitutes a complex of closely related and recently diverged species. They are 

morphologically similar what makes them a taxonomical challenging group. Fortunately, the calling 

songs are the main characters for their identification which were confirmed by Mendes et al., (2014) 

study.  

 

In the Iberian Peninsula, the diversity of cicadas was undervalued until the recent description and 

taxonomic revision of nine small-sized cicadas species under the genus Tettigettalna (Boulard, 1982; 

Puissant & Sueur, 2010; Quartau & Boulard, 1995). The distribution ranges of eight cicada species under 

the Tettigettalna genus can be seen on Figure 1.7. Tettigettalna argentata distribution was not shown 

because its widespread distribution along other countries. 

 

 
 

Figure 1.7 Iberian Peninsula map with approximated distributions of the genus Tettigettalna  

The distribution areas were based on (Nunes et al., 2014; Puissant & Sueur, 2010; Simões et al., 2013; Simões et al., 2014). 

Scale bar indicates 100 km. Figure from (Costa, 2017). 

 

 

Eight of these nine Tettigettalna species are endemic to the Iberian Peninsula: T. mariae (Quartau & 

Boulard, 1995), T. aneabi (Boulard, 2000), T. josei (Boulard, 1982), T. defauti (Puissant & Sueur, 2010), 

T. armandi (Puissant & Sueur, 2010), T. helianthemi (Rambur, 1840) and T. boulardi (Puissant & Sueur, 

2010) occur only in the southern part and T. estrellae restricted to the northwest part (Puissant & Sueur, 

2010; Simões et al., 2013; Sueur et al., 2004).  
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Five of these Tettigettalna’s species - Tettigettalna armandi, Tettigettalna aneabi, Tettigettalna defauti, 

Tettigettalna heliathemi and Tettigettalna boulardi - are restricted to the south of Spain (endemism of 

Spain). Tettigettalna estrellae is the only one restricted to Portugal (endemism of Portugal). The last one 

mentioned can be found, more specifically in the North of Portugal (Nunes et al., 2014; Puissant & 

Sueur, 2010; Simões et al., 2013), in the regions of Serra da Estrela, Póvoa do Lanhoso e Régua (Sueur 

et al., 2004). 

 

Tettigettalna josei (Figure 1.8) was also considered a species restricted to Portugal with a quite 

widespread distribution in Algarve in open habitats covered with low vegetation and well exposed to 

sunlight (Sueur et al., 2004). However, the study performed by Simões et al., (2014) in the Southern 

Iberian Peninsula (regions of Algarve and Andalusia) during the summers of 2011-2013 have clarified 

the currently distribution range of the Tettigettalna josei species. The authors found occurrences of T. 

josei species in small numbers in Cartaya (Huelva, Spain) which extended their distribution range to 

Spain and, therefore, became an Iberian endemism.  

 

 

Figure 1.8 Tettigettalna josei copulation  

Tettigettalna josei male and female coupling during copulation observed in July 2013 near Sesmarias (37º04' 38.6''N, 8º18' 

28.9''W), in Algarve, Portugal. Photo taken by Vera Nunes. 

 

 

In what refers to Tettigettalna mariae species (Figure 1.9),  it was thought to be endemic to Portugal 

(occurring in Algarve) (Sueur et al., 2004). A study performed by (P. C. Simões et al., 2013) between 

2011-2013 have allowed, the acquisition of the first records of Tettigettalna mariae’s acoustic signals 

in the province of Huelva (Southern Spain). Therefore, this species is know considered an Iberian 

endemism. 
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A further study about the current distribution and habitat preferences of T. mariae was performed by 

(Nunes et al, (2014a),  confirming the previous results and notiing the restricted and fragmented 

distribution of this species to the coast of central Algarve, in Portugal, and Huelva province, in Spain. 

The latter study (Nunes et al., 2014a) has demonstrated that this species is habitat-specific, with a 

particular preference for habitats with stone pine and at a close distance from the sea ( 

 

 

 

 

 

 

 

 

Figure 1.10). The authors also refer that throughout the years the decline of stone pines’ population 

resulted in the fragmented distribution of T. mariae between central Algarve and Huelva.  

 

 

 

Figure 1.9 Specimen of Tettigettalna mariae  

Tettigettalna mariae male photo taken in Quinta do Lago (Algarve, Portugal) (Lat. 37º 03' 31.2'', Long. 8º 01' 16.0'') by Vera 

Nunes and Raquel Mendes. 
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Figure 1.10 Stone pine wood from Cartaya   

Stone pine (Pinus pinea) wood photo taken in July 2013 (Lat. 37º15'38.44''N, Long. 7º07'43.52''W) near Cartaya (Huelva, 

Spain). Cartaya corresponds to the location where the largest population of T. mariae was found so far. The photo was taken 

by Vera Nunes and Raquel Mendes. 

 

T. argentata (Olivier, 1790) (Figure 1.11) is the only species that extends its range distribution behond 

the Iberian Peninsula to other European countries like Italy, south border of Switzerland, south of France 

and karstic region of Slovenia. Therefore this is the species with the largest distribution range in its 

genus (Gogala & Gogala, 1999; Hertach, 2008; Nast, 1972; Puissant & Sueur, 2010; Sueur et al., 2004). 

In Portugal, this species is widely distributed in areas of Algarve, Baixo Alentejo, Alto Alentejo, 

Estremadura, Beira Alta, Trás-os-Montes and Minho (Sueur et al., 2004).   
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Figure 1.11 Specimen of Tettigettalna argentata 

 Tettigettalna argentata male photo taken in Quinta do Lago (Algarve, Portugal) (Lat. 37º 03' 31.2'', Long. 8º 01' 16.0'' ) by 

Vera Nunes and Raquel Mendes. 

  
 

1.3.2  Tettigettalna mariae and Tettigettalna argentata: the sibling species 

 

Previous studies have revealed the existance of sympatry among some of the southern Iberian 

Tettigettalna species. In fact, Tettigettalna argentata populations have overlapping distributions with 

populations of other species (Boulard, 1982; Quartau & Boulard, 1995; Sueur et al., 2004): Tettigettalna 

estrellae (Boulard, 1982), Tettigettalna mariae (Quartau & Boulard, 1995) and Tettigettalna josei 

(Boulard, 1982). Tettigettalna mariae and Tettigettalna josei may also be found in Algarve (Simões et 

al., 2013).  

  

In Algarve, Tettigettalna mariae and Tettigettalna argentata populations can be found in sympatry or 

close parapatry (Simões et al., 2013). These two  species are morphologically very similar and only 

distinguishable by their calling songs (Mendes et al., 2014).  

 

A mitochondrial COI sequences analysis performed by Nunes et al., (2014b) allowed the separation of 

Tettigettalna argentata in northern (T. argentata from Italy, France, and two localities of Iberian 

Peninsula – Braga and Sesimbra) and southern (T. argentata from São Bartolomeu de Messines, Portel, 

Espiel and Ayamonte) clades. Besides, the southern clade was genetically inseparable from Tettigettalna 

mariae, sharing with it its most common haplotype. This makes it impossible to unambiguously 

discriminate T. mariae specimens from T. argentata (clade South) on the basis of COI sequences 

analysis alone.  

 

Furthermore, as Tettigettalna species can be distinguished by the acoustic signals, what were thought to 

might play an important role on their reproductive isolation, an acoustic and morphological study was 
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performed by Mendes et al., (2014). The authors were interested in understanding if there were patterns 

in Tettigettalna populations that provide evidence of species recognition and reproductive isolation. In 

fact, acoustic results were conclusive that the different species have different acoustic patterns but 

genetic ones make it unclear whether the sharing of haplotypes between clade South of T. argentata and 

T. mariae specimens were due to introgression (existence of gene flow between populations) or 

incomplete lineage sorting (defective segregation of alleles into well-defined lineages) (Mendes et al., 

2014).  

 

Both studies (Mendes et al., 2014; Nunes et al., 2014b)  revealed the need for more research, namely 

that instead of a single locus approach, a multilocus approach should be performed to confront the results 

with the previously obtained. Therefore, the use of the Next-Generation sequencing data can greatly 

speed up the research effort to investigate the complex relationships of this group. 

  

1.4  Objectives of the Thesis 
 
In the argentata complex, Tettigettalna mariae has a restricted and fragmented distribution along the 

southern coast of the Iberian Peninsula and occurs in sympatry or close parapatry with Tettigettalna 

argentata in several locations, showing little or no genetic divergence from Tettigettalna argentata.  

 

This genetic variation shared between closely related species may be due to retention of ancestral 

polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary 

contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of 

shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species 

with overlapping distributions. 

 

Hence, this thesis entitled by “Analysis of RAD sequencing data from Mediterranean cicadas” emerges 

as an investigation focused on the treatment and analysis of RAD-seq data from Mediterranean Cicadas. 

This was possible with the help of various bioinformatics tools such as Ipyrad, VCFtools and other 

scripts designed to clean and filter this type of data; and for the analysis of the data, programs like 

Maverick and other scripts to perform data tests were used as an attempt to enlighten some unanswered 

questions about Mediterranean cicadas. 

 

This thesis has two main goals: it is an effort to understand if RAD-seq data, in particular, gives support 

or not the geographical distribution patterns of the Tettigettalna’s complex under study; and if this type 

of data is able to demystify the big question that if the haplotype sharing between the pair of sibling 

species, Tettigettalna mariae and Tettigettalna argentata from the argentata complex, found in 

sympatry or close parapatry on Algarve, is due to a phenomenon of introgression or incomplete lineage 

sorting.  
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Chapter 2  

Material and Methods 

Material used was collected by hand or using a sweeping net during the summer surveys from 2011 to 

2013. It contains forty Tettigettalna specimens with individuals belonging to the Tettigettalna argentata 

species complex (T. argentata (allopatric and sympatric), T. mariae (allopatric and sympatric) and T. 

aneabi) and also a basal species, one T. josei specimen (see Table 6.1 in Supporting Information). In the 

field, each specimen was assigned to a tracking number and to a species according to the male calling 

song.  

 

Each of the species of the Tettigettalna genus under study were collected on the surveys from the regions 

that can be seen on Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Species locations collected during the surveys 2011-2013 on Iberian Peninsula 
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A front leg from each specimen was removed and preserved in 100% ethanol and used for DNA isolation 

with DNeasy Blood & Tissue extraction kit (Qiagen).  

 

After DNA extraction, a RAD-seq protocol (Baird et al., 2008) was used and adapted to use paired-end 

DNA fragments (Etter et al., 2011b). DNA digestion for the library preparation was performed with 

SbfI, a rare cutter enzyme suitable for a reasonable coverage in large size genomes, as is the case of 

cicadas. The paired-end sequencing was performed in Illumina HiSeq 2000/2005 platform at Edinburgh 

Genomics, Ashworth Laboratories (https://genomics.ed.ac.uk/).  

 

A folder with the raw sequence data, with 197972629 raw reads, was successfully generated from the 

sequencing process was received for the beginning of the bioinformatics treatment, presented in the 

present thesis. 

 

2.1 The RAD-Seq data treatment 

 
 

The data was first treated with the ipyrad pipeline (Eaton, 2014, 2015) since studies with same type of 

data and problematic gave support and recommended the use of this bioinformatics tool (Curto et al., 

2018; Deng et al., 2018; Razkin et al., 2016; Suchan et al., 2017).  

 

 

2.1.1  The sequence treatment with Ipyrad 

 

A barcodes file is essential for running the first two steps of Ipyrad assembly. Three barcodes files were 

considered: “barcodes_aneabi.txt”,  “barcodes_sem_aneabi.txt” and  “barcodes_com_josei.txt”, the first 

containing Tettigettalna aneabi individuals, the second one excluding them (see File 6.1 and File 6.2 in 

the Supporting information) and the third one, that included T. josei, was created to perform three new 

assemblies runs with the individuals of only those four populations for the ABBA/BABA test (see File 

6.3 in the Supporting Information).. Those two barcodes files excluded the Tettigettalna josei 

individuals since its genomic data could bring error and bias to the assemblies, because they are an 

outgoup (they are genetically distant from the rest of the complex). Hence, the total of individuals in the 

barcodes file taken into analysis “barcodes_aneabi.txt” (File 6.2) was 37, in the 

“barcodes_sem_aneabi.txt” (File 6.1) was 31 and “barcodes_com_josei.txt” ( File 6.3) was  21. 

 

A parameters file was also essential and was created with a given name (the initial assembly). The first 

four assembly parameters from that parameters file were crucial to run step one and step two of the 

seven steps of a complete assembly run on Ipyrad.  

 

The command presented below generated a “params-params.txt” parameters file (File 6.6) with the same 

name that was given to the assembly. In this case, “params” was the name given to the assembly. Hence, 

the parameters file created, puts always the prefix “params-” and joins the name given to the assembly, 

which results in “params-params.txt” 

 

https://genomics.ed.ac.uk/
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>>> ipyrad -n params 

 

Besides params assembly, 11 more assemblies were created because different combination values’ of 

the principal parameters for the data treatment needed to be tested. Then, each new assembly was created 

for a specific value combination for those principal parameters that should be tested. 

 

From params to params9 assemblies, the barcodes file used were the one that included the T. aneabi 

individuals, the “barcodes_aneabi.txt” (File 6.2).  

For the assemblies params10 and params11 the barcodes file used were the one that excludes the 

Tettigettalna aneabi individuals, the “barcodes_sem_aneabi.txt” (File 6.1). 

For the assemblies params12, params13 and params14, the barcodes file used were the one that included 

T. josei (File 6.3). 

 

>>> ipyrad -n params1 

>>> ipyrad -n params2 

>>> ipyrad -n params3 

>>> ipyrad -n params4 

>>> ipyrad -n params5 

>>> ipyrad -n params6 

>>> ipyrad -n params7 

>>> ipyrad -n params8 

>>> ipyrad -n params9 

 

Assemblies without Tettigettalna aneabi individuals: 

 

>>> ipyrad -n params10 

>>> ipyrad -n params11 

 

Assemblies withTettigettalna josei  individual: 

 

>>> ipyrad -n params12 

>>> ipyrad -n params13 

>>> ipyrad -n params14 

 

• STEPS 1-2 

 

After creating the assemblies params and params10, the establishment of the first four parameters of the 

parameters file were crucial for step one and two. They were responsible for loading the raw data, 

demultiplexing - with the help of the barcodes file - and filtering the data during steps 1 and 2.  

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params   ## [0] [assembly_name]: Assembly name. Used to name output directories for assembly steps 

/home/ioliveira/cicadas_final  ## [1] [project_dir]: Project dir (made in curdir if not present) 

/home/ioliveira/lane2/raw/*.sanfastq.gz  ## [2] [raw_fastq_path]: Location of raw non-demultiplexed 

fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 
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------- ipyrad params file (v.0.7.15)------------------------------------------- 

params10 ## [0] [assembly_name]: Assembly name. Used to name output directories for assembly 

steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

/home/ioliveira/lane2/raw/*.sanfastq.gz  ## [2] [raw_fastq_path]: Location of raw non-demultiplexed 

fastq files 

/home/ioliveira/barcodes_sem_aneabi.txt  ## [3] [barcodes_path]: Location of barcodes file 

 

params12                       ## [0] [assembly_name]: Assembly name. Used to name output directories 

for assembly steps 

/home/ioliveira/cicadas_final_josei  ## [1] [project_dir]: Project dir (made in curdir if not present) 

/home/ioliveira/lane2/raw/*.sanfastq.gz        ## [2] [raw_fastq_path]: Location of raw non-

demultiplexed fastq files 

/home/ioliveira/barcodes_com_josei.txt    ## [3] [barcodes_path]: Location of barcodes file 

 

 

The command lines for running step one and two after the establishment of the crucial parameters for 

those steps were: 

 

>>> ipyrad -p params-params.txt -s 12 

>>> ipyrad -p params-params10.txt -s 12 

>>> ipyrad -p params-params12.txt -s 12 

 

 

• STEPS 3-7 

 

From step three to seven, all the parameters of the parameters.txt file for all the assemblies have to be 

fulfilled with a value. The values could be set by default when recommended or altered respecting the 

range values that are recommended and depending of the dataset.  

 

Various studies (Eaton & Ree, 2013; Escudero, Eaton, Hahn, & Hipp, 2014; Razkin et al., 2016; Suchan 

et al., 2017; Takahashi & Moreno, 2015; Takahashi, Nagata, & Sota, 2014) with the same data type 

(RAD-Seq data) and the same problematic as ours have used the pyRAD tool that is similar to ipyrad. 

They have defined the min_samples_locus (#21 parameter) and the clust_threshold (#14 parameter) 

as the main parameters of the parameters file that should be altered and the range of the values to fulfill 

them.  

 

In our study, all the parameters values in the parameters.txt file for each of the assemblies can be 

consulted from File 6.6 to File 6.20. Furthermore, resumes of the information, in terms of values for 

those two main parameters, of the assemblies, are presented in Table 6.2 in Supporting Information. 

 

Before running the rest of the steps, an alteration of the path of the data to be loaded should be done. As 

the data have been already demultiplexed and filtered by step one and two, the data are sorted. Hence, 

the parameter two should be left blanked and the parameter four should be fulfilled with the path to the 

sorted fastq files (see below).  

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 
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params     ## [0] [assembly_name]: Assembly name. Used to name output directories for assembly 

steps 

/home/ioliveira/cicadas_final   ## [1] [project_dir]: Project dir (made in curdir if not present) 

                                                  ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/ sorted fastq files 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params10     ## [0] [assembly_name]: Assembly name. Used to name output directories for assembly 

steps 

/home/ioliveira/cicadas_final   ## [1] [project_dir]: Project dir (made in curdir if not present) 

                                                  ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/ sorted fastq files 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params12                       ## [0] [assembly_name]: Assembly name. Used to name output directories 

for assembly steps 

/home/ioliveira/cicadas_final_josei  ## [1] [project_dir]: Project dir (made in curdir if not present) 

                                     ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_com_josei.txt    ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final_josei/params12_fastqs/*.gz  ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

 

 

After the modification of the path, step three to seven were run fot both params, params10 and params12 

assemblies: 

 

>>> ipyrad -p params-params.txt -s 34567 

>>> ipyrad -p params-params10.txt -s 34567 

>>> ipyrad -p params-params12.txt -s 34567 

 

 

For the assemblies from params1 to params9, their .txt parameters file had the parameter four fulfilled 

with the path of the sorted fastq files from the “params_fastqs” folder and the parameter two blanked. 

