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Resumo

A Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa heterogénea com padrões de

apresentação altamente variáveis. Dada a natureza heterogénea dos doentes com ELA, aquando do di-

agnóstico os clínicos normalmente estimam a progressão da doença utilizando uma taxa de decaimento

funcional, calculada com base na Escala Revista de Avaliação Funcional de ELA (ALSFRS-R).

A utilização de modelos de Aprendizagem Automática que consigam lidar com este padrões com-

plexos é necessária para compreender a doença, melhorar os cuidados aos doentes e a sua sobrevivência.

Estes modelos devem ser explicáveis para que os clínicos possam tomar decisões informadas.

Desta forma, o nosso objectivo é descobrir padrões de apresentação da doença, para isso propondo

uma nova abordagem de Prospecção de Dados: Descoberta de Meta-atributos Discriminativos (DMD),

que utiliza uma combinação de Biclustering, Classificação baseada em Biclustering e Prospecção de Re-

gras de Associação para Classificação. Estes padrões (chamados de Meta-atributos) são compostos por

subconjuntos de atributos discriminativos conjuntamente com os seus valores, permitindo assim distin-

guir e caracterizar subgrupos de doentes com padrões similares de apresentação da doença.

Os Registos de Saúde Electrónicos (RSE) utilizados neste trabalho provêm do conjunto de dados

JPND ONWebDUALS (ONTology-based Web Database for Understanding Amyotrophic Lateral Scle-

rosis), composto por questões standardizadas acerca de factores de risco, mutações genéticas, atributos

clínicos ou informação de sobrevivência de uma coorte de doentes e controlos seguidos pelo consórcio

ENCALS (European Network to Cure ALS), que inclui vários países europeus, incluindo Portugal.

Nesta tese a metodologia proposta foi utilizada na parte portuguesa do conjunto de dados ONWebD-

UALS para encontrar padrões de apresentação da doença que: 1) distinguissem os doentes de ELA dos

seus controlos e 2) caracterizassem grupos de doentes de ELA com diferentes taxas de progressão (cat-

egorizados em grupos Lentos, Neutros e Rápidos). Nenhum padrão coerente emergiu das experiências

efectuadas para a primeira tarefa. Contudo, para a segunda tarefa os padrões encontrados para cada um

dos três grupos de progressão foram reconhecidos e validados por clínicos especialistas em ELA, como

sendo características relevantes de doentes com progressão Lenta, Neutra e Rápida. Estes resultados sug-

erem que a nossa abordagem genérica baseada em Biclustering tem potencial para identificar padrões de

apresentação noutros problemas ou doenças semelhantes.

Palavras Chave: Esclerose Lateral Amiotrófica, Biclustering baseado em Prospecção de Padrões,

Classificação baseada em Biclustering, Prospecção de Regras de Associação para Classificação, Biclus-

ters Discriminativos
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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous neurodegenerative disease with a high vari-

ability of presentation patterns. Given the heterogeneous nature of ALS patients and targeting a better

prognosis, clinicians usually estimate disease progression at diagnosis using the rate of decay computed

from the Revised ALS Functional Rating Scale (ALSFRS-R).

In this context, the use of Machine Learning models able to unravel the complexity of disease pre-

sentation patterns is paramount for disease understanding, targeting improved patient care and longer

survival times. Furthermore, explainable models are vital, since clinicians must be able to understand the

reasoning behind a given model’s result before making a decision that can impact a patient’s life.

Therefore we aim at unravelling disease presentation patterns by proposing a new Data Mining ap-

proach called Discriminative Meta-features Discovery (DMD), which uses a combination of Bicluster-

ing, Biclustering-based Classification and Class Association Rule Mining. These patterns (called Meta-

features) are composed of discriminative subsets of features together with their values, allowing to dis-

tinguish and characterize subgroups of patients with similar disease presentation patterns.

The Electronic Health Record (EHR) data used in this work comes from the JPND ONWebDUALS

(ONTology-based Web Database for Understanding Amyotrophic Lateral Sclerosis) dataset, comprised

of standardized questionnaire answers regarding risk factors, genetic mutations, clinical features and

survival information from a cohort of patients and controls from ENCALS (European Network to Cure

ALS), a consortium of diverse European countries, including Portugal.

In this work the proposed methodology was used on the ONWebDUALS Portuguese EHR data to find

disease presentation patterns that: 1) distinguish the ALS patients from their controls and 2) characterize

groups of ALS patients with different progression rates (categorized into Slow, Neutral and Fast groups).

No clear pattern emerged from the experiments performed for the first task. However, in the second task

the patterns found for each of the three progression groups were recognized and validated byALS expert

clinicians, as being relevant characteristics of slow, neutral and fast progressing patients. These results

suggest that our generic Biclustering approach is a promising way to unravel disease presentation patterns

and could be applied to similar problems and other diseases.

Keywords: Amyotrophic Lateral Sclerosis, Pattern Mining-based Biclustering, Biclustering-based

Classification, Class Association Rule Mining, Discriminative Biclusters
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ResumoAlargado

A Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa heterogénea que afecta o Sis-

tema Motor humano, num período de tempo relativamente curto. A doença pode surgir numa determi-

nada região do corpo e com o tempo afectar também outras. Alguns sintomas comuns são: fraqueza

nos membros, dificuldades em falar e engolir, insuficiência respiratória e alterações cognitivas/compor-

tamentais. A principal causa de morte é a eventual insuficiência respiratória. O tempo de sobrevivência

é altamente variável, dependendo da velocidade da progressão da doença, que aquando do diagnóstico é

frequentemente estimada pelos clínicos utilizando uma taxa de decaimento funcional, calculada com base

na Escala Revista deAvaliação Funcional de ELA (ALSFRS-R). Esta escala é composta por 12 perguntas

cujo valor para cada uma varia entre 0 e 4, com um valor máximo de 48 (quanto maior o valor total, maior

a capacidade funcional do doente).

Até ao presente dia, continua a ser necessário descobrir testes de diagnóstico fiáveis ou biomarcadores

que ajudem os clínicos a conseguir diagnosticar esta doença de forma rápida e eficaz, dado o alto grau de

variabilidade existente nos fenótipos observados, história familiar, genes envolvidos, vias moleculares e

factores ambientais que a poderão provocar. Tendo isto em consideração, acredita-se que existem diversos

mecanismos que podem causar a neurodegenerescência em doentes com ELA.

Dentro deste contexto, o nosso objectivo é descobrir padrões de apresentação da doença. Estes

padrões (que neste trabalho serão chamados de Meta-atributos) são compostos por subconjuntos de atrib-

utos discriminativos conjuntamente com os seus valores, permitindo assim distinguir e caracterizar sub-

grupos de doentes com padrões similares de apresentação da doença. Uma possível forma de identificar

este tipo de padrões é através da utilização de modelos de AprendizagemAutomática, que conseguem li-

dar com a complexidade dos mesmos, permitindo compreender melhor a doença, criar tratamentos mais

específicos para os doentes e aumentar o seu tempo de sobrevivência. Idealmente, esses modelos dev-

erão ser explicáveis, uma vez que os clínicos têm de conseguir compreender o raciocínio por detrás de

um resultado do modelo antes de tomar qualquer decisão com impacto na vida de um doente.

Os Registos de Saúde Electrónicos (RSE) utilizados neste trabalho provêm do conjunto de dados

JPND ONWebDUALS (ONTology-based Web Database for Understanding Amyotrophic Lateral Scle-

rosis), composto por questões standardizadas acerca de factores de risco, mutações genéticas, atributos

clínicos ou informação de sobreviência de uma coorte de doentes e controlos seguidos pelo consórcio

ENCALS (European Network to Cure ALS), que inclui vários países europeus, incluindo Portugal.

Assim, neste trabalho é proposta uma nova abordagem exploratória para a Prospecção de Dados,

chamada Descoberta de Meta-atributos Discriminativos (DMD). A base da mesma assenta na utilização
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de Biclustering, uma técnica de Prospecção de Dados que permite identificar Biclusters: observações

com padrões coerentes em certos subconjuntos de atributos (e os seus respectivos valores) em conjuntos

de dados bidimensionais. Até à data estas técnicas foram aplicadas com sucesso em dados médicos, per-

mitindo descobrir grupos de entidades biológicas significativamente correlacionadas num subconjunto

de condições ou pontos no tempo. De forma a encontrar Biclusters com sobreposição de forma eficiente

utilizou-se uma variante - Biclustering baseado em Prospecção de Padrões - que necessita da prévia cat-

egorização dos dados, o que pode implicar alguma perda de informação. Os Biclusters são considerados

discriminativos caso pelo menos 75% das observações incluídas nos mesmos pertençam a uma dada

classe, embora esta não seja considerada quando os Biclusters estão a ser prospectados. Entre vários

conjuntos de Biclusters obtidos em experiências diferentes, foram considerados melhores os que tinham

maior número de Biclusters discriminativos.

Sobre esses resultados são utilizadas técnicas de Classificação baseada em Biclustering e Prospecção

de Regras de Associação para Classificação, para descobrir quais os padrões mais discriminativos para

cada classe considerada. Por um lado a primeira abordagem utiliza uma matriz de identificadores dos

sujeitos (doentes ou controlos) × identificadores dos Biclusters discriminativos que indica em que Bi-

clusters os sujeitos estavam presentes. Utilizando os identificadores dos Biclusters como atributos, con-

seguimos verificar que conjuntos de atributos (e os seus valores) são considerados mais importantes na

classificação e comparar com os atributos individuais. Por outro lado, a segunda abordagem tira partido

da teoria de conjuntos para encontrar os subconjuntos de atributos (e os seus valores) que estão mais

associados com cada classe. Estas duas abordagens foram utilizadas em paralelo para tirar partido das

características explicativas dos modelos utilizados e também para validar a robustez dos resultados obti-

dos. Várias experiências (incluindo baselines) foram incluídas para efeitos comparativos. Uma nota

importante é a de que a abordagem DMD foi desenhada para ser genérica, podendo ser implementada de

outras formas, utilizando outros algoritmos e até para tipos de dados diferentes, dependendo apenas das

capacidades do algoritmo de Biclustering escolhido.

