
 2019 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE INFORMÁTICA 

 

 

 

 

 

 

A Digital Vault Solution for Banking Institutions 

 

 

 

 

Vladyslav Yultyyev 

 

 

 

Mestrado em Segurança Informática   

  

 

Trabalho de Projeto orientado por: 

Prof. Doutor Mário João Barata Calha 

Eng. João Miguel Pereira Rodrigues da Securibox 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/286788942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

  



 

i 

 

Acknowledgments 
 

I would like to begin by expressing my special thanks of gratitude to my advisors PhD. Mário 

João Barata Calha and Eng. João Miguel Pereira Rodrigues from Securibox. Their support and expertise 

was crucial to develop and complete this project. 

 

Also, I would like to thank my family for all their kindness and for always supporting me 

unconditionally. 

 

Thanks to all my Securibox colleagues who provided an outstanding working environment and 

were always responsive to my questions. I will miss you! 

 

I thank my love Marta Reis. Thank you for all your support, care and patience. Your company 

was immensely important to me, especially in this journey. 

 

 A special thanks to Nuno Tomás, for being a good friend and for always being there with his 

wise advices. 

  

Thank you all!  



  

 

 

  



 

iii 

 

Resumo 

 
Este projeto surgiu no âmbito da necessidade que a empresa Securibox tem em fornecer um 

produto de armazenamento seguro compatível com o funcionamento na nuvem, para as instituições 

bancárias que operam no mercado francês. 

 

Com o aparecimento da banca on-line e o intuito de atrair mais clientes, as instituições bancárias 

começaram a oferecer serviços que vão para além dos serviços convencionais deste setor. Muitas vezes 

esses serviços tratam ou armazenam dados sensíveis dos seus clientes e podem até incluir informação e 

documentos pessoais dos utilizadores que estão hospedados noutras entidades, tais como faturas 

eletrónicas, transações bancárias de outras instituições financeiras e recibos de vencimento. No entanto, 

sempre que for necessário armazenar informação dos clientes, este processo tem de respeitar um 

conjunto de boas práticas e normas do país onde a instituição opera, utilizando para o efeito um cofre 

digital. No caso do mercado francês, existem poucas soluções que satisfazem, parcialmente ou 

totalmente, as normas e a legislação respeitante aos cofres digitais e que sejam tecnicamente eficientes 

e competitivas. 

 

O objetivo deste trabalho visou desenvolver uma versão inicial de uma solução que colmata a 

necessidade atual do mercado bancário francês relativo à área de armazenamento e manuseamento 

inteligente de dados. 

 

Para satisfazer as normas da União Europeia e da França em particular, é necessário armazenar 

os ficheiros de forma cifrada, registar o seu formato, como, quando e por quem estes formas acedidos e 

os seus meta-dados de modo a garantir a sua preservação mesmo após a eliminação dos mesmos. Este 

desafio foi resolvido, e para se destacar das soluções atualmente existentes, foi construída a base para 

no futuro integrar esta solução com o serviço Securibox ParseXtract, que tem a capacidade de analisar 

e extrair informação importante do conteúdo dos documentos, de uma forma estruturada e precisa, 

recorrendo a aprendizagem automática. 

 

Para o armazenamento dos documentos a solução adotada foi o OpenStack Swift – um software 

de código aberto, compatível com nuvens pública e privadas. 

 

Uma vez que os documentos podem ser eliminados do sistema pelo utilizador, é necessário a 

existência de uma plataforma, separada do OpenStack, para armazenar os dados relativos aos meta-

dados dos documentos e acessos ao sistema. A solução encontrada para o armazenamento destes dados, 

consiste no seu registo, através de logs, numa base de dados não relacional – o MongoDB, que é 

compatível com tecnologias em nuvem e é eficiente com grandes volumes de dados. 

 

Para realizar a comunicação entre os vários componentes do cofre digital, foi criado um serviço 

que oferece uma REST API, o núcleo da solução. Nesta camada, os documentos são cifrados garantindo 

também a integridade, confidencialidade e o não-repúdio dos dados. 

 

Por último, um servidor Web que comunica com a REST API foi criado para demonstrar todas 

as funcionalidades do cofre digital. 

 



 

iv 

 

As principais vantagens desta solução consistem na utilização de tecnologias código aberto, na 

compatibilidade com o funcionamento na nuvem, na escalabilidade de todas as suas camadas, tais como 

o armazenamento de dados, logs e serviço web API, e numa melhor integração com outros produtos da 

Securibox, que deste modo reduzem o custo da solução para o cliente final. 

 

Do ponto de vista conceptual, esta solução pode ser utilizada não apenas pelo sector bancário, 

mas também por qualquer outra área empresarial onde é necessário armazenar grandes volumes de dados 

em nuvem privada e pública em simultâneo, tendo como base uma solução facilmente escalável e onde 

todas as ações dos seus utilizadores são rastreáveis em conformidade com a legislação. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-chave: Caixa forte digital, banca online, armazenamento seguro em nuvem, extração 

automática de dados, privacidade.  



  

 

  



 

vi 

 

Abstract 
 

This project is a result of the Securibox need to provide a digital vault storage solution for some 

of their bank clients, operating in the French market.  

 

Since electronic banking has emerged, banking institutions began to provide online services that 

go beyond conventional bank services to attract more users. Sometimes those services involve 

operations with personal data of their customers which can include data and documents from other 

services, entities and companies. All this information must be stored on the banking institution side, 

using a secure digital vault storage, while respecting the legislation of the country where the institution 

is located. 

 

The goal of this work was to develop an initial solution, that would address the current needs of 

the French banking market, regarding intelligent data handling and storage. 

 

 To be compliant with the European Union and the French legislation it is necessary to ensure 

the security and the privacy of the costumers documents and data. To address those requirements a 

REST API solution was developed using .Net technology. This solution is divided in 3 layers. The 

document storage layer, the metadata and log storage layer and the core layer. The documents are 

encrypted and stored at the OpenStack Swift environment, while metadata is stored at the MongoDB 

database as journal log entries. The information processing and the communication between OpenStack 

and MongoDB occurs at the core layer. 

 

 This solution relies on open-source technologies, is easily scalable and compatible with other 

Securibox products. Conceptually it can be used, not only by banking institutions, but also by any 

organization or company that have to store and deal with large amounts of information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Digital vault, electronic banking, cloud storage, automatic data extraction, privacy.



  

  



 

viii 

 

Contents 

 
Chapter 1 Introduction ........................................................................................................... 1 

1.1 Objectives ........................................................................................................................ 2 

1.2 Contributions ................................................................................................................... 3 

1.3 Securibox ......................................................................................................................... 3 

1.4 Work plan execution ....................................................................................................... 4 

1.5 Document structure ......................................................................................................... 4 

Chapter 2 Related work .......................................................................................................... 6 

2.1 Standards ......................................................................................................................... 6 

2.1.1 Standard NF Z42-013 (AFNOR) ............................................................................. 7 

2.1.2 Standard NF Z42-020 (AFNOR) ............................................................................. 7 

2.1.3 General Data Protection Regulation (GDPR) .......................................................... 7 

2.2 Overview of existing solutions ........................................................................................ 8 

2.2.1 Cecurity ................................................................................................................... 8 

2.2.2 MaarchRM ............................................................................................................. 10 

2.3 Software frameworks .................................................................................................... 10 

2.3.1 OpenStack ............................................................................................................. 11 

2.3.1.1 Swift OpenStack ................................................................................................... 12 

2.3.1.2 DevStack .............................................................................................................. 13 

2.3.2 SwiftStack ............................................................................................................. 13 

2.3.3 MongoDB .............................................................................................................. 14 

2.3.4 Postman ................................................................................................................. 14 

2.3.5 Fiddler ................................................................................................................... 14 

2.3.6 Burp Suite .............................................................................................................. 15 

2.3.7 Git .......................................................................................................................... 16 

2.4 Bank Infrastructure ........................................................................................................ 16 

Chapter 3 System requirements and architecture .............................................................. 18 

3.1 Functional requirements ................................................................................................ 18 

3.2 Non-functional requirements ......................................................................................... 19 

3.3 Use cases ....................................................................................................................... 22 

3.3.1 User registration .................................................................................................... 22 

3.3.2 Containers manipulation ........................................................................................ 22 

3.3.3 Document upload and download operations ......................................................... 23 

3.3.4 Database malfunction ............................................................................................ 24 

3.4 System architecture ....................................................................................................... 25 

3.5 API specification ........................................................................................................... 32 

Chapter 4 Implementation and validation .......................................................................... 35 

4.1 API Server Implementation ........................................................................................... 35 



 

ix 

 

4.1.1 OpenStack layer..................................................................................................... 39 

4.1.2 MongoDB layer ..................................................................................................... 40 

4.1.3 Authentication ....................................................................................................... 44 

4.1.4 Core Server layer ................................................................................................... 45 

4.2 Client implementation ................................................................................................... 47 

4.3 Functional Tests ............................................................................................................ 47 

4.4 Security Tests ................................................................................................................ 49 

4.5 Use cases validation ...................................................................................................... 50 

4.6 Discussion ..................................................................................................................... 51 

Chapter 5 Conclusion ............................................................................................................ 52 

Bibliography .............................................................................................................................. 53 

Appendix .................................................................................................................................... 56 

Database collections ............................................................................................................... 56 

Swagger API specification ...................................................................................................... 59 

 

  



 

x 

 

List of Figures 

 
Figure 1.1: Securibox ParseXtract service example ...................................................................... 4 

Figure 2.1: Cecurity document upload solution ............................................................................ 9 

Figure 2.2: Basic Swift OpenStack scheme ................................................................................ 13 

Figure 2.3: SwiftStack scheme [17] ............................................................................................ 14 

Figure 2.4: Fiddler functioning scheme ...................................................................................... 15 

Figure 2.5: Bank required structure (simplified) ......................................................................... 16 

Figure 3.1: User registration use case ......................................................................................... 22 

Figure 3.2: Container creation ..................................................................................................... 23 

Figure 3.3: Container deletion ..................................................................................................... 23 

Figure 3.4: File upload ................................................................................................................ 24 

Figure 3.5: File download ........................................................................................................... 24 

Figure 3.6: Database connection failure ...................................................................................... 24 

Figure 3.7: Basic solution schema............................................................................................... 25 

Figure 3.8: Function call diagram [34]........................................................................................ 26 

Figure 3.9: Get journal entries for a user .................................................................................... 28 

Figure 3.10: User registration scheme ......................................................................................... 29 

Figure 3.11: Master key creation................................................................................................. 30 

Figure 3.12: Upload a document to the digital vault ................................................................... 31 

Figure 4.1: .Net OpenStack Classes with proprieties and methods ............................................. 40 

Figure 4.2: Database conceptual model ...................................................................................... 41 

Figure 4.3: NoSQL two-phase commit ....................................................................................... 42 

Figure 4.4: Creation of signature blocks in syslog-sign [3] ........................................................ 43 

Figure 4.5: Certificate authentication scheme ............................................................................. 44 

Figure 4.6: Basic authentication scheme ..................................................................................... 45 

Figure 4.7: Share a digital vault with another user...................................................................... 47 

Figure 4.8: Unit tests sequence example ..................................................................................... 48 

Figure 4.9: Unit test code example.............................................................................................. 48 

Figure 4.10: A Security test example .......................................................................................... 50 

Figure 4.11: Clear-text “.txt” document ...................................................................................... 50 

Figure 4.12: Encrypted ".txt" document ...................................................................................... 50 

  



 

xi 

 

List of Tables 

 
Table 3.1: Compatibility and durability requirements ................................................................ 19 

Table 3.2: Confidentiality requirements ...................................................................................... 20 

Table 3.3: Integrity requirements ................................................................................................ 20 

Table 3.4: Security requirements ................................................................................................ 21 

Table 3.5: Digital vault user roles ............................................................................................... 32 

Table 3.6: Core server API endpoints ......................................................................................... 33 

Table 7.1: Database Journal collection document structure ........................................................ 56 

Table 7.2:Database MasterKeyCollection document structure ................................................... 56 

Table 7.3: Database OpenStackAccount collection document structure..................................... 57 

Table 7.3: Database SaltCollection document structure ............................................................. 57 

Table 7.3: Database SharedCollection document structure ......................................................... 57 

Table 7.3: Database TwoStepCommit document structure ......................................................... 57 

Table 7.3: Database User collection document structure ............................................................ 58 

 
  



 

xii 

 

List of Abbreviations 
 

ACL – Access Control List 

AFNOR – “Association Française de Normalisation”, translated as “French Standardization 

Association” 

API – Application Programming Interface 

CAPTCHA – Completely Automated Public Turing test to tell Computers and Humans Apart 

CNIL – “Commission nationale de l'informatique et des libertés”, translated as “National Commission 

on Informatics and Liberty” 

CRUD – Create, Read, Update, and Delete 

EU – European Union 

GDPR – General Data Protection Regulation 

GUI – Graphical user interface 

HDD – Hard Disk Drive 

HTTP – Hypertext Transfer Protocol 

HTTPS – Hypertext Transfer Protocol Secure 

IEC – International Electrotechnical Commission 

ISO – International Organization for Standardization 

JSON – JavaScript Object Notation 

MVC – Model-View-Controller 

NF – “Norme français”, translated as “French Standard” 

NoSQL – Not Only SQL 

OAIS – Open Archival Information System 

OWASP – Open Web Application Security Project 

PDF – Portable Document Format 

PEA – “Preuve, Echange, Archivage”, translated as “Proof, Exchange, Archiving” 

RAM – Random Access Memory 

REST – Representational State Transfer 

SDK – Software Development Kit 

SQL – Structured Query Language 

USA – United States of America 

UTC – Coordinated Universal Time 



 

xiii 

 

VPN – Virtual Private Network 

WORM – Write Once Read Many 

YAML – YAML Ain't Markup Language 



 

1 

 

Chapter 1 Introduction 

A bank is a financial organization where the core business consists in offering its customers 

services and tools to manage their economic assets. Since the 1980s, the financial sector began shifting 

towards the digital technologies and with the spreading of the Internet the online banking, also known 

as home banking, emerged and changed the patterns of banking use. 

 

The online banking gives customers the possibility to execute financial operation remotely (e.g.: 

transfer money from one account to another), without going to a bank branch. As a result, the need for 

physical channels has decreased, and the demand for online banking products and services has increased. 