The same occurred for params11 assembly that didn’t have Tettigettalna aneabi specimens. The 

parameters file of the params11 assembly had the parameter four fulfilled with the path to the sorted 

fastq files from the “params10_fastqs” folder and the parameter two blanked. The parameters file of the 

params13 to params14 assemblies had the parameter four fulfilled with the path to the sorted fastq files 

from the “params12_fastqs” folder and the parameter two blanked. 

 

This way, in a single run all the steps were done (see below): 

 

>>> ipyrad -p params-params1.txt -s 1234567 

>>> ipyrad -p params-params2.txt -s 1234567 
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>>> ipyrad -p params-params3.txt -s 1234567 

>>> ipyrad -p params-params4.txt -s 1234567 

>>> ipyrad -p params-params5.txt -s 1234567 

>>> ipyrad -p params-params6.txt -s 1234567 

>>> ipyrad -p params-params7.txt -s 1234567 

>>> ipyrad -p params-params8.txt -s 1234567 

>>> ipyrad -p params-params9.txt -s 1234567 

 

For the assembly params11 without Tettigettalna aneabi individuals: 

 

>>> ipyrad -p params-params11.txt -s 1234567 

 

For the assembly params13 and params14 with Tettigettalna josei individuals: 

 

>>> ipyrad -p params-params13.txt -s 1234567 

>>> ipyrad -p params-params14.txt -s 1234567 

 

2.1.2  The filtering step with VCFtools program 

 

The VCFtools, as the name suggests is a program package designed for working with Variant Call 

Format (VCF) files, such as those generated with the 1000 Genomes Project. The aim of this tool is to 

provide easily accessible methods for working with complex genetic variation data in the form of VCF 

files. This tool was used in this work to filter our VCF files, obtained from the assemblies performed on 

Ipyrad tool, by two filtering criteria that needed to be taken in consideration on the RAD-Seq data. 

Hence, the result of the filtering step with this tool is VCF files with SNPs filtered in terms of the two 

criteria that would be mentioned below. 

 

The SNPs of the .vcf file of each assembly saved in the outfiles’ folder named “assembly_name_outfile” 

were filtered with VCFtools program in terms of minor allele frequency (maf) and max-missing (see 

below). This filtering procedure was performed for all the 15 assemblies (from params.vcf to 

params14.vcf). The command bellow was used for the “params” assembly filtering but serves as an 

example of what was done for all the assemblies. 

 

>>> vcftools --vcf params.vcf --maf 0.05 --max-missing 0.80 --recode 

 

A maf filtering of 0.05 means that SNPs were filter out with a minor allele frequency less than 5% in 

the VCF file.  

 

A max-missing filtering of 0.80 means that the SNPs were filtered on the basis of the proportion of 

missing data, in this case 0.80 means specifically that SNPs with more than 20% of missing data were 

excluded. 

 

From this VCFtools filtering step, twelve assembly_name.recode.vcf files generated by this VCFtools 

filtering step were obtained. 
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2.1.3  The filtering step with vcf_parser.py code 

 

A vcf_parser.py python code from https://github.com/CoBiG2/RAD_Tools, as of commit 9a5bc1bddc 

(see File 6.21 in Supporting Information) designed to perform filtering and transformations steps on a 

Variant Call Format (VCF) file that are not possible with VCFtools was then used. This code has five 

optional functions that filters by five different criteria the input VCF file, generating an output file for 

each of the filtering function chosen. 

 

MacBook-Air-de-Ines:Desktop inesoliveira$ python vcf_parser.py --help 

usage: vcf_parser.py [-h] -vcf VCF_INFILE [--remove-inv] [--remove-singletons] 

                     [--one-snp] [--random-snp] [--center-snp] 

 

Filtering of VCF files 

optional arguments: 

  -h, --help           show this help message and exit 

  -vcf VCF_INFILE      Provide VCF file(s). 

  --remove-inv         Filters invariable SNP sites from the VCF file (These sites may occurr when 

individuals are removed from a VCF file). 

  --remove-singletons  Filters singletons SNP sites from the VCF file. 

  --one-snp            Filters the VCF file so that only one SNP per locus is retained - The first one 

  --random-snp         Filters the VCF file so that only one random SNP per locus is retained. 

  --center-snp         Filters the VCF file so that only the SNP closest to the locus center is retained. 

 

 

The 12 assembly_name.recode.vcf files were all filtered by three of the five possible filtering options 

available by this script:  SNPs were filtered in terms of invariable sites and singletons; from the other 

three options, the centre SNP function were chosen because the other two approaches (random SNP and 

the first SNP per locus) would turn our data biased. The command line used, as an example, for the 

assembly params was: 

 

>>> python3 /.../ficheiros_recode_final/vcf_parser.py -vcf 

/.../ficheiros_recode_final/params.recode.vcf --remove-inv --remove-singletons --center-snp 

 

The line code used have generated three output VCF files for each assembly. The name of the output 

VCF files had always the prefix name being the assembly name of that VCF file, plus the suffix that is 

the filtering option applied: assembly_nameCenterSNP.vcf, assembly_name_NoSing.vcf and 

assembly_name_NoInv.vcf. The three output VCF files generated for each of the assemblies were 

finally analysed with the >>> wc (word count) command followed by the name of the vcf file, to 

compare the files in terms of number of SNPs to the respective assembly_name.recode.vcf file that 

served as input.  

 

There weren’t no differences in terms of number of SNPs between each of the 15 input VCF files 

(assembly_name.recode.vcf files) and the respective VCF output files that filtered the SNPs in terms of 

invariable sites and singletons. Henceforth, our input files didn’t have singletons neither invariable sites. 

However, for the VCF output file that filtered the SNPs by choosing the centre SNP for each locus, there 

was a considerable reduction of SNPs. Hence, for all the 12 assemblies, the VCF file chosen to proceed 

to the analysis were the assembly_nameCenterSNP.vcf file. 

https://github.com/CoBiG2/RAD_Tools
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2.2  The Principal Component Analysis of the RAD-Seq data 

 

After the filtering process, a Principal Component Analysis (PCA) of the RAD-Seq data was performed. 

This analysis was performed to examine in two principal components (PC1 & PC2), how correlated are 

the individuals based on the analysis of all the SNP markers for all of them for each file. This PCA 

analysis were crucial to analyse if there are clustering groups of individuals and if it the results are in 

conformity with species/populations geographical distribution patterns. 

 

A PCA was performed for the 12 assembly_name.recode.vcf and 12 assembly_nameCenterSNP.vcf 

files, ecludig the assemblies with T. josei. We used an R script named vcf2PCA.R 

from https://github.com/CoBiG2/RAD_Tools, as of commit 9a5bc1bddc (see File 6.22 in Supporting 

Information) that needed as input the VCF file and one .txt file with the population name in the same 

order each individual appeared in the VCF file.  

 

The two formatted .txt files used in this step are named “individuos_sem_aneabi_algarve.txt” (File 6.5) 

and “individuos_algarve.txt” (File 6.4). Those two optional .txt files were created because some of the 

VCF files (params10 and params11 assemblies) didn’t have the Tettigettalna aneabi individuals on the 

data set. The two .txt files took in consideration the change of the population name of three individuals 

from Vale Judeu, Algarve to sympatric populations - Tma071_sym, Tma729_sym and Tma068_sym -, 

that a previous PCA of the genomic data appointed as sympatric, but that were registered incorrectly as 

allopatric based on the field surveys. It was recommended to make this change because although being 

appointed as allopatric, due to the absence of songs of other species cicadas nearby the location, maybe 

existed in fact other species nearby but not heard at that moment.  Besides that, these files didn’t contain 

the two individuals with a lot of missing data. 

 

2.3  Analysis of the RAD-Seq data with MavericK program 

 

After the Principal Component Analysis, MavericK program was used for inferring population structure 

on the basis of genetic information. The mixture modelling framework although identical to that used 

in the Structure program (Falush, Stephens, & Pritchard, 2003, 2007; Hubisz et al., 2009; Pritchard, 

Stephens, & Donnelly, 2000) has the ability to estimate the number of demes (denoted K) in a reliable 

way using a technique known as thermodynamic integration (TI). While this technique is more 

computationally intensive than standard MCMC based methods, it has been found to provide estimates 

of K that are more accurate and precise than those based on some heuristic estimators. The MavericK 

program also implements certain MCMC techniques that reduce the number of iterations needed to 

achieve convergence, and allows for some non-standard inputs and outputs (Nichols, 2017). 

 

In terms of workflow, MavericK is very simple. The program reads in two text files – a parameters file 

and a data file. Then it carries out the analysis specified by the user in the parameters file. Outputs are 

produced in the form of multiple .csv and .txt files. 

 

We started by performing a pilot run for each of the assemblies params1CenterSNP.vcf, 

params5CenterSNP.vcf, params8CenterSNP.vcf and params10CenterSNP.vcf that were converted to 

the STRUCTURE format with PGDSpider. The same values of MavericK’s tutorial were adopted for 

https://github.com/CoBiG2/RAD_Tools
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each of the parameters in the “parameters.txt” file (see Error! Reference source not found. in the 

Supporting Information) with the exception of the value of K that we set from one to ten. The command 

line presented serves as an example of the procedure to run Maverick pilot run of the assembly params8: 

 

structure_threader run -i /home/ioliveira/MAVERICK/params8_final -o 

/home/ioliveira/MAVERICK/params8_pilot_final –params 

/home/ioliveira/MAVERICK/parameters.txt -mv ~/.local/bin/MavericK -K 10 -t 4 

 

Each pilot run generated output files that were taken into analysis with a R script called 

“MavericK1.0_functions.R” (see Error! Reference source not found. Supporting Information). This 

script generated plots whose analysis was crucial to verify if the values stablished in the parameters.txt 

settings need to be optimized or if they are appropriate for the next step (the final run that estimate the 

number of demes (K) using the thermodynamic integration (TI)). 

 

For the last Maverick run, the params8 and params10 assemblies were chosen. The individuals of the 

STRUCTURE formatted input files mentioned (params8_final and params10), on Geany editor, were 

ordered/clustered together in terms of population groups. The changes on the population names of that 

three individuals from Vale Judeu, Algarve (Tma071_allo, Tma729_allo and Tma068_allo) was also 

taken in consideration, in those two assembly files. This because a previous PCA of the genomic data 

appointed as sympatric, but that were registered incorrectly as allopatric based on the field surveys. It 

was recommended to make this change because of PCA evidence of being sympatric. Although 

appointed as allopatric, due to the absence of songs of other species cicadas nearby the location, maybe 

existed in fact other species nearby but not heard at that moment. 

 

The parameters .txt files, files “parameters_final8_final.txt” (File 6.25) and “parameters_final10.txt” 

(File 6.26) were used for those final runs with the purpose of the estimation of the best K, between one 

to seven, with the Thermodynamic Integration. The command lines presented corresponds to the 

procedure to run Maverick final run of the assemblies params8 and params10: 

 

~/.local/bin/structure_threader run -K 7 -i 

/home/ioliveira/maverick_final/mavparams8/params8_final.txt -o 

/home/ioliveira/maverick_final/mavparams8/results/ -t 8 -mv ~/.local/bin/MavericK --params 

/home/ioliveira/maverick_final/mavparams8/parameters_final8_final.txt --log=1 

 

~/.local/bin/structure_threader run -K 7 -i  

/home/ioliveira/maverick_final/mavparams10/params10.txt -o 

/home/ioliveira/maverick_final/mavparams10/results/ -t 8 -mv ~/.local/bin/MavericK --params 

/home/ioliveira/maverick_final/mavparams10/parameters_final10.txt --log=1 
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2.4  ABBA/BABA test 
 

ABBA/BABA statistics, also called D-statistics, was the final step of the analysis of our data in order to 

understand if the similar patterns of shared genetic diversity between T. mariae and T. argentata found 

in sympatry or close parapatry were due to introgression or incomplete lineage sorting. This statistic 

was then used because it provides a simple and powerful test for a deviation from a strict bifurcating 

evolutionary history, being frequently used to test for introgression using genomic SNP data (Zhou et 

al., 2017). 

 

For the ABBA/BABA test we needed to be stablished four populations (P1, P2, P3 and P4 (Outgroup)). 

Our outgroup was the Tettigettalna josei because it is the most distant Tettigettalna from all the 

Tettigettalna under study; the other three populations were Tettigettalna argentata from South in 

allopatry from South clade (P1), Tettigettalna argentata from South in sympatry (P2) and Tettigettalna 

mariae in sympatry (P3) that share the haplotype with Tettigettalna argentata in sympatry (P2).  

 

After the data treatment for the assemblies params12, params13 and params14 (params12.recode.vcf, 

params12.recode.vcf and params13.recode.vcf), the three assemblies’ recode.vcf files were filtered with 

the VCFtools to remove indels and SNPs that were not bi-allelic. Hence, the command line below is the 

example for the assembly params12 but were done also for assemblies params13 and params14: 

 

 

>>> vcftools --vcf params12.recode.vcf --remove-indels --min-alleles 2 --max-alleles 2 –recode 

 

The command line generated an out.log and an out.recode.vcf file that was renamed to the respective 

assembly (for example: params12filtered.recode.vcf and params12filtered.log). 

 

After that, the VCF files were converted with bcftools: 

 

The bcftools v1.9 program was used to generate GenoType (GT) formatted files, which is the file format 

needed to do the introgression test. The command presented below is an example for the assembly 

params12, but the same were done for params13 and params14 assemblies. 

 

>>> vcffile=params12filtered.recode 

>>> bcftools query -f '[%GT\t]\n' ${vcffile}.vcf > ${vcffile}.GT 

>>> sed -i "s/0\/0/0/g;s/0\/1/1/g;s/1\/0/1/g;s/1\/1/2/g;s/\.\/\./-1/g;s/\./-1/g" ${vcffile}.GT 

 

The command line generated a GT file with the same name of the input file, in this case we obtained 

with the three runs performed a “params12filtered.recode.GT” file, a “params13filtered.recode.GT” file 

and a “params14filtered.recode.GT” file. 

 

After having the GT formatted files, a script written in R named “Dstat.R” (Seabra et al., 2019) (see File 

6.28 in Supporting Information) wase used to calculate the D-statistic. Besides the input .GT file the 

script required a .txt file that was named “IndsPops.txt” (see File 6.27 in the Supporting information) in 

which the first column corresponded to the individual ID and the second column the population name 

to which each individual belongs. The order of the individuals of that .txt file was the same of the .vcf 

files. Tettigettalna’s RAD-Seq data analysis was concluded with this ABBA/BABA test. 
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Chapter 3  

Results 

 

3.1  The RAD-Seq data treatment 

3.1.1  The sequence treatment with Ipyrad 

 

The RAD-Seq data was cleaned and filtered with the Ipyrad in order to obtain quality data to be analysed 

and assure that results from this subsequent analysis aren´t poor and difficult to interpret. Our filtered 

results were good, which was verified by the quality and unambiguous results of the analysis that will 

be presented below.  

 

3.1.2  The filtering step with VCFtools program 

 

The filtering step with the VCFtools command filtered the SNPs of the 12 assembly_name.vcf files in 

terms of two criteria: minimum allele frequency (maf) and maximum missing data. The outputs 

generated were VCF files named assembly_name.recode.vcf. On Table 3.1 it is possible to verify the 

number of SNPs before and after the filtering with the VCFtools in terms of those two criteria. 
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Table 3.1 Results obtained in terms of number of SNPs for each assembly VCF file, after filtering the original VCF file 

with the VCFtools filtering program in terms of minimum allele frequency and maximum missing data 

Assembly files Nº of SNPs 

params.vcf 133489 

params.recode.vcf 8318 

params1.vcf 142787 

params1.recode.vcf 8935 

params2.vcf 135181 

params2.recode.vcf 6495 

params3.vcf 119601 

params3.recode.vcf 7475 

params4.vcf 112909 

params4.recode.vcf 8342 

params5.vcf 125182 

params5.recode.vcf 8968 

params6.vcf 122203 

params6.recode.vcf 6499 

params7.vcf 95462 

params7.recode.vcf 8354 

params8.vcf 108035 

params8.recode.vcf 8980 

params9.vcf 106648 

params9.recode.vcf 6499 

params10.vcf 98374 

params10.recode.vcf 12959 

params11.vcf 113618 

params11.recode.vcf 12049 

 

The results obtained with the filtering provided by the VCFtools, show that only 5-13% SNPs were kept 

(more than 90% of the original number of SNPs were excluded), when we only keep the SNPs that have 

a minor allele frequency bigger than 5% and with only a maximum of 20% of missing data. These results 

were surprising because we dind´t expect such a large reduction of the number of SNPs. However, these 

reductions have allowed the exclusion of irrelevant SNPs, therefore assuring the quality of the results 

that were obtained à posteriori. 
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3.1.3  The filtering step with vcf_parser.py code 

 

This filtering step of the assembly_name.recode.vcf files with the python code vcf_parser.py 

from https://github.com/CoBiG2/RAD_Tools, as of commit 9a5bc1bddc, allowed filtering the 

invariable sites and singletons and choosing the center SNP for each locus.  

 

For each type of filter, an output VCF file was generated, and further compared, in terms of number of 

SNPs, to the input VCF. The results were the following presented for the 12 assemblies, in the following 

Table 3.2, from the assembly named params to the assembly named params11. 