Nesta tese a implementação da metodologia DMD foi feita recorrendo a diversos softwares e lingua-

gens de programação. O pré-processamento dos dados foi todo efectuado utilizando o software KNIME,

incluindo a limpeza, transformação, categorização, adição de classe e selecção de atributos. O Biclus-

tering baseado em Prospecção de Padrões foi corrido utilizando o algoritmo BicPAM (que faz parte do

software open-source BicPAMS), a partir de código Java criado para correr conjuntos de experiências

a partir de todas as combinações de parâmetros definidas (ExperienceSet). Adicionalmente foi criado

código para traduzir os estágios intermédios dos Biclusters (de índices de categorias para valores de cat-

egorias, e destes últimos para as etiquetas finais, mais legíveis), que ocorreram como consequência de

trabalhar com dados categóricos no BicPAMS. A Classificação baseada em Biclustering foi feita uti-

lizando a biblioteca scikit-learn para a linguagem Python, recorrendo a modelos Random Forest para

obter métricas de importância dos atributos utilizados na classificação. Finalmente, a Prospecção de

Regras de Associação para Classificação foi feita em Python, tirando partido da biblioteca open-source

SPMF, escrita em Java.

Seguidamente, a metodologia proposta foi utilizada na parte portuguesa do conjunto de dados ON-

WebDUALS para encontrar padrões de apresentação de ELA que: 1) distinguissem os doentes de ELA
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dos seus controlos e 2) caracterizassem grupos de doentes de ELA com diferentes taxas de progressão

(categorizados em grupos de progressão Lenta, Neutra e Rápida, obtidos através de aplicação de um

algoritmo de Maximização de Expectativas).

Na primeira tarefa nenhum padrão coerente emergiu das experiências efectuadas, não tendo sido en-

contrados resultados convergentes entre as técnicas deClassificação baseada emBiclustering e Prospecção

de Regras de Associação para Classificação. Embora fosse uma tarefa mais complexa que a segunda, a

selecção de atributos efectuada e o excesso de atributos vindos dos Biclusters discriminativos encontra-

dos poderão ter contribuído para a ausência de resultados conclusivos. Contudo, foi possível verificar

que não houve atributos individuais a serem apontados como os mais importantes para a classificação.

Desta forma foi possível concluir que para distinguir os doentes dos controlos terão de ser considerados

subconjuntos de atributos (e seus valores).

Na segunda tarefa foram encontrados padrões para cada um dos três grupos de progressão (Lenta,

Neutra e Rápida), tendo sido reconhecidos e validados por clínicos especialistas em ELA. Os doentes

de progressão Lenta foram identificados pelos valores consistentemente máximos de algumas pergun-

tas da escala ALSFRS-R. Já para os doentes de progressão Neutra, a pergunta 5 da escala ALSFRS-R

(relacionada com o corte de comida e manejar utensílios) com o valor 3, indicando algum decaimento

funcional. Finalmente, os doentes de progressão rápida foram caracterizados pelos valores mais baixos

dos atributos Atraso no diagnóstico e Tempo de transição entre a região 1 e 2.

Estes resultados sugerem que a nossa abordagem genérica baseada em Biclustering tem potencial

para ser identificar padrões de apresentação noutros problemas ou doenças semelhantes.
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Chapter 1

Introduction

1.1 Context and Motivation

The work described in this thesis was done in the context of the NEUROCLINOMICS2 (Unravelling

Prognostic Markers in NEUROdegenerative diseases through CLINical and OMICS data integration,

with Ref. PTDC/EEI-SII/1937/2014) project at the LASIGEResearchUnit (Ref. UID/CEC/00408/2019).

This project’s main objectives are to understand Amyotrophic Lateral Sclerosis (ALS) disease progres-

sion patterns and predict prognostic markers for personalized medicine. In this thesis we focused on the

discovery of disease presentation patterns.

ALS is a heterogeneous neurodegenerative syndrome which affects the human motor system in a rel-

atively short time period. Common symptoms are limb weakness, speaking and swallowing impairment,

respiratory insufficiency and cognitive/behavioural changes. Eventually it culminates in respiratory fail-

ure, which is appointed as the main cause of death. Survivability is highly variable, depending on the

speed of disease progression [12, 32].

To this day, it remains crucial to unravel definite diagnostic tests or biomarkers to help clinicians

make a fast and clear diagnosis for this disease, given the high degree of variability in phenotype, family

history, genes involved, molecular pathways and environmental factors that might induce it. Thus, it is

believed that distinct mechanisms cause the neurodegeneration in ALS patients [32].

In this context, the use of Machine Learning models able to unravel the complexity of disease pre-

sentation patterns is paramount for disease understanding, targeting improved patient care and longer

survival times. Furthermore, explainable models are vital, since clinicians must be able to understand the

reasoning behind a given model’s result or prediction before making a decision that can impact a patient’s

life. [8].

1



Chapter 1 Introduction

1.2 ONWebDUALS dataset

The JPNDONWebDUALS two-dimensional dataset is the result of a collective effort fromENCALS,

a consortium composed of partners from European countries. This dataset is the first in Europe to contain

answers of standardized patient questionnaires of ALS patients and controls, regarding their demograph-

ics, lifestyle, genetic mutations, family occurrences of ALS (or similar neurodegenerative diseases) and

more. The major motivations behind the compilation of this dataset were to investigate the interplay

between demographics, genetic mutations, clinical features and survival to discover causal relationships

linking the patients’ specific risk factors and ALS genotype-phenotype [49, 12]. So far, the dataset in-

cludes information from Patients and Controls from four European countries (Turkey, Germany, Portugal

and Poland) or, more concretely, five different cities (Antalya, Hannover, Jena, Lisbon and Warsaw).

The data considered for each subject (Patient or Control) can be seen as:

- a set of static features (which could not change over time), which includes the information about the

subject’s demographics, disease severity, co-morbidities, medication, genetic information, habits,

trauma/surgery information and occupations;

- a set of temporal features (which could change over time), such as disease progression rate (e.g.

ALSFRS-R scale measurements, pulmonary function tests measurements) and clinical laboratory

investigations.

Considering what was aforementioned, the general layout of the data can be seen in Figure 1.1:

Figure 1.1: Layout of the ONWebDUALS dataset.

However, regarding the temporal features, it is important to state that a single time point (shown as

a temporal snapshot T0 in Figure 1.1) was available in this dataset, thus being the only one considered.

Succinctly, it implies that this dataset can be globally treated as static data. Another major consideration
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is that disease-related features are specific to the ALS Patients (not being present in the Controls’ data).

This can also be seen in Table 1.1, where the feature sets from the questionnaires are reported.

Feature Set Patients Controls

Demographic Information Yes Yes

Disease Features Yes No

Clinical Signs Yes No

Disease Severity and Progression Rate Yes No

Investigations (laboratorial) Yes No

Co-morbidities (other diseases) Yes Yes

Medication Yes Yes

Genetic Information Yes Yes

Habits / Trauma and Surgery Yes Yes

Occupations Yes Yes

Table 1.1: Feature sets from the ONWebDUALS dataset standardized questionnaires.

The analysis in this thesis is the first performed over this data, therefore special considerations had

to be had in handling and cleaning the data. An exploratory analysis performed on the original dataset

(over 600 features) revealed some issues: some features had irrelevant or erroneous values that needed

to be treated or uniformized before discretization and others had duplicate column names. In addition,

only Patients and Controls selected in Lisbon (472 Patients and 300 Controls) were considered for further

analysis. This was done for several reasons: the Portuguese subjects were followed by one of our expert

clinicians, having less missing information per subject and less prone to biases.

The entire data treatment performed is thoroughly detailed in Section 3.1.1 Data Pre-processing.

The number of effectively considered features varied with the task and respective experiment, which

are thoroughly described in Chapter 4 Discriminative Meta-features Discovery: A Case Study in the

Portuguese ONWebDUALS Dataset.

1.3 Objectives and Contributions

The main objective of this thesis is to unravel disease presentation patterns ofALS patients on Electronic

Health Record (EHR) data from the aforementioned ONWebDUALS dataset. These patterns can be

found in the form of relevant subsets of features and their values (Meta-features), which caracterize and

discriminate class-labeled two-dimensional data.

This main objective encompasses two clinical problems we tried to address as secondary goals. The

first goal is to help improve diagnosis of the disease, to start the patients’ treatments as early as possible.
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And the second goal is to help with the prognosis of ALS patients to help assess disease progression,

refine therapeutical trial design and improve patient care.

To accomplish these goals, in this thesis is suggested a new Data Mining approach called Discrimi-

native Meta-features Discovery (DMD). To the best of our knowledge, this approach uniquely combines

Data Mining and Machine Learning techniques in order to find class-discriminative patterns in two-

dimensional data. At its base is a specialised pattern-based Data Mining technique called Biclustering,

which was used to identify any potentially relevant subsets of features (and their respective values) in this

complex two-dimensional dataset. Up-to-date this technique has been successfully applied in healthcare

data, allowing the discovery of groups of biological entities or individuals meaningfully correlated on a

subset of conditions [44].

More concretely, the DMD approach is a workflow composed of several steps. First of all, the data

is pre-processed (including discretization and class-labelling). Then Pattern Mining-based Biclustering

is applied to the pre-processed data to find discriminative Biclusters and their patterns. Finally, the pat-

terns from the Biclustering phase are further processed in two separate ways (using Biclustering-based

Classification and Class Association Rule (CAR) Mining) to find the most discriminative Meta-features.

Finally, in the context of this thesis the DMD approach was applied to the Portuguese portion of the

ONWebDUALS dataset, where the aforementioned secondary goals were translated into concrete Tasks

with distinct investigation directions:

1. Discover Meta-features which best distinguish the ALS patients from their controls, if any;

2. Discover Meta-features which caracterize ALS patients’ progression groups, if any.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 Background and Related Work contains all the background

information, including a thorough disease description, important definitions and related work. Chapter

3 Discriminative Meta-features Discovery focuses on outlining the newly suggested DMD approach that

was used to complete each one of the defined tasks. Chapter 4 Discriminative Meta-features Discovery:

A Case Study in the Portuguese ONWebDUALS Dataset reveals the results of the performed experiments.