[25] 

 

To attract more customers, the banks began to offer new services and products, through the online 

banking systems, that goes beyond traditional financial services. One of these services consists in giving 

to the customers the ability to visualize all their bank accounts information, including bank accounts of 

other banks, such as transactions and account balance, at a single online banking service (e.g.: a bank 

website or a mobile application). Besides that, some banks are also offering the possibility to collect and 

store other documents of the customer, such as telecommunication or e-commerce invoices, payment 

notices, medical care documents, etc. Some banking institutions allow their customers to upload their 

own documents directly to their online banking system account. By aggregating all this information in 

one place, the customers can benefit from a better overview of their financial assets and operations. [20] 

 

Regarding technical aspects, the service described above relies on a Web scrapper that automates 

the human interactions with a website by solving CAPTCHAs, providing credentials to a login form and 

collect specific information and files from it. Due to the complexity of developing a custom Web 

scrapper technology, often banks contract this service from third-party firms, such as Securibox. 

 

Currently, the Securibox company is working with main leaders of banking companies in France 

by providing them a Web scrapper technology that besides the standard scrapping processes is also 

capable of extracting useful information from the documents itself. 

 

After collecting costumer’s transactions and documents, the bank is responsible for the privacy 

and safety of this stored data in accordance with the European Union and French law. [5]  

 

Stored data can be generated by digital/computer systems or processes although it may also result 

from digitalization process of physical sources that rely on paper, audiotape, videotape, medical 

radiography and any other analogic media support that can be digitalized such as images, documents, 

audio, audio-visual content or biometric information. [33] 

 



 

2 

 

Due to the lack of solutions concerning secure storage products for French banking organizations, 

many of them had asked Securibox for a storage solution that could meet all legal and functional 

requirements – a digital vault. 

 

The main reason why French banks cannot use already existing solutions used by other countries 

for that kind of problem, such as the USA, is because they not comply with all European legislation 

requirements [18]. Therefore banks may opt for a new solution from scratch or use a costume solution 

adopted from an open-source project such as Maarch [26], which does not support cloud storage and is 

outdated. Many banks choose to buy already existing proprietary solutions since it may require a lot of 

effort and costs to build a new or modify an open-source solution to make it compatible with all French 

legislation. 

 

By analysing the target market in France regarding digital vault solutions for banking systems, it 

was possible to identify the most used product nowadays, which belongs to a French company named 

Cecurity [13]. Their product “PEA” has all required certifications and was built according to French 

standards and legislation. However, this solution is economically expensive, it is not based on open-

source technologies and may involve extra effort to integrate services of data aggregation and 

information extraction. 

 

The overall economic cost of the solution can be decreased by implementing open-source 

technologies. Besides that, it is possible to implement this solution in private and public clouds, since 

each module is scalable and cloud-friendly. In terms of future work and to attract more clients, this 

digital vault solution could be integrated with other Securibox services for data collection (Web 

scrappers) and document information extraction (ParseXtract – a machine-learning based solution).  

 

1.1  Objectives 

The main goal of this project is to develop the first version of a digital vault storage solution that 

can be used as a basis for a new Securibox commercial product for French bank organizations. This 

solution must be easily integrated with other Securibox services and respect all French and EU legal and 

technical requirements for digital storing solutions. 

 

As a first version of the digital vault solution, it is expected that all core functionalities of a storage 

system will be implemented. Namely, the ability to scale any solution component, store large amounts 

of binary files (e.g.: documents) using private and public clouds and to have an auditable journal which 

would log any user’s or solution’s interaction with the system and its personal information.  

 

To ensure user’s data privacy and security, the binary files stored at the cloud should be encrypted 

using a strong encryption algorithm, while the safety of all encryption keys should also be guaranteed. 

 

As an extra feature for this project, the ability to share documents between different users could 

be implemented. This should be done in a secure way, respecting all access control requirements and 

privilege restrictions. 

 



 

3 

 

To fit into Securibox development environment, the project core should be built using .Net 

technologies and some of the Securibox internal code libraries. Therefore, one of the goals is to develop 

a .Net C# SDK (Software development kit) for OpenStack Swift. 

 

 The solution should be suitable for different infrastructure environments and easily integrated 

with other existing Securibox services. For these reasons, the solution service should be offered as a 

REST (Representational State Transfer) API (Application programming interface). 

 

1.2  Contributions 

In this project, some of the contributions are especially worth to mention. Namely, the design of 

a document storage solution following security and privacy patterns, the vault’s sharing feature and the 

.Net OpenStack Swift SDK. 

 

During the design process of the storage component, different approaches were considered. By 

analyzing specific requirements and the environment of this project, a set of specific measures regarding 

encryption and loggings methods were adopted for each of the storing and processing modules. 

 

The sharing feature, an extra implemented functionality (not imposed by Securibox nor any other 

entity), strictly follows all legal and technical requirements as the rest of the project which means that it 

is still possible to ensure privacy and safety of all its users and successfully pass an audit. This feature 

could be used in many different contexts, such as a file-sharing between different services or accounts, 

and it can be seen as a competitive advantage over other existing solutions. 

 

The .Net OpenStack Swift SDK, which didn’t exist before (at least for the recent versions of the 

OpenStack), was written from scratch by analyzing OpenStack documentation, especially the chapters 

regarding the API. To guarantee that this solution was working correctly, a set of unit tests were also 

written and executed.  

 

As a result of this development, the Securibox developers can now use OpenStack Swift or 

SwiftStack on their .Net projects by simply importing this SDK into their solution. 

 

1.3  Securibox 

Securibox is a Fintech company whose mission is to enable people to have a clear picture of their 

data, by providing cloud-based technologies with tools to analyse, organize & visualize what really 

matters. [40] 

 

One of the most successful Securibox’ products is the “Securibox Cloud Agents”. It is a web 

scrapping, API based, solution that is able to collect useful information and documents from more than 

500 web services. To collect this data the scrapper has the ability to login into each of these services, 

bypass robot blocking technologies such as CAPTCHA, find and aggregate the data in a structured way. 

A free of charge web service that uses this solution is available at https://cube.securibox.eu (only for 

personal use). 

 

https://cube.securibox.eu/


 

4 

 

Another important Securibox service is ParseXtract. This is a machine-learning based solution, 

which is able to automatically recognize a PDF or an image document by its pattern and extract its data. 

The machine learning algorithms are trained with known documents in order to achieve an acceptable 

accuracy level for the recognition and information extraction (about 95% success rate). All extracted 

information is retrieved in a structured way using JSON (JavaScript Object Notation). [39] 

 

 
Figure 1.1: Securibox ParseXtract service example 

 

The ParseXtract service will be used alongside the digital vault solution to extract information 

from PDF files’ content before storing them, once this solution reaches the market. This feature can also 

be seen as a competitive advantage in a digital vault marketplace. 

 

1.4  Work plan execution 

In order to achieve the proposed goals in a structured and clear way, a work plan was established. 

This work plan consisted of 5 main steps described below: 

1. Analysis and study of French and European standards relative to digital vault systems. (7 

weeks) 

2. Elaboration of solution’s technical specifications. (4 weeks) 

3. Solution’s development (16 Weeks) 

4. Solution’s testing (functional and security) (4 Weeks) 

5. Implementation of a simple proof of concept project (4 Weeks) 

 

Overall, the work plan was followed fairly close. A notable exception, which took approximately 

more 8 weeks than initially expected, was the implementation of some of the core functionalities of the 

system (step 3.), such as the OpenStack Swift SDK, data encryption methods and the Web client 

application. 

 

1.5  Document structure 

This document is structured in 5 chapters. Each chapter will approach a specific stage of the 

project starting from the concept idea, main goals, legal and technical environment up to the conclusions 

and future work. 

 



 

5 

 

In Chapter 2, the documentation and implementation obligations for third-parties’ entities that are 

going to use this solution are discussed. The most relevant software, methodologies and frameworks 

used during this project are introduced and briefly described. Also, some of the already existing and 

conceptually proposed solutions are discussed and compared. 

 

In Chapter 3, system requirements and use cases are presented. Also, the system architecture is 

explained by clarifying the adopted design choices. 

 

In Chapter 4, the implementation process is described in detail alongside functional, security and 

validation test results. Possible solutions are provided for the unexpected problems that appeared during 

the elaboration of this project.  

 

Finally, in Chapter 5, the achievements of this project are analysed and the final considerations 

about possible future development are presented. 

 

 



 

6 

 

Chapter 2 Related work 

This chapter begins with the description of the most important and relevant legal and technical 

standards applied to the French market and related, but not exclusively limited to the security and 

privacy of digital vault storage. Then, a brief analysis and overview of already existing solutions offered 

by Securibox market competitors are presented. 

 

To conclude this chapter, some of the most pertinent frameworks and software tools used in the 

development of this project are described as well as the environment in which this solution is intended 

to be working and was implemented. 

 

2.1  Standards 

The digital vault solution will be deployed on third parties’ entities, such as banks. To guarantee 

the correct functioning of the software/solution, not only the solution, but also those entities must respect 

some ISO and AFNOR standards and legislation as well. The AFNOR (Association Française de 

Normalisation), a member body of the ISO (International Organization for Standardization), is the 

French entity responsible for standardization, including the digital information domain. 

 

During this project, the standard NF Z42-013 was used. However, there is also available its 

English version equivalent as ISO 14641-1 (Specifications concerning the design and the operation of 

an information system for electronic information preservation). [32] 

 

In a simplified overview, the standard NF Z42-013 and NF Z42-020 (an extension of the NF Z42-

013) are directly related with the development and implementation of a digital vault system, while other 

standards applied to this project do not focus at any specific system or solution. However, those 

standards are related to security and privacy of the specific vault’s components or mechanisms. 

 

The NF Z42-013/20 standards focus on both technical and organizational aspects of the digital 

vault. Namely, the data handling and its integrity at different states, the log system minimum 

requirements, the mandatory system documentation, the minimum set of digital vault solution’s 

functions and the auditability of the system. 

 

The standards, such as ISO 19005-1 (Files format), ISO 8601 (Time representation), ISO 15489 

(Records Management) and ISO 14721 (Open Archival Information System - OAIS) are mentioned as 

a reference at the NF42-013/20 documents and provide a higher level of detail over specific topics. 

 

The concepts, ideas, obligations and restrictions derived from GDPR (General Data Protection 

Regulation), ISO 27001 (Information security management) and ISO 27002 (information security 

controls) are traversal not only for this particular project, but must also be respected and implemented 

(where it applies) at the solution’s host organization. 



 

7 

 

2.1.1  Standard NF Z42-013 (AFNOR) 

This standard [33] establishes a set of specifications that the digital vault system must obey to 

be certified in France regarding the technical and organizational aspects, and measures to be taken, while 

handling with digital documents, to guaranty their integrity and non-repudiation while adding, storing, 

deleting, consulting or transmitting a document. 

 

The key points of the standard focus on: 

• The system’s storage policy. 

• The format of the data that is being stored to ensure its compatibility with at least some of 

the open-source formats. 

• How to guaranty the integrity of a document, e.g.: fingerprints, signatures, etc. 

• Logs requirements, regarding timestamps, user actions, document manipulations, etc. 

• Logs storage policy. 

• How to manage and support the migration or conversion of the digital vaults data format 

over time. 

• Mandatory topics for the system’s documentation regarding its management, support, and 

technical aspects. 

• Auditability of the system. 

 

It is important to mention that due to the complex process of the data format conversion and the 

existence of relatively cheap solutions to perform this task in a secure way, for example by Microsoft or 

LibreOffice, this feature will be out of the scope of the current project and hence not implemented. 

 

2.1.2  Standard NF Z42-020 (AFNOR) 

This standard can be seen as an extension for the NF Z42-013 that defines with a high level of 

detail the minimum functions of a digital-vault component and how they must be implemented to 

guarantee the integrity of the data over time. A component can be software running on a single or 

multiple hardware platforms or software which is embedded within hardware and behaves as a whole. 

The data of the system are objects, where each of them have a unique identifier and a hash, can be a file, 

a set of files compressed into a single file, such as zip file, a file with an electronic signature, a file with 

metadata or an encrypted file. [34] 

 

Also, the digital vaults functional requirements are specified, namely, the functions call on the 

system. The minimum list of functions that should be available to the system is: add, read and delete 

object, read technical metadata (file format, size, etc.), control (verify the integrity of the file), read logs 

associated with a specific object, list the identifiers of stored objects, count the total amount of the stored 

objects. 

 

2.1.3  General Data Protection Regulation (GDPR) 

It is a set of rules governing the privacy and security of personal data laid down by the European 

Commission which came into effect on May 25th, 2018. [21] 

 



 

8 

 

The GDPR establishes strict global privacy requirements governing how you manage and 

protect personal data in the European Union and of its citizens, regardless of the company’s location 

while respecting individual choice — independently where data is sent, processed, or stored. 

 

This regulation applies to the processing of personal data wholly or partly by automated means 

and to the processing other than by automated means of personal data which form part of a filing system 

or are intended to form part of a filing system. 

 

Personal data can be any information related to a natural person or ‘Data Subject’, that can be 

used to directly or indirectly identify the person. It can be anything from a name, a photo, an email 

address, bank details, posts on social networking websites, medical information, or a computer IP 

address. 

 

The digital vault project must be fully compliant with the GDPR since all the sensitive data that 

could be linked to a physical person is stored in a secure way and all mechanisms that may use user’s 

personal data must be presented to the user in a clear form as they are described at this document.  

 

2.2  Overview of existing solutions 

2.2.1  Cecurity 

The Cecurity company provides different products and solutions regarding digital storage for 

French market. For the scope of this project, the focus will rely on the PEA (“Preuve, Echange, 

Archivage”, translated as “Proof, Exchange, Archiving”) and CecurCrypt solutions. 

 

 The PEA is an AFNOR certified storage solution, for medium and large enterprises, compatible 

with heterogeneous storage managing platforms such as EMC Centera, IBM Tivoli Storage Manager, 

NetApp SnapLock, Hitachi Content Platform, among others. This solution is fully installed on the client-

side and offers a GUI client, which gives the possibility to configure the system in a user-friendly way, 

has a sophisticated search system based on the document's metadata and is also able to convert files 

formats and to define its retention period. 

 

 The CecurCrypt is a web-based solution, available for small enterprise companies (starting from 

a single user account), which offers the possibility to store encrypted documents with an auditable log 

journal system at the client’s or Cecurity’s servers. All stored documents are digitally signed and stored 

in folders with restricted access. To grant access to a folder, a password is required (the password is 

different for each folder). [13] 

 

Since PEA is a proprietary solution that requires sophisticated infrastructure to be installed, it 

was not possible to analyze it in production. However, the CecurCrypt allows the creation of a demo 

account, which was created at https://www.cecurity.com/fr/essai-cecurcrypt, and made possible deeper 

analyzes of this product. 