 

 

Table 3.2 Results obtained in terms of number of SNPs for 

each assembly VCF file, after filtering the recode VCF file 

with the vcf_parser.py filtering code 

Assembly files Nº of SNPs 

params.recode.vcf 8318 

paramsCenterSNP.vcf 2817 

params_NoInv.vcf 8318 

params_NoSing.vcf 8318 

params1.recode.vcf 8935 

params1CenterSNP.vcf 3083 

params1_NoInv.vcf 8935 

params1_NoSing.vcf 8935 

params2.recode.vcf 6495 

params2CenterSNP.vcf 2786 

params2_NoInv.vcf 6495 

params2_NoSing.vcf 6495 

params3.recode.vcf 7475 

params3CenterSNP.vcf 2523 

params3_NoInv.vcf 7475 

params3_NoSing.vcf 7475 

params4.recode.vcf 8342 

params4CenterSNP.vcf 2821 

params4_NoInv.vcf 8342 

params4_NoSing.vcf 8342 

params5.recode.vcf 8968 

params5CenterSNP.vcf 3089 

params5_NoInv.vcf 8968 

params5_NoSing.vcf 8968 

params6.recode.vcf 6499 

params6CenterSNP.vcf 2787 

params6_NoInv.vcf 6499 

params6_NoSing.vcf 6499 

params7.recode.vcf 8354 

params7CenterSNP.vcf 2824 

params7_NoInv.vcf 8354 

params7_NoSing.vcf 8354 

params8.recode.vcf 8980 

params8CenterSNP.vcf 3091 

params8_NoInv.vcf 8980 

params8_NoSing.vcf 8980 

params9.recode.vcf 6499 

params9CenterSNP.vcf 2787 

params9_NoInv.vcf 6499 

params9_NoSing.vcf 6499 

params10.recode.vcf 12059 

params10CenterSNP.vcf 3763 

params10_NoInv.vcf 12059 

params10_NoSing.vcf 12059 

params11.recode.vcf 12049 

params11CenterSNP.vcf 3762 

params11_NoInv.vcf 12049 

params11_NoSing.vcf 12049 

 

 

After obtaining the number of SNPs in each document taking in consideration the filtering process on 

each one, two graphics Figure 3.1 and Figure 3.2 were produced to analyse, on an easier way, the number 

of SNPs on the assemblies and the average of missing data associated with the assemblies, respectively.  

 

 

https://github.com/CoBiG2/RAD_Tools
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Figure 3.1 Number of SNPs in each Assembly Name Center VCF file 

Graphic with the number of SNPs obtained for each assembly name VCF file where the Center SNP for each locus was chosen. 

Assemblies params to params9 correspond to the assemblies where Tettigettalna aneabi were included vs params10 and 

params11 where they were excluded. 
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Graphic with the average of missing data for each assembly name VCF file where the Center SNP for each locus was chosen. 

The assemblies here are only the ones where Tettigettalna aneabi was included. 

 

 

This filtering step with vcf_parser.py allowed filtering the invariable sites and singletons and choosing 

the center SNP for each locus. The results obtained (Table 3.2) showed that there was no difference in 

terms of number of SNPs between the recode.vcf files, the VCF files where the singletons were removed 

and the VCF files where the invariable sites were removed, unless the VCF files where the center SNP 

for each locus were chosen. Once again, a reduction of the number of SNPs were seen in those Center 

SNP files, not in a big scale compared with the previous filtering step with the VCFtools. In this case, 

in the CenterSNP.vcf files we kept 30-40% of the number of SNPs from the recode.vcf files. These 

results showed that we didn´t have invariable sites neither singletons since the number of SNPs didn´t 

change. The case for the SNP Center VCF file, this reduction is high but expected, since for each locus 

we were chosing the Center SNP and this justifies the reduction of the number of SNPs.  

 

Nevertheless, when comparing between files, the number of SNPs (Figure 3.1) and the average missing 

data (Figure 3.2), are very similar (between 2500 and 3700 SNPs). Moreover, the average missing data 

is low, since it is below 0.1, an accepted value for missing data. The assembly files that were chosen for 

the following analysis were the assembly params8CenterSNP.vcf and the assembly 

params10CenterSNP.vcf (without Tettigettalna aneabi specimens) where we have the biggest number 

of SNPs to improve the viability of the analysis of the RAD-seq data.  
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3.2  The Principal Component Analysis of the RAD-Seq data 

 

A Principal Component Analysis (PCA) was performed to understand if there were clustering groups of 

individuals, on the basis of the RAD-Seq genomic data, in conformity with the species/populations 

geographical distribution patterns. 

 

The PCA results between the assemblies with Tettigettalna aneabi individuals were almost the same 

with little variances of the values of the positions of the individuals in the PCAs, so it was decided to 

present only the PCAs of one assembly with Tettigettalna aneabi and other without Tettigettalna aneabi.  

 

Here, we present four PCAs of the assemblies params8 (on Figure 3.3 (A and C)) and params10 (on 

Figure 3.3 (B and D)) using the input files params8.recode.vcf, params8CenterSNP.vcf, 

params10.recode.vcf and params10CenterSNP.vcf. 

 

For a better understanding of the clustering results, we confront de results with the populations locations 

presented on Figure 2.1. 

 

The main goal was to present the principal clustering groups that are formed with Tettigettalna aneabi 

specimens (on Figure 3.3 (A and C)) and without Tettigettalna aneabi specimens (on Figure 3.3 (B and 

D)) and to compare the results between the assemblies where the Centre SNP of each locus where chosen 

versus the ones where this selection step was not done.   
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Figure A and B correspond to the assemblies without choosing SNPs. Figure C and D correspond to the assemblies where the Center SNP was chosen for each locus.  Figure A and C 

correspond to the assemblies where Tettigettalna aneabi was included (assemblies params8.recode.vcf and params8CenterSNP.vcf, respectively) and figure B and D correspond to the 

assemblies where Tettigettalna aneabi was excluded (assemblies params10.recode.vcf and params10CenterSNP.vcf, respectively). Tan - Tettigettalna aneabi; Tar_N (clade central) - 

Tettigettalna argentata North from clade central Iberia; Tar_allo (clade south) - Tettigettalna argentata in allopatry from clade south; Tar_c (clade central) - Tettigettalna argentata from 

clade central Iberia; Tar_sym (clade south)- Tettigettalna argentata in sympatry from clade south; Tma_allo - Tettigettalna mariae in allopatry; Tma_sym - Tettigettalna mariae in 

sympatry. For more information see  Table 6.1

Figure 3.3 PCA results from RAD-Seq data treated after Ipyrad and filtering with vcf_parser.py code 
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Results from PCAs explained variances for eigenvector 1 that maximizes the variance: for assembly 8 

on Figure 3.3 (A and C) without and with the choose of Centre SNP and including Tettigettalna aneabi, 

were 7,98% and 8.9%, respectively; and for assembly 10 on Figure 3.3 (B and D), without and with the 

choose of Centre SNP and excluding Tettigettalna aneabi, were 8.11% and 9.16%, respectively. Those 

values are low, but expected, since as the variables are the SNPs and we have about thousands, the 

variation will be dispersed. 

 

Results obtained on Figure 3.3 show that, although without high eigenvalues explaining the variance of 

the data sample by its eigenvector 1, there are well defined clustering groups of individuals and the 

relatedness between the cluster populations given by these data are generally in agreenment with the 

geographical distribution patterns of the Tettigettalna species and populations in analysis (see Figure 

2.1).  

 

Individuals from T. argentata North and T. argentata Centre, in fact are not two different clusters 

because they are a little overlapped on Figure 3.3. In fact, T. argentata North correspond to centre 

Portugal Figure 2.1), and T. argentata Centre correspond to centre Spain (Figure 2.1). They look like a 

unique cluster with two different populations (on Figure 3.3), what makes sense because they together 

correspond central group of Iberian Peninsula (Figure 2.1).  

 

In terms of differences between the results using the Centre SNP for each locus  Figure 3.3 (C and D) 

and the results where that selection of SNPs was not done (Figure 3.3 (A and B)), it is clearly evident 

that it makes little diferences in the relatedness distribution patterns of the clusters of individuals.  

 

Comparing the outcomes when Tettigettalna aneabi were included (assembly 8) on Figure 3.3 (A and 

C) with those when Tettigettalna aneabi individuals were excluded (assembly 10) on Figure 3.3 (B and 

D), the results were almost the same. In fact, figures B and D, since those are excluding the Tettigettalna 

aneabi individuals, make a zoom-like of the clusters pattern of the Tettigettalna argentata and 

Tettigettalna mariae individuals giving a more detailed and clear vision of the genetic proximity 

between the T. argentata and T. mariae’ cluster groups of individuals.   

 

Analysing the PCA results with more detail, the following evidences were obtained: 

 

On all PCAs from  Figure 3.3, there is a well-defined separation of the clusters which are not being 

overlapped. There are two principal clusters (blue circles) where T. aneabi is excluded on Figure 3.3 (B 

and D); and three principal clusters (also defined by blue circles) on Figure 3.3 (A and C) where T. 

aneabi  is included. 

On Figure 3.3 (A and C), including the Tettigettalna aneabi, we can easily see the Tettigettalna aneabi 

individuals are the most distant from all the rest of the Tettigettalna. 

On Figure 3.3, the separation of the clusters is consistent with the geographical pattern of the individuals 

(see also Figure 2.1). There is a separation between individuals from the south of Iberian Peninsula (T. 

argentanta sympatric clade south, T. mariae sympatric, T. argentata allopatric clade south) and Central 

Peninsula Iberia (T. argentata North and T. argentata Centre).  

 

Moreover, on Figure 3.3, Tettigettalna argentata individuals in sympatry (T. argentata sympatric clade 

South), from Algarve, have the biggest distance to their conspecific ones: the Tettigettalna argentata 

from North/Centre (central Peninsula Iberia) and Tettigettalna argentata in allopatry (T. argentata clade 

South). 
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On Figure 3.3 (C and D) from the Tettigettalna specimens from complex of South Iberia (Tettigettalna 

mariae in sympatry, Tettigettalna mariae in allopatry and Tettigettalna argentata in sympatry clade 

south) there are more genetic proximity between the congeneric ones (Tettigettalna mariae in sympatry 

and Tettigettalna argentata in sympatry clade south) rather than with its conspecific specimens of 

Tettigettalna mariae in allopatry (Tma_allo) and Tettigettalna argentata (in allopatry and central Iberia) 

(Tar_allo (clade south), Tar_N (clade central), Tar_C (clade central)), respectively. 

 

Hence, the results have shown that our RAD-Seq data have allowed an evident well definition of 

clustering groups of individuals, what showed us that this type of data are powerful.  
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3.3  Analysis of the RAD-Seq data with MavericK program 

 

The two matrixes obtained for the two assemblies params8 and params10 are present on Figure 3.4 and Figure 3.5, respectively. 

             

  
       T.  aneabi        T. argentata            T. argentata                        T. argentata                         T. argentata                              T. mariae            T. mariae  

                                                     North – clade central   Centre - clade central    Sympatric – clade south   Allopatric – clade south           Sympatric            Allopatric 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result was generated by the MavericK program in the final run, where the best K estimated was a K = 2. The details of the individuals of Tettigettalna cicadas under analysis can be 

consulted on Table 6.1. 

Figure 3.4 MavericK clustering plot result for assembly params 8 (including the Tettigettalna aneabi) 
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                                               T. argentata          T. argentata                 T. argentata                         T. argentata                                 T. mariae                                          T. mariae 
                               North – clade central    Centre – clade central  Sympatric – clade south        Allopatric – clade south                      Sympatric                                          Allopatric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

This result was generated by the MavericK program in the final run, where the best K estimated was a K = 2. The details of the individuals of Tettigettalna cicadas under analysis can be 

consulted on Table 6.1. 

 

Figure 3.5 MavericK clustering plot result for assembly params 10 (excluding Tettigettalna aneabi) 
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As can be observed in Figure 3.4 and Figure 3.5, two results were obtained for the assemblies chosen 

for the final MavericK run - the params8 and params10 assemblies.  

 

The inclusion or the absence of Tettigettalna aneabi individuals didn’t affect the number of 

demes/clusters (K demes) that was estimated as K= 2 and considered the best K. This result assume that 

individuals belong to one deme 1 or to the other deme 2, or otherwise, have an admixture of genetic 

information from both demes. 

 

Addicionally, when comparing the two results (Figure 3.4), the genetic patterns of attribution to the two 

clusters, estimated by the program as the best K, are very similar.  

 

In both results the individuals belonging to Tettigettalna mariae in sympatry (individuals Tma***_sym) 

and Tettigettalna argentata in sympatry (T. argentata from clade South) (individuals Tar***_sym) have 

all a signal K1 (in yellow) (almost 100%), being these the ones from the South (Vale Judeu and Quinta 

do Lago in Algarve) (see Table 6.1 and Figure 2.1 to see the region, country and species name of the 

mentioned individuals), therefore according to the geographical proximity of these two species. 

 

On the other hand, Tettigettalna mariae individuals in allopatry from Cartaya (Tma***_allo) (see Table 

6.1 and also Figure 2.1 to see the region, country and species name of the mentioned individuals), in 

both Figure 3.4 and Figure 3.5,  although having mostly (about 80%) a signal K1, all of them have a 

signal K0 what means they have some admixture of genetic information from the both demes K0 and 

K1 demes estimated. 

 

In what refers to the Tettigettalna argentata in allopatry (T. argentata from clade south), in both on 

Figure 3.4 and Figure 3.5, from São Bartolmeu de Messines, Espiel and Portel (Tar***_allo) (see Table 

6.1 to see the region, country and species name of the mentioned individuals and also Figure 2.1) have 

all of them have genetic information from both demes K0 and K1, although varying in some degree.  

 

The Tettigettalna argentata from North and Centre, (Tar***_N and Tar***_c), the Tettigettalna 

argentanta from Central Iberia: T. argentata from centre of Portugal and centre of Spain, respectively, 

like the Tettigettalna aneabi individuals (Tan***) from South Spain, in Figure 3.4, have almost 100% 

signal K0 (in green) with only a small signal from the other K1 deme (see Table 6.1 and Figure 2.1 to 

see the region, country and species name of the mentioned individuals), giving evidence that they are 

close genetically. This is a result that was not expected because they are from different species and its 

is not according the geographic proximity of these two species that are really distant (see Figure 2.1). 
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3.4  ABBA/BABA test 
 

When running “Dstat.R” R script (Seabra et al., 2019)  to obtain the D-statistics, the results obtained for 

the three GT formatted input files “params12filtered.recode.GT”, “params13filtered.recode.GT” and 

“params14filtered.recode.GT” are presented on Table 3.3 and Table 3.4. 

 

 

Table 3.3 Results obtained for D-statistic, abba, baba and p-value for the three input GT files 

Input GT File $D $abba $baba pvals 

params12filtered.recode.GT 0.147922 513.8528 381.422 2.874072e-18 

params13filtered.recode.GT 0.147922 513.8528 381.422 2.874072e-18 

params14filtered.recode.GT 0.1483996 514.6921 381.672 4.32408e-18 

 

 

Table 3.4 Results obtained for D-statistic, deviation and z-value for the three input GT files 

Input GT File D sd z 

params12filtered.recode.GT 0.147922 0.01712565 8.63745 

params13filtered.recode.GT 0.147922 0.01712565 8.63745 

params14filtered.recode.GT 0.1483996 0.01727456 8.590646 

  

The values obtained for the introgession test - ABBA/BABA test - were crucial to answer, in a very 

clearly way, one of the main questions of this work. We were interested in understanding if haplotypes 

shared by Tettigettalna argentata and Tettigettalna mariae individuals from sympatric populations in 

Algarve, was due to incomplete lineage sorting or introgression. Therefore, we considered the null 

hypothesis (D-statistic equal to zero) as no gene flow (no introgression) giving evidence of incomplete 

lineage sorting. 

 

We have used different three assemblies as input files, to see if the results were homogenous when using 

the parameters in the Ipyrad runs that maximize the number of SNPs and to give more support to the 

value obtained for this statistic, because we were taking in consideration three D-statistics from different 

files instead of only one. 

 

The D-statistic obtained was in all cases different than zero, which made us exclude the null hypothesis 

that there was no introgression. Since the D-statistic was bigger than zero, this meant there was an excess 

of sites with the ABBA allele sharing pattern, resulting in a significant D-statistic value. Being bigger 

than zero, that positive value gave us the information that a phenomenom of introgression may have 

occurred between the two populations Tettigettalna argentata in sympatry from clade South (P2) with 

Tettigettalna mariae in sympatry (P3). The statistic was approximate for all the three input GT files, 

confirming that the results are homogenous and giving more support to the value obtained for D-statistic. 

 

The z-value is much bigger than 1.96 (in a normal distribution), meaning our p-value is significant. This 

low p-value suggests our sample provided enough and strong evidence that we can reject the null 

hypothesis for the entire population. Even taking in consideration the deviation value (sd), the D-statistic 
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continue being strongly different than zero, which gave a lot of support to the rejection of the null 

hypothesis. 
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Chapter 4  

Discussion and Conclusions 

 

The Tettigettalna cicadas are a closely-related and recent diverged group of species that are 

morphologically very similar but whose acoustic signals generally allow us to distinguish them (Mendes 

et al., 2014).  

 

Previous studies on the Tettigettalna argentata and Tettigettalna mariae known to occur in sympatry or 

close parapatry, in Algarve (Portugal), showed no consistent genetic differences since they share some 

haplotypes (Nunes et al., 2014b).  

Therefore, this work emerged as an opportunity to better investigate the history of the Mediterranean 

Tettigettalna cicadas, on the basis of RAD-seq data.  A particular effort was performed to understand if 

RAD-seq data, gives support the geographical distribution patterns of the Tettigettalna’s complex under 

study and if this type of data is able to demystify the question if the haplotype sharing between the pair 

of sibling species is due to a phenomenon of introgression or incomplete lineage sorting. 

 

To achieve our goals, we used various bioinformatics tools to better understand the geographical patterns 

of distribution of the closely related species.   