Finally, Chapter 5 Conclusions and Future Work disclosures this thesis’ main conclusions and suggests

possible future work.
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Chapter 2

Background and Related Work

2.1 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is an idiopathic and heterogeneous neurodegenerative syndrome,

which affects the upper and lower human motor system. The onset area of the body where the neurode-

generation starts may vary, but within weeks or months progressive motor deficits ensue, difficulting

proper nutrition and causing cognitive and/or behavioural changes. Eventually it culminates in respira-

tory failure, appointed as the main cause of death. Survivability is highly variable, with the most common

case being around 3-4 years, depending mostly on the origin onset area of the body and speed of disease

progression [13, 32].

ALS is usually classified in two main forms: familial (fALS) and sporadic (sALS). Familiar ALS

comprises 5-10% of the cases, and it is the best understood form of the disease, since more than 30 genes

and loci of major effect involved are, as of date, identified. The most frequent gene mutations occur on

C9orf72, SOD1, FUS and TARDBP (which codes for the TDP-43 protein) genes. SporadicALS includes

the remaining 90% of the patients. Even though it is the most frequent type, so far it has been difficult to

concretely identify the underlying causes, since only 15% of the sALS cases can be explained by genetic

factors. The only established risk factors are advanced age, male gender and some very specific genetic

mutations [13, 34].

Environmental factors have been proposed to explain the high prevalence of ALS in certain popula-

tions, like smoking, exposure to pesticides and organic toxins, electromagnetic radiation and high levels

of exercise. However, only smoking was proven to have a definite evidence of risk. Studies of relevant

sample size are direly needed to test additional factors, such as dietary habits (fat and glutamate rich

diets), gut microbiome and psychological stress [13, 34].

ALS incidence is homogeneous across Europe, with an incidence rate of 2.16 per 100000 person years
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(95% CI 2.0 to 2.3). Genderwise, for men the incidence rate is higher (3.0 per 100000 person years, 95%

CI 2.8 to 3.3) than among women (2.4 per 100000 person years, 95% CI 2.2 to 2.6). These rates tend to

increase with the advance of age for both genders, more pronouncedly after 40 years of age, reaching its

apex at 70-74 years for men and 65-69 years for women. After that, disease occurrence declines rapidly

[42].

On a more global scale, it has been proposed that different genetic etiologies underlying motor neu-

ron degeneration may exist across major ethnic groups. One example of such was found in Japan, where

OPTN gene mutations have been appointed as responsible for autosomal recessiveALS in Japanese fam-

ilies [57].

The El Escorial criteria is used to diagnose patients who have a history of progressive muscle weak-

ness that has spread to one or more regions of the body, and that any other disease cannot explain. Its

final result is a degree of probability that the patient has ALS: definite, probable, probable (laboratory-

supported) and possible [13].

To assess functionality and accurately track progression of patients’disability, the RevisedALS Func-

tional Rating Scale (ALSFRS-R) is used. This scale is composed of 12 questions, where each one can

be evaluated in a scale from 0 to 4, totalling to a maximum of 48 points (indicating no dysfunction).

This scale takes not only limb and bulbar function in consideration, but also the degree of respiratory

disfunction, allowing a good evaluation of patients’ quality of function and life [7].

Additionally, it was recently discovered that ALS shares pathobiological features (e.g.: toxic aggre-

gates of TDP-43 protein) with Frontotemporal Dementia (FTD), generating a whole spectrum of disease

phenotypes in between. Some patients even tend to suffer from both conditions at once, or have someone

in their family which suffers from one of the two [13].

Regarding possible treatments, currently the only widely available drug known to prolong ALS pa-

tients’ survival is Riluzole, shown to increase life span for approximately 3 months. To alleviate the

respiratory symptoms, Non-Invasive Ventilation (NIV) is commonly advised, since it extends survival

with an effect size greater than Riluzole (median survival increase of 7 months), especially if started as

soon as muscle weakness is detected [13].

In the last decades many technological advances have sped up the discoveries regarding this disease,

but it remains crucial to unravel definite diagnostic tests or biomarkers to help clinicians make a fast and

clear diagnosis. In addition, this would greatly help to assess disease progression, refine therapeutical

trial design and start the patients’ treatments as early as possible [32].

In conclusion, taking into consideration the high degree of variability in phenotype, family history,

genetic mutations, molecular pathways and possible environmental factors involved, it is believed that

different mechanisms cause the neurodegeneration in ALS patients [13].

2.2 Unsupervised Learning

In Machine Learning, Unsupervised Learning includes all techniques whose learning process is unsu-
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pervised due to the inexistence of a class label for each element of the dataset (no ground truth), such as

Clustering, Biclustering and Pattern Mining. These techniques are widely used in Data Mining to group

data observations based on their features’ values [22].

2.2.1 Clustering

Given a dataset with n observations, X = {x1, . . . , xn}, the Clustering task aims to find subsets of
observations (Clusters), {I1, . . . , Ir}, where every Ii ⊆ X satisfies certain intra-cluster (within a Clus-

ter) and inter-cluster (between different Clusters) criteria of (dis)similarity over the whole space [28]. A

Clustering example is shown in Figure 2.1.

Figure 2.1: Illustrative example of Clustering.

Clustering can help discover previously unknown groupings within a dataset, and currently it is used

in a myriad of very different applications (e.g. business intelligence, biology, image pattern recognition,

web search and security). From a Data Mining point of view, it can be used as a standalone tool to

retrieve new knowledge about and from the data, but it can also be used as a pre-processing step for other

algorithms like classifiers. In extremis, a Cluster can be also seen as an implicit class: the objects in a

Cluster are similar to each other and, at the same time, are different from the objects in other Clusters,

which allows for automatic classification. Finally, it can also be used for outlier detection [22].

2.2.2 Biclustering

A two-dimensional (2D) dataset (or matrix) can be defined by n observations (rows)X = {x1, . . . , xn},
m attributes (columns) Y = {y1, . . . , ym}, and n × m elements (values) aij . Given a real-valued or

symbolic matrix A, the Biclustering task’s objective is to find a set of Biclusters B = {B1, . . . , Bq} (a
Biclustering solution), such that each Bicluster Bi satisfies specific criteria of homogeneity and statisti-

cal significance [28]. Figure 2.2 shows an example of a Biclustering solution.

A Bicluster B = (I, J) is a subspace given by a subset of rows I ⊆ X which show a coherent

pattern observed for a subset of columns J ⊆ Y . It is consideredmaximal if and only if there is no other

Bicluster B′ = (I ′, J ′) such that I ⊆ I ′ and J ⊆ J ′, while B ∈ {B1, . . . , Bq} and B′ ∈ {B1, . . . , Bq},
meaning that it cannot be expanded further in any of the two dimensions [28, 25].
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Figure 2.2: Illustrative example of a Biclustering solution.

The homogeneity criteria determines the structure, coherence and quality of a Biclustering solution,

where it can be said that:

- The structure is described by the number, size, shape and position of said Biclusters (Figure 2.6);

- The coherence of a Bicluster is defined by the observed correlation of values (correlation assump-

tion) and the allowed deviation from expectations (coherence strength);

- The quality of a Bicluster is defined by the type and amount of tolerated noise (values or symbols

that differ from the expected pattern) and missing elements.

Taking these points into consideration, it sounds reasonable that the homogeneity criteria to apply to

a given dataset should depend on its regularities: the possible domain of the dataset’s features - either if

they are real-valued, symbolic or non-identically distributed - and their respective distribution [28].

To guide the search for Biclusters, a Biclustering algorithm uses a merit function, which evaluates

how good a found Bicluster is based on the values of its elements. The chosen merit function is highly

correlated with the characteristics of the Biclusters it can obtain, since it defines the type of homogeneity

being sought in each one of them. It is important to use a different type of merit function to evaluate

the quality of the identified Biclusters, in order to avoid evaluation biases [44, 28]. It is of note that

pattern-based merit functions exist, allowing to assess the maximality of Biclusters with well-defined

patterns composed of a set of symbols from one dimension, repeated over the other. These functions

accommodate principles from Biclustering to handle non-constant patterns, sparse data and to minimize

the drawbacks of discretization procedures (e.g. loss of information) by alleviating noise [28, 25, 65].

ABicluster is statistically significant if its probability of occurrence deviates from expectations, that

is to say that the found pattern has a very low probability of occurring by chance in the given dataset. To

derive such a conclusion for a given Bicluster, the p-value probability from a statistical hypothesis test

against a null data model is usually used [28]. In the same way as homogeneity, the statistical significance

criteria to apply to a given dataset should depend on its regularities. Any Biclusters found must be subject

to statistical assessments in order to:

1. Measure and minimize the risk of including irrelevant Biclusters in the solution (false positives,

error of type-I);
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2. Guide the Biclustering task without increasing the risk of excluding relevant Biclusters (false neg-

atives, error of type-II) [28, 24].

However, even though this criterion is majorly important to guarantee the soundness of a given Bi-

clustering solution, there is no agreed ground truth on how to verify and promote it. Many algorithms are

guided by merit functions that enforce homogeneity over statistical significance, but having the former

does not imply the existence of the latter, since it is very common for small Biclusters to have good ho-

mogeneity levels by chance. Therefore, both criteria need to be combined and considered when choosing

between solutions [28, 24].

Besides what was said above for quality, it is important to underline that some actions included in the

pre-processing (normalization and discretization) and post-processing (merging, filtering, extending and

reducing) phases contribute for Bicluster quality adjustment to account for noise [28]. Moreover, some

algorithms and frameworks have imputation procedures or dedicated interpretations to deal with missing

values [18, 27].

2.2.2.1 Types of Biclusters

Typically each subspace problem to solve has its own specificity, thus different types of Biclustersmay

be needed or considered interesting. The type of found Biclusters depends on the Biclustering algorithm

and possibly its parameterization. As defined in [44], these different types can be categorized in four

major classes: 1) Biclusters with constant values, 2) Biclusters with constant values on rows or columns,

3) Biclusters with coherent values and 4) Biclusters with coherent evolutions. Figure 2.3 shows some

examples:

Figure 2.3: Examples of different types of Biclusters (adapted from [44]).
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2.2.2.2 Biclustering Models

At the basis of the aforementioned different types of Biclusters standmathematical models which describe

them and define their coherence.