 

To understand how secure the CecurCrypt application is, the traffic generated by the client (Web 

Browser) was captured using Fiddler by Telerik software and then analyzed. Also, some of the client’s 

https://www.cecurity.com/fr/essai-cecurcrypt


 

9 

 

source script files were downloaded and analyzed. Since those scripts are not obfuscated it was possible 

to understand the key concepts behind some of the core functionalities, such as the upload. The overall 

product apparently has a strong security design and algorithms. 

 

The document upload process is one of the most important functionalities in any digital vault 

system and it is imperative to ensure files security and integrity at every step (from the sender until the 

recipient). Due to that fact, it was analyzed how CecurCrypt upload methods work. The file is encrypted 

at the client’s side using javascript “randomly” generated values and then is sent to the server.  

 

It is important to refer, that with this analysis it is not possible to guarantee that the presented 

mechanism works exactly the way it was described in this document since some parts of the solution 

are hosted at the web server-side and can have other logical triggers and implementation behind. 

 

 
Figure 2.1: Cecurity document upload solution 

 

Figure 2.1 illustrates what happens in the Cecurity solution when a file is sent to the digital-vault 

server. A temporary key generated on the webserver is sent to the client, in a secure way. Later, this key 

is used for encryption. After receiving the key, the file is split into several pieces (chunks). Those chunks 

are encrypted with a previously received random key (probably with the server public key as well) and 

then sent to the server one by one. Once the entire file is on the server it is encrypted with a key that is 

related in some way with the α key, and probably it is the µ key. A similar process occurs when a file is 

downloaded from the server, which makes the decryption possible only if someone knows the α key (a 

string). 

 

It is also possible to set groups and share a key with other people, hence there has to be always an 

administrator for that vault, who is the only one who can change that key. 

 

Overall, these solutions attend all essential market requirements for a digital vault system. 

However, since those are proprietary solutions, its implementation and maintenance cost could be high. 



 

10 

 

A solution that would be empowered by open source technologies could lower that cost. Also, this 

solution lacks the extraction capability like the Securibox ParseXtract service can provide. 

 

2.2.2  MaarchRM 

MaarchRM is an open-source solution that was developed in accordance with French standards, 

namely the NF Z42-013 and NF Z42-020, however it is not certified by AFNOR. The target market for 

this product are small companies that would use this solution as internal storage and document 

management system. 

 

This solution offers all functions required by the NF Z42-020 and also provides a web interface 

that allows creating different user groups, with different roles and privileges. The demo version of the 

MaarchRM web service is available at https://demo.maarchrm.com/user/prompt. 

 

Despite being a viable solution for a small organization, it is not an optimal solution for large 

scale organizations, since it relies on old technologies, such as PHP and Postgres SQL software, which 

originally were not designed to be scalable and work at the cloud infrastructure. Due to that fact, the 

setup and maintenance of this solution would result in extra non-trivial work and additional costs (e.g.: 

setup and configure a distributed SQL database; make the necessary modification to allow this solution 

to work on the cloud and ensure that it can pass the AFNOR certification process). Furthermore, the use 

of a SQL database for binary data storage can decrease the performance of the system in cases when 

there are millions of entries generated by thousands of users simultaneously. 

2.3  Software frameworks 

In this section, the frameworks that have been used in the project are briefly presented. Also, some 

additional software that could improve the current solution, such as SwiftStack, is presented as well. 

 

The digital vault solution is a combination of multiple components, where each of them has its 

own role. Namely, a storage component and an information processing component. 

 

The storage component has to be capable of storing binary files, such as documents, as well as 

the logs journal entries. Initially, a regular database was planned to be used for that purpose. However, 

due to the fact that this solution must handle large amounts of data and offer cloud support a NoSQL 

solution had to be adopted. The choice relied on the MongoDB since it was designed to work on top of 

cloud systems and is capable of handling large amounts of information with better performance than 

other similar database systems [2]. Since this component is serving two different proposes, a costumer’s 

binary file storage, where the binary file’s size could be too large for a database, and a journal’s log 

storage, it was decided to divide it into two different modules. A module for the journal log system, 

using MongoDB, and a cloud-storage solution for the binary data. 

 

For the binary data cloud storage, it was decided to use OpenStack Swift because it's Swift API 

is directly compatible with SwiftStack, which offers a highly automated environment for the 

infrastructure implementation and maintenance, and besides that, it already provides some additional 

features that can help to integrate the solution, for example, with Active Directory Services (Microsoft) 

among others. The SwiftStack is a well-known framework and technology for some of the Securibox 

https://demo.maarchrm.com/user/prompt


 

11 

 

most influential clients, and therefore potential customers of it. Due to that fact, the choice relied on this 

technology. However, any other cloud solution with similar characteristics, such as cloud Stack, could 

be used instead. 

 

Concerning the information processing component of the solution the .Net C# technology was 

chosen. In a technical perspective, this choice was made because by using .Net technology it is natively 

possible to export this project into the cloud (e.g.: Azure). In an organizational perspective, the 

Securibox has an experienced team of .Net developers who could offer any needed support during the 

development of this project and also guarantee this way its future development and maintenance. 

 

2.3.1  OpenStack 

OpenStack is a set of free and open-source software tools for building a large-scale virtualization 

environment and managing cloud computing platforms for public and private clouds capable of working 

in heterogeneous infrastructure [38]. This software controls large pools of computing, storage, and 

networking resources throughout a data centre and can be managed through a dashboard or via the 

OpenStack API, which is fully documented. 

 

This solution is similar to Azure Cloud Services (Microsoft), Amazon Web Services, Google 

Cloud Platform, Rackspace Cloud, etc. Like any other cloud service solution, OpenStack can be used to 

create a scalable web service that will automatically add more computing power when needed, to work 

on complex problems using a distributed system. 

 

The main components of the OpenStack are [38] :  

• Nova – Computing engine, used for deploying and managing the instances to handle 

computing tasks. 

• Swift – A storage system for objects and files. Rather than the traditional idea of a 

referring to files by their location on a disk drive, OpenStack gives each file or piece of 

information a unique identifier and decides where to store this information, making the 

scaling easy. 

• Cinder – A block storage component, which works like a traditional storage system, 

where it is possible to access specific locations on a disk drive. 

• Neutron – It provides the networking capability for OpenStack. 

• Horizon – The dashboard, only graphical interface to OpenStack. Helps system 

administrator to look at what is going on in the cloud, and to manage it as needed. 

• Keystone – It provides identity services for OpenStack. This service is responsible to 

grant permission to users or services to access the system, or part of it, according to their 

role, group, etc. 

• Glance – It provides virtual-images services to OpenStack. 

• Ceilometer – It provides telemetry services, by counting each user’s usage of each 

component of the OpenStack cloud. 

• Heat – Is the orchestration component, which allows storing the requirements of a cloud 

application in a file that defines what resources are necessary for an application. 

 



 

12 

 

2.3.1.1 Swift OpenStack 

The OpenStack Object Store project [37], known as Swift, was built for scale and optimized for 

high durability, 99.99999999% of availability with 3 replicas (10-11 nines using the “nines” 

nomenclature), availability, and concurrency across the entire data set. It is used for redundant, scalable 

data storage using clusters of standardized servers to store large amounts (e.g.: petabytes) of accessible 

data. It is a long-term storage system for large amounts of static data which can be retrieved and updated. 

Object Storage distributed architecture with no central point of control, provide scalability, redundancy, 

and permanence. By writing objects into multiple hardware devices, the OpenStack software is 

responsible for ensuring data replication and integrity across the cluster. Storage clusters scale 

horizontally by adding new nodes. When a node fails, OpenStack works to replicate its content from 

other active nodes. Because OpenStack uses software logic to ensure data replication and distribution 

across different devices, inexpensive commodity hard drives and servers can be used instead of more 

expensive equipment. Swift is ideal for storing unstructured data that can grow without bound, since it 

provides a fully distributed API-accessible storage platform that can be integrated directly into 

applications. 

 

For the purposes of this project, the architectural aspects of the Swift OpenStack will only focus 

on the accounts, containers, and objects. 

 

An account/project/tenant represents the top-level of the hierarchy. The service provider 

(Administrator) creates the account for a user/service where the resources will be fully owned by him 

on that account. The account defines a namespace for containers. A container might have the same name 

on two different accounts and the number of containers per account is limitless. 

 

A container defines a namespace for objects. Objects with the same name in two different 

containers represents 2 different objects. It is also possible to control access to objects, in a certain 

container, by using an access control list (ACL). However, it is not possible to store an ACL with 

individual objects. It is possible to set a storage policy on a container with predefined names and 

definitions from a specific cloud provider. 

 

In order to delete a container, it is important to make sure that it does not contain any object, 

otherwise, it will be impossible to delete. 

 

An object stores data. This data can be the content of a document, an image, and so on. It is also 

possible to store custom metadata with an object, container or account. The maximum size of the object 

can be configured and has no limit (theoretically). It is possible to compress files using content-encoding 

metadata, schedule objects for deletion, auto-extract archive files, generate a temporary URL that 

provides access to an object (via a GET request) and create symbolic links to other objects. 

 



 

13 

 

 
Figure 2.2: Basic Swift OpenStack scheme 

Figure 2.2 illustrates what was described above about Swift OpenStack’s components alongside 

its hierarchy and dependencies. 

 

2.3.1.2 DevStack 

 The manual deployment of the OpenStack can be a very complex task. For that reason, a set of 

scripts that automatically install and set up a complete OpenStack development environment solution 

– DevStack – were developed by the authors of OpenStack. This solution is constantly updated and 

maintained by OpenStack at a public GitHub repository. It is available at 

https://git.openstack.org/cgit/openstack-dev/devstack. 

 

A single Linux (Ubuntu Server 16.10) machine with DevStack software [9] was deployed and 

properly configured on a local Securibox server to perform any necessary tests with Swift OpenStack 

while developing the digital vault solution. More specifically an OpenStack’s all in one solution was 

deployed, which means, that all services are running on the same (virtual) machine with a single HDD. 

 

During the deployment, it was found that the essential component for this project, the Swift 

node, does not come by default, and has to be enabled and installed manually, by editing the DevStack 

configuration file (local.conf). 

 

2.3.2  SwiftStack 

 The SwiftStack is an OpenStack Swift based product, that powers enterprise with a software-

defined storage platform that’s easy to deploy, scale, integrate with existing systems, and maintain over 

time. The SwiftStack platform contains an out-of-band (independent) Software-Defined Controller, 

SwiftStack Nodes, the Filesystem Gateway, and at its core, the OpenStack Swift object storage 

architecture. [17] 

https://git.openstack.org/cgit/openstack-dev/devstack


 

14 

 

 
Figure 2.3: SwiftStack scheme [17] 

 

2.3.3  MongoDB 

MongoDB is an open-source NoSQL database that can works on top of geographically distributed 

systems, offering high availability and horizontal scaling. 

 

A NoSQL (Not Only SQL) database, is a database without SQL interface [7]. Considering the 

case of MongoDB, the data is stored in JSON-like documents, rather than table entries like in a 

traditional relation database, allowing this way an easy and direct mapping with the application code. 

[30]. 

 

Besides standard database functionalities, MongoDB, also offers additional products that could 

reduce its implementation time and cost at large infrastructures, such as MongoDB Cloud Manager. 

 

2.3.4  Postman 

This software was designed to help the development and testing of web services, such as an API. 

It has an intuitive and easy to use graphical user interface which allows the creation of complex HTTP 

calls very quickly without worrying about authentication implementation or cookies handling. [42] 

 

2.3.5  Fiddler 

It is a free web debugging proxy which works with any browser, system or platform. This software 

uses the man-in-the-middle decryption technique to captures the traffic between the client and the 

browser/system and allows the manipulation of the HTTP requests at the real-time. [19] 

 

By being a man-in-middle actor, between the web server and the client (e.g.: web browser), 

Fiddler allows the modification of the HTTP requests exchanged by them. Fiddler also supports SSL 



 

15 

 

encryption, and is capable to decode HTTPS requests to its clear-text form, since the connection is firstly 

established between the web server and Fiddler, and then between Fiddler and client. Basically, the 

traffic from the web server is being redirected to the client through the Fiddler application. When the 

traffic is being redirect to the client, a self-signed certificate is used. 

 

 

 
Figure 2.4: Fiddler functioning scheme 

2.3.6  Burp Suite 

Burp Suite is the world's most widely used web application security testing software, written in 

Java [11]. In terms of traffic interception, between the client and the web server, it works in the same 

way as Fiddler does. 

 

Regarding its web testing possibilities, it comes with automatic tools that allows to perform 

several security testing operations over a selected target, and also offers the possibility of integration of 

custom addons. Those operations include web spidering, traffic analysis to detect headers and certificate 

related issues, payload injections, and other methods to detect OWASP TOP 10 attacks. 

 

During this project, it was used as a security testing tool with the REST API server being a target, 

at a white box setup. 

 

A white box setup means that the tester has knowledge about the testing target, and also has full 

access to the source code of the target application. [35] 

 



 

16 

 

2.3.7  Git 

The Git is an open-source revision control system. It was used during this project as a code 

control system since it has direct integration with the Microsoft Visual Studio Online platform and is 

fairly easy to use. [14] 

 

2.4  Bank Infrastructure  

The digital vault solution requires a complex infrastructure to be operable and is mandatory to 

guarantee that the organization that will deploy the solution (e.g.: a Bank) must comply with a vast set 

of international and French standards and laws described in more detail at the Chapter 3Erro! A origem 

da referência não foi encontrada.. However, the main idea is that the infrastructure host is responsible 

and must assure the physical and virtual safety and security of the environment. For that reason, in the 

next chapters, it is assumed that all infrastructure’s components and its communications, between each 

other, are treated as trusted hosts/services/etc. Any concerns about the system being compromised by 

physical or virtual means from the outside (without exploiting any possible zero-day vulnerability at 

any of the digital vault’s solution components) are out of the scope for this project. 

 

 
Figure 2.5: Bank required structure (simplified) 

 

It is necessary to guarantee that the host organization can offer the required scalability and that it can 

handle large amounts of requests. It is also required from the solution’s host organization to be compliant 

with the ISO/IEC 27001 and to be in charge of assuring all needed bandwidth, computational, hardware, 

documentation and human resource capacity. The organization security system must be separated from 

all other systems such as telecommunication systems (ISO 27001). The administration staff of the 

system must be identified and known to all other company staff that can deal with the digital vault 

solution. 