 

We were able to show that RAD-Seq data was well-cleaned by the Ipyrad and the other scripts (used to 

erase error).  Principal Component Analysis revealed well-defined clusters, whose dispersion/proximity 

reflects the geographical distribution of the Tettigettalna species/populations. Therefore, these results 

with data from Next Generation Sequencing methods support the use of NGS data for other researches 

focused on better understanding the genetic proximity between this group of closely-related species.  

 

In fact, detailed cluster analyses revealed that there was a well-defined separation of Tettigettalna aneabi 

from the other species (Tettigettalna mariae and Tettigettalna argentata), which is contrarily to the 

evidence provided by the MavericK program. Furthemore, T. argentata in sympatry on Algarve (south 

clade) have the biggest distance from their conspecific ones: the Tettigettalna argentata from 

North/Centre (central Iberia) and Tettigettalna argentata in allopatry (south clade); on the other hand, 

this group revealed the smaller distance from the congeneric, Tettigettalna mariae in sympatry (Algarve) 

which was validated by the ABBA/BABA test that appointed for introgression between those.  

 

Results from the MavericK program for inferring the population structure on the basis of the genetic 

information show that the Tettigettalna argentata from the North and Centre (Central Iberia) are 

genetically very close to the Tettigettalna aneabi specimens. This result is different from what Nunes et 

al., (2014b) have showed, on the basis of COI sequences. Their work revealed that T. aneabi represented 

the sister taxon of T. mariae and T. argentata clade south. Our new results also raise new questions, 

namely the possibility of introgression between both referred species. 
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The Tettigettalna argentata in sympatry (clade south)  and mariae in sympatry have exactly the same 

percentage (100%) of genetic attribution to deme K1 (Figure 3.4 and Figure 3.5), in agreement with the 

previous knowledge of shared haplotype between them and the possibility of introgression.  

 

In what refers to Tettigettalna argentata allopatric (clade south) and mariae individuals in allopatry, 

both have an admixture of atribution to both demes (Figure 3.4  and Figure 3.5). Tettigettalna argentata 

allopatric from clade South are between the Central Iberia Tettigettalna argentata and the Tettigettalna 

argentata sympatric (clade south) which explained the admixture of information (see Figure 2.1Error! 

Reference source not found.). The last-mentioned cicadas, the Tettigettalna mariae in allopatry, from 

Cartaya, have mostly signal to deme K1, being attribution to the same cluster as the sympatric T. 

argentata from clade south and T. mariae, which makes sense since they are geographically closer to 

each other (see Figure 2.1). 

 

The previously study performed by Nunes et al., (2014b) on the basis of mitochondrial COI sequences 

intended to analyse the relatedness among Tettigettalna species. Their results allowed the separation of 

Tettigettalna argentata in northern and southern clades, and our study are in conformity with them. We 

have also that separation, but now we have also the populations of T. argentata from Central Spain 

(Tar_C)  

 

Nunes et al., (2014b) noticed that the southern clade was genetically inseparable from Tettigettalna 

mariae, sharing with it its most common haplotype (forming a species complex). However, it was not 

possible for them to unambiguously genetically discriminate T. mariae in sympatry specimens from T. 

argentata in sympatry (clade South) on the basis of COI sequences analysis, a single locus approach. 

Our results, contrarily, were positively able to explain the share os haplotypes through a ABBA/BABA 

test. 

 

Regarding the haplotype sharing between the pair of sibling species studied by Nunes et al., (2014b) 

with our ABBA/BABA test using the RAD-seq data (data produced by a multilocus approach) we 

obtained a D – statistic bigger than zero. The statistic was approximate for all the three input GT files, 

confirming that the results are homogenous and giving more support to the value obtained for D-statistic. 

That positive value indicates that it may have been a phenomenom of introgression and not incomplete 

lineage sorting that occurred between Tettigettalna argentata sympatric (clade south) and Tettigettalna 

mariae sympatric, on Algarve. Although we were not able to know in each way the gene flow occurred, 

our results reveal that the females from T. argentata and T. mariae, both sympatric (clade south), had 

past episodes (and will envetually have in the future) of reproduction with the males of the opposite 

species when in sympatry, leading to the occurrence of hybrids. The introgression phenomenom explains 

the genetic proximity obtained on the PCA results between the congeneric ones (T. argentata sympatric 

clade south and T. mariae sympatric) rather than its conspecific ones. 

 

The ABBA/BABA test with RAD-Seq data as in fact been used with similar results for other organisms,  

such as bumblebees. Seabra et al., 2019 have also used this test and their results have detected  the 

phenomenom of introgression between the populations, allowing the authors to understand the reason 

for the studied genetic proximities.  

 

Therefore, our results not only give a new insight for the reason of the studied genetic proximity but are 

also a key piece to continue our understanding of the processes of divergence and speciation of this 

genus. Present results on the patterns of distribution of species and populations of the Tettigettalna under 
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study don´t exclude the scenario of dispersal of Tettigettalna argentata occuring from eastern Europe 

and going to North and Centre Iberia and migrating until de South of the peninsula. Afterwards, in South 

of Portugal, T. argentata specimens may have found the Tettigettalna mariae individuals and by mistake 

the reproduction between them occurred, leading to gene flow between the species. Previous studies, 

(Costa, 2017), performed with  T. argentata also didn´t bring any final explanation.  

 

In conclusion, present work has shown that the RAD-seq data (multilocus approach) produced by the 

RAD-Sequencing technologies (one of the Next Generation Sequencing technologies) allowed a better 

understanding on the closely related group of Tettigettalna cicadas. This reinforces the power of the 

Next-Generation Sequencing technologies and its viability to speed up the investigation of complex 

relationships between recently diverged species, contrarly to single locus approaches, that namy times 

are insufficient to determine even simple species limits. 

 

However, new questions arised. As such, it would be interesting to study in each way the phenomenom 

of introgression could have occurred, we mean, if it was from T. argentata sympatric (clade south) to T. 

mariae sympatric; if it was from T. mariae sympatric to T. argentata sympatric (clade south), or if it 

was in both directions. Moreover, other approaches like testing for introgression using the 

ABBA/BABA test could give more information to explain the close relationship between the 

Tettigettalna aneabi from South Spain and Tettigettalna argentata North (Tar_N) and Tettigettalna 

argentata Centre (Tar_c) (the Central Iberia T. argentata populations).   

 

Lastely, understanding if the dispersal of Tettigettalna argentata occurrred from Africa to all the rest of 

the Europe, or the opposite is a problem that remains to be answered and that would give new evidences 

of the evolutionary history of the Tettigettalna group of species. The history of the Tettigettalna cicadas 

is just in the beginning…  
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Chapter 6  

Supporting Information 

Table 6.1: Specimens of Tettigettalna cicadas under study with indication of identification barcode, 

species, sample location and data of the sample location. 

 

# Individual Barcode Species Region 
Countr

y 
Data 

1 Tma560_allo  TAGCA T. mariae_Allopatry Cartaya Spain 18/07/2013 

2 Tma720_allo  TCAGA T. mariae_Allopatry Cartaya Spain 24/07/2013 

3 Tma556_allo  TCGAG T. mariae_Allopatry Cartaya Spain 17/07/2013 

4 Tma559_allo  TGACC T. mariae_Allopatry Cartaya Spain 18/07/2013 

5 Tma561_allo  TGGTT T. mariae_Allopatry Cartaya Spain 18/07/2013 

6 Tma718_allo  TTAAT T. mariae_Allopatry Cartaya Spain 24/07/2013 

7 Tma068_allo  TTGGC T. mariae_Allopatry Vale Judeu Portugal 14/07/2011 

8 Tma729_allo  AACCC T. mariae_Allopatry Vale Judeu Portugal 25/07/2013 

9 Tma071_allo  AATTT T. mariae_Allopatry Vale Judeu Portugal 14/07/2011 

10 Tma363_sym  ACCAT T. mariae_Sympatry Quinta do Lago Portugal 09/08/2012 

11 Tma352_sym  ACTGC T. mariae_Sympatry Quinta do Lago Portugal 08/08/2012 

12 Tma354_sym  AAAAA T. mariae_Sympatry Quinta do Lago Portugal 08/08/2012 

13 Tma327_sym  AAGGG T. mariae_Sympatry Quinta do Lago Portugal 02/08/2012 

14 Tma342_sym  ACACG T. mariae_Sympatry Quinta do Lago Portugal 03/08/2012 

15 Tma338_sym  ACGTA T. mariae_Sympatry Quinta do Lago Portugal 02/08/2012 

16 Tar310_sym  AGAGT T. argentata South_sympatry Quinta do Lago Portugal 01/08/2012 

17 Tar335_sym  AGGAC T. argentata South_sympatry Quinta do Lago Portugal 02/08/2012 

18 Tar321_sym  ATATC T. argentata South_sympatry Quinta do Lago Portugal 01/08/2012 

19 Tar357_sym  ATGCT T. argentata South_sympatry Quinta do Lago Portugal 08/08/2012 

20 Tar356_sym  CAACT T. argentata South_sympatry Quinta do Lago Portugal 08/08/2012 

21 Tar359_sym  CAGTC T. argentata South_sympatry Quinta do Lago Portugal 08/08/2012 

22 Tar553_allo  CCAAC T. argentata South_allopatry S. Bartolomeu de Messines Portugal 17/07/2013 

23 Tar552_allo  CCGGT T. argentata South_allopatry S. Bartolomeu de Messines Portugal 17/07/2013 

24 Tar260_allo  ATTAG T. argentata South_allopatry Espiel Spain 10/07/2012 

25 Tar769_allo  ATCGA T. argentata South_allopatry Portel Portugal 08/07/2014 

26 Tar770_allo  GTTGT T. argentata South_allopatry Portel Portugal 08/07/2014 

27 Tar771_allo  GTCAC T. argentata South_allopatry Portel Portugal 08/07/2014 

28 Tar526_c  GGTTC T. argentata centre Almaraz Spain 26/06/2013 
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29 Tar528_c  GGCCT T. argentata centre Almaraz Spain 26/06/2013 

30 Tar547_c  GCTAA T. argentata centre Albarracin Spain 28/06/2013 

31 Tar529_N  GCCGG T. argentata North Almaraz Spain 26/06/2013 

32 Tar177_N  GACTA T. argentata North Sesimbra Portugal 28/06/2012 

33 Tar299_N  AGTCA T. argentata North Serra d' Aire e Candeeiros Portugal 26/07/2012 

34 Tan254  AGCTG T. aneabi Zagra Spain 10/07/2012 

35 Tan710  CTTCC T. aneabi Frailes Spain 23/07/2013 

36 Tan709  CTCTT T. aneabi Frailes Spain 23/07/2013 

37 Tan707  CGTAT T. aneabi Frailes Spain 23/07/2013 

38 Tan3755  CGCGC T. aneabi Granada Spain 23/07/2013 

39 Tan711  CCTTG T. aneabi Estepa Spain 23/07/2013 

40 Tjo3765  CCCCA T. josei Armação de Pêra Portugal 08/06/2014 

 

 

Table 6.2: Clustering threshold and minimum sample locus values for each of the assemblies 

performed on ipyrad program. 

 

Assembly name Clust_Threshold Min_Sample_Locus 

params 0,85 4 

params1 0,9 4 

params2 0,95 4 

params3 0,8 4 

params4 0,85 5 

params5 0,9 5 

params6 0,95 5 

params7 0,85 7 

params8 0,9 7 

params9 0,95 7 

params10 0,9 7 

params11 0,9 5 

params12 0,9 4 

params13 0,9 5 

params14 0,9 7 
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File 6.1 “barcodes_sem_aneabi.txt” file.  

Each line corresponds to an individual followed by the barcode sequence that identifies the different 

individuals differing at least by 2 nucleotides. This file does not contain the Tettigettalna aneabi 

specimens. Total of individualds are 31 Tettigettalna’s species. 

 

Tma560_allo TAGCA 

Tma720_allo TCAGA 

Tma556_allo TCGAG 

Tma559_allo TGACC 

Tma718_allo TTAAT 

Tma068_allo TTGGC 

Tma729_allo AACCC 

Tma071_allo AATTT 

Tma363_sym ACCAT 
Tma352_sym ACTGC 

Tma354_sym AAAAA 

Tma327_sym AAGGG 

Tma342_sym ACACG 

Tma338_sym ACGTA 

Tar310_sym AGAGT 

Tar335_sym AGGAC 

Tar321_sym ATATC 

Tar357_sym ATGCT 

Tar356_sym CAACT 

Tar359_sym CAGTC 

Tar553_allo CCAAC 

Tar552_allo CCGGT 

Tar260_allo ATTAG 

Tar769_allo ATCGA 

Tar770_allo GTTGT 

Tar526_c GGTTC 

Tar528_c GGCCT 

Tar547_c GCTAA 

Tar529_N GCCGG 

Tar177_N GACTA 

Tar299_N AGTCA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

 

File 6.2 “barcodes_aneabi.txt” file 

Each line corresponds to an individual followed by the barcode sequence that identifies the different 

individuals differing at least by 2 nucleotides. This file contains the Tettigettalna aneabi specimens. 

Total of individuals are 37 Tettigettalna’s specimens. 

  

Tma560_allo TAGCA 

Tma720_allo TCAGA 

Tma556_allo TCGAG 

Tma559_allo TGACC 

Tma718_allo TTAAT 

Tma068_allo TTGGC 

Tma729_allo AACCC 

Tma071_allo AATTT 

Tma363_sym ACCAT 
Tma352_sym ACTGC 

Tma354_sym AAAAA 

Tma327_sym AAGGG 

Tma342_sym ACACG 

Tma338_sym ACGTA 

Tar310_sym AGAGT 

Tar335_sym AGGAC 

Tar321_sym ATATC 

Tar357_sym ATGCT 

Tar356_sym CAACT 

Tar359_sym CAGTC 

Tar553_allo CCAAC 

Tar552_allo CCGGT 

Tar260_allo ATTAG 

Tar769_allo ATCGA 

Tar770_allo GTTGT 

Tar526_c GGTTC 

Tar528_c GGCCT 

Tar547_c GCTAA 
Tar529_N GCCGG 

Tar177_N GACTA 

Tar299_N AGTCA 

Tan254 AGCTG 

Tan710 CTTCC 

Tan709 CTCTT 

Tan707 CGTAT 

Tan3755 CGCGC 

Tan711 CCTTG 
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File 6.3 “barcodes_com_josei.txt” file 

 

Each line corresponds to an individual followed by the barcode sequence that identifies the different 

individuals differing at least by 2 nucleotides. Total of individuals are 21 Tettigettalna’s specimens. 

 

Tma068_allo TTGGC 

Tma729_allo AACCC 

Tma071_allo AATTT 

Tma363_sym ACCAT 

Tma352_sym ACTGC 

Tma354_sym AAAAA 

Tma327_sym AAGGG 

Tma342_sym ACACG 

Tma338_sym ACGTA 

Tar310_sym AGAGT 

Tar335_sym AGGAC 

Tar321_sym ATATC 

Tar357_sym ATGCT 

Tar356_sym CAACT 

Tar359_sym CAGTC 

Tar553_allo CCAAC 

Tar552_allo CCGGT 

Tar260_allo ATTAG 

Tar769_allo ATCGA 

Tar770_allo GTTGT 

Tjo3765 CCCCA 
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File 6.4 “individuos_algarve.txt” file 

Each line corresponds the population name of each individual. The presented order is the same order of 

the individuals in the assembly_nameCenterSNP.vcf files with Tettigettalna aneabi individuals. 

 

Tan  

Tan  

Tan  

Tan  

Tan  

Tan  

Tar_N 

Tar_allo 

Tar_N 

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym 

Tar_c  

Tar_c 

Tar_N 

Tar_c  

Tar_allo  

Tar_allo  

Tar_allo  

Tar_allo  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym 

Tma_allo  

Tma_allo  

Tma_allo  

Tma_allo  

Tma_allo  

Tma_sym 
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File 6.5 “individuos_sem_aneabi_algarve.txt” file 

Each line corresponds the population name of each individual. The presented order is the same order of 

the individuals in the assembly_nameCenterSNP.vcf files without Tettigettalna aneabi individuals.   

 

Tar_N 

Tar_allo 

Tar_N 

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym  

Tar_sym 

Tar_c  

Tar_c 

Tar_N 

Tar_c  

Tar_allo  

Tar_allo  

Tar_allo  

Tar_allo 

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym  

Tma_sym 

Tma_allo  

Tma_allo  

Tma_allo  

Tma_allo  

Tma_allo  

Tma_sym 
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File 6.6 “params-params.txt” file 

 

File containing all the values for each of the parameters for the Ipyrad assembly params. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params                         ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final  ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.85                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

4                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.7 “params-params1.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params1. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params1                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final  ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt  ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

4                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.8 “params-params2.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params2. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params2                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz    ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.95                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

4                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.9 “params-params3.txt" file 

File containing all the values for each of the parameters for the Ipyrad assembly params3. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params3                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz  ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.80                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

4                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.10 “params-params4.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params4. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params4                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz  ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.85                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

5                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.11 “params-params5.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params5. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params5                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz  ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

5                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 

 

 

 

 

 

 

 

 

 



77 

 

 

File 6.12 “params-params6.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params6. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params6                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz   ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.95                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

5                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.13 “params-params7.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params7. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params7                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz     ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.85                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

7                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.14 “params-params8.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params8. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params8                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz    ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

7                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.15 “params-params9.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params9. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params9                        ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params_fastqs/*.gz   ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.95                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

7                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.16 “params-params10.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params10. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params10                       ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final  ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_sem_aneabi.txt  ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params10_fastqs/*.gz    ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

7                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.17 “params-params11.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params11. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params11                        ## [0] [assembly_name]: Assembly name. Used to name output directories 

for assembly steps 

/home/ioliveira/cicadas_final        ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_sem_aneabi.txt   ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final/params10_fastqs/*.gz    ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

5                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.18 “params-params12.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params12. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params12                       ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final_josei  ## [1] [project_dir]: Project dir (made in curdir if not present) 

                                     ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_com_josei.txt    ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final_josei/params12_fastqs/*.gz  ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

4                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.19 “params-params13.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params13. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params13                       ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final_josei    ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_com_josei.txt    ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final_josei/params12_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

5                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.20 “params-params14.txt” file 

File containing all the values for each of the parameters for the Ipyrad assembly params14. 