Regarding Constant Valued Biclusters, they’re considered perfect if the Bicluster is a subspace

(I, J) where all real-valued elements aij are equal for all i ∈ I and all j ∈ J : aij = µ. An example of

this is given in Figure 2.3 a). However, since real data usually has noise, perfect Biclusters are rare to

find. This means that a regular Constant Bicluster is better defined by aij = µ + ηij , where ηij is the

noise amount associated with the real value µ of aij [44].

When looking at Biclusters with Constant Values on Rows or Columns, we can have two types of

models: Additive orMultiplicative, depending on the relation between the values. These Biclusters are

considered perfect if the Bicluster is a subspace (I, J) where all elements aij are obtained using one of

the following expressions:

Model Type Expression

Additive on Rows aij = µ+ αi

Multiplicative on Rows aij = µ× αi

Additive on Columns aij = µ+ βj

Multiplicative on Columns aij = µ× βj

Table 2.1: Model types and respective expressions for Biclusters with Constant Values.

where αi is the adjustment value per row i ∈ I and βj is the adjustment value per column j ∈ J .

Examples for theAdditive case can be found in Figure 2.3 b) and c), by adding one unit either in the rows

or the columns, respectively. By adding the noise parcel as before we get the regular versions of these

Biclusters [44].

If theAdditive and Multiplicative models were used to obtain Biclusters on both rows and columns at

the same time, Biclusters with Coherent Values would be obtained. In the same fashion, for the perfect

case we have:

Model Type Expression

Additive aij = µ+ αi + βj

Multiplicative aij = µ× αi × βj

Table 2.2: Model types and respective expressions for Biclusters with Coherent Values.

Examples of this model can be seen in Figure 2.3 d) and e), with the respective increments in grey for

each row/column. The addition of the noise amount can also be applied to this model as well, in order to

find regular Biclusters of these types [44].
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When dealing with the possibility of Bicluster Overlapping, it is fair to consider that the value of an

element in the matrix may be composed of several layers, either in an additive or multiplicative way. This

is formalized by the Plaid model, given by aij =
∑K

k=0 θijkρikκjk, where K is the number of layers

(Biclusters) and the value of θijk indicates the contribution of each Bicluster k specified by ρik and κjk,

both binary terms which represent the membership of row i and column j in Bicluster k, respectively.

It is of note that this notation allows the representation of the previously specified models of Biclusters

depending on the definition of θijk. For example, if θijk = µk, then the Plaid model would identify a set

ofK Constant Biclusters.

From the Plaid model two more restrictive models can be derived: the General Additive Model

(GAM) and the General Multiplicative Model (GMM) [44]. For the former, as defined above in the

Plaid model, every element aij represents a sum of additive models each representing the contribution

of the Bicluster (I, J)k to the value of aij in case i ∈ I and j ∈ J . Examples of this can be seen in the

following figure:

Figure 2.4: Overlapping Biclusters with GAM (adapted from [44]).

For the latter, every element aij represents a product of contributions of the Bicluster (I, J)k to the

value of aij in case i ∈ I and j ∈ J . It means that in this case the value of each element is given by

aij =
∏K

k=0 θijkρikκjk. Equivalently, some examples are provided:

Figure 2.5: Overlapping Biclusters with GMM (adapted from [44]).

When working with real-valued or integer data, it is possible to have sign-changes intertwined in the
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patterns. Those Symmetries are considered relevant in some areas (e.g. to find activation or repression

mechanisms in regulatory processes on Gene Expression data), and can only be captured by Biclustering

algorithms that support them [27].

Finally, the last kind of models that needs to be mentioned are the ones that find Biclusters with

Coherent Evolutions. These models permit to address the problem of finding coherent evolutions (or

trends) across the rows and/or columns of the matrix without regarding the exact value of the elements.

Additionally, these models are the only ones that can be applied to symbolic/categorical data. Examples

of this can be found in Figure 2.3 from f) to h) for categorical data and Figure 2.3 i) for real-valued data

[44]. In this work we consider Biclusters with Coherent Evolutions to be the target since the data being

processed by the algorithm is purely categorical.

2.2.2.3 Types of Bicluster Structures

Another important aspect is the Biclusters structure that a Biclustering algorithm is able to discover. In

its simplest form, an algorithm will assume one of two things: that there is only one Bicluster in the data

matrix, or that it contains K Biclusters, where K is the number of Biclusters expected to be found. If

it is the latter case, according to Madeira et al. [44] several different types of structures within a set of

Biclusters can be encountered:

Figure 2.6: Examples of different types of Bicluster structures (adapted from [44]).

Additionally, Figure 2.6 b) to e) presents structures which assume exhaustive Biclusters, in which

every row and column in the matrix belongs to at least one Bicluster. However, most of the structures

presented above are very restrictive. In real data, it is most probable that some rows and columns do not

belong to any Bicluster and that Biclusters can overlap each other, like it is seen in Figure 2.6 i) [44]. Other

stopping conditions besides the number of Biclusters to discover are also possible, which will be seen later

12



Chapter 2 Background and Related Work

on Chapter 3 Discriminative Meta-features Discovery. In this work we will use a Biclustering algorithm

able to find arbitrarily positioned overlapping Biclusters (Figure 2.6 i)) since structure restrictions do not

make sense in our problem.

2.2.2.4 Biclustering Evaluation

To define evaluation measures for Biclustering solutions, we need to distinguish two types of possible

datasets:

1. Synthetic data, artificially generated data with planted Biclusters, used to test the accuracy of a

given algorithm against a true and known solution (ground truth, also known as true or hidden

Biclusters);

2. Real data, any dataset without a ground truth [28].

Solutions obtained from applying Biclustering algorithms to a given dataset will vary according to

the chosen algorithm and its parameterization. Therefore, metrics to evaluate and compare said solutions

are important to find the best algorithm, if an algorithm is working well or the best result between exper-

iments. In this thesis we are interested in the last case. Evaluation metrics (or indices) can be divided in

three main categories: external, internal and relative.

External metrics determine the similarity between an obtained solution and apriori knowledge, and

can be usedwith synthetic data (Accuracy-based views) or with real data plus additional domain informa-

tion (Domain Significance views). In addition, they can be used to compare different algorithms. These

are the most abundant type of metric and the ones usually preferred, since they have greater precision and

are easier to define, use and implement [60].

Internal metrics contrast the obtained solution with the intrinsic structure of the dataset. These met-

rics have to be used when no ground truth is available, although they are not as precise as the external

ones. However, they are usually adapted from Clustering concepts (e.g. Cluster compactness and sepa-

ration) which are hard to extend when Bicluster overlapping is allowed. Therefore, when working with

real data they tend to be avoided, mostly if there is a possibility of creating a synthetic dataset [60].

Relative metrics are used to compare different configurations of input parameters and solutions, in

order to find the optimal set of parameters for a given dataset. The usual procedure is to evaluate and rank

each solution obtained from the different user-defined combinations of parameters to select the best. To

obtain the best results, all combinations should be investigated. However, these metrics are very complex

to formulate and thus almost non-existent, since Biclustering algorithms are very heterogeneous relatively

to their input parameters [60].

Finally, if no usable metric exists, a possible alternative is to define a criteria of usefulness depending

on the problem to solve and the characteristics of the Biclusters to find the best solution. In this thesis we

used such a solution, by choosing the best Biclustering solutions according to the number of discrimina-

tive Biclusters in them (as specified later in this document, in Section 2.3.2 Discriminative Biclustering

and in Section 3.1.3 Pattern Mining-based Biclustering).
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2.2.3 Clustering vs Biclustering

Regular Clustering solutions are limited to grouping objects one dimension at a time, by using all features

that describe a given set of objects [28]. This means that they derive a global model from the data, which

is a restriction when dealing with 2D data spaces with only locally correlated values [28, 44]. This can

be clearly seen in Figure 2.7 below:

Figure 2.7: Clustering and Biclustering Comparison (adapted from [18]).

Data Mining techniques like Biclustering are then necessary to identify any potentially relevant sub-

spaces in complex 2D datasets, as they can perform local clustering on both dimensions simultaneously

(local model [44]). Additionally, groups of biological entities or individuals are usually meaningfully

correlated only on a subset of conditions/records [28].

However, Biclustering is computationally expensive due to combinatorial optimization. Best case

scenario, this task is anNP (Non-deterministic Polynomial) problem, meaning it is solvable in polynomial

time, but it becomesmore complex when searching for non-exclusive and non-exhaustive Biclusters. Due

to this, most algorithms follow heuristics or stochastic approaches, by producing sub-optimal solutions or

adding constraints to simplify the problem. Other approaches, such as PatternMining-based Biclustering,

target exhaustive enumeration while using restrictions during the search for efficiency [25].

2.2.4 Pattern Mining

Consider a finite set of items L, and P as an itemset where P ⊆ L. One transaction t can be defined as

a pair (tid, P ) with id ∈ N. A finite set of transactions {t1, . . . , tn} then composes an itemset database

D over L. If another itemset P ′ ⊆ P , it implies that P ′ ⊆ (tid, P ). The coverage of an itemset P , φp, is

the set of all transactions in D where P occurs: φp = {t ∈ D | P ⊆ t}.

From this we can derive the support of P in D, supP , that can be either absolute (the size of φp,

| φp |) or relative (| φp | / | D |). More simply, the support is the frequency (absolute or relative) of

the itemset P in the databaseD [25]. Figure 2.8 below exemplifies the computation of the coverage and

support of an itemset P over an itemset database D.
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Figure 2.8: Example of an itemset database D with the coverage and support of an itemset P .

Given an itemset databaseD and a user-defined minimum support threshold θ, the Frequent Itemset

Mining (FIM) problem consists on the computation of the set {P | P ⊆ L, supP ≥ θ}. Thus, aFrequent
Itemset or Pattern is an itemset P with supP ≥ θ. In simpler terms, an itemset is frequent if it appears

in a dataset with a frequency equal or greater than the user-specified threshold [25].