 

The administration of the system must have a general security policy and rules that specify how 

the authorization system and intrusion detection system works, how the company’s equipment, staff, 



 

17 

 

and software interact with the storage system (IEC 61000 regulations). While transmitting the data at 

the network use high-security measures (secure protocols and secure hardware/infrastructure) especially 

when an external service provider is being used. [24] 

 



 

18 

 

Chapter 3 System requirements and architecture 

After analysing the standard documents related to digital vault’s development it was possible to 

define the system’s requirements.  

 

A feature that could be potentially highly useful in real-life situations is the file-sharing system 

between different users. For that reason, a logical concept that would respect all security standards and 

regulations previously mentioned was designed. As a result, besides the architectural structure, 

functional and non-functional requirements, the rights and privileges of different roles that users can 

have when a vault is shared with them were specified. 

 

To simplify solution’s storage terminology, concepts like account, container and object from the 

Swift OpenStack were used. 

 

3.1  Functional requirements 

The main functionality of the digital vault is to store user’s data, such as files or logs.  

Besides that, there is a list of other operations that the system must be able to perform: 

 

• Register new user 

• Authenticate user 

• Create new digital vault for a specific user 

• Create or delete a container for a specific digital vault 

• Upload or remove an object from a container 

• Share a specific digital vault with another user 

• List files from a digital vault or a specific container 

• Get file metadata or extracted content’s information 

• Get journal history 

• Check journal integrity for a specific user 

 

To guarantee privacy of system’s users it should be possible to define user roles and set different 

ACLs (Access Control List) for user’s objects. 

 

A user must have a defined role for each vault and its container. Also, it should be possible to set 

different roles to a single user for each of its vaults or containers. 

 

 An ACL specifies the privacy settings of an object (document or set of documents and its 

metadata) for each user role’s group. Any modification of the user role or object’s ACL must be recorded 

in a log’s journal. 



 

19 

 

 

To guarantee that the system is able to store data through long periods of time (years), it is 

necessary to ensure that it is compatible with different open-source document standards.  

 

Table 3.1: Compatibility and durability requirements 

Requirement Description 

Use formats that are standardized 

and support free/open-source 

standardized formats. 

Be able to convert formats 

Associate metadata with data Use standard formats for metadata 

Support media migration  

Format conversion Check and convert the format of data if 

needed before it is stored. 

Warn in case of obsolete format. 

The conversion should be planned and 

traceable. 

 

3.2  Non-functional requirements 

Those requirements will mainly focus on aspects that guarantee integrity, availability, 

confidentiality, authentication, non-repudiation, and traceability of digital vault data. 

 

In this solution, users cannot edit or replace the data once it is loaded to the system and the 

metadata related to all user’s data and actions must be persistently stored even if the data itself was 

deleted, at an auditable log journal. Also, this system must respect the privacy of its users by 

guaranteeing durability, integrity and confidentiality of data, provide strong authentication methods, be 

able to handle different user roles with specific permissions and rights and record all user’s actions 

history in a secure way. 

 

The system must support standard file formats, such as PDF and be able to convert and work with 

them. (Out of the scope for the current project and hence not implemented) 

 

Since it is possible that a digital storage will contain personal data it is mandatory to respect all 

rights and laws of “Digital Freedom” [36], in all electronic and digital operations. Personal data 

represent any information that may help or identify a specific person. That includes names, surnames, 

addresses, bank account numbers, phone numbers, driver license numbers, photo Id, etc. It is mandatory 

to satisfy legal requirements regarding control access policy and use of personal information as well as 

the minimum period that is mandatory to store the information and its level of security. 

 

The software should be able to pass possible audits from the “Commission nationale de 

l’informatique et des libertés” – [16] as well as from an independent administrative authority that has 

the right to verify the security mechanisms of the data storage. 

 

It is mandatory to respect and implement, at least, the following standards and regulations: 

• AFNOR – NF Z42-013 



 

20 

 

• AFNOR – NF Z42-020 

• Délibération nº 2014-017 du 23 janvier 2014 

• EU General Data Protection Regulation (GDPR)  

• ISO 19005-1 (Files format) 

• ISO 8601 (Time representation) 

• ISO 15489 (Records Management) 

• ISO 14721 (Open Archival Information System - OAIS) 

• ISO 27001 

• ISO 27002 

 

Regarding security, confidentiality, privacy and integrity, several requirements were mapped 

from the NF Z42-013. 

 

Table 3.2: Confidentiality requirements 

Requirement Description 

Encrypt files The files should be encrypted using a 

complex and modern encryption algorithm. 

Validate file’s content By analysing the logs it should be 

possible to guarantee that the file content was 

not edited. It can be implemented by storing 

the file’s hash. 

 

 

Table 3.3: Integrity requirements 

Requirement Description 

The storage should guarantee:  

 WORM – hardware 

 WORM – software with: 

1. Event Log 

2. Mechanisms able to detect and prevent records from being edited or 

replaced. 

WORM logic for removable 

media 

Enhanced security level 

Advanced security level 

Rewrite (Standard security level) Enhanced security level 

Advanced security level 

Description of process for the 

data capture 

 

Warn before delete data   

Description of process for 

deleting data 

Definition of each metadata that is 

stored and as well as it's period of storage. 

Store data metadata and logs after it 

were deleted. 



 

21 

 

 

Table 3.4: Security requirements 

Requirement Description 

Authenticate users before grant 

access to the data 

Strong authentication 

Backup data Use different media supports. Prevent 

data loss from natural disasters.  

Exploitation and control of data. 

Identify user and create logs 

Strong authentication 

Use different formats for consulting and 

inserting data. 

Uninterrupted access to digital 

vault’s data 

 

Timestamps Every important action should be 

registered 

Provide technical documentation: 

private policy, general terms, and 

conditions, operational and operating 

procedures, document’s lifecycle 

Adapt to client’s needs 

Keep logs for the lifecycle of all 

stored data (and each file) and an event 

log 

Digital signature and timestamp for 

each operation or event: single document or 

set of documents 

Lifetime of logs  

 

 

It is necessary to guarantee the existence of a unique time source for different system components, 

to ensure log’s timestamps integrity and that system processes are synchronized. Timestamps must obey 

at least the following rules/recommendations: 

 

1. Have a reference time source 

2. Store timestamps for a specified period 

3. Specify the adopted timestamp method in a technical documentation 

4. Respect ISO 8601 for time representation: YYYY-MM-DDThh:mm:ss.sTZD  

a. Example: 2007-08-29T09:36:30.45+02:00 

5. Have a high accuracy level to avoid two events have equal timestamps 

6. Use Coordinated Universal Time (UTC) 

 

A record to the log’s journal must be made (stored) for each event related to any operation of the 

system or with the life cycle of data. This process must be associated with a timestamp and performed 

automatically by the system. 

 

It should be simple to read logs, but only authorized operators and users should have access to it. 

All operations performed by the log system, must be detailed in the technical documentation of the 

system and be compliant with AFNOR. The logs can be archived periodically and accordingly to the 



 

22 

 

archiving policy. At least, the journal system should guarantee durability and integrity of the logs for 

the same period as the document they are related to. 

 

Archived files that reached the maximum period of retention must be destroyed (maximum 

period: specified by law). Once a document was deleted no one should have the ability to access it. 

However, it is possible to preserve the logs and metadata associated with them while respecting the 

archiving policy and user agreement. 

 

3.3  Use cases 

Based on the end-user perspective and to guarantee that the system satisfies all specified 

requirements, a set of use cases that involve the most important digital vault’s features in different 

working conditions, were designed accordingly to its expected behaviour and outcome. All those cases 

were validated and its results are described at Chapter 4.5 . 

3.3.1  User registration 

For the user registration process, it was assumed 2 different scenarios. The first one is a regular 

case when a new inexistent user is registered. In the second, an attempt is made to register a user with 

an already registered username it the system. 

 

 
Figure 3.1: User registration use case 

3.3.2  Containers manipulation 

For this case, it is assumed that the client is a registered and authenticated user. For the container 

manipulation, it is possible to create and delete one or more containers (one by one). Note that when a 

container is deleted, all its files are also erased from the system, however, the information that was 

already recorded at the log system stays unchanged. 

 



 

23 

 

 
Figure 3.2: Container creation 

Note that at the third step, if the container does not yet exist, a new one will be created at the cloud 

storage and all its associated information will be mapped at the database. The success message will be 

returned to the client only after the validation operation of container’s creation/deletion. 

 

 
Figure 3.3: Container deletion 

 

3.3.3  Document upload and download operations 

When a user uploads a document, it must not replace any already existent document. For this 

reason, it is essential to verify if the system is able to handle files with the same names. When the 

document is encrypted by the solution’s server, it should only be possible to retrieve back the clear-text 

version of it using the encryption key and guarantee that even if somehow, someone, has access to the 

encrypted document it will still be not possible to crack it (without using brute force techniques, which 

may require at least hundreds of years). [6] 

 



 

24 

 

 
Figure 3.4: File upload 

 

Note that at the third step (at Figure 3.4 and Figure 3.5), user privileges and ownership of the 

container are also evaluated in order to grant him access to this operation.  

 

 
Figure 3.5: File download 

3.3.4  Database malfunction 

In this case, a temporary crash at the database connection has a presence. It is expected that the 

system will hang all user’s operation until it gets back online. 

 

 
Figure 3.6: Database connection failure 



 

25 

 

3.4  System architecture 

The main scheme of the solution was designed by having in mind the main technologies that 

were chosen to develop this project (.Net, OpenStack and MongoDB), and also the business and legal 

requirements. 

 

Some of the system component can be implemented on a public cloud. For that reason, it is 

necessary to ensure that the most critical services and data, such as data storage and database, is kept on 

a safe and controlled environment [12]. Furthermore, to reduce the risk of a single environment 

compromising, virtual or physical separation of different system components must take place once the 

system is implemented [29]. 

 

 
Figure 3.7: Basic solution schema 

 



 

26 

 

The digital vault solution is a conglomerate of several, easily scalable and redundant, 

components. The binary data storage is used to store a user’s uploaded data, such as documents, images 

or any other type of files. The database is used to store user’s log files and user personal information, 

such as username, password hash, authentication certificate’s information, etc.. The ParseXtract solution 

can be used as an additional feature for this project. 

 

The main functionality of the core is to provide the interoperability between all of the different 

components and to handle the data sent by the client to the solution. As a result, the core should be able 

to process client’s data and perform a set of operations in accordance with the standards, such as client 

authentication, data encryption, file’s integrity validation, etc. 

 

Any client application that interacts with the solution will never have direct access to the binary 

or database storage and will be limited to the set of functions offered by the API core, in order to prevent 

any possible unauthorized access to other users’ data. [34] 

 

 
Figure 3.8: Function call diagram [34]  

 

Figure 3.8 Figure 3.8: Function call diagram [34] illustrates the default path and order that a 

request has to take from the client to the digital vault service and vice versa. 

 

To guarantee that only authorized users have access to their respective content, a secure 

authentication mechanism, such as mutual authentication, should exist between the client and the digital 

vault solution. In mutual authentication, both, client and server can prove their authenticity to each other, 

eliminating this way possible MIM(man-in-the-middle) attacks. [15] 

 



 

27 

 

The database will be used to store all user-related data, except its documents. Unlike relational 

database design, where the goal is to describe existent relations between different entities, in the NoSQL 

an aggregation design takes place. [28] 

 

In the aggregation design, first, a conceptual representation of the system’s entities is built. 

Then, the data that is related to each other, and consequently, that would be requested together (a join 

query in a relation database) is mapped into a collection. When a specific data, or set of data, is requested 

in different contexts, it is possible to have that same data mapped, simultaneously, into multiple 

collections. [10] 

 

A collection is a set of documents, that are sharing the same structure, defined as a JSON 

(JavaScript Object Notation). In order to add a document (entry) to a collection, it is necessary to ensure 

that it follows collection’s structure. 

 

One of the challenges of using NoSQL database is related to the concurrency problems. To 

guarantee the integrity of the log’s journal it is mandatory to have atomic commits. Since, it is possible 

for multiple clients to read and write the same data at the same time, consistency problems may appear. 

The implementation of this solution must address this problem, for example by implementing a lock 

system. [41] 

 

The database is also highly connected with the journal solution’s architecture, since journal’s data 

is stored on it. The journal is a collection of log’s entries. Each entry represents a past action and contains 

information about the author of the action, the action itself and the successfulness of the performed 

action. These entries will follow the ISO 8601 timestamp standard and are created during the execution 

of any kind of operations, since its intention towards its execution.  

 

For instance, when a user is trying to login into the system, a log is created registering this 

intention. After that, user’s credentials are validated, and during the validation, logs are created for each 

step of the validation process. By implementing this logic it is possible to trace whether the operation 

was successful or at which point of the process has been a failure. 

 

To satisfy the journal durability and integrity requirements each user of the system has the right 

to request their own entire journal history or a subset of it, and also has the right to check journal’s 

integrity, by executing a validation method at the server-side. 

 



 

28 

 

 
Figure 3.9: Get journal entries for a user 

 

When a new user is registered into the system, an associated binary cloud storage account is 

automatically created with a randomly generated credentials. These credentials are stored in the 

database, and are requested by the client whenever it is necessary to access costumer’s binary files. 

 

The access to the database is restricted to the core server. However, even if the database is going 

to be compromised, and somehow, a malicious actor will gain direct access to the binary data storage 

platform, it is still possible to ensure user’s data privacy, since it is encrypted. 



 

29 

 

 
Figure 3.10: User registration scheme 



 

30 

 

All costumers documents, before stored, will be encrypted using a strong encryption algorithm, 

at the server side. The files are not encrypted at the client side, because if an information extraction 

service is used, such as Securibox ParseXtract, it is necessary to guarantee its ability to read the 

document content in a clear-text mode before it is encrypted. 

 

 The keys for files’ encryption and decryption should be retrieved by the core server, only, when 

a respective request comes from an authenticated and authorized client. Also, those keys shall never be 

stored outside of the RAM. A possible way to achieve this, is by using a scheme where user-provided 

passwords, designated as master-keys, are used to encrypt file encryption keys [1] and where each 

container can be associated with a different master-key. This way, even when a master-key is 

compromised, the file’s encryption key still safe. This also means, that the master-keys can be changed 

at any time without affecting the file’s encryption key. [8] 

 

The binary data storage account information will be stored at the database and will be only 

accessed when needed, exclusively by the core server. That way, the authentication information 

regarding binary storage component, will be independent and unknown to the end-user, which also 

permits the use of this encryption technique to share vaults between different users. 