 

------- ipyrad params file (v.0.7.15)------------------------------------------- 

params14                       ## [0] [assembly_name]: Assembly name. Used to name output directories for 

assembly steps 

/home/ioliveira/cicadas_final_josei    ## [1] [project_dir]: Project dir (made in curdir if not present) 

                               ## [2] [raw_fastq_path]: Location of raw non-demultiplexed fastq files 

/home/ioliveira/barcodes_com_josei.txt  ## [3] [barcodes_path]: Location of barcodes file 

/home/ioliveira/cicadas_final_josei/params12_fastqs/*.gz ## [4] [sorted_fastq_path]: Location of 

demultiplexed/sorted fastq files 

denovo                         ## [5] [assembly_method]: Assembly method (denovo, reference, 

denovo+reference, denovo-reference) 

                               ## [6] [reference_sequence]: Location of reference sequence file 

rad                            ## [7] [datatype]: Datatype (see docs): rad, gbs, ddrad, etc. 

TGCAG,                         ## [8] [restriction_overhang]: Restriction overhang (cut1,) or (cut1, cut2) 

5                              ## [9] [max_low_qual_bases]: Max low quality base calls (Q<20) in a read 

33                             ## [10] [phred_Qscore_offset]: phred Q score offset (33 is default and very 

standard) 

6                              ## [11] [mindepth_statistical]: Min depth for statistical base calling 

6                              ## [12] [mindepth_majrule]: Min depth for majority-rule base calling 

10000                          ## [13] [maxdepth]: Max cluster depth within samples 

0.90                           ## [14] [clust_threshold]: Clustering threshold for de novo assembly 

0                              ## [15] [max_barcode_mismatch]: Max number of allowable mismatches in 

barcodes 

0                              ## [16] [filter_adapters]: Filter for adapters/primers (1 or 2=stricter) 

35                             ## [17] [filter_min_trim_len]: Min length of reads after adapter trim 

2                              ## [18] [max_alleles_consens]: Max alleles per site in consensus sequences 

5, 5                           ## [19] [max_Ns_consens]: Max N's (uncalled bases) in consensus (R1, R2) 

8, 8                           ## [20] [max_Hs_consens]: Max Hs (heterozygotes) in consensus (R1, R2) 

7                              ## [21] [min_samples_locus]: Min # samples per locus for output 

20, 20                         ## [22] [max_SNPs_locus]: Max # SNPs per locus (R1, R2) 

8, 8                           ## [23] [max_Indels_locus]: Max # of indels per locus (R1, R2) 

0.5                            ## [24] [max_shared_Hs_locus]: Max # heterozygous sites per locus (R1, R2) 

0, 0, 0, 0                     ## [25] [trim_reads]: Trim raw read edges (R1>, <R1, R2>, <R2) (see docs) 

0, 0, 0, 0                     ## [26] [trim_loci]: Trim locus edges (see docs) (R1>, <R1, R2>, <R2) 

p, s, v                        ## [27] [output_formats]: Output formats (see docs) 

                               ## [28] [pop_assign_file]: Path to population assignment file 
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File 6.21 Script written in python named “vcf_parser.py” that was used to filter the 

assembly_name.recode.vcf files 

 

#!/usr/bin/python 

# Copyright 2015 Diogo N. Silva <o.diogosilva@gmail.com> 

# compare_pairs.py is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

 

# Loci_counter is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

 

# You should have received a copy of the GNU General Public License 

# along with Loci_counter. If not, see <http://www.gnu.org/licenses/>. 

 

# vcf_parser.py is that performs filtering and transformations steps on 

# a VCF file that are not possible with vcftools 

 

# Usage: python3 vcf_parser.py -h (will show all available options) 

 

import argparse 

import random 

from collections import Counter 

 

PARSER = argparse.ArgumentParser(description="Filtering of VCF files") 

 

PARSER.add_argument("-vcf", dest="vcf_infile", help="Provide VCF " 

                    " file(s).", required=True) 

PARSER.add_argument("--remove-inv", dest="remove_inv", const=True, 

                    action="store_const", help="Filters invariable SNP sites" 

                    " from the VCF file (These sites may occurr when " 

                    "individuals are removed from a VCF file).") 

PARSER.add_argument("--remove-singletons", dest="remove_singletons", const=True, 

                    action="store_const", help="Filters singletons SNP sites" 

                    " from the VCF file.") 

PARSER.add_argument("--one-snp", dest="one_snp", const=True, 

                    action="store_const", help="Filters the VCF file so that" 

                    " only one SNP per locus is retained - The first one") 

PARSER.add_argument("--random-snp", dest="rnd_snp", const=True, 

                    action="store_const", help="Filters the VCF file so that" 

                    " only one random SNP per locus is retained.") 
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PARSER.add_argument("--center-snp", dest="center_snp", const=True, 

                    action="store_const", help="Filters the VCF file so that" 

                    " only the SNP closest to the locus center is retained.") 

 

ARG = PARSER.parse_args() 

 

 

def remove_sites(vcf_file, mode="inv", suffix="_NoInv.vcf"): 

    """ 

    Removes invariable sites from a VCF file. This assumes that the genotype 

    columns start at the 10th column until the last column 

    :param vcf_file: string, path to vcf file 

    :param mode: string, specifies the removal operation. May be one of the 

    following: 

        .:"inv": Removes invariable sites 

        .:"singletons": Removes singleton sites 

    :param suffix: string, the suffix of the output file. 

    """ 

 

    vcf_output = vcf_file.split(".")[0] + suffix 

 

    with open(vcf_file) as vcf_handle, open(vcf_output, "w") as vcf_out: 

 

        for line in vcf_handle: 

 

            if line.startswith("#"): 

                vcf_out.write(line) 

 

            elif line.strip() != "": 

 

                # Get genotypes. Remove genotypes with no data. 

                genotypes = [x.split(":")[0] for x in line.split()[9:] if x.split(":")[0] != "./."] 

 

                if mode == "inv": 

                    # If number of unique genotypes higher than 1, save SNP 

                    if len(set(genotypes)) > 1: 

                        vcf_out.write(line) 

 

                elif mode == "singletons": 

                    gens = Counter(genotypes) 

                    # Remove most common genotype 

                    del gens[gens.most_common()[0][0]] 

                    # Check if remaining genotype count is higher than 1 

                    if sum(gens.values()) > 1: 

                        vcf_out.write(line) 
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def filter_one_snp(vcf_file): 

    """ 

    Filters a VCF file so that only one SNP per locus (the first) is retained 

    """ 

 

    vcf_output = vcf_file.split(".")[0] + "OneSNP.vcf" 

 

    chrom_list = [] 

 

    with open(vcf_file) as vcf_handle, open(vcf_output, "w") as vcf_out: 

 

        for line in vcf_handle: 

 

            if line.startswith("#"): 

                vcf_out.write(line) 

 

            elif line.strip() != "": 

 

                # Get chrom number 

                chrom = line.split()[0] 

 

                if chrom not in chrom_list: 

                    vcf_out.write(line) 

                    chrom_list.append(chrom) 

 

 

def filter_random_snp(vcf_file): 

    """ 

    Filters a VCF file so that only one random SNP per locus is retained. 

    """ 

 

    vcf_output = vcf_file.split(".")[0] + "RandSNP.vcf" 

 

    current_chrom = 0 

    loci_snps = [] 

 

    with open(vcf_file) as vcf_handle, open(vcf_output, "w") as vcf_out: 

 

        for line in vcf_handle: 

 

            if line.startswith("#"): 

                vcf_out.write(line) 

            elif line.strip() != "": 

 

                # Get chrom number 

                chrom = line.split()[0] 
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                if chrom != current_chrom and loci_snps != []: 

                    choosen = random.choice(loci_snps) 

                    vcf_out.write(choosen) 

                    loci_snps = [line] 

                    current_chrom = chrom 

 

                else: 

                    loci_snps += [line] 

        vcf_out.write(random.choice(loci_snps)) 

 

 

def filter_center_snp(vcf_file): 

    """ 

    Filters a VCF file so that only one SNP per locus (the first) is retained 

    """ 

 

    vcf_output = vcf_file.split(".")[0] + "CenterSNP.vcf" 

 

    current_chrom = "" 

    line_list = [] 

 

    with open(vcf_file) as vcf_handle, open(vcf_output, "w") as vcf_out: 

 

        for line in vcf_handle: 

 

            if line.startswith("#"): 

                vcf_out.write(line) 

 

            elif line.strip() != "": 

 

                # Get chrom number 

                chrom = line.split()[0] 

 

                # Get SNP position 

                pos = int(line.split()[1]) 

 

                if chrom != current_chrom and current_chrom != "": 

                    closest = min(pos_list, key=lambda x: abs(x - 45)) 

                    vcf_out.write(line_list[pos_list.index(closest)]) 

                    pos_list = [pos] 

                    line_list = [line] 

                    current_chrom = chrom 

                elif chrom != current_chrom: 

                    pos_list = [pos] 

                    line_list = [line] 

                    current_chrom = chrom 

                else: 
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                    pos_list += [pos] 

                    line_list += [line] 

 

        closest = min(pos_list, key=lambda x: abs(x - 45)) 

        vcf_out.write(line_list[pos_list.index(closest)]) 

 

def main(): 

    """ 

    Main function that controls what to do. 

    """ 

    # Args 

    vcf_file = ARG.vcf_infile 

 

    if ARG.remove_inv: 

        remove_sites(vcf_file) 

 

    if ARG.remove_singletons: 

        remove_sites(vcf_file, mode="singletons", suffix="_NoSing.vcf") 

 

    if ARG.one_snp: 

        filter_one_snp(vcf_file) 

 

    if ARG.rnd_snp: 

        filter_random_snp(vcf_file) 

 

    if ARG.center_snp: 

        filter_center_snp(vcf_file) 

 

main() 
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File 6.22 Script written in R named “vcf2PCA.R” used to generate Principal Component 

Analysis plots 

 

source("http://bioconductor.org/biocLite.R") 

biocLite("SNPRelate") 

library ("SNPRelate") 

 

#input 

vcf.fn<-"/Users/inesoliveira/Desktop/pca_final/params11CenterSNP.vcf" #load the data 

snpgdsVCF2GDS(vcf.fn,"test.gds",method="copy.num.of.ref", ignore.chr.prefix="chr")#import to 

class. use method= biallelic.only for biallelic snps 

#summary of the vcf imported 

snpgdsSummary("test.gds") 

 

#open the translated vcf imported 

genofile<-snpgdsOpen("test.gds") 

 

#import population names 

pop_code <- scan("/Users/inesoliveira/Desktop/pca_final/individuos_sem_aneabi_algarve.txt", 

what=character()) ## File 1 

 

#PCA 

pca<-snpgdsPCA(genofile, autosome.only = FALSE) 

# variance proportion (%) 

pc.percent<-pca$varprop*100 

head(pc.percent) 

#get sample ids 

sample.id<-read.gdsn(index.gdsn(genofile,"sample.id")) 

 

#data frame of eigenvectors 

tab<-data.frame(sample.id= pca$sample.id, 

                pop=factor(pop_code)[match(pca$sample.id, sample.id)], 

                EV1= pca$eigenvect[,1],# first eignvector (can be changed) 

                EV2= pca$eigenvect[,2],# the second eigenvector (can be changed) 

                stringsAsFactors=FALSE) 

 

par(mar=c(7.1, 4.1, 4.1, 9.5), xpd=TRUE)#creates space outside plot area 

plot(tab$EV1, tab$EV2, col=as.integer(tab$pop), xlab="eigenvector 1",ylab="eigenvector 2", 

pch=as.integer(tab$pop)) 

legend("topright", legend=levels(tab$pop),inset=c(-0.20,0), pch=1:nlevels(tab$pop), 

col=1:nlevels(tab$pop))#inset forces legend outside area 

 

text(tab$EV1, tab$EV2, labels=tab$sample.id) 

write.csv(tab, "params11CenterSNP.csv") 
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#to print the eigenvalues 

tab 

snpgdsClose(genofile) 

File 6.23 Script written in R named “MavericK1.0_functions.R” that came with the 

Maverick installation 

 

# Author: Bob Verity 

# Date: 30/03/2016 

 

# Purpose: 

# This R script contains a series of functions that produce simple plots from MavericK1.0 output. 

These functions were used to produce all the figures in the MavericK1.0 tutorial file. 

# Eventually these functions will be wrapped up in a package, but for now they are free floating. 

Please feel free to modify them and tailor them to your needs! 

# NB. Some of these functions make use of the data.table package for efficient reading in of data, and 
the RColorBrewer package for getting nice colour palettes. 

 

 

#--- Diagnostic plots --- 

# These functions can be used to produce plots that help diagnose the behaviour of an MCMC run. 

 

# loadLikelihood() - read in an outputLikelihood.csv file as a data frame 

# plotTrace() - plot simple MCMC trace of a particular column in likelihood data frame 

# plotAcf() - produce autocorrelation plot of a particular column in likelihood data frame 

# plotDensity() - produce kernel density plot of a particular column in likelihood data frame 

 

 

#--- Qmatrix plots --- 

# These functions produce posterior allocation plots from Qmatrix files. plotQmatrix_ind() and 

plotQmatrix_pop() accept both types of MavericK1.0 output; ordinary .csv files and Structure-style 

.txt files. Note that Structure-style files must have the header line stripped for these functions to work 

(this is done automatically in MavericK1.0 output). 

 

# plotQmatrix_ind() - plot Qmatrix at individual level 

# plotQmatrix_pop() - plot Qmatrix at population level 

# plotQmatrix_gene() - plot Qmatrix at gene copy level 

# plotQmatrixError_ind() - plot QmatrixError at individual level 

# plotQmatrixError_pop() - plot QmatrixError at population level 

 

 
#--- Evidence plots --- 

# These functions read in outputEvidence.csv and outputEvidenceNormalised.csv files and produce 

simple plots over K. 

 

# plotEvidence() - plot values in outputEvidence.csv file 

# plotEvidenceNormalised() - plot values in outputEvidenceNormalised.csv file 

# plotTI_path() - plot TIpoint_mean values from the outputEvidenceDetails.csv file 

 

 

#--- Compare models --- 

# model_normalise() - read in outputEvidence.csv files from multiple evolutionary models and 

calculates overall evidence, integrated over K. 

# plotModel() - create barplot of values returned by model_normalise() 
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#--- Auxilliary functions --- 

# These functions are called within the main functions listed above 

 

# Qmatrix_ind_to_csv() - converts Structure-style individual Qmatrix into ordinary data frame 

# Qmatrix_pop_to_csv() - converts Structure-style population Qmatrix into ordinary data frame 

# defaultColours() - specifies some default colours from the RColorBrewer package 

# errorBars() - add error bars to plot 

 

# ------------------------------------------------------------------ 

 

## loadLikelihood 

# Reads in likelihood file using the efficient fread() function from package "data.table". Gives an 

optional summary of file contents. 

 

# fileName - name of likelihood file 

# printSummary - whether to print basic file properties to console 

 

#setwd("/home/inesoliveira/Desktop/pilot_run") 

 

loadLikelihood <- function(fileName=file.choose(), printSummary=TRUE) { 

  

 # load data.table package 

 if (!"data.table"%in%rownames(installed.packages())) 

   install.packages("data.table") 

 require("data.table") 

  

 # read in likelihood file 

 df <- as.data.frame(fread(fileName)) 

  

 # summarise contents 

 if (printSummary) { 

  Kmin <- min(df$K) 

  Kmax <- max(df$K) 

  if (Kmin==Kmax) { 

   cat(paste('K\t\t = ', Kmin, '\n', sep='')) 

  } else { 

   cat(paste('K\t\t = ', Kmin, ':', max(df$K), '\n', sep='')) 

  } 

  cat(paste('mainReps = ', max(df$mainRep), '\n', sep='')) 

  burnin = 0 

  if (any(df$MCMCsample<1)) 

   burnin = -min(df$MCMCsample)+1 

  cat(paste('burn-in\t = ', burnin, '\n', sep='')) 

  samples <- max(df$MCMCsample) 

  cat(paste('samples\t = ', samples, '\n', sep='')) 

 } 

  

 return(df) 

} 

 

myLike <- loadLikelihood("./outputLikelihood.csv") 

 

# ----------------------------------- 
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## plotTrace 

# Takes likelihood data frame (for example read in using loadLikelihood()) and produces trace plot of 

chosen column. Data frame is subset to a single value of K and a single mainRep prior to plotting. 

 

# likelihood_data - data frame containing values formatted as in outputLikelihood.csv 

# K - single value of K to plot 

# mainRep - single value of mainRep to plot 

# trimBurnin - whether to remove burn-in iterations prior to plotting 

# column - which column in data do we want to plot 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

 

plotTrace <- function(likelihood_data, K, mainRep=1, trimBurnin=TRUE, column='loglike_marginal', 

xlab='iteration', ylab=column, main=column) { 

 

 # ensure inputs are scalar valued 

 K_ <- K[1] 

 mainRep_ <- mainRep[1] 

  

 # subset data frame and get plotting values 

 df <- subset(likelihood_data, K==K_ & mainRep==mainRep_) 

 if (trimBurnin) { 

  df <- subset(df, MCMCsample>0) 

 } 

 if (0%in%dim(df)) { 

  stop('once subset by K and mainRep likelihood data frame contains no fields') 

 } 

 if (column%in%names(df)) { 

  y <- df[,column] 

 } else { 

  stop(paste('could not find column "',column,'" in likelihood file',sep='')) 

 } 

  

 # produce plot 

 plot(df$MCMCsample, y, pch=4, cex=0.4, col=grey(0.7), xlab=xlab, ylab=ylab, main=main) 

 if (!trimBurnin) { 

  abline(v=0,lty=3) 

 } 

} 

 

plotTrace(myLike, K=7, trimBurnin = FALSE) 

plotTrace(myLike, K=7, column="alpha", trimBurnin=FALSE) 

 

# ----------------------------------- 

## plotAcf 

# Takes likelihood data frame (for example read in using loadLikelihood()) and produces an 

autocorrelation plot of chosen column. Data frame is subset to a single value of K and a single 

mainRep, and burn-in is discarded prior to plotting. The number of lags is chosen automatically. 