A closed frequent itemset is a frequent itemset which has no superset with the same support. A

maximal frequent itemset is a frequent itemset for which all supersets are not considered frequent [25].

The closed frequent itemsets are a subset of the frequent, just like the maximal frequent are a subset of

the closed frequent, as shown in Figure 2.9.

Figure 2.9: Frequent, closed frequent and maximal frequent itemsets.

FIM relies on monotonic and anti-monotonic properties to prune over combinations of itemsets in

order to gain efficiency. Considering two itemsets P and P ′, where P ′ ⊆ P , and a predicate M , M

is monotonic if M(P ) ⇒ M(P ′) and anti-monotonic when ¬M(P ′) ⇒ ¬M(P ). This means that the

support of P is bounded by the support of P ′, implying that if any subset P ′ is not frequent, then P is

not frequent as well [25].

Three major search strategies can be used to perform FIM:

1. Apriori-based, which applies the monotonicity principle (an itemset is candidate if all its subsets

are frequent) to iteratively combine (k − 1)-itemsets to generate new candidate k-itemsets in k

scans, until no new candidate groups can be found;

2. Pattern Growth, which builds a frequent-pattern tree from an ordered list of frequent items to be

later mined, based on prefix paths co-occurring with growing suffix patterns;
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3. Vertical projection, which compiles the set of transaction ids where each item appears and then

grows the itemsets using a depth-first strategy, by intersecting the sets of transaction ids tominimize

scanning the database [25].

The first two search strategies listed above consider itemset databases in the horizontal format:

{tid, P}, where tid is the transaction id and P is the set of items involved in said transaction, as seen

in Figure 2.8. The last one considers the database is in the vertical format: {item : {tid1 , . . . , tidn}},
where each item is associated with the set of transaction ids from the transactions where it appears [22].

2.2.5 Pattern-Mining based Biclustering

As aforementioned, traditional Biclustering algorithms use flexible merit functions to guide the data space

exploration. However, constraints like searching for a fixed number of Biclusters or retaining only non-

overlapping structures are put in place, to ease the problem’s complexity [25].

Pattern Mining-based approaches require the redefinition of those functions in terms of support and

other relevant metrics, but in doing so they allow for a scalable exhaustive space search. This, in turn,

produces a flexible structure containing an arbitrarily high number of Biclusters, while still catering for

homogeneity and statistical significance criteria. These approaches can be divided in three major steps:

mapping, mining and closing. All three steps are relevant in affecting the solution’s coherence, structure

and quality [25, 28].

The first step - mapping - is responsible for the normalization and discretization of the data matrix.

Since the data has to be itemized to use Pattern Mining-based solutions, usually this step is mandatory

for real-valued data. However, it can be optional if the algorithm is able to discretize the data internally

or if the data is already discretized. In this phase it is also performed the handling of outliers, missing

values and noisy elements. The second step - mining - is the core task, composed by the application of

the target pattern miners that will model the type of Biclusters that can be found in the given solution. The

last step - closing - deals with the post-processing of the mined patterns, to mostly improve the quality

of the found solution. This is done through merging (affecting structure and dealing with overlapping

while still maintaining homogeneity), extension (to improve noise tolerance) and filtering (to deal with

Biclusters numerosity and compactness) [25].

2.2.5.1 Advantages and Disadvantages of Pattern Mining-based Biclustering

Pattern Mining-based approaches’ major benefits are:

- Efficient exhaustive searches;

- Dealing with missing and noisy data;

- Ability to use different models to search for specific types of Biclusters;

- Annotating the significance of Biclusters to assess the pattern’s relevance;
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- Producing non-exhaustive, non-exclusive structures of Biclusters where overlapping is allowed.

Thus, and in accordance with Henriques et al. [25], these approaches are well suited to find shared

local patterns within physiological and clinical data. However, performing data discretization always im-

plies some loss of information. In particular, when discretizing real-valued features, the items-boundary

problem can occur: assigning two elements with similar real-values to two different categories due to

their closeness to the interval boundary. To minimize this problem, multi-item assignments can be ap-

plied: elements with values near a cut-off point of discretization can be assigned to the two categories

associated with the closest ranges of values [25, 24].

2.2.5.2 Meta-features

When using PatternMining-based Biclustering to look for Constant Biclusters on Rows or Columns (Fig-

ure 2.3 b) and c)) and Coherent Evolution on Rows or Columns (Figure 2.3 g) and h)) it is possible to

discern a representative pattern of each real-valued or categorical Bicluster, respectively. These pat-

terns are composed by subsets of features (and their respective values) which characterize a Bicluster’s

contents. They can be seen as frequent patterns, representing a distinct data space with greater discrimi-

native power than when considering only their constituent feature-value pairs individually, allowing them

to capture additional underlying knowledge in the data [22, 44].

In this thesis, when those patterns can characterize and discriminate class-labelled data they will be

called Meta-features. For example, assuming features Fi with i ∈ N on columns and observations on

rows, the pattern for the Bicluster in Figure 2.3 h) is {F1 = S1, F2 = S2, F3 = S3, F4 = S4}. By
finding the most class-discriminative Meta-features it is possible to unravel disease presentation patterns.

2.3 Supervised Learning

In Machine Learning, Supervised Learning includes all techniques whose learning process is con-

sidered supervised due to the existence of a label for each element of the dataset (the ground truth that

should be predicted), such as Classification (where a categorical class is being predicted) or Regression

(where a numeric value is being predicted) [22]. In this thesis the focus is Classification.

2.3.1 Classification

Classification can be defined as the process of finding a model that describes and distinguishes data

classes or concepts. Such models, calledClassifiers, are used to predict categorical/symbolic class labels

for new observations, and are constructed in two phases:

1. The Training phase, where the Classifier is built by learning from the Training data: the model

internally defines at least one decision boundary from the data features, as seen in Figure 2.10;
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2. The Test phase, where the trained Classifier is evaluated with the remainder (and unseen by the

model) Test data [22].

Figure 2.10: Illustrative example of a decision boundary on a Binary Classification problem.

For Classification, the used datasets must be composed of observations/tuples and their associated

class labels. A tuple X is an n-dimensional feature vector, X = (x1, x2, . . . , xn), which contain its n

feature values [22]. For example, the dataset’s data tuples for Figure 2.10 should contain the values for

their two features (f1 and f2), and each tuple must also have a class label (cat or dog).

Classification problems can be divided according to the number of classes found on the dataset: with

only two class labels it is a Binary Classification problem (as seen in Figure 2.10); when there are more

than two class labels it is considered a Multiclass Classification problem. Multiclass Classification

problems are more complex than the Binary (they can have several decision boundaries), and many real-

world problems are of the former kind [40].

2.3.1.1 Classifier Example - Decision Trees

In this section, a representative Classifier model - Decision Trees - which supports Binary and Multiclass

Classification is introduced. Decision Trees (DTs) are widely used models in Data Mining and Machine

Learning, due to being easy to understand, visualize and interpret [29]. The majority of algorithms that

build a DT from the Training data (e.g. ID3 [52], C4.5 [53] and CART [3]) employ a greedy top-down

recursive divide-and-conquer strategy: the data is recursively divided into smaller partitions by selecting

in each iteration the feature which separates best the data tuples into their respective classes (the splitting

attribute), by using an attribute selection measure (e.g. Information Gain [52], Gain Ratio [53] or Gini

Index [3]). The objective of these measures is to obtain, as much as possible, pure partitions, where all

tuples belong to the same class [22]. However, the Information Gain is biased in favor of categorical

features with more levels, with the Gain Ratio being proposed to tackle this issue [10].

While running the algorithm, if after a split all the tuples in a partition belong to the same class, a leaf

node is created and labeled with the said class. Otherwise, the remaining data is split again on the next

feature that divides it best. Finally, if it reaches a point where there are no more features available on

which to split any last tuples, the class for the last leaf is decided by majority voting (the most frequent

class on those tuples) [22].

18



Chapter 2 Background and Related Work

On the example seen in Figure 2.11, the splitting attributes are enclosed in rectangles, and the leaf

nodes in ellipses. The root split also shows that a DT can have any number of children for each node.

The partitioning scenarios depend on the type of feature being split: for categorical features usual cases

are splitting by all categories or one-vs-rest, while for real-valued features thresholds are defined (e.g.

A < 5 andA ≥ 5). After building the model, in order to classify a new tuple, the DT’s nodes are traveled

from the root, following the branches according to the new tuple’s feature values until reaching a leaf

node with a class. By travelling all tree branches a set/list of prediction rules can also be obtained [22].

Figure 2.11: Example of a Decision Tree built from the PlayTennis example dataset (adapted from [46]).

DTs are suitable for Binary and Multiclass classification, particularly when the number of data fea-

tures is not too large, since they tend to overfit [54]. To minimize this, strategies like pruning to remove

less informative branches can be applied. Moreover, the DTs construction strategy implicitly selects the

most important data features, since the features which better split the data space appear higher on the tree

(or in the tree at all) [22].

2.3.1.2 Model Selection and Evaluation

Classifier Performance Evaluation Metrics

The construction of a Classification model tends to be an iterative process, hence justifying the need

of the Test phase. Without proper validation the model might not be able to correctly predict the class

label of new observations, rendering it less useful than it could be. In a Classification problem there are

two types of tuples: Positive tuples, the tuples from the main class of interest; and Negative tuples, the

tuples from the remanining classes [22]. Based on this, it is possible to further compute the intermediate

components of evaluation measures:

- True Positives (TP): number of Positive tuples correctly labeled;
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- True Negatives (TN): number of Negative tuples correctly labeled;

- False Positives (FP): number of Negative tuples incorrectly labeled (type-I errors);

- False Negatives (FN): number of Positive tuples incorrectly labeled (type-II errors) [22].

These four terms are usually condensed in a tabular form, called a Confusion Matrix (Table 2.3),

Predicted class

Positive Negative Total

Actual class
Positive TP FN P

Negative FP TN N

Total P ′ N ′ P +N

Table 2.3: Confusion Matrix.

where the actual Positive and Negative tuples are identified as P and N , respectively. In similar fash-

ion, P ′ and N ′ identify the tuples predicted as Positive and Negative by the model. Taking this into

consideration, Table 2.4 characterizes some of the most usual evaluation metrics.