 

 

 
Figure 3.11: Master key creation 

 

The encryption scheme can be divided in the following steps: 

1. A strong and random encryption key is generated at the server side (Core API). 

2. The key generated at the first step is encrypted with a user-provided password (master-

key). 

3. Whenever the user uploads or downloads a file, it is necessary to provide the master-

key from the send step. 



 

31 

 

 

 
Figure 3.12: Upload a document to the digital vault 



 

32 

 

In order to download a file from the system, a similar to file’s upload request has to be sent to the 

API server. The file is then decrypted at the server, using the master key password provided by the user 

and the encryption key itself from the database. Lastly, a clear-text document is sent to the client. Also, 

it is possible to access just the file’s metadata by sending the respective request to the server. 

 

When a user wants to share access to his digital vault with someone else, he must give the 

respective master key to another user. This can be achieved if each user of the system will have an 

associated public user id, which could be shared with other members without revealing any costumer’s 

personal data. 

  

To satisfy the requirements related to user roles and ACLs, the solutions will adopt, three different 

roles. However, it is possible to add more roles with customizable settings if requested by the client.  

 

A role can be applied to a user or to an entity: 

  

Table 3.5: Digital vault user roles 

Role 

Modify an 

archiving 

role 

Insert new 

data 
Consult data 

Set the lifetime of 

documents/data 

Delete a 

document in 

advance 

Admin x x x x x 

Service  x x x x 

User  x x   

 

3.5  API specification 

Each method of the API endpoint was specified in order to attend a specific solution requirement. 

By specifying the methods, it is possible to ensure that no requirement will be left aside during the 

implementation. 

 

To save development time later, the Swagger Editor was used at this stage. The Swagger is an 

online platform which offers multiple tools for API specification and implementation. By using the 

YAML (YAML Ain't Markup Language) specification language it is possible to automatically generate 

the API source code into multiple programming languages. The generated source code, contains fully 

functional HTTP request methods1 and the structure of previously specified methods (the methods are 

empty and must be implemented manually). 

 

Overall, 27 methods were described at the Swagger API specification. The specification contains 

the name of the methods, its parameters, a description and possible HTTP status response codes. [23] 

  

  

 
1 HTTP request methods: GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE, PATCH 



 

33 

 

Table 3.6: Core server API endpoints 

HTTP Method Url Description 

GET /digitalvaults/{digitalVaultId} 

Get the list of files 

associated with a 

specific digital 

vault 

POST /digitalvaults/{digitalVaultId} 
Upload a file to 

the main container 

GET /digitalvaults/{digitalVaultId}/containers/{containerId} 

Get the list of files 

associated with a 

specific digital 

vault 

POST /digitalvaults/{digitalVaultId}/containers/{containerId} 
Upload a file to an 

containerId 

GET /digitalvaults/{digitalVaultId}/files Get file's content 

DELETE /digitalvaults/{digitalVaultId}/files 

Delete a file from 

the digital vault 

main container 

GET /digitalvaults/{digitalVaultId}/containers/{containerId}/files Get file's content 

DELETE /digitalvaults/{digitalVaultId}/containers/{containerId}/files 

Delete a file from 

a specific 

container 

GET /digitalvaults/{digitalVaultId}/files/metadata Get file's metadata 

GET /digitalvaults/{digitalVaultId}/containers/{containerId}/files/metadata Get file's metadata 

POST /container 
Create new 

container. 

DELETE /container 
Delete user 

container 

POST /sharevault 

Share digital vault 

or container with 

other user 

POST /deleteshare 

Remove the 

sharing from a 

specific user 

POST /listshareusers 

Check who has 

access to a 

specific share 

POST /register Register new user 

POST /updatepassword 
Update user’s 

password 

GET /getuserinfo 
Retrieve user 

information 

POST /login 

Login with 

username 

credentials 

DELETE /deleteaccount Delete account 

GET /journalhistory 

Get last journal 

entries for the 

current user 



 

34 

 

GET /checkjournalintegrity 
Check the journal 

integrity 

GET /masterkey 
Get encryption 

key 

POST /masterkey 

Create master key 

for a specific 

digital vault 

POST /updatemasterkey 

Update master 

key’s password 

for a specific 

digital vault 

GET /masterkeyCheck 

Verify if a 

specific 

digitalVault 

already has a 

masterKey 

encryption key 

GET /verifyMasterKey 

Verify if the 

masterKey 

password is 

correct for a 

specific 

digitalVault 

 



 

35 

 

Chapter 4 Implementation and validation 

4.1  API Server Implementation 

For the system database, the MongoDB was chosen, because it supports large sets of data and is a 

scalable solution. For the binary storage, OpenStack was chosen, since it is a very powerful solution in 

terms of private and public cloud storage. Besides that, the OpenStack manages the layer responsible 

for the data replication. 

 

The OpenStack and MongoDB were installed and configured at a Securibox local server running 

Linux operative system (Ubuntu server v16.10), accessible at a LAN level or by using Securibox VPN. 

The API and Web server are running using a Microsoft Windows machine since they were developed 

using .NET technologies and require .NET libraries and Microsoft Windows services to run properly. 

 

The digital vault core server is in charge of communication between OpenStack and MongoDB and 

also responsible for processing of user’s requests. Due to that, the project was divided into three stages 

of development:  

1. OpenStack communication layer development stage 

2. MongoDB communication layer development stage. 

3. REST API - A combined layer in which both services are being used at the same time to attend 

user’s requests 

 

To make the development easier the Postman and Fiddler software were used to send manual HTTP 

requests to the server and OpenStack API. 

 

The overall .Net solution has approximately 4.2k lines of code and a maintainability index of 77.7 

(0-100 - higher the better). 

 

To provide a better overview of the project implementation in terms of flows and coding, a pseudo-

code algorithms for each use case are presented. Namely, the user registration, container creation and 

deletion, and file upload and download. 

 

User registration: 

Main method: 

 If validParameters(username, password, …) != true: 

  Return 

 

success = DigitalVault.InsertNewUser(username, password, …) 

 Journal.AddEntry("User registration operation", success.errorCode, username) 

 

 



 

36 

 

Insert User: 

 DigitalVault.InsertNewUser(username, password){ 

 

  If UserAlreadyExists(username) == true: 

Journal.AddEntry("Existent user registration attempt: check user name", 

errorCode, username) 

Return success(code=errorCode) 

 

InitializeOpenStackAccount(username) 

  InitializeLogJournal(username) 

  User = new User(openstackAccount, username, password hash, …) 

UsersDatabase.AddNewUser(User) 

Return success  

} 

 

 

 

Container creation: 

Main method:  

If validParameters(username, password, …) != true: 

  Return 

 

Journal.AddEntry("Container creation attempt", username) 

 success = DigitalVault.InsertNewContainer(username, containerId) 

 Journal.AddEntry("Container creation operation", success.errorCode, username, containerId) 

 

Create Container: 

DigitalVault.InsertNewContainer(username, containerId){ 

 

If Authenticated(User) == false: 

Journal.AddEntry("Container creation attempt: authentication failed", 

errorCode, username) 

   Return 

 

  OpenStack.Authenticate(username) 

Journal.AddEntry("Container creation attempt: OpenStack layer", username, 

containterId) 

  success = OpenStack.AddContainer(username, containerId) 

 

  if success == false: 

Journal.AddEntry("Container creation result: OpenStack layer", 

success.errorCode, username, containterId) 

Return success(errorCode) 

 

  UserDatabase.AddContainerInformation(username, containerId) 

  Return success 

} 



 

37 

 

Container deletion: 

Main method: 

If validParameters(username, password, …) != true: 

  Return 

 

Journal.AddEntry("Container deletion attempt", username, containerId) 

 success = DigitalVault.DeleteContainer(username, containerId) 

 Journal.AddEntry("Container deletion operation", success.errorCode, username, containerId) 

 

Delete Container: 

DigitalVault.DeleteContainer(username, containerId){ 

 

If Authenticated(username) == false OR Authorized(username) == false: 

Journal.AddEntry("Container deletion attempt: authentication failed", 

errorCode, username) 

   Return 

 

  If User.ContainerExists(containerId) != true: 

Journal.AddEntry("Container deletion attempt: not found", errorCode, 

username, containterId) 

Return 

 

OpenStack.Authenticate(username) 

 

If User.ContainerContainsDocuments(containerId) == true: 

   DeleteAllDocuments(containerId) 

    

  success = OpenStack.RemoveContainer(username, containerId) 

 

  if success == false: 

Journal.AddEntry("Container creation result: OpenStack layer", 

success.errorCode, username, containterId) 

 

  UserDatabase.UpdateContainerInformation(username, containerId:removed) 

  Return success 

} 

 

 

 

File upload: 

Main method: 

If validParameters(username, password, …) != true: 

  Return 

 

Journal.AddEntry("File upload attempt", username, containerId, fileId) 

 success = DigitalVault.UploadFile(username, containerId, filleId, fileContent, masterKey) 

 Journal.AddEntry("File upload operation", success.errorCode, username, containerId, fileId) 



 

38 

 

Upload: 

 DigitalVault.UploadFile(username, containerId, fileId, fileContent){ 

 

If Authenticated(username) == false OR Authorized(username) == false: 

Journal.AddEntry("File upload attempt: authentication failed", errorCode, 

username) 

   Return 

   

  If User.ContainerExists(containerId) != true: 

Journal.AddEntry("File upload attempt: container not found or not 

authorized", errorCode, username, containterId) 

Return 

 

  If User.PermissionToUploadToContainerl(containerId) == false: 

Journal.AddEntry("File upload attempt: not enough permissions to execute this 

operation", errorCode, username, containterId) 

Return 

   

  If CheckMasterKey(containerId, masterKey) == false: 

Journal.AddEntry("File upload attempt: wrong or non-existent master key", 

errorCode, username, containterId) 

Return 

   

  If Container.HasDocument(fileId) == true: 

   fileId = fileId + “(n)” //n is an integer number, starting from 1 

   

  File = File(fileId, fileContent) 

  File.additionalMetadata = ParseXtract.Analyze(fileContent) //not implemented 

  encryptionKey = Database.RetriveEncKey(username, containerId, masterKey) 

  File = Encrypt(Algorithm, encryptionKey, fileContent) 

  Journal.AddEntry(“File upload start: OpenStack”) 

  success = OpenStack.Upload(username, containerId, File) 

  Return success 

} 

 

 

 

File download: 

Main method: 

If validParameters(username, password, …) != true: 

  Return 

 

Journal.AddEntry("File download attempt", username, containerId, fileId) 

 success = DigitalVault.DownloadFile(username, containerId, filleId, masterKey) 

Journal.AddEntry("File download operation", success.errorCode, username, containerId, 

fileId) 

 



 

39 

 

Download: 

 DigitalVault.DownloadFile(username, containerId, fileId){ 

 

If Authenticated(username) == false OR Authorized(username) == false: 

Journal.AddEntry("File download attempt: authentication failed", errorCode, 

username) 

   Return 

   

  If User.ContainerExists(containerId) != true: 

Journal.AddEntry("File download attempt: container not found or not 

authorized", errorCode, username, containterId) 

Return 

 

  If User.PermissionToDownloadFromContainerl(containerId) == false: 

Journal.AddEntry("File download attempt: not enough permissions to execute 

this operation", errorCode, username, containterId) 

Return 

   

  If Container.HasDocument(fileId) == false: 

   Journal.AddEntry("File download attempt: file not found", 

 

  If CheckMasterKey(containerId, masterKey) == false: 

Journal.AddEntry("File download attempt: wrong master key", errorCode, 

username, containterId) 

Return 

 

  encryptionKey = Database.RetriveEncKey(username, containerId, masterKey) 

  Journal.AddEntry(“File download start: OpenStack”) 

  success = OpenStack.Download(username, containerId, fileId).Decrypt() 

  Return success 

} 

 

4.1.1  OpenStack layer 

Since it was not possible to find a good and working SDK for the .Net project a new one was 

created. The communication with OpenStack Swift is done using the HTTP protocol. To develop the 

SDK, the OpenStack Swift API (https://developer.openstack.org/api-ref/object-store) was analysed and 

written into swagger (https://editor.swagger.io) to get a fully functional C# library with all HTTP core 

methods, such as GET, POST, PUT, DELETE already implemented for the specified endpoints as 

synchronous and asynchronous methods. 

 

After, a mapper was developed to read JSON formatted response as well as some headers from 

OpenStack Swift API endpoint transforming the data into .Net objects such as: 

• SwiftAccount 

• SwiftAuthentication 

• SwiftContainer 

https://developer.openstack.org/api-ref/object-store
https://editor.swagger.io/


 

40 

 

• SwiftObject 

• SwiftProject 

• SwiftUser 

 

 
Figure 4.1: .Net OpenStack Classes with proprieties and methods 

After the mapper implementation, some of the methods to interact with OpenStack API generated 

by the swagger were modified and a new exception handler with costume exceptions were implemented. 

To allow the creation of the new accounts via API it is necessary to authenticate with administrator 

rights to the OpenStack. Due to that fact, a method to log in as administrator was developed. This method 

reads the administrator credentials from the project’s local configuration file, and then sends them to the 

OpenStack which returns the session token that is used to create a new request to create a new account. 

This way, all communication between the API Server and the OpenStack are totally neutral and absent 

to the client. 

 

4.1.2  MongoDB layer 

Following the methodology described at the system’s architecture, a conceptual design of the 

database was built by having in mind digital vault solution’s requirements and architectural decisions.  

 

 



 

41 

 

 
Figure 4.2: Database conceptual model 

 

Then, the data was aggregated by considering how frequent each attribute of the database model 

can be requested. After, using JSON (JavaScript Object Notation) the collections document’s structures 

were specified. Overall, the database has 7 collections, presented below: 

 

• User information collection. 

• Journal collection. 



 

42 

 

• User encryption key collection. 

• OpenStack account information. 

• Users password salt collection. 

• Two-phase commit collection. 

• User sharing information. 

 

To make calls to the database the MongoDB, the Driver library (https://mongodb.github.io/mongo-

csharp-driver/) was used. This library allows to make asynchronous calls to the database and to translate 

its objects into .Net objects automatically.  