 

# likelihood_data - data frame containing values formatted as in outputLikelihood.csv 

# K - single value of K to plot 

# mainRep - single value of mainRep to plot 

# column - which column in data do we want to plot 
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# main - main title 

 

plotAcf <- function(likelihood_data, K, mainRep=1, column='loglike_marginal', main='') { 

 

 # ensure inputs are scalar valued 

 K_ <- K[1] 

 mainRep_ <- mainRep[1] 

  

 # subset data frame and get plotting values 

 df <- subset(likelihood_data, K==K_ & mainRep==mainRep_ & MCMCsample>0) 

 if (0%in%dim(df)) { 

  stop('once subset by K and mainRep likelihood data frame contains no fields') 

 } 

 if (column%in%names(df)) { 

  y <- df[,column] 

 } else { 

  stop(paste('could not find column "',column,'" in likelihood file',sep='')) 

 } 

  

 # search various values of lag.max. Stop when autocorrelation drops below zero. 

 lagMax_vec <- 10^(1:5) 

 for (i in 1:length(lagMax_vec)) { 

  lagMax <- lagMax_vec[i] 

  c <- acf(y, lag.max=lagMax, plot=FALSE) 

  c <- as.vector(c$acf) 

  if (any(c<0)) { 

   w <- which(c<0)[1] 

   lagMax <- max(2*w, 30) 

   break 

  } 

 } 

  

 # final acf with chosen lags 

 c <- acf(y, lag.max=lagMax, plot=FALSE) 

 c <- as.vector(c$acf) 

  

 # produce plot 

 plot(0:(length(c)-1), c, type='h', ylim=c(min(c,na.rm=TRUE),1), xlab='Lag', ylab='ACF', 

main=main) 

 abline(h=0) 

} 

 

plotAcf(myLike, K=7) 

 

# ----------------------------------- 

## plotDensity 

# Takes likelihood data frame (for example read in using loadLikelihood()) and produces density plot 

of chosen column. Data frame is subset to a single value of K and a single mainRep prior to plotting. 

 

# likelihood_data - data frame containing values formatted as in outputLikelihood.csv 

# K - single value of K to plot 

# mainRep - single value of mainRep to plot 

# trimBurnin - whether to remove burn-in iterations prior to plotting 

# column - which column in data do we want to plot 
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# xlab - x axis label 

# ylab - y axis label 

# main - main title 

 

plotDensity <- function(likelihood_data, K, mainRep=1, trimBurnin=TRUE, 

column='loglike_marginal', xlab=column, ylab='probability density', main=column) { 

 

 # ensure inputs are scalar valued 

 K_ <- K[1] 

 mainRep_ <- mainRep[1] 

 # subset data frame and get plotting values 

 df <- subset(likelihood_data, K==K_ & mainRep==mainRep_) 

 if (trimBurnin) { 

  df <- subset(df, MCMCsample>0) 

 } 

 if (0%in%dim(df)) { 

  stop('once subset by K and mainRep likelihood data frame contains no fields') 

 } 

 if (column%in%names(df)) { 

  x <- df[,column] 

 } else { 

  stop(paste('could not find column "',column,'" in likelihood file',sep='')) 

 } 

  

 # get plotting limits based on range of data 

 xmin <- 1.5*min(x,na.rm=T)-0.5*max(x,na.rm=T) 

 xmax <- 1.5*max(x,na.rm=T)-0.5*min(x,na.rm=T) 

 if (column=='alpha') { 

  xmin <- 0 

  xmax <- min(xmax,10) 

 } 

  

 # plot kernel density 

 fx = density(x,from=xmin,to=xmax) 

 plot(fx,xlab=xlab,ylab=ylab,main=main) 

 polygon(c(fx$x,rev(fx$x)), c(fx$y,rep(0,length(fx$y))), col=grey(0.7)) 

  

 # add quantiles to density plot 

 quantiles = quantile(x,prob=c(0.025,0.975)) 

 fx_left_x = fx$x[fx$x<quantiles[1]] 

 fx_left_y = fx$y[fx$x<quantiles[1]] 

 polygon(c(fx_left_x,rev(fx_left_x)), c(fx_left_y,rep(0,length(fx_left_y))), col=colors()[373]) 

 fx_right_x = fx$x[fx$x>quantiles[2]] 

 fx_right_y = fx$y[fx$x>quantiles[2]] 

 polygon(c(fx_right_x,rev(fx_right_x)), c(fx_right_y,rep(0,length(fx_right_y))), 

col=colors()[373]) 

 # add lines for median and mean 

 best_median = which.min(abs(fx$x-median(x))) 

 lines(rep(fx$x[best_median],2),c(0,fx$y[best_median])) 

 best_mean = which.min(abs(fx$x-mean(x))) 

 lines(rep(fx$x[best_mean],2),c(0,fx$y[best_mean]),lty=2) 

  

 # add legend 
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 legend('topright', legend=paste(c('   mean=','median=','        sd=',' q0.025=',' q0.975='), 

signif(c(mean(x), median(x), sd(x), quantiles[1],quantiles[2]), digits=3), sep=''), 

lty=c(2,1,NA,NA,NA), seg.len=1, bg='#FFFFFF80', box.col='#00000050') 

  

} 

 

plotDensity(myLike, K=7, column="alpha") 

 

######  Corri ate aqui para os restantes K's 

 

# ----------------------------------- 

## Qmatrix_ind_to_csv 

# Convert Structure format individual level Qmatrix to ordinary data frame. 

 

# fileName - name of Qmatrix file 

 

Qmatrix_ind_to_csv <- function(fileName) { 

  

 # read in data 

 Qmatrix <- read.delim(file=fileName,header=FALSE,sep='') 

  

 # check whether using population info 

 popCol_on <- TRUE 

 if (Qmatrix[1,4]==":") popCol_on <- FALSE 

  

 # produce data frame 

 n <- nrow(Qmatrix) 

 K <- ncol(Qmatrix)-4-popCol_on 

 df <- data.frame(index=1:n, label=Qmatrix[,2]) 

 if (popCol_on) df$given_population <- as.factor(as.character(Qmatrix[,4])) 

 df <- cbind(df,Qmatrix[,(ncol(Qmatrix)-K+1):ncol(Qmatrix)]) 

 names(df)[-(1:(2+popCol_on))] <- paste("deme",1:K,sep="") 

  

 return(df) 

} 

 

# ----------------------------------- 

## Qmatrix_pop_to_csv 

# Convert Structure format population level Qmatrix to ordinary data frame. 

 

# fileName - name of Qmatrix file 

 

Qmatrix_pop_to_csv <- function(fileName) { 

  

 # read in data 

 Qmatrix <- read.delim(file=fileName,header=FALSE,sep='') 

  

 # produce data frame 

 K <- ncol(Qmatrix)-2 

 popNames <- unlist(strsplit(as.character(Qmatrix[,1]),":")) 

 members <- as.numeric(as.character(Qmatrix[,K+2])) 

 vals <- matrix(as.numeric(as.matrix(Qmatrix[,2:(K+1)])),length(popNames)) 

 df <- data.frame(given_population=popNames, members=members) 

 df <- cbind(df, vals) 
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 names(df)[-(1:2)] <- paste("deme",1:K,sep="") 

  

 return(df) 

} 

 

# ----------------------------------- 

## defaultColours 

# Generate vector of K default colours using RColorBrewer package. Uses colorRampPalette function, 

meaning any value of K is supported. 

 

# K - number of colours to produce 

defaultColours <- function(K) { 

  

 # load RColorBrewer package 

 if (!"RColorBrewer"%in%rownames(installed.packages())) 

   install.packages("RColorBrewer") 

 require("RColorBrewer") 

  

 # generate palette and colours 

 myPalette <- colorRampPalette(brewer.pal(n=6,name="RdYlBu")) 

 barCol <- myPalette(max(K,6)) 

  

 # if less than 6 colours then choose manually 

 if (K==5) { 

  barCol = barCol[c(1,2,3,5,6)] 

 } else if (K==4) { 

  barCol = barCol[c(1,2,3,5)] 

 } else if (K==3) { 

  barCol = barCol[c(1,3,5)] 

 } else if (K==2) { 

  barCol = barCol[c(1,5)] 

 } else if (K==1) { 

  barCol = barCol[1] 

 } 

  

 return(barCol) 

} 

 

# ----------------------------------- 

## plotQmatrix_ind 

# Reads in a Qmatrix_ind file and produces a posterior allocation plot. Features such as border widths 

and colours can be set manually. 

 

# fileName - path to input file 

# StructureFormat - whether input file is in Structure format 

# barCol - vector or colours for different demes. Leave blank to use default colours 

# barBorderCol - colour of border around individual bars 

# barBorderWidth - width of border around individual bars 

# popBorderCol - colour of border around given populations 

# popBorderWidth - width of border around given populations 

# allBorderCol - colour of border around entire plot 

# allBorderWidth - width of border around entire plot 

# xlab - x axis label 

# ylab - y axis label 
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# main - main title 

# printK - whether to print value of K in top left corner 

 

plotQmatrix_ind <- function(fileName=file.choose(), StructureFormat=FALSE, barCol=NA, 

barBorderCol='white', barBorderWidth=0.5, popBorderCol='black', popBorderWidth=2, 

allBorderCol='black', allBorderWidth=2, xlab='', ylab='', main='', printK=TRUE) { 

  

 # read in Qmatrix file 

 if (StructureFormat) df <- Qmatrix_ind_to_csv(fileName) 

 else df <- read.csv(fileName) 

  

 # extract basic quantities 

 popCol_on <- "given_population"%in%names(df) 

 if (popCol_on) { 

  pop = df$given_population 

  pops = length(unique(pop)) 

 } 

 n = nrow(df) 

 K = ncol(df)-2-popCol_on 

 Q <- as.matrix(df[,(3+popCol_on):ncol(df)]) 

  

 # generate bar colours 

 if (any(is.na(barCol))) 

  barCol <- defaultColours(K) 

  

 # produce barplot 

 oldPar <- par(lwd=barBorderWidth, xpd=TRUE) 

 barplot(t(Q), border=barBorderCol, col=barCol, space=0, ylim=c(-0.1,1.1), xlab=xlab, 

ylab=ylab, main=main, axes=FALSE, names.arg=rep(NA,n), font.main=1) 

 # if population data present 

 if (popCol_on) { 

   

  # count members in each population 

  members <- NULL 

  for (i in 1:pops) 

   members = c(members,sum(pop==unique(pop)[i])) 

    

  # add border around populations 

  for (i in 1:pops) { 

   xmax <- cumsum(members)[i] 

   xmin <- xmax-members[i] 

   polygon(c(xmin,xmax,xmax,xmin), c(0,0,1,1), lwd=popBorderWidth, 

border=popBorderCol) 

  } 

   

  # add population labels 

  midPoints = cumsum(members)-members/2 

  text(midPoints, 0, pos=1, labels=unique(pop), cex=0.8) 

 } 

  

 # add outer frame 

 polygon(c(0,n,n,0),c(0,0,1,1), lwd=allBorderWidth, border=allBorderCol) 

  

 # print K 
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 if (printK) 

  text(0,1,labels=paste('      K=',K,sep=''),pos=3) 

  

 # restore old parameter values 

 par(oldPar) 

} 

 

plotQmatrix_ind("./outputQmatrix_ind_K7.csv") 

 

# ----------------------------------- 

## plotQmatrix_pop 

# Reads in a Qmatrix_pop file and produces a posterior allocation plot. Features such as border widths 

and colours can be set manually. 

 

# fileName - path to input file 

# StructureFormat - whether input file is in Structure format 

# barCol - vector or colours for different demes. Leave blank to use default colours 

# barBorderCol - colour of border around individual bars 

# barBorderWidth - width of border around individual bars 

# popBorderCol - colour of border around given populations 

# popBorderWidth - width of border around given populations 

# allBorderCol - colour of border around entire plot 

# allBorderWidth - width of border around entire plot 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

# printK - whether to print value of K in top left corner 

 

plotQmatrix_pop = function(fileName=file.choose(), StructureFormat=FALSE, barCol=NA, 

barBorderCol='white', barBorderWidth=0.5, popBorderCol='black', popBorderWidth=2, 

allBorderCol='black', allBorderWidth=2, xlab='', ylab='', main='', printK=TRUE) {  

  

 # read in Qmatrix file 

 if (StructureFormat) df <- Qmatrix_pop_to_csv(fileName) 

 else df <- read.csv(fileName) 

  

 # extract basic quantities 

 pops = nrow(df) 

 n <- sum(df$members) 

 K = ncol(df)-2 

 Q <- as.matrix(df[,3:ncol(df)]) 

  

 # generate bar colours 

 if (any(is.na(barCol))) 

  barCol <- defaultColours(K) 

  

 # produce barplot 

 oldPar <- par(lwd=barBorderWidth, xpd=TRUE) 

 barplot(t(Q), df$members, border=barBorderCol, col=barCol, space=0, ylim=c(-0.1,1.1), 

xlab=xlab, ylab=ylab, main=main, axes=FALSE, names.arg=rep(NA,pops), font.main=1) 

  

 # add population labels 

 midPoints = cumsum(df$members)-df$members/2 

 text(midPoints, 0, pos=1, labels=df$given_population, cex=0.8) 
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 # add border around populations 

 for (i in 1:pops) { 

  xmax <- cumsum(df$members)[i] 

  xmin <- xmax-df$members[i] 

  polygon(c(xmin,xmax,xmax,xmin), c(0,0,1,1), lwd=popBorderWidth, 

border=popBorderCol) 

 } 

  

 # add outer frame 

 polygon(c(0,n,n,0),c(0,0,1,1), lwd=allBorderWidth, border=allBorderCol) 

  

 # print K 

 if (printK) 

  text(0,1,labels=paste('      K=',K,sep=''),pos=3) 

  

 # restore old parameter values 

 par(oldPar) 

} 

 

# ----------------------------------- 

## plotQmatrix_gene 

# Reads in a Qmatrix_gene file and produces a posterior allocation plot. Features such as border 

widths and colours can be set manually. This function is fairly clunky, and may produce odd-looking 

plots for very large data sets. 

 

# fileName - path to input file 

# xrange - left and right limits (as a proportion of total window width) occupied by bar plots 

# yrange - bottom and top limits (as a proportion of total window height) occupied by bar plots 

# barCol - vector or colours for different demes. Leave blank to use default colours 

# barBorderCol - colour of border around individual bars 

# barBorderWidth - width of border around individual bars 

# geneBorderCol - colour of border around all loci corresponding to a particular gene copy 

# geneBorderWidth - width of border around all loci corresponding to a particular gene copy 

# indBorderCol - colour of border around each individual 

# indBorderWidth - width of border around each individual 

# indSpace - vertical space (as a proportion of row size) between individuals 

# indLabels - whether to plot labels of each individual 

# indFontSize - size of individual labels 

# popSpace - vertical space (as a proportion of row size) between given populations 

# xlab - x axis label 

# xFontSize - size of x axis label 

# main - main title 

 

plotQmatrix_gene = function(fileName=file.choose(), xrange=c(0.2,0.8), yrange=c(0.1,0.9), 

barCol=NA, barBorderCol='white', barBorderWidth=0.25, geneBorderCol='black', 

geneBorderWidth=0.5, indBorderCol='black', indBorderWidth=1, indSpace=0.25, indLabels=TRUE, 

indFontSize=0.5, popSpace=2, xlab='loci', xFontSize=1, main='') { 

  

 # read in Qmatrix file 

 df <- read.csv(fileName) 

  

 # extract basic quantities 

 popCol_on <- ("given_population"%in%names(df)) 
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 pops <- NULL 

 if (popCol_on) { 

  pops <- unique(df$given_population) 

  df <- df[order(df$given_population),] 

 } 

 n <- max(df$index) 

 K <- ncol(df)-5 

 loci <- max(df$locus) 

 ploidy <- unlist(lapply(split(df$gene_copy, f=df$index),max)) 

  

 # generate bar colours 

 if (any(is.na(barCol))) 

  barCol <- defaultColours(K) 

  

 # calculate size of each row 

 delta_y <- diff(yrange)/(sum(ploidy)+(n-1)*indSpace+(length(pops)-1)*popSpace) 

  

 # create empty plot 

 oldPar <- par(fig=c(0,1,0,1), mar=c(0,0,0,0), lwd=barBorderWidth, xpd=TRUE) 

 plot(1, type='n', xlim=c(0,1), ylim=c(0,1), xaxs='i', yaxs='i', axes=FALSE, xlab=NA, 

ylab=NA) 

  

 # loop through all individuals and all gene copies within an individual 

 if (popCol_on) 

  thisPop <- df$given_population[1] 

 ymax <- yrange[2] 

 for (ind in 1:n) { 

  df_ind <- subset(df,index==ind) 

  for (copy in 1:ploidy[ind]) { 

    

   #??add space between populations 

   df_copy <- subset(df_ind,gene_copy==copy) 

   if (popCol_on) { 

    if (df_copy$given_population[1]!=thisPop) { 

     ymax = ymax - delta_y*popSpace 

     thisPop <- df_copy$given_population[1] 

    } 

   } 

    

   # define plotting frame for this row 

   par(new=TRUE, fig=c(xrange[1],xrange[2],ymax-delta_y,ymax), 

mar=c(0,0,0,0)) 

    

   # barplot for this row 

   Q <- as.matrix(df_copy[,5:(4+K)+popCol_on]) 

   barplot(t(Q), names.arg=rep(NA,loci), border=barBorderCol, col=barCol, 

space=0, ylim=c(0,1), xaxs='i', yaxs='i', axes=F) 

    

   # reset plotting frame 

   par(new=TRUE, fig=c(0,1,0,1), mar=c(0,0,0,0)) 

   plot(1, type='n', xlim=c(0,1), ylim=c(0,1), xaxs='i', yaxs='i', axes=FALSE, 

xlab=NA, ylab=NA) 

    

   # add border around all loci corresponding to this gene copy 
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   polygon(c(xrange[1],xrange[2],xrange[2],xrange[1]), c(ymax-delta_y,ymax-

delta_y,ymax,ymax), lwd=geneBorderWidth, border=geneBorderCol) 

    

   # move down one row 

   ymax <- ymax - delta_y 

  } 

   

  # add border around this individual 

  polygon(c(xrange[1],xrange[2],xrange[2],xrange[1]), c(ymax, ymax, 

ymax+ploidy[ind]*delta_y, ymax+ploidy[ind]*delta_y), lwd=indBorderWidth, border=indBorderCol) 

   

  # add individual label 

  text(xrange[1],ymax+ploidy[ind]/2*delta_y, labels=as.character(df_ind$label[1]), 

pos=2, cex=indFontSize) 

   

  # create space between individuals 

  ymax <- ymax - delta_y*indSpace 

 } 

  

 # add title and x axis label 

 par(new=TRUE, fig=c(0,1,0,1), mar=c(0,0,0,0)) 

 plot(1, type='n', xlim=c(0,1), ylim=c(0,1), xaxs='i', yaxs='i', axes=FALSE, xlab=NA, 

ylab=NA) 

 text(mean(xrange),yrange[1],labels=xlab,cex=xFontSize,pos=1) 

 text(mean(xrange),yrange[2],labels=main,pos=3) 

  

 # restore old parameter values 

 par(oldPar) 

} 

 

# ----------------------------------- 

## plotQmatrixError_ind 

# Reads in a QmatrixError_ind file and plots the maximum standard error associated with each 

individual assignment. 