Metric Formula Description

Accuracy, Recognition

Rate

TP+TN
P+N

Percentage of Test set tuples

correctly classified

Error Rate, Misclassifica-

tion Rate

FP+FN
P+N

Percentage of Test set tu-

ples incorrectly classified (1

- Accuracy)

Recall, Sensitivity, True

Positive Rate (TPR)

TP
P

Proportion of Positive tu-

ples that are correctly clas-

sified

Specificity, True Negative

Rate (TNR)

TN
N

Proportion of Negative tu-

ples that are correctly clas-

sified

False Negative Rate

(FNR), Miss Rate

FN
P

Proportion of Positive

tuples that are incorrectly

classified (1 - Recall)

False Positive Rate (FPR),

False Alarm Rate

FP
N

Proportion of Negative

tuples that are incorrectly

classified (1 - Specificity)

Precision TP
P ′

Percentage of tuples cor-

rectly classified as Positive
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Metric Formula Description

F -measure, F , F1, F -score
2×precision×recall
precision+recall

Harmonic mean of Preci-

sion and Recall

Matthews Correlation Co-

efficient (MCC)

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Correlation coefficient be-

tween the observed and pre-

dicted classifications

Table 2.4: Evaluation Metrics for Binary Classification (adapted from [22]).

All metrics in Table 2.4 can be extended and applied to the Multiclass problem. The metric most

frequently used to evaluate the performance of a Classifier is Accuracy, which poses no problem if the

dataset is Class balanced (equal proportions for all classes, or at least approximately). However, if a

class imbalance exists, Accuracy tends to provide fallacious evaluations due to theAccuracy Paradox:

for example, if a given class A is dominant in the dataset, composing 99% of the tuples, then predicting

that every tuple is of class A will have an Accuracy of 99%. In this case, other measures should also be

used to obtain reliable estimates (e.g. Precision, Recall or F -measure) [22].

Receiver Operating Characteristic (ROC) curves can be used to visually compare Classifiers by

displaying the trade-off between the rate at which a model can classify correctly Positive tuples (TPR)

versus the rate at which it misclassifies Negative tuples (FPR) for different portions of the Test set.

Figure 2.12: Receiver Operating Characteristic curve and Area Under Curve.

As it can be seen in Figure 2.12, any increase in TPR (meaning the classifier is more performant)

implicates an increase in FPR (which is not desirable). From this curve it is possible to derive an estimate

of the model’s Accuracy: theArea Under Curve (AUC). In this regard, the diagonal line in Figure 2.12

indicates the point where the model is just performing as badly as random guessing (AUC = 0.5). Thus,

the farthest the ROC curve is from this line, the more accurate the model is (AUC = 1) [22].

Generalizations of the ROC curve for Multiclass problems exist, using pairwise comparisons by ex-

tending the Binary problem described above [36]. However, to plot them it is necessary to draw one for

each class, which in turn may prove confusing in conjunction with some dataset partitioning techniques
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(e.g. with k-fold CV the ROC curve for only one class is calculated by finding the mean curve between

all folds) [4]. Nonetheless, when the ROC curve is not feasible, the derived AUC value is still a valid

metric for model comparison.

Finally, when generically comparing Classifiers, other aspects besides metrics are also relevant:

- Speed: the computational costs from generating and using the given Classifier;

- Robustness: the Classifier’s capability to still make correct predictions when given data with noise

or missing values;

- Scalability: the ability to construct a Classifier from large amounts of data in an efficient manner

(e.g. most models tend to scale poorly with the number of features, taking a lot of time to train);

- Interpretability: the amount of insight provided by the Classifier’s results; this aspect is subjective

and hard to compare, but some Classifiers are more intuitive and easier to interpret than others (e.g.

Decision Trees) [22].

Data-related Aspects

Additionally, to avoid misleading estimates due to overfitting (where the model learns too well the

idiosyncrasies of the training data and is not able to generalize) or underfitting (where the model is

unable to either learn the training data or to classify new data correctly) of the model to the data it is

necessary to have additional considerations:

- the dataset must be representative of the reality, meaning that it should include observations from

all classes the model is expected to predict;

- the data used to train the model must be class balanced as much as possible to avoid classification

biases (using over-sampling or under-sampling techniques);

- the dataset should be split with stratification (sampling to include tuples in the same class propor-

tions as found in the dataset) to ascertain that the model is trained and evaluated properly for all

present classes [14].

Dataset Partition Methods

Different partitioning methods can be used to create the Training and Test sets. The simplest of them

is theHoldoutmethod, where the data is randomly split into those two sets. Frequently used proportions

for the Training and Test sets are, respectively: 2/3 and 1/3, 80% and 20%, or a division in between [22].

It is possible to be used with stratification [4].

Random subsampling is a extension of the holdout method, where it is repeated k times. The overall

accuracy estimate is calculated as the average of the accuracies obtained from each iteration. Other possi-

ble technique isBootstrapping, where the Training tuples are sampled from the dataset with replacement,

having equal chance of being selected again and re-added to the Training set [22].
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Lastly, in k-fold Cross-Validation, the original dataset is randomly partitioned into k mutually ex-

clusive subsets or “folds”, each of approximately equal size. An example with 5 folds can be seen below

in Figure 2.13.

Figure 2.13: Division of an example dataset for each iteration in 5-fold Cross-Validation.

In k-fold Cross-Validation the process of training and testing is performed k times, once per iteration.

In iteration i, partitionDi is used as the Test set, and the remaining partitions are collectively used to train

the model. The final evaluation metrics are calculated by performing the mean of each metric between

all folds. For example, the final accuracy is calculated from the overall number of correct classifications

from the k iterations, divided by the total number of tuples in the initial data.

This method distinguishes itself from the Holdout and Random subsampling methods because each

sample is used the same number of times for training and once for testing. This method helps to prevent

overfitting in the case where Holdout-based methods might have better evaluation scores due to a “lucky”

division/sampling of the data [22]. Variants of the Cross-Validation (CV) method also exist, such as:

- Leave-one-out (LOO): When k is set to the number of tuples in the original dataset, leaving only

one tuple per iteration on the Test set;

- Stratified Cross-Validation: the stratification guarantees that the class proportions of the tuples in

each fold is approximate to those in the original data;

- Repeated Cross-Validation: the partitioning of the dataset in folds is done n times, with the dataset

being shuffled before each repetition [4].

Empirically, stratified 10-fold Cross-validation is recommended to estimate accuracy due to its low

bias and variance. Repetition can also be added to obtain more robust model evaluationmetrics. Nonethe-

less, the number of folds might be reduced if not enough examples of each class end up being present in

each fold to allow a correct training/validation of the model [22].
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2.3.1.3 Improving Classification Accuracy

Ensemble Methods

An Ensemblemethod is a Classification algorithmmade up of a combination of individual classifiers

(C1, C2, . . . , Ck) trained from subsets of the original dataset D (D1, D2, . . . , Dk) that given a new data

tuple all classifiers vote to return a class label prediction based on the combination of votes:

Figure 2.14: Inner workings of an Ensemble method (adapted from [22]).

Ensembles are popular choices since they tend to be more accurate than their component classifiers,

mainly when there is significant diversity between the individual components. This happens because

different types of classifiers have distinct strengths and weaknesses, and in an ensemble they can com-

pensate for each other: even if the base classifiers make mistakes, the ensemble only misclassifies a tuple

if more than half classify it erroneously [22].

A thorough survey on Ensemble methods applied to Classification is available in [58]. Nonetheless,

some of those methods are worth mentioning here. One of them is Boosting, where weights are assigned

to each Training tuple and k classifiers are trained one at a time: after training one classifier Ci, the

Training tuples weights are updated so the next classifier, Ci+1, will focus on classifying correctly the

previously misclassified tuples. In the end, the vote combination is also weighted, with the votes of the

most accurate classifiers counting more.

Finally we have Bagging, or bootstrap aggregation, which works just like what was seen in Fig-

ure 2.14, with bootstrapping being used to create the Training datasets for the individual classifiers and

majority voting as the vote combination. A known example of Bagging are the Random Forests (RF),

composed only of Decision Trees generated by using a random subset of features at each node to deter-

mine the split. Moreover, they are very robust to errors and outliers, able to compensate for the overfitting

individual DTs tend to suffer (as long as the number of trees is large) and are capable of returning internal

estimates of Feature Importance [22]. More details on Feature Importance metrics can be found below in

Section 2.3.1.4 Feature Importance. In this work we use Random Forests to improve both predictability

and explainability.

Class Imbalance
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Class imbalance exists when a dataset has very different proportions of tuples from different classes,

more concretely when the main class of interest (Positive) is rare, either for Binary or Multiclass Classi-

fication. This implies that a Classifier will have different error rates per class [22].

Traditional Classification algorithms assume that the cost of a False Positive is the same than of a

False Negative. However, depending on the Classifier’s main task, this may be a dangerous assumption.

For example, in medical diagnosis, although still undesirable, it is preferable to have False Positives than

False Negatives, since the latter may imply lack of further clinical investigation, necessary treatments or

preventive measures for the patient. Thus, this behaviour has to be kept in check when dealing with class

imbalanced data [22].

Several approaches can be used to deal with this matter:

- Over-sampling resamples the Positive tuples (the rare class) so that the resulting Training set con-

tains an equal number of Positive and Negative tuples;

- Under-sampling randomly eliminates Negative tuples (the majority class) until there are an equal

number of Positive and Negative tuples [22].

Ensemble methods can also be combined with sampling to help diminish this issue. For data with

two classes, Over-sampling and Under-sampling are effective. However, according to the literature the

presented methods are not very adequate to deal with Multiclass imbalance, which is a problem currently

being worked upon [22, 59, 71].

2.3.1.4 Feature Importance

An essential part of the biomarker discovery task is to understand how the predictive features have an

influence on the variable of interest (the target class), after training a good enough Classification model

from the data. Simply put, it is necessary to ascertain the Features’ Importance in the Classification to

gain knowledge about the underlying biological processes. Such a metric provides a score that indicates

how useful or valuable each feature was in the model’s construction. The more a feature is used to better

split the data space, the higher its relative importance will be [1, 43].