 

In the .Net project classes were created to establish the connection with each collection from the 

database, namely: 

 

• MongoDBJournalInstance 

• MongoDBMasterKeyInstance 

• MongoDBOpenStackAccountInstance 

• MongoDBSaltInstance 

• MongoDBTwoStepInstance 

• MongoDBUserInstance 

• MongoDBUserShareInstance 

 

First, all collection’s elements were defined as static classes, in order to match the database 

collection elements names so it would be possible to load any entry from any collection. Then, 

asynchronous methods were implemented with CRUD functionality to each collection. 

 

A possible scenario for a concurrency problem can be found when a read operation is performed 

to get the user’s last log entry hash. A simple lock system is described at MongoDB official 

documentation. [31] 

 

 
Figure 4.3: NoSQL two-phase commit 

The two-phase commit consists of creating an additional collection to store the “lock” state. The 

lock collection will have objects with the following attributes: a timestamp, a lock state and a user Id. 

https://mongodb.github.io/mongo-csharp-driver/
https://mongodb.github.io/mongo-csharp-driver/


 

43 

 

The collection will contain a single object per user, that way before attempting any action on the 

webserver a request for the lock database will be sent in order to change its state to “busy”, which can 

be achieved using a Boolean type variable (state), which in case of a successful state change will return 

true. After locking the state, a read-on user’s log will be made in order to get the last entry hash and 

only after completing an action, successfully or not, the lock state will be reset allowing new actions on 

the system. If the lock’s value is already set as true, the system waits 5 ms before attempting the 

operation execution again (while loop). 

 

In the scenario that the connection to the database would be lost for a certain period of time, to 

satisfy the journal auditable and integrity requirement, the solution would be inoperable for the users 

that had their lock entry set to true, for an indefinite time. Since the MongoDB, when properly 

configured offers redundancy and availability, eventually, the solutions (core API) will be able to contact 

the database and unlock the system by changing the lock entry state. 

 

The journal logs are stored at the MongoDB database, and for each entry request it is necessary 

to ensure that it came from an authorized system, use secure data transmission protocols, guarantee data 

integrity and confidentiality, and entry uniqueness. [3] 

 

The secure logging protocols are divided in 4 main classes [4]. Namely, the syslog, 

Schneier/Kelsey, Ma/Tsudik and Encrypted search. At this project, a syslog-based protocol was 

implemented, since it can respond to all presented challenges. 

 

Since logs requests are sent by the core server, internally on the system without leaving the 

organization network (at least virtually), it is possible to ensure the confidentiality of the sent data. To 

guarantee the uniqueness of an entry, the lock system, described above, was implemented.  

 

To guarantee data integrity, once the entry is stored, the entry can be signed. Moreover, after the 

first entry, it is possible to include the information (hash) from the previous entry to the new one, and 

by that create a blockchain, where each entry is signed. This approach is described at the syslog-sign 

secure logging protocol [4]. By that, a chain of logs is established, and it is possible to validate all entries, 

by calculating its hash. 

 

 
Figure 4.4: Creation of signature blocks in syslog-sign [3] 



 

44 

 

It is important to emphasize that in the current solution’s implementation blocks are not signed, 

although its source code was written in a way that it would requires little effort to start using an external 

trusted service authority that would sign these blocks (also, the Securibox has its own signing solution). 

This feature was not implemented at this stage of the project for economic reasons since each signature 

involve monetary costs. Also, to reduce costs involving signatures it is possible to sign only every nth 

entry, instead of all log entries. Since this is a blockchain solution, if it is possible to guarantee the 

integrity of the nth entry, considering that the hashes of all previous not signed entries were successfully 

validated, it is possible to assure the integrity of the entries previous to the nth. 

 

 

4.1.3  Authentication 

Since this is a REST API project, the authentication is a must before the execution of any request. 

The authentication is made by using SSL certificates issued by the host of the digital vault. Once the 

certificate is validated, the server contacts the MongoDB’s OpenStack collection and retrieves the 

credentials for this specific user to authenticate at the OpenStack service. After, some claims, stored at 

the server’s RAM are used to save the user’s username and OpenStack’s authentication token for the 

lifetime of the operation execution.  

 

In the case of the certificate based authentication, the user’s certificates must be signed by the 

company which is operating the digital vault. This way it is possible to ensure, that not only the user 

authenticates the server, by receiving its certificate, but also the server guarantee the user’s authenticity. 

Also, by implementing this authentication method, it is possible for the solution’s host organization to 

easily adopt this project to implement smart-card (bank card) based certificate signing solution for 

authentication. [22] 

 

 
Figure 4.5: Certificate authentication scheme 

 

Also, basic authentication was implemented to make the development process easier. In the basic 

authentication, the username and the password are encoded into base64 (not secure to use in production). 



 

45 

 

 

 

Figure 4.6: Basic authentication scheme 

 

4.1.4  Core Server layer 

To simplify the process of the communication between all solution’s nodes a REST-API 

interface and all methods regarding data manipulation were implemented, resulting in the core server 

layer from the architecture scheme. 

 

One important fact to mention that may affect the performance of the API is that for each 

received concurrent call a new thread is created. For that reason, even if only one user is using the 

system, the number of threads that serves his requests may not equal to one. [27] 

 

In the Visual Studio solution, controllers regarding different operations were separated into different 

files, in order to add more organizational logic to the project, namely: 

 

• FilesController 

• UserController 

• MasterKeyController 

 

Since the journal has to keep track of everything that user’s do inside of the system, a method to add 

entries to the journal was developed. This method, called AddJournal(), gets the previous entry hash 

and then calculates the new journal entry hash. This way it is possible to guarantee not only the integrity 

of data but also that the order of journal entries corresponding to the order of server actions. Besides 

that, the action, its description, an error code and additional data can be added to the entry. An entry will 



 

46 

 

be added to the journal after each user request, at least, at the beginning and at the end of the operation, 

to make possible to know if the operation went well or no. 

 

Another important method is the file’s content encryption/decryption method. Any time the user 

wants to get access to the file’s content or to upload a new document to the vault, first user’s permissions 

are validated and then a key (a master Key’s password) introduced by the user at the header of the 

request is used to retrieve the encryption key. The encryption key is a randomly generated 256 bit string. 

The key also contains salt and has an initialization vector. The generated key is encrypted with the user’s 

master key hash value. The downside of having a mechanism such this is that if the user forgets the 

master Key password it would be almost impossible to retrieve the encryption key again. 

 

By implementing this logic, it is possible to ensure that even if someone, somehow, has direct 

access to the OpenStack Swift storage the files will be encrypted with a complex algorithm (AES-256 

or superior) and by that ensure the necessary confidentiality level to the user’s files. 

 

To validate if the master key value is correct, a known string, encrypted with the encryption key 

generated during the creation of the container, is stored at the database. This way, by encrypting the 

known string with an encryption key derived from the user provided master key, it is possible to ensure 

the correctness of it by comparing two encrypted strings. 

 

Since the file is being encrypted at the server-side, it is important to refer that is the responsibility 

of the solution’s host to ensure all kinds of infrastructure security measures. By that, it is assumed that 

the solutions running environment is never compromised and there is no risk to send a clear-text 

document to the server over a secure HTTPS connection (man-in-the-middle attacks are out-of-the 

scope). 

 

Each digital vault has its owner which is represented by the public digital vault user id. When a 

user is attempting to access a digital vault, first the system will check if that user has the correct 

privileges and access rights to that container/vault. After that, the system will use the digital vault’s 

owner id to authenticate with OpenStack in order to get access to the files. However, even if the user 

has access to the vault, he won’t be able to get any correct file’s content if a wrong master key is used. 



 

47 

 

 
Figure 4.7: Share a digital vault with another user 

 

4.2  Client implementation 

A simple web client with GUI using the MVC paradigm and Microsoft .Net technology was 

designed and implemented. This interface allows the user to make calls to the Server API in a user-

friendly way. However, any entity who will use this vault can develop and implement its own client. 

 

A user that uses the web client is able to: 

• Create an account 

• Update the account password 

• Login into the system 

• Create new containers 

• Set and update the master key password of a container 

• Upload files 

• Remove files 

• Share containers with other users using different roles 

• Check the journal 

• Check the journal integrity 

 

4.3  Functional Tests 

For each stage of development, a set of unit tests was implemented. A unit test is a test in which 

the tester knows from the begging what should be the result of the test. That way, it can be assumed that 

it works similar to an assertion method. Also, some of these tests were performed in a row, in order to 

simulate a real-world situation. 

 



 

48 

 

 
Figure 4.8: Unit tests sequence example 

 
Figure 4.9: Unit test code example 

 

At the OpenStack communication layer, several tests were written in order to test its API and to 

find bugs across the .Net project. By following this secure development approach, it is possible to 

guarantee, that future modifications of the project wouldn’t impact the good functioning of the already 

existing code. 

 

OpenStack User: 

• Create user 

• Authentication 

 

OpenStack Container: 

• Create container 

• Get container 

• Update container 

• Delete container 

• Delete container which is not empty (first, it is necessary to remove all objects) 

• Get container metadata 



 

49 

 

 

OpenStack Account: 

• Get account 

• Account not found 

• Update account 

• Get account metadata 

 

OpenStack Swift object: 

• Get object 

• Upload object 

• Update object metadata 

• Delete object 

 

Then, a set of unit tests were written to test MongoDB collections. 

 

MongoDB: 

• Insert new user 

• Get user 

• Get users with specific attributes 

• Delete User 

• Add digital vault 

• Update user’s digital vault collection 

• Add container 

• Delete container 

• Delete digital vault 

• Share digital vault 

 

After having a functional communication layer with OpenStack and MongoDB, some unit tests were 

written in order to test system behaviour when calling both services. These tests were later used to 

develop the core server API layer. In these tests, for example, after creating an account at the OpenStack, 

a journal entry was added to the MongoDB. This way it was possible to test how asynchronous services 

can handle multiple requests at the same time.  

 

4.4  Security Tests 

For the security tests, the scope was the REST API server, since it’s the component that is serving 

the client and accepts the client’s input. For the purpose of the tests, the Burp Suite was used, alongside 

with the OWASP REST security cheat sheet, available at 

https://cheatsheetseries.owasp.org/cheatsheets/REST_Assessment_Cheat_Sheet.html. 

 

https://cheatsheetseries.owasp.org/cheatsheets/REST_Assessment_Cheat_Sheet.html


 

50 

 

 
Figure 4.10: A Security test example 

 

The scope of the tests was the core server API endpoint, detailed at the API specification chapter. 

 

4.5  Use cases validation 

All use cases from Chapter 3.3 were validated using the user’s web client. However, to test the 

database malfunction, the project client was running in debug mode and the connection with the database 

was intentionally disabled and the system showed the expected behaviour, during the “blackout” and 

after the database went online. 

 

Regarding the data storage, it is interesting to observe the difference between a simple .txt file in 

clear-text mode and after the vault’s encryption, as it is stored at the OpenStack: 

 

 
Figure 4.11: Clear-text “.txt” document 

 

 
Figure 4.12: Encrypted ".txt" document 

 



 

51 

 

4.6  Discussion 

It is important to emphasize, that due to the initial conditions of the technological Securibox’s 

environment, some of the technologies were adopted because they were more familiar to its development 

team members. And its use would increase the development speed, overall project quality and leave 

open the opportunity for future solutions’ customization and adaptations. 

 

During the development stage, the available infrastructure was mostly virtualized, and due to that 

fact it was not possible to take full advantage of all used software/framework solutions, especially 

regarding the scalability and data replication features (OpenStack and MongoDB). 

 



 

52 

 

Chapter 5 Conclusion 

The main goal of this project was achieved and the core functionalities of the digital vault were 

designed and developed with success. It were implemented in a scalable system, capable of storing large 

amounts of encrypted data using cloud systems where an auditable journal logs any user’s or system’s 

operations. The functionality, regarding document sharing between several users, was also implemented 

without violating any legal or technical requirement constraint. 

 

This project was developed using the .Net technologies and is offered as an API system. Due to 

this, it is suitable for different technical and organizational environments and can be easily integrate 

with other Securibox products and services. Also, a .Net C# SDK was developed for the most recent 

version of the OpenStack Swift, since it was not possible to find any working solution at the public 

domain. 

 

The functional tests results were satisfying and worked as expected. Also, by replicating the 

use-cases described in this document using solution’s web client, it was possible to demonstrate how 

this solution behaves in a real world situation. 

  

 The functionalities offered in this solution may seem to be very close to other digital storage 

solutions. However, since the future goal is to integrate other Securibox services with it, or even apply 

this solution to other areas, I have a strong believe that it can have a great competitive advantage over 

existing solutions. It was also demonstrated that by using open-source technologies it is possible to 

create a fully operational software solution, compliant with standards and regulations, offering as many 

functionalities as a closed-source based one.  

 

 Regarding future improvements, it is expected the ParseXtract service integration into this 

project. Also, the functionalities related with document format conversion can be implemented by using 

third-party solutions. This way, this project solution can evolve into a more intelligent and complete 

digital vault. Other possibility, is to adapt it for a general-propose digital vault storage solution. 

 

As a final though, I hope that this work will encourage and inspire more companies to invest in 

open-source technologies. 



 

53 

 

Bibliography 

 

[1] Abadi, M., & Warinschi, B. Password-based encryption analyzed. In: Caires L., Italiano G.F., 

Monteiro L., Palamidessi C., Yung M. Automata, Languages and Programming. ICALP 2005. 

Lecture Notes in Computer Science, vol 3580, 2005. ISBN: 978-3-540-31691-6. DOI: 

10.1007/11523468_54 

[2] Abramova, V., Bernardino, J., & Furado, P. Which NoSQL database? A performance overview. 

Open Journal of databases. Vol. 1, issue 2, pp. 17-24, 2014, Coimbra, Portugal. ISSN 2199-3459 

[3] Accorsi, R. Log data as digital evidence: what secure logging protocols have to offer?. In 

Proceedings of the 33rd Annual IEEE International Computer Software and Applications 

Conference, COMPSAC 2009, Seattle, Washington, United States of America, 2009. DOI: 

10.1109/COMPSAC.2009.166 

[4] Accorsi, R. Safekeeping Digital Evidence with Secure Logging Protocols: State of the Art and 

Challenges. In Fifth International Conference on IT Security Incident Management and IT 

Forensics, Stuttgart, Germany, 2009. DOI: 10.1109/IMF.2009.18 

[5] Aladwani, A. M. Online banking: a field study of drivers, development challenges, and 

expectations. International Journal of Information Management, 2001, vol. 21, no.3, pp. 213–225, 

Kuwait. DOI:10.1016/s0268-4012(01)00011-1 

[6] Arora, M. How secure is AES against brute force attacks?. United States of America: EE|Times, 

2012. Available at https://www.eetimes.com/document.asp?doc_id=1279619 

[7] Bach, M., & Werner, A. Standardization of NoSQL Database Languages. In International 

Conference: Beyond Databases, Architectures and Structures, Silesian University of Technology, 

Poland, 2014. DOI: 10.1007/978-3-319-06932-6_6 

[8] Bellovin, S. M., & Merrit, M. Augmented encrypted key exchange: a password-based protocol 

secure against dictionary attacks and password file compromise. In ACM Conference on Computer 

and Communications Security CCS-1, Virginia, United States of America , pp. 244–250 , 1993. 