 

# fileName - path to input file 

# barCol - colour of bars 

# shadePops - whether to use alternating shading to represent different populations 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

# printK - whether to print value of K in top left corner 

 

plotQmatrixError_ind <- function(fileName=file.choose(), barCol=NA, shadePops=TRUE, xlab='', 

ylab='standard error', main='', printK=TRUE) {  

  

 # read in Qmatrix file 

 df <- read.csv(fileName) 

 

 # extract basic quantities 

 popCol_on <- "given_population"%in%names(df) 

 if (popCol_on) { 

  #df <- df[order(df$given_population),] 

  pop = df$given_population 
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  popIndex <- match(pop,unique(pop)) 

  pops = length(unique(pop)) 

 } 

 n = nrow(df) 

 K = ncol(df)-2-popCol_on 

 Q <- as.matrix(df[,(3+popCol_on):ncol(df)]) 

  

 # generate bar colours 

 barCol <- barCol[1] 

 if (is.na(barCol)) 

  barCol <- "#D73027" 

  

 # produce plot 

 maxError <- apply(Q,1,max) 

 barplot(maxError, space=0, ylim=c(0,1.2*max(maxError)), col=barCol, xlab=xlab, ylab=ylab, 

main=main) 

 if (popCol_on & shadePops) { 

  par(new=TRUE) 

  barplot(maxError, space=0, ylim=c(0,1.2*max(maxError)), density=30*(1-

popIndex%%2), col='white', ann=FALSE, axes=FALSE) 

 } 

  

 # print K 

 oldPar <- par(xpd=TRUE) 

 if (printK) 

  text(0,par('usr')[4],labels=paste('      K=',K,sep=''),pos=3) 

  

 # restore old parameter values 

 par(oldPar) 

} 

 

plotQmatrixError_ind("./outputQmatrixError_ind_K7.csv") 

 

# ----------------------------------- 

## plotQmatrixError_pop 

# Reads in a QmatrixError_pop file and plots the maximum standard error associated with each 

population assignment. 

 

# fileName - path to input file 

# barCol - colour of bars 

# shadePops - whether to use alternating shading to represent different populations 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

# printK - whether to print value of K in top left corner 

 

plotQmatrixError_pop <- function(fileName=file.choose(), barCol=NA, shadePops=TRUE, xlab='', 

ylab='standard error', main='', printK=TRUE) { 

  

 # read in Qmatrix file 

 df <- read.csv(fileName) 

 

 # extract basic quantities 

 pops = nrow(df) 
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 pop = df$given_population 

 popIndex <- match(pop,unique(pop)) 

 K = ncol(df)-2 

 Q <- as.matrix(df[,3:ncol(df)]) 

  

 # generate bar colours 

 barCol <- barCol[1] 

 if (is.na(barCol)) 

  barCol <- "#D73027" 

  

 # produce plot 

 maxError <- apply(Q,1,max) 

 barplot(maxError, width=df$individuals, space=0, ylim=c(0,1.2*max(maxError)), col=barCol, 

xlab=xlab, ylab=ylab, main=main) 

 if (shadePops) { 

  par(new=TRUE) 

  barplot(maxError, width=df$individuals, space=0, ylim=c(0,1.2*max(maxError)), 

density=30*(1-popIndex%%2), col='white', ann=FALSE, axes=FALSE) 

 } 

  

 # print K 

 oldPar <- par(xpd=TRUE) 

 if (printK) 

  text(0,par('usr')[4],labels=paste('      K=',K,sep=''),pos=3) 

 

 # restore old parameter values 

 par(oldPar) 

} 

 

# ----------------------------------- 

## errorBars 

# Produce error bars at given positions. Use se=TRUE to input mean and standard error, otherwise 

input raw upper and lower limits. 

 

# y1 - if (se==TRUE) this is a vector of means. Otherwise this is a vector of lower limits 

# y2 - if (se==TRUE) this is a vector of standard errors. Otherwise this is a vector of upper limits 

# x - x-positions of error bars 

# se - whether to take means and standard errors as input, or lower and upper limits 

# width - horizontal size of error bar whiskers 

# col - colour of error bars 

# lty - line type of error bars 

# lwd - line width of error bars 

 

errorBars <- function(y1, y2, x=1:length(y1), se=FALSE, width=1, col=1, lty=1, lwd=1) { 

 

 # calculate limits based on method 

 if (se) { 

  LL <- y1-1.96*y2 

  UL <- y1+1.96*y2 

 } else { 

  LL <- y1 

  UL <- y2 

 } 
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 # add error bars 

 segments(x,LL,x,UL,lty=lty,lwd=lwd,col=col) 

 segments(x-width/2,LL,x+width/2,LL,lty=lty,lwd=lwd,col=col) 

 segments(x-width/2,UL,x+width/2,UL,lty=lty,lwd=lwd,col=col) 

} 

 

# ----------------------------------- 

## plotEvidence 

# Reads in evidence file and plots the evidence for K in log space for the chosen estimation method. 

 

# fileName - path to input file 

# type - which estimator to plot. Options are 'exhaustive', 'harmonic', 'structure' and 'TI' 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

 

plotEvidence <- function(fileName, type='TI', xlab='K', ylab='log-evidence', main='') { 

  

 # read in evidence file 

 ev <- read.csv(fileName) 

  

 # extract relevant columns 

 df <- data.frame(K=ev$K) 

 if (type=='exhaustive') { 

  df$mean <- ev$logEvidence_exhaustive 

  df$SE <- 0 

 } else if (type=='harmonic') { 

  df$mean <- ev$logEvidence_harmonic_grandMean 

  df$SE <- ev$logEvidence_harmonic_grandSE 

 } else if (type=='structure') { 

  df$mean <- ev$logEvidence_structure_grandMean 

  df$SE <- ev$logEvidence_structure_grandSE 

 } else if (type=='TI') { 

  df$mean <- ev$logEvidence_TI 

  df$SE <- ev$logEvidence_TI_SE 

 } else { 

  stop('could not find evidence columns in chosen file') 

 } 

  

 # calculate upper and lower 95% confidence intervals 

 df$UL <- df$mean+1.96*df$SE 

 df$LL <- df$mean-1.96*df$SE 

  

 # get plotting limits 

 if (any(!is.na(df$mean))) { 

  y_lim <- range(df$mean,na.rm=TRUE) 

 } else { 

  stop('chosen column contains all NA values') 

 } 

 if (any(!is.na(df$LL))) { 

  y_lim[1] <- min(y_lim[1], min(df$LL,na.rm=TRUE)) 

 } 

 if (any(!is.na(df$UL))) { 

  y_lim[2] <- max(y_lim[2], max(df$UL,na.rm=TRUE)) 



107 

 

 

 } 

  

 # expand to add 10% rail around min and max values 

 rail <- 0.1 

 y_lim <- c(y_lim[1]*(1+rail/2)-y_lim[2]*rail/2, y_lim[2]*(1+rail/2)-y_lim[1]*rail/2) 

  

 # produce plot 

 plot(df$K, df$mean, pch=20, ylim=y_lim, xlab=xlab, ylab=ylab, main=main) 

 errorBars(df$LL, df$UL, x=df$K, width=0.3) 

} 

 

plotEvidence("./outputEvidence.csv", type="TI") 

 

# ----------------------------------- 

## plotEvidenceNormalised 

# Reads in normalised evidence file and plots the evidence for K in for the chosen estimation method. 

 

# fileName - path to input file 

# type - which estimator to plot. Options are 'exhaustive', 'harmonic', 'structure' and 'TI' 

# barCol - colour of bars 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

 

plotEvidenceNormalised <- function(fileName, type='TI', barCol='#64b4ff', xlab='K', ylab='posterior 

probability', main='') { 

 

 # read in normalised evidence file 

 ev <- read.csv(fileName) 

 # extract relevant columns 

 df <- data.frame(K=ev$K) 

 if (type=='exhaustive') { 

  df$mean <- df$LL <- df$UL <- ev$posterior_exhaustive 

 } else if (type=='harmonic') { 

  df$mean <- ev$posterior_harmonic_mean 

  df$UL <- ev$posterior_harmonic_UL 

  df$LL <- ev$posterior_harmonic_LL 

 } else if (type=='structure') { 

  df$mean <- ev$posterior_structure_mean 

  df$UL <- ev$posterior_structure_UL 

  df$LL <- ev$posterior_structure_LL 

 } else if (type=='TI') { 

  df$mean <- ev$posterior_TI_mean 

  df$UL <- ev$posterior_TI_UL 

  df$LL <- ev$posterior_TI_LL 

 } else { 

  stop('could not find evidence columns in chosen file') 

 } 

  

 # get plotting limits 

 if (any(!is.na(df$mean))) { 

  y_max <- range(df$mean,na.rm=TRUE) 

 } else { 

  stop('chosen column contains all NA values') 
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 } 

 if (any(!is.na(df$UL))) { 

  y_max <- max(y_max, max(df$UL,na.rm=TRUE)) 

 } 

  

 # expand to add 10% upper rail (but max-out at 1) 

 rail <- 0.1 

 y_max <- min(y_max*(1+rail), 1) 

  

 # attract plotting limit to 1 if close by 

 if (y_max>0.8) { 

  y_max=1 

 } 

  

 # produce plot 

 barplot(df$mean, names=df$K, space=0, ylim=c(0,y_max), col=barCol, xlab=xlab, ylab=ylab, 

main=main) 

 errorBars(df$LL, df$UL, x=1:nrow(df)-0.5, width=0.5) 

} 

 

 

plotEvidenceNormalised("./outputEvidenceNormalised.csv", type="TI" ) 

 

# ----------------------------------- 

## plotTI_path 

# Reads in evidence details file and plots each of the TIpoint_mean values, along with 95% confidence 

intervals given by TIpoint_SE. 

 

# fileName - path to input file 

# K - value of K to plot 

# xlab - x axis label 

# ylab - y axis label 

# main - main title 

 

plotTI_path <- function(fileName, K, xlab='beta', ylab='TI path', main=paste('K=',K,sep='')) { 

 

 # read in evidence details file and subset to K 

 ev <- read.csv(fileName) 

 ev <- ev[ev[,1]==K,] 

  

 # extract TIpoint_mean and TIpoint_SE values 

 TIpoint_mean <- unlist(ev[,grep("TIpoint_mean",names(ev))]) 

 TIpoint_SE <- unlist(ev[,grep("TIpoint_SE",names(ev))]) 

 rungs <- length(TIpoint_mean) 

 beta <- seq(0,1,l=rungs) 

  

 # get upper and lower values 

 TIpoint_UL <- TIpoint_mean + 1.96* TIpoint_SE 

 TIpoint_LL <- TIpoint_mean - 1.96* TIpoint_SE 

  

 # get plotting limits 

 y_lim <- range(TIpoint_mean,na.rm=TRUE) 

 if (any(!is.na(TIpoint_LL))) { 

  y_lim[1] <- min(y_lim[1], min(TIpoint_LL,na.rm=TRUE)) 
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 } 

 if (any(!is.na(TIpoint_UL))) { 

  y_lim[2] <- max(y_lim[2], max(TIpoint_UL,na.rm=TRUE)) 

 } 

  

 # expand to add 10% rail 

 rail <- 0.1 

 y_lim <- c(y_lim[1]*(1+rail/2)-y_lim[2]*rail/2, y_lim[2]*(1+rail/2)-y_lim[1]*rail/2) 

  

 # produce plot 

 plot(beta, TIpoint_mean, type='o', pch=20, cex=0.7, ylim=y_lim, xlab=xlab, ylab=ylab, 

main=main) 

 errorBars(TIpoint_mean, TIpoint_SE, x=beta, se=TRUE, width=0.05) 

} 

 

plotTI_path("./outputEvidenceDetails.csv", K=7) 

# ----------------------------------- 

## model_normalise 

# Reads in evidence files from multiple models. Uses a simulation-based method to sum model 

evidence over K. Outputs are given in log space, or in linear space after normalising to sum to 1 over 

models. The latter is equivalent to the posterior distribution of the evolutionary model, integrated over 

all K. 

 

# fileNames - vector of file names, each of which is an outputEvidence.csv file 

# logOutput - whether to produce output in log space 

# reps - number of random draws used in simulation-based approach 

 

model_normalise <- function(fileNames, logOutput=TRUE, reps=1e6) { 

 

 # read in mean and SE evidence values from file 

 for (i in 1:length(fileNames)) { 

   

  # read file 

  ev <- read.csv(fileNames[[i]]) 

   

  # check that correct columns are present 

  if (!('K'%in%names(ev) & 'logEvidence_TI'%in%names(ev) & 

'logEvidence_TI_SE'%in%names(ev))) { 

   stop('cannot find TI values in chosen data frames') 

  } 

   

  # extract mean and SE into separate data frames 

  ev_mean <- subset(ev, select=c(K,logEvidence_TI)) 

  ev_SE <- subset(ev, select=c(K,logEvidence_TI_SE)) 

  names(ev_mean)[2] <- paste('mean_model',i,sep='') 

  names(ev_SE)[2] <- paste('SE_model',i,sep='') 

  if (i==1) { 

   df_mean <- ev_mean 

   df_SE <- ev_SE 

  } else { 

   df_mean <- merge(df_mean,ev_mean) 

   df_SE <- merge(df_SE,ev_SE) 

  } 

 } 
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 # subtract max value to value to avoid underflow 

 df_mean_max <- max(df_mean[,-1]) 

 df_mean[,-1] <- df_mean[,-1] - df_mean_max 

  

 # different methods for logged or linear output 

 if (logOutput) { 

   

  # initialise output object 

  output <- data.frame(model=1:length(fileNames), logEvidence_mean=NA, 

logEvidence_LL=NA, logEvidence_UL=NA) 

  # loop through models 

  for (i in 2:ncol(df_mean)) { 

    

   # random draws 

   X <- mapply(rnorm,n=reps,mean=df_mean[,i],sd=df_SE[,i]) # matrix of 

random normal draws, with values taken from evidence file 

   Y <- exp(X) # exponentiate these draws 

   Z <- log(rowMeans(Y)) + df_mean_max # take log of mean over K and 

add max value again 

    

   # summarise output 

   output$logEvidence_mean[i-1] <- mean(Z) 

   output$logEvidence_LL[i-1] <- quantile(Z,probs=0.025) 

   output$logEvidence_UL[i-1] <- quantile(Z,probs=0.975) 

  } 

   

 } else { 

   

  # initialise output object 

  output <- data.frame(model=1:length(fileNames), evidence_mean=NA, 

evidence_LL=NA, evidence_UL=NA) 

   

  # Z will contain the exponentiated values for all models 

  Z <- NULL 

   

  # loop through models 

  for (i in 2:ncol(df_mean)) { 

    

   # random draws 

   X <- mapply(rnorm,n=reps,mean=df_mean[,i],sd=df_SE[,i]) # matrix of 

random normal draws, with values taken from evidence file 

   Y <- exp(X) # exponentiate these draws 

   Z <- rbind(Z, rowSums(Y)) # add these draws to Z 

  } 

   

  # normalise Z over models 

  Z_sum <- colSums(Z) 

  for (i in 1:length(fileNames)) { 

   Z[i,] <- Z[i,]/Z_sum 

    

   # summarise output 

   output$evidence_mean[i] <- mean(Z[i,]) 

   output$evidence_LL[i] <- quantile(Z[i,],probs=0.025) 
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   output$evidence_UL[i] <- quantile(Z[i,],probs=0.975) 

  } 

   

 } 

 return(output) 

} 

 

# ----------------------------------- 

## plotModel 

# Takes object output from model_normalise() function and produces barplot of normalised evidence 

(aka posterior distribution) with error bars. 