However, due to their inner workings, it is easier to perceive the importance of a single feature in some

Classifier models than others. For example, Support Vector Machines (SVMs) perform mathematical

transformations of the data to be able to separate the classes with an hyperplane, so it might be difficult

to interpret which features matter most. Thus, to gain interpretability, simpler (linear) methods tend to be

used more often, sometimes at the cost of missing complex dependencies on the data [1].

Agood middle ground can be to use tree-based algorithms like Random Forests, which can find inter-

pretable non-linear prediction rules while still getting superior performance. Diverse Feature Importance

metrics have been proposed for the RF Classifier, such as:

- the naïve Variable Importance, calculated by counting the number of times each variable is se-

lected by all the trees in the forest [62];
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- the Gini Importance, sometimes simply called Feature Importance [4], is a weighted mean of the

individual trees’ improvement in the splitting criterion (the Gini Index) produced by each feature

[2, 43, 62];

- the Permutation Importance, where the values of each feature are permuted to remove its asso-

ciation with the target class; in this way each feature’s importance is calculated as the difference in

the prediction accuracy before and after the permutation of its values [2, 62, 1, 43].

The first two metrics described above have a known bias towards categorical features with more

categories or grouped values. Therefore, depending on the dataset it may be necessary to avoid this bias,

in which case the Permutation Importance metric should be used [1].

With Permutation Importance the values of each feature are permuted by using random shuffling and

different random seeds, implying a degree of variability in the importance values between sequential

runs. The final ranking values are usually obtained by performing the mean of the values obtained for

each feature in all the runs. Zero or negative values of this metric imply that the feature is not important

for the classification or is even harming the model’s performance, respectively. Finally, it is of note that

these Importance values do not sum up to one between all features, because they are not normalized. The

main usefulness of this metric is to consider the feature’s Importance relatively to each other instead of

their absolute values [55].

2.3.2 Discriminative Biclustering

When dataset observations are class-labelled, Biclustering can still be applied with additional discrimina-

tive criteria in order to distinguish classes and support real-world decisions. This means that the Biclus-

tering task tries to discover class-discriminative Biclusters, where a particular class has a significantly

high support in each Bicluster [25].

If the found Biclusters are class-discriminative, their patterns are discriminative patterns with im-

portant applications in finding biomarkers in medical data [61]. Thus, for the types of Biclusteringmodels

specified in Section 2.2.5.2 Meta-features those patterns are Meta-features, allowing us to obtain class-

discriminative subsets of features (and their respective values).

2.3.2.1 Supervised Measures of Bicluster Validity

When performing a Clustering task over class-labeled data, the class label is not taken into consideration

by the algorithm. Although thismight seem a redundant thing to do, it is useful to validate the performance

of the said Clustering algorithm over the data, since the ground truth is available. Thus, it is possible to

use metrics normally used in Classification problems, which will quantify the degree of objects of the

same class in a Cluster [63].

First of all, it is necessary to infer the data’s class distribution over all Clusters using pij , the probabil-

ity that an element of cluster i belonging to the class j. The said probabilities should be calculated for all

26



Chapter 2 Background and Related Work

clusters and classes, as pij = mij/mi, wheremij is the number of elements of the class j in cluster i and

mi is the total number of elements in cluster i [63]. After that, the following metrics can be employed:

- Entropy, the extent to which each Cluster i includes elements of one class: ei =
∑C

j=1 pij log2 pij ,
where C is the number of classes; for a set of Clusters the total Entropy can be seen as the sum of

the Entropies weighted by the Cluster size: e =
∑K

i=1
mi
m ei, where K is the number of Clusters

andm the total number of data elements;

- Purity, another way to calculate the extent to which each Cluster i includes elements of a single

class, given by purity(i) = max
j

pij ; for a set of Clusters the total Purity can be seen as purity =∑K
i=1

mi
m purity(i), whereK is the number of Clusters;

- Precision, the fraction of elements of the class j in Cluster i: precision(i, j) = pij ;

- Recall, the degree to which all elements of the class j are included in Cluster i: recall(i, j) =

mij/mj , wheremj is the number of elements of class j;

- F-Measure, the harmonic mean of Precision and Recall to measure the degree to which a Cluster

i includes only elements of a given class j: F (i, j) = (2× precision(i, j)× recall(i, j))/

(precision(i, j) + recall(i, j)).

All metrics mentioned above range between 0 and 1 except Entropy, which ranges from 0 to log2C.
Additionally, although Entropy and Purity have the same objective, they measure it differently: when all

Cluster elements are from the same class it means the Entropy value is 0, but the Purity value is 1 [63].

Biclustering algorithms are also unsupervised, but their results can further evaluated by using the

ground truth provided by class labels. In this context, the metrics above can also be applied to find class-

discriminative Biclusters, by evaluating the class labels from the dataset rows present in a Bicluster as a

Cluster of one-dimensional points. For example, a threshold on Purity levels can be set to filter out all

Biclusters with less than a given Purity percentage. However, Purity alone does not allow to discern which

is the most present class in a given Bicluster, so, in order to obtain this knowledge, the Precision for each

class has to be considered as well. An example is given in Figure 2.15, where we have two discriminative

Biclusters (B1 andB3) and one that is not discriminative, B2, since it has 50% of elements of each class.

Figure 2.15: Example of class-discriminative Biclusters’ mining.
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2.3.3 Biclustering-Based Classification

In Biclustering-based Classification, a set of found Biclusters is used as class-discriminative features,

taking advantage of the subset of features’ space of the pattern from each Bicluster. This is done to

improve on regular Classification, which considers only individual feature space [6, 5].

Many variants on how to use this approach are found in the literature. One possible way is to build a

matrix where the Biclusters are considered as features (columns) and the remaining dimension (rows) is

composed of the observations found in the original data (e.g. Patients or Controls). Regarding the matrix

values, if an observation was included in a given Bicluster, that cell is filled with a 1; otherwise, with a

0. In this way it is possible to easily interpret which are the most discriminative subsets of features and

objects considered by the Classification model [5]. An example can be seen in the Figure 2.16 (whose

Biclusters derive from the example in Figure 2.15).

Figure 2.16: Example of Subject × Biclusters Matrix for Biclustering-based Classification.

In this example the identifiers of each observation (row) are given by the letter ”C” before the class

label, followed by an underscore character and an integer number (e.g. the second observation from class

1 is called C1_2). Assuming that only those three Biclusters existed, the cells filled with ellipsis (except

for the class column) would be filled with zeros.

2.4 Association Rule Mining

When working with categorical data another useful type of patterns that can be obtained are Association

Rules. To follow on this, it might be useful to review what was defined in Section 2.2.4 Pattern Mining:

in this section we shall consider L as a finite set of items, P as an itemset where P ⊆ L and an itemset

database D over L composed by a finite set of transactions (in form of pairs (tid, P ) with id ∈ N)
{t1, . . . , tn}. AnAssociation Rule is an implication with the form P → P ′, where P ⊆ L, P ′ ⊆ L, and

P ∩ P ′ = ∅. The left side of the rule is called the antecedent, while the right side is the consequent.
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2.4.1 Rule Interest Metrics

Arule can be, at its core, characterized by twometrics of interest: its Support, supP→P ′ , or the frequency

with which both sides of the rule appear in a transaction, given by sup(P ∪ P ′); and the Confidence,

confP→P ′ , which is the strength of the rule, a notion that a transaction containing the items from the

antecedent will also contain the ones from the consequent, given by
sup(P∪P ′)
sup(P ) [25].

The first step to find these rules is to perform FIM over a discretized dataset to obtain the frequent

itemset databaseD. Then, considering a user-defined minimum Confidence threshold δ, theAssociation

Rule Mining (ARM) algorithm can compute {(P, P ′) | P ⊆ L,P ′ ⊆ L, confP→P ′ ≥ δ}, returning the
frequent rules whose confidence is equal or greater than the user-specified threshold [25].

The space of all possible rules obtained from a databaseD can be massive, and will need filtering to

find the most interesting ones. This can be done by using measures of interest such as Lift, a measure

of the correlation/dependency between both sides of the rule, given by
sup(P∪P ′)

sup(P )×sup(P ′) . Depending on its

value, the Lift of a rule P → P ′ has different meanings:

- Lift < 1: P is negatively correlated with P’, meaning that P’ is unlikely to occur in a transaction if

P does;

- Lift = 1: P and P’ are not correlated, meaning their occurrences are independent;

- Lift > 1: P is positively correlated with P’, meaning that P’ is likely to occur in a transaction if P

does [22].

2.4.2 Filtering Uninteresting Association Rules

Depending on the itemset database and the thresholds used to limit the Association Rule Mining, the

obtained amount of rules may be too great, making their interpretation hard or even unfeasible. Many

ARM algorithms tend to only use Support and Confidence on their rule filtering.

However, even with a certain degree of subjectivity when defining what is an uninteresting rule,

using only these two metrics is usually not enough to exclude many of them, particularly if the mining

task involves low support thresholds or looking for long patterns. Additionally, a high Confidence metric

can be sometimes deceiving, since it does not take into consideration the popularity of the items on both

sides of the rule, but only that of the antecedent. To compensate for it, the Lift (or other correlation-related

metric) should be added to the filtering, if possible.

A feasible approach to limit the number of generated association rules beforehand is to create the item

database D from the closed frequent itemsets instead of the frequent itemsets, reducing the number of

generated patterns while still completely preserving the information within them [22].

Moreover, one can also remove the rules deemed redundant after the mining. Redundant rules are

called as such since they do not convey additional information in the presence of other broader rules.

More concretely, if a rule B is a super rule of another rule A (A ⊆ B) and B has an equal or lower Lift

value, then B is redundant [70, 21].
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2.4.3 Associative Classification

Associative Classification is a Data Mining approach where Association Rules are generated from fre-

quent patterns and used for Classification, in order to find strong associations between the items in the

antecedent (feature-value pairs which compose the patterns) and the class labels [22].