DOI:10.1145/168588.168618 

[9] Boudjnah, C., Troyer, D., Kotton, G., Wienan, I., Blair, J. & Dague, S. DevStack. Accessed at 

https://wiki.openstack.org/wiki/DevStack in January 2018 

[10] Bugiotti, F., Cabibbo, L., Atzeni, P., & Torlone, R. Database design for NoSQL systems. In 

International Conference on Conceptual Modelling, Atlanta, United States of America, pp. 223 -

231, 2014. DOI:ff10.1007/978-3-319-12206-9_18 

[11] Burp Suite. Frequently asked questions. Accessed at https://portswigger.net/burp in September 

2019 

[12] Carrol, M., van der Merve, A., & Kotze, P., Secure cloud computing: Benefits, risks and 

controls. In Conference: Information Security South Africa (ISSA), Johannesburg, South Africa 

2011. DOI: 10.1109/ISSA.2011.6027519 

[13] Cecurity corporation. Proof, Exchange, Archiving – Electronic Archival Storage. Accessed at 

https://www.cecurity.com/en/products/pea in November 2018 

https://www.eetimes.com/document.asp?doc_id=1279619
https://wiki.openstack.org/wiki/DevStack%20in%20January%202018
https://portswigger.net/burp%20in%20September%202019
https://portswigger.net/burp%20in%20September%202019
https://www.cecurity.com/en/products/pea%20in%20November%202018


 

54 

 

[14] Chacon, S., & Straub, B. Pro Git. [epub, pdf, mobi]. 2nd Edition. United States of America: 

Software Freedom Conservancy, 2014. Available at: https://git-scm.com/book/en/v2 

[15] Chen, Z., Guo, S., Duan, R., & Wang, S. Security analysis on mutual authentication against 

man-in-the-middle attack. In First International Conference on Information Science and 

Engineering, Nanjing, China, 2009.DOI: 10.1109/ICISE.2009.1051 

[16] CNIL. Commission Nationale de l’Informatique et des Libertés. Accessed at http://www.cnil.fr 

in Sepetember 2017 

[17] Crump, G. OpenStack Swift – Should enterprise customers DIY or use SwiftStack?. Switzerland: 

Storage Switzerland, LLC, 2015. Accessed at https://storageswiss.com/2015/01/22/should-

enterprise-customers-diy-or-swiftstack/ in January 2018 

[18] FedISA, Coffre-fort électronique: Livre Blanc. Version 2. Luxembourg: Fedisa Luxembourg, 

2014. Available at: https://www.leslivresblancs.fr/livre/informatique-et-logiciels/archivage-

electronique/coffre-fort-electronique-version-2 

[19] Fiddler. Telerik Fiddler. Accesses at https://www.telerik.com/fiddler in February 2019 

[20] Floh, A., & Treiblmaier, H. What Keeps the E-Banking Customer Loyal? A Multigroup 

Analysis of the Moderating Role of Consumer Characteristics on E-Loyalty in the Financial 

Service Industry. SSRN Electronic Journal. 2006,Austria. DOI:10.2139/ssrn.2585491 

[21] GDPR. EUGDPR: EU General Data Protection Regulation. Accessed at http://www.eugdpr.org, 

European Union in January 2017 

[22] Hiltgen, A., Kramp, T., & Weigold, T. Secure Internet banking authentication. IEEE Security 

& Privacy Magazine, vol.4, no.2, pp. 21-29, 2006, ISSN 1540-7993. DOI: 10.1109/msp.2006.50 

[23] IANA. Hypertext Transfer Protocol (HTTP) Status Code Registry. United States of America: 

IANA, 2018. Available at: https://www.iana.org/assignments/http-status-codes/http-status-

codes.xhtml, United States of America 

[24] ISO/IEC 27002:2013. Information technology – security techniques – code of practice for 

information security controls. 2nd edition, 2013 

[25] Jayawardhena, C., & Foley, P. Changes in the banking sector – the case of Internet banking in 

the UK. Internet Research: Electronic Networking Applications and Policy, 2000, vol. 10, no. 1, 

pp. 19–31, United Kingdom, ISSN 1066-224. DOI:10.1108/10662240010312048 

[26] Maarch Courrier. Maarch solution wiki: Document management system. Accessed at 

https://sourceforge.net/p/maarch/wiki/Home/ in October 2017 

[27] Marquardt, T. L. ASP.NET Thread Usage on IIS 7.5, IIS 7.0, and IIS 6.0. United States of 

America: Microsoft Corporation, 2007. Available at: 

https://blogs.msdn.microsoft.com/tmarq/2007/07/20/asp-net-thread-usage-on-iis-7-5-iis-7-0-and-

iis-6-0/ 

[28] McDonald, C. Data Modelling Guidelines for NoSQL JSON Document Databases. United 

States of America: MAPR, 2017. Available at: https://mapr.com/blog/data-modeling-guidelines-

nosql-json-document-databases/ 

[29] Mishra, A., Mathur, R., Jain, S., & Rathore, J. S. Cloud computing security. International 

Journal on Recent and Innovation Trends in Computing and Communication. vol. 1, no. 1, pp. 36-

39, 2013, ISSN2321-8169 

[30] MongoDB. Introduction to MongoDB. Accessed at 

https://docs.mongodb.com/manual/introduction/ in May 2018 

[31] MongoDB. Perform Two Phase Commits. United States of America: MongoDB Inc., 2018. 

Available at: https://docs.mongodb.com/v3.4/tutorial/perform-two-phase-commits/ 

[32] NF 461. Norme française: Règles de certification de la marque. AFNOR, 2012 

https://git-scm.com/book/en/v2
http://www.cnil.fr/
https://storageswiss.com/2015/01/22/should-enterprise-customers-diy-or-swiftstack/
https://storageswiss.com/2015/01/22/should-enterprise-customers-diy-or-swiftstack/
https://www.leslivresblancs.fr/livre/informatique-et-logiciels/archivage-electronique/coffre-fort-electronique-version-2
https://www.leslivresblancs.fr/livre/informatique-et-logiciels/archivage-electronique/coffre-fort-electronique-version-2
https://www.telerik.com/fiddler%20in%20February%202019
http://www.eugdpr.org/
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://sourceforge.net/p/maarch/wiki/Home/
https://blogs.msdn.microsoft.com/tmarq/2007/07/20/asp-net-thread-usage-on-iis-7-5-iis-7-0-and-iis-6-0/
https://blogs.msdn.microsoft.com/tmarq/2007/07/20/asp-net-thread-usage-on-iis-7-5-iis-7-0-and-iis-6-0/
https://mapr.com/blog/data-modeling-guidelines-nosql-json-document-databases/
https://mapr.com/blog/data-modeling-guidelines-nosql-json-document-databases/
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/v3.4/tutorial/perform-two-phase-commits/


 

55 

 

[33] NF Z42-013. Norme française: Spécifications relatives à la conception et à l'exploitation de 

systèmes informatiques en vue d'assurer la conservation et l'intégrité des documents stockés dans 

ces systèmes. AFNOR, 2009 

[34] NF Z42-020. Norme française: Spécifications fonctionnelles d'un composant Coffre-Fort 

Numérique destiné à la conservation d'informations numériques dans des conditions de nature à 

en garantir leur intégrité dans le temps. AFNOR, 2012 

[35] Nidhra, S., & Dondeti, J. Black box and white box testing techniques – a literature review. 

International Journal of Embedded Systems and Applications (IJESA). vol.2, no.2, pp. 29-50, 

2012. DOI : 10.5121/ijesa.2012.2204 

[36] NOR CNIX1402990X. Délibération nº 2014-017 du 23 janvier 2014 portant adoption d’un 

référentiel pour la délivrance de labels en matière de services de coffre-fort numérique. Journal 

official de la République Française, 2014 

[37] Opensource.com. What is OpenStack?. Accessed at https://opensource.com/resources/what-is-

openstack in September 2017 

[38] OpenStack. Open source software for creating private and public clouds. Accessed at 

https://www.openstack.org in October 2017 

[39] Securibox. ParseXtract: The data extraction toolkit. Accessed at https://px.securibox.eu in June 

2018 

[40] Securibox. Securibox: Empowering through data aggregation. Accessed at 

https://www.securibox.eu/about.html in September 2017 

[41] Sun, C., & Sosič, R. Optional locking integrated with operational transformation in distributed 

real-time group editors. In Proc. of ACM 18th Symposium on Principles of Distributed Computing, 

Atlanta, United States of America, 1999 

[42] Wagner, J. Review: Postman Client Makes RESTful API Exploration a Breeze. United States of 

America: Programmable Web, 2014. Available at 

https://www.programmableweb.com/news/review-postman-client-makes-restful-api-exploration-

breeze/brief/2014/01/27 

  

https://opensource.com/resources/what-is-openstack
https://opensource.com/resources/what-is-openstack
https://www.openstack.org/
https://px.securibox.eu/
https://www.securibox.eu/about.html
https://www.programmableweb.com/news/review-postman-client-makes-restful-api-exploration-breeze/brief/2014/01/27
https://www.programmableweb.com/news/review-postman-client-makes-restful-api-exploration-breeze/brief/2014/01/27


 

56 

 

Appendix 

Database collections 

The following documents contain data that was used during the development. 

 

Table 0.1: Database Journal collection document structure 

{ 

 "_id" : ObjectId("5cf6f8dba4aee14ee8247b9a"), 

 "username" : "trialTest", 

 "dvUserId" : "736c8c7d39834e6090ec85753f39585b", 

 "fileId" : "", 

 "swiftAccountId" : { 

  "_csharpnull" : true 

 }, 

 "digitalVaultId" : { 

  "_csharpnull" : true 

 }, 

 "containerId" : "", 

 "action" : "new OpenStack user created", 

 "actionDate" : ISODate("2019-06-04T23:03:55.467Z"), 

 "code" : 0, 

 "message" : "", 

 "description" : "", 

 "additionalInfo" : [], 

 "hashAlg" : "SHA512", 

 "hash" : 

"Q55/Xe3i86LupubUnOT5W+mlH5B8Ff0EvgtitR0/lXrxoR6R/OGt7n8p7FFdfpxB9FcxtkPJbK8Q

Q6hDyP02Qg==", 

 "hashPrevious" : "" 

} 

 

Table 0.2:Database MasterKeyCollection document structure 

{ 

 "_id" : ObjectId("5cf6f91da4aee14ee8247baa"), 

 "digitalVaultId" : "5cf6f8dba4aee14ee8247b9c$newContainer", 

 "salt" : "61jzIw1ydJEQqOQXYlEFHGubkgad3nBjjXictXbfPGw=", 

 "initializationVector" : "dYkFYpn2b0E/V+s4", 

 "masterKey" : 

"OSFkl+wPXdmyg1FjlqJlJwRpNgHRBU2CoSS+n4xJ6ZxiQhWby/Gv58uMkG0hW6lB", 

 "controlHash" : 

"b6yKupaLQAY2724x+2d2iqCSqQNxYf/nsheZV+BpRuGGxSjczxjTLNkehVFZOEI1JN+VVBzh

8iE2HEcqb8VA7Q==" 

} 



 

57 

 

 

Table 0.3: Database OpenStackAccount collection document structure 

{ 

  "_id" : ObjectId("5cf6f8d8a4aee14ee8247b99"), 

  "key" : 

"hjQNt9ajhy7Sz3Wkzb673C4OsQFKBJcEHXdV29gc24k=L9K2DE4DKxt+MeN7pGgX1iLvPu6N

+CcPO4iowOhQPptc71BwE8VL98vIJdjw3bsN++Qe8Uz+LrdWznpTUxxsCg==", 

  "thumbprint" : null, 

  "username" : "trialTest" 

} 

 

Table 0.4: Database SaltCollection document structure 

{ 

  "_id" : ObjectId("5cf6f8dba4aee14ee8247b9d"), 

  "dvUserId" : "736c8c7d39834e6090ec85753f39585b", 

  "salt" : "In1q+oO4vd59XkZ2gTv/2IUBeMOpzwF3LSDQ8a7qMek=" 

} 

 

Table 0.5: Database SharedCollection document structure 

{ 

  "_id" : ObjectId("5cf94e70a4aee1576076f0dd"), 

  "digitalVaultId" : "5cf6f964a4aee14ee8247bb3", 

  "sharings" : [  

    { 

      "containerId" : "testcontainer", 

      "entries" : [  

        { 

          "dvUserId" : "736c8c7d39834e6090ec85753f39585b", 

          "permission" : "Member" 

        } 

      ] 

    } 

  ] 

} 

 

Table 0.6: Database TwoStepCommit document structure 

{ 

  "_id" : ObjectId("5cf6f8dba4aee14ee8247b9b"), 

  "dvUserId" : "736c8c7d39834e6090ec85753f39585b", 

  "flag" : false, 

  "timestamp" : Timestamp(1567788264, 1) 

} 

 



 

58 

 

Table 0.7: Database User collection document structure 

{ 

  "_id" : ObjectId("5cf6f8dba4aee14ee8247b9e"), 

  "dvUserId" : "736c8c7d39834e6090ec85753f39585b", 

  "name" : "Trial Test", 

  "isEnabled" : false, 

  "authType" : "Pswd", 

  "apiVersion" : "dev", 

  "username" : "trialTest", 

  "passwordHash" : 

"z9kLLYatNcnUPwpotp5NCWvQ3zL0QawcmPAzkD8Kknt1Cif4E0occF0Y8Jyk2FStFoMuvKwIp

bRnE5+kKDddsQ==", 

  "hashAlg" : "Sha512", 

  "modificationdate" : ISODate("2019-06-04T00:00:00.000Z"), 

  "creationdate" : ISODate("2019-06-04T23:03:55.581Z"), 

  "timeStamp" : Timestamp(363, 616307133), 

  "tokenIssuer" : "securibox", 

  "digitalVaults" : [  

    { 

      "digitalVaultId" : "5cf6f8dba4aee14ee8247b9c", 

      "digitalVaultName" : "main", 

      "swiftNodes" : [  

        { 

          "swiftAccountId" : "08a1741f30fc48f6bc0d7bac28e05885", 

          "containerId" : "main", 

          "permission" : "3cb6e9de9b0342efbdb44a23707798b7" 

        } 

      ], 

      "digitalVaultOwner" : "736c8c7d39834e6090ec85753f39585b" 

    },  

    { 

      "digitalVaultId" : "5cf6f964a4aee14ee8247bb3", 

      "digitalVaultName" : "5d04a805cf5f45598bf0e5ce886486fd", 

      "swiftNodes" : [  

        { 

          "swiftAccountId" : "ecabbf295fcb41029e0e3ca0ab9c0e00", 

          "containerId" : "testcontainer", 

          "permission" : "5b1bfbcdc0eb42eab1823fc015cbe7b1" 

        } 

      ], 

      "digitalVaultOwner" : "5d04a805cf5f45598bf0e5ce886486fd" 

    } 

  ], 

  "certificates" : [] 

} 

 



 

59 

 

Swagger API specification 

The presented file was originally written in YAML using Swagger Editor. However, due to its 

size it was converted to JSON. The Swagger editor offers the possibility to convert JSON back to YAML 

automatically. The digitalvault.securibox.eu host, presented at the document, is local and is only 

available at the Securibox intranet. 