 

# modelEvidence - object returned from model_normalise() function 

# modelNames - vector of names to be printed under each bar 

# col - colour of bars 

# ylab - y-axis label 

 

plotModel <- function(modelEvidence, modelNames, col='#64b4ff', ylab='posterior probability') { 

  

 # check for presence of evidence columns 

 if (!'evidence_mean'%in%names(modelEvidence) | 

!'evidence_LL'%in%names(modelEvidence) | !'evidence_UL'%in%names(modelEvidence)) { 

  stop('cannot find evidence columns in modelEvidence object') 

 } 

  

 # get basic properties 

 models <- nrow(modelEvidence) 

 xpos <- (1:models)*1.2-0.5 

 barLabels <- sprintf("%.2f", modelEvidence$evidence_mean) 

 for (i in which(modelEvidence$evidence_mean<0.005)) { 

  barLabels[i] <- sprintf("%.2e", modelEvidence$evidence_mean[i]) 

 } 

  

 # produce plot 

 barplot(modelEvidence$evidence_mean, col=col, ylim=c(0,1.1), axes=FALSE, ylab=ylab) 

 mtext(modelNames, side=1, at=xpos, line=2) 

 axis(2, at=seq(0,1,0.2)) 

 axis(1, labels=FALSE, at=c(0,xpos,models*1.2+0.7)) 

 errorBars(modelEvidence$evidence_LL, modelEvidence$evidence_UL, x=xpos, width=0.4) 

 text(xpos, modelEvidence$evidence_UL, barLabels, pos=3, cex=0.8) 

} 
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File 6.24 MavericK “parameters.txt” file 

 

File containing the MavericK parameters settings for the pilot runs performed for assemblies 1, 5, 8 and 

10.  

 

#### Data properties 

headerRow_on    t 

popCol_on       f 

 

ploidyCol_on    f 

 

ploidy  2 

missingData     -9 

 

 

#### Model parameters 

Kmin    1 

Kmax    10 

admix_on        t 

fixAlpha_on     f 

alpha   1.0 

alphaPropSD     0.10 

 

 

#### Simulation parameters 

exhaustive_on   f 

 

mainRepeats     1 

mainBurnin      500 

mainSamples     5000 

 

thermodynamic_on        f 

thermodynamicRungs      20 

thermodynamicBurnin     500 

thermodynamicSamples    1000 

 

EMalgorithm_on  f 

EMrepeats       100 

EMiterations    100 

 

 

#### Basic output properties 

outputLog_on    t 

outputLikelihood_on     t 

outputQmatrix_ind_on    t 

outputQmatrix_pop_on    f 

outputQmatrixError_ind_on       f 

outputQmatrixError_pop_on       f 

outputEvidence_on       f 

outputEvidenceNormalised_on     f 

outputEvidenceDetails_on        f 
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File 6.25 MavericK “parameters_final8_final.txt” file 

File containing the parameter settings for the MavericK final run of assembly 8 with Thermodynamic 

Integration ON. 

 

#### Data properties 

headerRow_on    t 

popCol_on       f 

 

ploidyCol_on    f 

 

ploidy  2 

missingData     -9 

 

 

#### Model parameters 

Kmin    1 

Kmax    7 

admix_on        t 

fixAlpha_on     f 

alpha   1.0,0.838,0.539,0.455,0.25,0.193,0.066 

alphaPropSD     1.0,0.171,0.091,0.074,0.038,0.

026,0.014 

 

 

#### Simulation parameters 

exhaustive_on   f 

 

mainRepeats     5 

mainBurnin      2000 

mainSamples     10000 

 

thermodynamic_on        t 

thermodynamicRungs      20 

thermodynamicBurnin     2000 

thermodynamicSamples    10000 

 

EMalgorithm_on  f 

EMrepeats       100 

EMiterations    100 

 

 

#### Basic output properties 

outputLog_on    t 

outputLikelihood_on     t 

outputQmatrix_ind_on    t 

outputQmatrix_pop_on    f 

outputQmatrixError_ind_on       t 

outputQmatrixError_pop_on       f 

outputEvidence_on       t 

outputEvidenceNormalised_on     t 

outputEvidenceDetails_on        t 
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File 6.26 MavericK “parameters_final10.txt” file 

File containing the MavericK parameter settings for the final run of assembly 10 with Thermodynamic 

Integration ON. 

 

#### Data properties 

headerRow_on    t 

popCol_on       f 

 

ploidyCol_on    f 

 

ploidy  2 

missingData     -9 

 

#### Model parameters 

Kmin    1 

Kmax    7 

admix_on        t 

fixAlpha_on     f 

alpha   1.0,0.74,0.765,0.356,0.147,0.119,0.076 

alphaPropSD     1.0,0.155,0.108,0.055,0.028,0.

022,0.021 

 

#### Simulation parameters 

exhaustive_on   f 

 

 

 

mainRepeats     5 

mainBurnin      2000 

mainSamples     10000 

 

thermodynamic_on        t 

thermodynamicRungs      20 

thermodynamicBurnin     2000 

thermodynamicSamples    10000 

 

EMalgorithm_on  f 

EMrepeats       100 

EMiterations    100 

 

 

#### Basic output properties 

outputLog_on    t 

outputLikelihood_on     t 

outputQmatrix_ind_on    t 

outputQmatrix_pop_on    f 

outputQmatrixError_ind_on       t 

outputQmatrixError_pop_on       f 

outputEvidence_on       t 

outputEvidenceNormalised_on     t 

outputEvidenceDetails_on        t 
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File 6.27 “IndsPops.txt” file for D-statistic 

 

File used in the R script named “Dstat.R” for calculating the D-statistic. The first column 

corresponds to the Individual ID and the second column to the Population ID. 

 

Tar260_allo   argentataAllopatric 

Tar310_sym  argentataSympatric 

Tar321_sym  argentataSympatric 

Tar335_sym  argentataSympatric 

Tar356_sym  argentataSympatric 

Tar357_sym  argentataSympatric 

Tar359_sym  argentataSympatric 

Tar552_allo  argentataAllopatric 

Tar553_allo  argentataAllopatric 

Tar769_allo  argentataAllopatric 

Tar770_allo  argentataAllopatric 

Tjo3765  josei 

Tma068_allo  mariaSympatric 

Tma071_allo  mariaSympatric 

Tma327_sym  mariaSympatric 

Tma338_sym  mariaSympatric 

Tma342_sym  mariaSympatric 

Tma352_sym  mariaSympatric 

Tma354_sym  mariaSympatric 

Tma363_sym  mariaSympatric 

Tma729_allo  mariaSympatric 
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File 6.28 Script written in R named “Dstat.R” used to calculate the D-statistics 

 

# load the file with the function to compute the D-stat 

source("Dstat_Jacknife.r") 

 

# read a file where 

# 1st column is the individual ID 

# 2nd column is the pop ID 

vcf.sortedindpopinfo <- read.table("IndsPops.txt", header=FALSE) 

 

# Define the index of individuals that belong to each pop 

index_p1 <- which(vcf.sortedindpopinfo[,2]=="argentataAllopatric") # vcf.sortedindpopinfo is a 

matrix where the first column is the individual ID and the second is the pop ID 

index_p2 <- which(vcf.sortedindpopinfo[,2]=="argentataSympatric") 

index_p3 <- which(vcf.sortedindpopinfo[,2]=="mariaSympatric") 

index_outg <- which(vcf.sortedindpopinfo[,2]=="josei") 

 

# read the data with genotypes (GT matrix) 

geno <- as.matrix(read.table("params14filtered.recode.GT", header=F, stringsAsFactors = 

F,na.strings = "-1")) 

# get the selected individuals from the matrix with all individuals 

genotypes <- geno[,c(index_p1,index_p2, index_p3, index_outg)] # sorted_tgendata is the 

genotype matrix with nsites (nrow) * nind (ncol) 

# sample size for each pop 

npop <- c(length(index_p1), length(index_p2), length(index_p3), length(index_outg)) 

# get index of individuals from each pop 

index_d <- cumsum(c(1,npop)) 

# call function to compute d-stat 

dstat(genotypes, index_d) 

# get the estimates of significance based on the block-jacknife approach 

dsj <- Djack(genotypes, index_inds = index_d, numblocks = 50) 

dsj$D # D-statistic 

# get the p-values assuming it is a one-sided test 

pvals <- pnorm(-abs(dsj$z)) 

pvals 
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File 6.29 Output result obtained for params8.recode.vcf when using the R Script 

“vcf2PCA.R” 

> vcf.fn<-"/Users/inesoliveira/Desktop/pca_final/params8.recode.vcf" #load the data 

> snpgdsVCF2GDS(vcf.fn,"test.gds",method="copy.num.of.ref", ignore.chr.prefix="chr")#import to 

class. use method= biallelic.only for biallelic snps 

VCF Format ==> SNP GDS Format 

Method: dosage (0,1,2) of reference allele for all variant sites 

Number of samples: 37 

Parsing "/Users/inesoliveira/Desktop/pca_final/params8.recode.vcf" ... 

 import 8980 variants. 

+ genotype   { Bit2 37x8980, 81.1K } * 

Optimize the access efficiency ... 

Clean up the fragments of GDS file: 

    open the file 'test.gds' (122.1K) 

    # of fragments: 40 

    save to 'test.gds.tmp' 

    rename 'test.gds.tmp' (121.9K, reduced: 240B) 

    # of fragments: 20 

> #summary of the vcf imported 

> snpgdsSummary("test.gds") 

Some of 'snp.allele' are not standard (e.g., A/T,C). 

The file name: /Users/inesoliveira/Desktop/pca_final/test.gds  

The total number of samples: 37  

The total number of SNPs: 8980  

SNP genotypes are stored in SNP-major mode (Sample X SNP). 

The number of valid samples: 37  

The number of biallelic unique SNPs: 8877 

> #open the translated vcf imported 

> genofile<-snpgdsOpen("test.gds") 

> #import population names 

> pop_code <- scan("/Users/inesoliveira/Desktop/pca_final/individuos_algarve.txt", what=character()) ## 

File 1 

Read 37 items 

> pca<-snpgdsPCA(genofile, autosome.only = FALSE) 

Principal Component Analysis (PCA) on genotypes: 

Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) 

Working space: 37 samples, 8,980 SNPs 

    using 1 (CPU) core 

PCA:    the sum of all selected genotypes (0,1,2) = 477246 

CPU capabilities: Double-Precision SSE2 

Mon Dec  3 20:00:24 2018    (internal increment: 9628) 

[==================================================] 100%, completed in 0s 

Mon Dec  3 20:00:24 2018    Begin (eigenvalues and eigenvectors) 

Mon Dec  3 20:00:24 2018    Done. 

> # variance proportion (%) 

> pc.percent<-pca$varprop*100 

> head(pc.percent) 

[1] 7.982292 5.544426 4.719708 3.682021 3.288025 3.105270 
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File 6.30 Output result obtained for params10.recode.vcf when using the R Script 

“vcf2PCA.R” 

 

> vcf.fn<-"/Users/inesoliveira/Desktop/pca_final/params10.recode.vcf" #load the data 

> snpgdsVCF2GDS(vcf.fn,"test.gds",method="copy.num.of.ref", ignore.chr.prefix="chr")#import to 

class. use method= biallelic.only for biallelic snps 

VCF Format ==> SNP GDS Format 

Method: dosage (0,1,2) of reference allele for all variant sites 

Number of samples: 31 

Parsing "/Users/inesoliveira/Desktop/pca_final/params10.recode.vcf" ... 

 import 12059 variants. 

+ genotype   { Bit2 31x12059, 91.3K } * 

Optimize the access efficiency ... 

Clean up the fragments of GDS file: 

    open the file 'test.gds' (143.6K) 

    # of fragments: 40 

    save to 'test.gds.tmp' 

    rename 'test.gds.tmp' (143.4K, reduced: 240B) 

    # of fragments: 20 

> #summary of the vcf imported 

> snpgdsSummary("test.gds") 

Some of 'snp.allele' are not standard (e.g., A/T,G). 

The file name: /Users/inesoliveira/Desktop/pca_final/test.gds  

The total number of samples: 31  

The total number of SNPs: 12059  

SNP genotypes are stored in SNP-major mode (Sample X SNP). 

The number of valid samples: 31  

The number of biallelic unique SNPs: 11915  

> #open the translated vcf imported 

> genofile<-snpgdsOpen("test.gds") 

> #import population names 

> pop_code <- scan("/Users/inesoliveira/Desktop/pca_final/individuos_sem_aneabi_algarve.txt", 

what=character()) ## File 1 

Read 31 items 

> #PCA 

> pca<-snpgdsPCA(genofile, autosome.only = FALSE) 

Principal Component Analysis (PCA) on genotypes: 

Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) 

Working space: 31 samples, 12,059 SNPs 

    using 1 (CPU) core 

PCA:    the sum of all selected genotypes (0,1,2) = 538801 

CPU capabilities: Double-Precision SSE2 

Mon Dec  3 20:06:07 2018    (internal increment: 11492) 

[==================================================] 100%, completed in 0s 

Mon Dec  3 20:06:07 2018    Begin (eigenvalues and eigenvectors) 

Mon Dec  3 20:06:07 2018    Done. 

> # variance proportion (%) 

> pc.percent<-pca$varprop*100 

> head(pc.percent) 

[1] 8.113234 5.923698 4.613793 3.864443 3.745702 3.704004 
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File 6.31 Output result obtained for params8CenterSNP.vcf when using the R Script 

“vcf2PCA.R” 

 

> vcf.fn<-"/Users/inesoliveira/Desktop/pca_final/params8CenterSNP.vcf" #load the data 

> snpgdsVCF2GDS(vcf.fn,"test.gds",method="copy.num.of.ref", ignore.chr.prefix="chr")#import to 

class. use method= biallelic.only for biallelic snps 

VCF Format ==> SNP GDS Format 

Method: dosage (0,1,2) of reference allele for all variant sites 

Number of samples: 37 

Parsing "/Users/inesoliveira/Desktop/pca_final/params8CenterSNP.vcf" ... 

 import 3091 variants. 

+ genotype   { Bit2 37x3091, 27.9K } * 

Optimize the access efficiency ... 

Clean up the fragments of GDS file: 

    open the file 'test.gds' (48.7K) 

    # of fragments: 39 

    save to 'test.gds.tmp' 

    rename 'test.gds.tmp' (48.5K, reduced: 228B) 

    # of fragments: 20 

> #summary of the vcf imported 

> snpgdsSummary("test.gds") 

Some of 'snp.allele' are not standard (e.g., C/T,A). 

The file name: /Users/inesoliveira/Desktop/pca_final/test.gds  

The total number of samples: 37  

The total number of SNPs: 3091  

SNP genotypes are stored in SNP-major mode (Sample X SNP). 

The number of valid samples: 37  

The number of biallelic unique SNPs: 3065  

> #open the translated vcf imported 

> genofile<-snpgdsOpen("test.gds") 

> #import population names 

> pop_code <- scan("/Users/inesoliveira/Desktop/pca_final/individuos_algarve.txt", what=character()) ## 

File 1 

Read 37 items 

> #PCA 

> pca<-snpgdsPCA(genofile, autosome.only = FALSE) 

Principal Component Analysis (PCA) on genotypes: 

Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) 

Working space: 37 samples, 3,091 SNPs 

    using 1 (CPU) core 

PCA:    the sum of all selected genotypes (0,1,2) = 166621 

CPU capabilities: Double-Precision SSE2 

Thu May  3 20:57:36 2018    (internal increment: 9628) 

[==================================================] 100%, completed in 0s 

Thu May  3 20:57:36 2018    Begin (eigenvalues and eigenvectors) 

Thu May  3 20:57:36 2018    Done. 

> # variance proportion (%) 

> pc.percent<-pca$varprop*100 

> head(pc.percent) 

[1] 8.904754 6.162909 4.901049 3.528609 3.301333 3.147944 
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File 6.32 Output result obtained for params10CenterSNP.vcf when using the R Script 

“vcf2PCA.R” 

 

> vcf.fn<-"/Users/inesoliveira/Desktop/pca_final/params10CenterSNP.vcf" #load the data 

> snpgdsVCF2GDS(vcf.fn,"test.gds",method="copy.num.of.ref", ignore.chr.prefix="chr")#import to 

class. use method= biallelic.only for biallelic snps 

VCF Format ==> SNP GDS Format 

Method: dosage (0,1,2) of reference allele for all variant sites 

Number of samples: 31 

Parsing "/Users/inesoliveira/Desktop/pca_final/params10CenterSNP.vcf" ... 

 import 3763 variants. 

+ genotype   { Bit2 31x3763, 28.5K } * 

Optimize the access efficiency ... 

Clean up the fragments of GDS file: 

    open the file 'test.gds' (53.0K) 

    # of fragments: 39 

    save to 'test.gds.tmp' 

    rename 'test.gds.tmp' (52.8K, reduced: 228B) 

    # of fragments: 20 

> #summary of the vcf imported 

> snpgdsSummary("test.gds") 

Some of 'snp.allele' are not standard (e.g., C/A,T). 

The file name: /Users/inesoliveira/Desktop/pca_final/test.gds  

The total number of samples: 31  

The total number of SNPs: 3763  

SNP genotypes are stored in SNP-major mode (Sample X SNP). 

The number of valid samples: 31  

The number of biallelic unique SNPs: 3729  

> #open the translated vcf imported 

> genofile<-snpgdsOpen("test.gds") 

> #import population names 

> pop_code <- scan("/Users/inesoliveira/Desktop/pca_final/individuos_sem_aneabi_algarve.txt", 

what=character()) ## File 1 

Read 31 items 

> #PCA 

> pca<-snpgdsPCA(genofile, autosome.only = FALSE) 

Principal Component Analysis (PCA) on genotypes: 

Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) 

Working space: 31 samples, 3,763 SNPs 

    using 1 (CPU) core 

PCA:    the sum of all selected genotypes (0,1,2) = 170060 

CPU capabilities: Double-Precision SSE2 

Tue May  8 17:27:07 2018    (internal increment: 11492) 

[==================================================] 100%, completed in 0s 

Tue May  8 17:27:07 2018    Begin (eigenvalues and eigenvectors) 

Tue May  8 17:27:07 2018    Done. 

> # variance proportion (%) 

> pc.percent<-pca$varprop*100 

> head(pc.percent) 

[1] 9.166461 6.353465 4.592294 4.009333 3.774590 3.715979 
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