 

{"swagger":"2.0","info":{"description":"API for 

DigitalVault","version":"1.0.0","title":"Securibox 

DigitalVault","contact":{"email":"fc50118@alunos.fc.ul.pt"}},"host":"digitalvault.securibox.eu","bas

ePath":"/api/v1","schemes":["http","https"],"tags":[{"name":"Containers"},{"name":"Files"},{"name

":"User"},{"name":"Journal"}],"securityDefinitions":{"BasicAuth":{"type":"basic"}},"paths":{"/cont

ainer":{"post":{"tags":["Containers"],"summary":"Create new container.","description":"A new 

container will be created for user. Also, an swift container is 

made.","parameters":[{"in":"path","name":"containerId","required":true,"type":"string","minimum":

1,"description":"container 

name."}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Inter

nal server error"}}},"delete":{"tags":["Containers"],"summary":"Delete user 

container","description":"delete user's 

container","parameters":[{"in":"query","name":"digitalVaultId","required":true,"type":"string","min

imum":1,"description":"user's digital vault 

id."},{"in":"query","name":"containerId","required":true,"type":"string","minimum":1,"description":

"digital vault's container 

id."}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Internal 

server error"}}}},"/digitalvaults/{digitalVaultId}":{"get":{"tags":["Files"],"summary":"Get the list of 

files associated with a specific digital vault","description":"Get files from the 'main' 

container","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digitalVault 

id"}],"produces":["json"],"responses":{"200":{"description":"OK"},"400":{"description":"The 

digitalVaultId is wrong! Internal server error"}}},"post":{"tags":["Files"],"summary":"Upload a file 

to the main 

container","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"header","name":"metadata","required":false,"type":"array","items":{"type":"string"},"de

scription":"Each metadat should start with X-Object-Meta-

"},{"in":"header","name":"masterKey","required":true,"type":"string","description":"the encryption 

key will be based on the masterKey"},{"in":"header","name":"x-dv-file-

idcustom","required":true,"type":"string","description":"file 

name"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"The 

digitalVaultId is wrong! Internal server error You don't have permission to upload to this 

vault."}}}},"/digitalvaults/{digitalVaultId}/containers/{containerId}":{"get":{"tags":["Files"],"summa

ry":"Get the list of files associated with a specific digital vault","description":"Get files from the 

'containerId' 

container","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"path","name":"containerId","required":true,"type":"string","minimum":1,"description":"

Container 



 

60 

 

Id"}],"produces":["application/json"],"responses":{"200":{"description":"OK"},"400":{"description"

:"The digitalVaultId is wrong! Internal server error"}}},"post":{"tags":["Files"],"summary":"Upload 

a file to an 

containerId","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mi

nimum":1,"description":"digital vault 

Id"},{"in":"path","name":"containerId","required":true,"type":"string","minimum":1,"description":"c

ontainer 

Id"},{"in":"header","name":"metadata","required":false,"type":"array","items":{"type":"string"},"de

scription":"Each metadat should start with X-Object-Meta-

"},{"in":"header","name":"masterKey","required":true,"type":"string","description":"the encryption 

key will be based on the masterKey"},{"in":"header","name":"x-dv-file-

idcustom","required":true,"type":"string","description":"file 

name"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"The 

digitalVaultId is wrong! Internal server error You don't have permission to upload to this 

vault."}}}},"/digitalvaults/{digitalVaultId}/files":{"get":{"tags":["Files"],"summary":"Get file's 

content","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","minimu

m":1,"description":"digital vault 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/octet-

stream"],"responses":{"200":{"description":"OK"},"400":{"description":"The digitalVaultId is 

wrong! Internal server error"}}},"delete":{"tags":["Files"],"summary":"Delete a file from the digital 

vault main 

container","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/octet-

stream"],"responses":{"200":{"description":"OK"},"400":{"description":"The digitalVaultId is 

wrong! Internal server 

error"}}}},"/digitalvaults/{digitalVaultId}/containers/{containerId}/files":{"get":{"tags":["Files"],"su

mmary":"Get file's 

content","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","minimu

m":1,"description":"digital vault 

Id"},{"in":"path","name":"containerId","required":true,"type":"string","minimum":1,"description":"

Container 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/octet-

stream"],"responses":{"200":{"description":"OK"},"400":{"description":"Internal server 

error"}}},"delete":{"tags":["Files"],"summary":"Delete a file from a specific 

container","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"path","name":"containerId","required":true,"type":"string","minimum":1,"description":"

Container 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/octet-

stream"],"responses":{"200":{"description":"OK"},"400":{"description":"Internal server 

error"}}}},"/digitalvaults/{digitalVaultId}/files/metadata":{"get":{"tags":["Files"],"summary":"Get 

file's 



 

61 

 

metadata","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/json"],"responses":{"200":{"description":"OK"},"400":{"description"

:"file not found Internal server 

error"}}}},"/digitalvaults/{digitalVaultId}/containers/{containerId}/files/metadata":{"get":{"tags":["F

iles"],"summary":"Get file's 

metadata","parameters":[{"in":"path","name":"digitalVaultId","required":true,"type":"string","mini

mum":1,"description":"digital vault 

Id"},{"in":"path","name":"containerId","required":true,"type":"string","minimum":1,"description":"

Container 

Id"},{"in":"path","name":"fileId","required":true,"type":"string","minimum":1,"description":"File 

Id"}],"produces":["application/json"],"responses":{"200":{"description":"OK"},"400":{"description"

:"file not found Internal server error"}}}},"/sharevault":{"post":{"tags":["User"],"summary":"Share 

digital vault or container with other user","description":"Share digital vault or just a container with 

other 

user.","parameters":[{"in":"query","name":"UserId","required":true,"type":"string","minimum":1,"m

aximum":1,"description":"Digital vault will be shared with the 

UserId"},{"in":"query","name":"DigitalVaultId","required":true,"type":"string","minimum":1,"maxi

mum":1,"description":"Digital vault 

Id"},{"in":"query","name":"ContainerId","required":true,"type":"string","minimum":1,"maximum":1,

"description":"Container 

Id"},{"in":"query","name":"Permission","required":true,"type":"string","minimum":1,"maximum":1,"

description":"Permission possible values are *:* Admin, Member, 

Service"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Per

mission not found User with this ID doesn't 

exist"}}}},"/deleteshare":{"post":{"tags":["User"],"summary":"Remove the sharing from a specific 

user","description":"Remove the rights of access to a specific vault or a container from a specific 

user","parameters":[{"in":"query","name":"UserId","required":true,"type":"string","minimum":1,"m

aximum":1,"description":"Digital vault will be shared with the 

UserId"},{"in":"query","name":"DigitalVaultId","required":true,"type":"string","minimum":1,"maxi

mum":1,"description":"Digital vault 

Id"},{"in":"query","name":"ContainerId","required":true,"type":"string","minimum":1,"maximum":1,

"description":"Container 

Id"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Permissi

on not found User with this ID doesn't 

exist"}}}},"/listshareusers":{"post":{"tags":["User"],"summary":"Check who has access to a specific 

share","description":"Check who has access to your 

vault","parameters":[{"in":"query","name":"DigitalVaultId","required":true,"type":"string","minimu

m":1,"maximum":1,"description":"Digital vault 

Id"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Permissi

on not found User with this ID doesn't 

exist"}}}},"/register":{"post":{"tags":["User"],"summary":"Register new user","description":"Create 

new user. An OpenStack will be also automatically 

created.","parameters":[{"in":"query","name":"Name","required":true,"type":"string","minimum":1,

"description":"User's 

name"},{"in":"query","name":"Username","required":true,"type":"string","minimum":1,"maximum":



 

62 

 

1,"description":"User's 

username"},{"in":"query","name":"Password","required":true,"type":"string","minimum":1,"maximu

m":1,"description":"User's 

password"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"I

nternal server error"}}}},"/updatepassword":{"post":{"tags":["User"],"summary":"Update user's 

password","description":"A new password will be set to the 

account","parameters":[{"in":"query","name":"PasswordOld","required":true,"type":"string","minim

um":1,"description":"User's current 

password"},{"in":"query","name":"Password","required":true,"type":"string","minimum":1,"maximu

m":1,"description":"User's new 

password"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"I

nternal server error"}}}},"/getuserinfo":{"get":{"tags":["User"],"summary":"Retrieve user 

information","description":"Retrieve currently logged user 

information.","produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"

Internal server error"}}}},"/login":{"post":{"tags":["User"],"summary":"Login with username 

credentials","description":"Can be used to validade if user credentials are 

ok","parameters":[{"in":"query","name":"Username","required":true,"type":"string","minimum":1,"

maximum":1,"description":"User's 

username"},{"in":"query","name":"Password","required":true,"type":"string","minimum":1,"maximu

m":1,"description":"User's 

password"}],"produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"I

nternal server error"}}}},"/deleteaccount":{"delete":{"tags":["User"],"summary":"Delete 

account","description":"The account and all its associated files (except logs) will be removed from the 

system.","produces":["string"],"responses":{"200":{"description":"OK"},"400":{"description":"Inter

nal server error"}}}},"/masterkey":{"get":{"tags":["Master Key"],"summary":"Get encryption 

key","description":"It's only possible to get the real encryption key if the masterKey is 

correct","parameters":[{"in":"query","name":"Password","required":true,"type":"string","minimum"

:1,"maximum":1,"description":"MasterKey"},{"in":"query","name":"DigitalVaultId","required":true,

"type":"string","minimum":1,"maximum":1,"description":"MasterKey"}],"produces":["string"],"resp

onses":{"202":{"description":"OK"},"400":{"description":"Internal server 

error"},"405":{"description":"Impossible to retrieve masterKey for that 

DigitalVaultId"}}},"post":{"tags":["Master Key"],"summary":"Create master key for a specific digital 

vault","description":"Create master key that will be used to encrypt files. Note*:* it will be used only 

as one of the parts of the encryption 

key.","parameters":[{"in":"query","name":"Password","required":true,"type":"string","minimum":1,

"maximum":1,"description":"MasterKey"},{"in":"query","name":"DigitalVaultId","required":true,"ty

pe":"string","minimum":1,"maximum":1,"description":"MasterKey"}],"produces":["string"],"respons

es":{"200":{"description":"OK"},"400":{"description":"Internal server 

error"},"405":{"description":"Impossible to create masterKey for that 

DigitalVaultId"},"409":{"description":"MasterKey already 

exists"}}}},"/updatemasterkey":{"post":{"tags":["Master Key"],"summary":"Update master key’s 

password for a specific digital vault","description":"It's only possible to get the real encryption key if 

the masterKey is 

correct","parameters":[{"in":"query","name":"Password","required":true,"type":"string","minimum"

:1,"maximum":1,"description":"MasterKey current 

password"},{"in":"query","name":"NewPassword","required":true,"type":"string","minimum":1,"ma

ximum":1,"description":"new MasterKey 



 

63 

 

password"},{"in":"query","name":"NewPasswordRepeat","required":true,"type":"string","minimum":

1,"maximum":1,"description":"new MasterKey 

password"},{"in":"query","name":"DigitalVaultId","required":true,"type":"string","minimum":1,"ma

ximum":1,"description":"MasterKey"}],"produces":["string"],"responses":{"202":{"description":"OK

"},"400":{"description":"Internal server error"},"405":{"description":"Impossible to retrieve 

masterKey for that DigitalVaultId"}}}},"/masterkeyCheck":{"get":{"tags":["Master 

Key"],"summary":"Verify if a specific digitalVault already has a masterKey encryption 

key","description":"The encryption key itslef is not 

retrieved","parameters":[{"in":"query","name":"DigitalVaultId","required":true,"type":"string","min

imum":1,"maximum":1,"description":"MasterKey"}],"produces":["string"],"responses":{"202":{"des

cription":"OK"},"400":{"description":"Internal server error"},"405":{"description":"Impossible to 

retrieve masterKey for that DigitalVaultId"}}}},"/verifyMasterKey":{"get":{"tags":["Master 

Key"],"summary":"Verify if the masterKey password is correct for a specific 

digitalVault","description":"Verify if the masterKey password is correct for a specific digitalVault, 

without retrieving the key 

itself","parameters":[{"in":"query","name":"DigitalVaultId","required":true,"type":"string","minimu

m":1,"maximum":1,"description":"MasterKey"}],"produces":["string"],"responses":{"202":{"descrip

tion":"OK"},"400":{"description":"Internal server error"},"405":{"description":"Impossible to 

retrieve masterKey for that 

DigitalVaultId"}}}},"/journalhistory":{"get":{"tags":["Journal"],"summary":"Get last journal entries 

for the current user","description":"By default it will only return the last entry. Max number of entries 

is 

250","parameters":[{"in":"query","name":"limit","required":false,"type":"integer","minimum":1,"ma

ximum":1,"description":"number of the 

entries"}],"produces":["application/json"],"responses":{"200":{"description":"OK"},"400":{"descrip

tion":"Internal server 

error"}}}},"/checkjournalintegrity":{"get":{"tags":["Journal"],"summary":"Check the journal 

integrity","description":"All logs hash is calculated again and compared with the ones that are 

stored.","produces":["application/json"],"responses":{"200":{"description":"OK"},"400":{"descripti

on":"Internal server error"}}}}}} 