Consider a tuple database T with n features, F1, F2, . . . , Fn, a class label feature, Fclass and where all

features are categorical (by default or discretized). An item pi is a feature-value pair of the form (Fi, vi),

where Fi is a feature which has the value vi [22]. The rules used in Associative Classification are called

ClassAssociation Rules (CARs), where the l ≤ n items found in the antecedent implicate (and thus, are

associated with) the class label C found in the consequent:

(F1 = v1) ∧ (F2 = v2) ∧ · · · ∧ (Fl = vl) ⇒ (Fclass = C). (2.1)

Then, after finding the CARs from the frequent itemsets/patterns (satisfying both user-defined levels

of support and confidence), these can be organized to create a rule-based Classifier [22]. However, if the

main purpose is not to create a model to predict the class of new surging tuples but instead to find the

most class-discriminative sets of items (the ones most correlated with every possible class label), then

the Lift measure of these CARs should also be calculated: the higher the Lift, the more discriminative

the rule is for the given class.

2.5 Dimensionality Reduction

Given a dataset with a large number of features (hundreds or more) and a class label, the existence of irrel-

evant or redundant features regarding that class is highly likely. The increase in dimensionality of the data

triggers an effect commonly called the curse of dimensionality, where the extra dimensions cause the

data to become more and more sparse, effectively disrupting the performance (speed and accuracy-wise)

of most Machine Learning and Data Mining algorithms [68]. To prevent such effect from happening,

Feature Selection (FS) techniques should be applied to the data before model training.

Three different kinds of FS strategies are available:

- Filter methods, where individual features or subsets are evaluated in an independent way of any

learning algorithm;

- Wrapper methods, which determine the best subset of features (between all combinations) by

comparing the obtained evaluation metrics of a learning algorithm using each subset (with k-fold

CV);

- Embeddedmethods, that try to combine the interactions with a learning algorithm (akin to wrapper

methods) with the efficiency of the filter methods (by not iterating through all possible subsets of

features).

30



Chapter 2 Background and Related Work

Filter methods are more computationally efficient than wrapper methods, especially when the number

of dataset features is large. However, filter methods are less accurate than wrapper methods, since the

lack of a learning algorithm to guide the selection process can lead to the non-optimality of the selected

features for the learning tasks. Embedded methods emerged to combine the best of both [39].

2.5.1 Dimensionality Reduction for Categorical Data

In this thesis, the discretization of all dataset features was necessary in order to apply Pattern Mining-

based Biclustering to the data. Additionally, to run it in a timely efficient manner, FS had to be performed

to choose the best features for Classification from the dataset. Since Pattern Mining-based Biclustering

is able to find subsets of rows which show a coherent pattern observed for a subsets of columns (features)

in form of Biclusters, it was decided that features that were not very relevant by themselves should be

removed. Thus, on the subsequent sections several filter-based FS techniques applicable for categorical

data will be reviewed.

2.5.1.1 Clinical Expert Knowledge

According to Heinze et al. in [23], it is of major importance to use background knowledge to guide FS.

Therefore, when working with EHR data interaction with the clinical experts must be highly regarded to:

- discern which features might be (or not) important for a given research question or analysis;

- identify possible confounding features, where hidden associations between individual features

(that ideally should be independent among them, but not from the class) may exist;

- help pinpoint any other care concerning the data.

2.5.1.2 Missing Values

Missing values can occur in data for many reasons. As such, several types of missing values exist:

- Missing Completely at Random (MCAR), when the probability of a missing value is independent

of the feature itself and any external influences (e.g. human input error, lost medical sample);

- Missing at Random (MAR), when the probability of a missing value is still independent of the

feature itself but not of external influences, with the missing values having a predictable pattern

(e.g. sensor fail);

- Not Missing at Random (NMAR), when the probability of a missing value is dependent of the

feature itself (e.g. if a patient with neurodegenerative symptoms was not able to complete a given

test, the medical practitioner may not subject him/her to other harder tests) [35].

When dealing with missing values several types of approaches can be used, such as imputation, omis-

sion and analysis.
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Imputation

A common approach for the treatment of missing values is data imputation. Since measures of

central tendency (mean/median) cannot be used with categorical data, a new category (e.g. ”unknown”)

or the most frequent value (mode) can be used to fill in the gaps. However, value imputation always adds

some degree of bias to the data [22].

Omission

As stated before, missing values are common in medical data, being mostly of the NMAR type. If the

majority of the data (according to a user-defined threshold) in an observation or feature is missing making

imputation unfeasible, another option is to remove them entirely. Although it implies loss of potentially

useful information, observations or features with a great majority of missing values may end up being a

direct source of noise for models [35].

Analysis

Finally, it is also possible that depending on the task at hand, some algorithms are able to handle the

existence of missing data, thus avoiding the necessity of their preemptive treatment [27].

2.5.1.3 Collinear Features

According to Yu et al. [67], in Classification problems the best features are relevant to the class concept

but not redundant to any of the other relevant features. Redundant features do not convey any new

information due to high correlation (collinearity), tending to introduce noise and overfitting in models.

To calculate the correlation between categorical features, the Pearson’s Chi-Square test with a 2× 2

contingency table is used. Then the Chi-Square statistic’s value is normalized to a range [0,1] using

the Cramér’s V measure of association, where 0 represents no correlation and 1 a strong correlation

[56]. Missing values can be treated as another possible feature value [16]. Usually when features have a

correlation above a certain high threshold percentage, one of them is removed.

2.5.1.4 Homogeneous Features

When dealing with real-valued data, low variance features are considered poor in information, making

them not very useful to discriminate between class-labeled data. For categorical data it is not possible to

use the variance due to the features’ types. However, to check for features with very homogeneous values,

measures that deal with class distributions in groups (e.g. Entropy seen in Section 2.3.2.1 Supervised

Measures of Bicluster Validity) can be used [67].
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2.5.1.5 Independence of Target Class

According to Jin et al. [30], by calculating the Chi-Square statistic between each feature and the class

label, it is possible to discover the features most associated with the class (the ones with the highest Chi-

Square statistic values). This means that lower values of the statistic will be present for the features less

associated (more independent) with the class label. With this in mind, it is possible to create a FS filter.

2.6 Related Work

The DMD approach used in this thesis takes advantage of well-known techniques of ML and DM. How-

ever, the combination of those, to the best of our knowledge, is unique. Thus, in this section, the related

work to each of the individual areas the said approach focuses upon will be described.

2.6.1 Biclustering in Healthcare Records

According to Nezhad et al. [47], precision medicine’s goal is to develop tailored treatment schemes for

different patient subgroups, acknowledging that for certain diseases some risk factors may be more

significant than others for specific subgroups. Thus, they proposed SUBIC (Supervised Biclustering),

a new method which uses convex optimization to detect and prioritize risk factors. Here the use case

disease was hypertension, in a dataset composed of people from a vulnerable demographic subgroup

(African-American), where the class labels for each patient were determined with help of clinicians.

2.6.2 Pattern Mining-Based Biclustering Algorithms

A thorough description of the state-of-the-art Pattern Mining-based Biclustering algorithms for non-

temporal data was done by Henriques et al. [25]. In particular, one of the algorithms in comparison

- BicPAM - is the result of the integration of dispersed contributions on Pattern Mining-based Biclus-

tering with novelty methods to deal with more flexible expression profiles and varying levels of missing

values or noise [25, 27]. BicPAMwas deemed superior to the other approaches in several aspects because

it can:

- Work with real-valued and categorical data;

- Discover all the maximal Biclusters in an efficient manner, while validating their homogeneity;

- Guarantee competitive computational complexity even when dealing with noisy data and adapta-

tions to the Biclustering solution are needed;

- Handle medium-to-high levels of missing values and noise;

- Unravel biologically relevant solutions [25, 27].
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Additionally, BicPAM is available to use freely through theBicPAMS (Biclustering based on PAttern

Mining Software) tool [26], along with other state-of-the-art Pattern Mining algorithms, in two different

utility modes: a Graphical User Interface (GUI) for explorative analysis and anApplication Programming

Interface (API) mode for further integration with the user’s Java code. Supported input file formats are

TXT and ARFF (Attribute-Relation File Format [18]). Other algorithms able to search for Biclusters in

categorical data can be found in [48], [65] and [9]. In this thesis we used BicPAM for the reasons stated

above.

2.6.3 Previous Uses of the ONWebDUALS data

The ONWebDUALS dataset has been used previously in publications related with the NEUROCLI-

NOMICS2 project and members of the ENCALS consortium have been producing scientific publications

based on its data to withdraw conclusions about the disease:

- One such example can be found in [34], where potential environmental factors were investigated in

order to find a cause for the great majority of sALS cases (the portion left unexplained by genetic

factors);

- Another article regarding the temporal study of anatomical region progression of the disease is

being worked upon (not yet published) [20].

However, none of the work done so far with this dataset targeted the goals in this thesis or used

Biclustering techniques.

2.6.4 Progression Groups in ALS

In [50] and [51] Pires et al. proposed a Supervised Learning approach to predict, in reasonable time

intervals, when a patient would start needing NIV respiratory assistance, using patient stratification and a

new approach based on progression groups (relative to the speed of disease progression: Slow, Neutral or

Fast). In this thesis, for Task 2, the class for each Patient was obtained by another NEUROCLINOMICS2

project member using an Expectation-Maximization (EM [11]) approach that followed the work proposed

in [51]. This approach was used to classify them as belonging to one of the same three progression groups

according to the values of their ALSFRS-R scale decay rate in the ONWebDUALS dataset.

Nonetheless, other possible patient stratifications exist, like the one proposed by Kueffner et al. in

[33], which combined the efforts of 30 different investigation teams to cluster the patients in four cate-

gories: Early Stage, Slow Progressing, Fast Progressing and Late Stage.
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2.6.5 Biclustering-Based Classification in Healthcare

Inspiring examples of Biclustering-based Classification are given by Carreiro et al. [5, 6], for time series

data. The ability to deal with time points was a characteristic of the used Biclustering algorithm. Asimilar

approach is used in this work for non-temporal data.

In [6], the Biclusters are class-discriminant features used to identify subsets of genes coherently ex-

pressed over a subset of contiguous time-points, allowing to pinpoint potentially relevant biological pro-

cesses related the progression of Multiple Sclerosis patients and their response to the standard treatment

with Interferon-β.

Then in [5], following the aforementioned work, a Classification approach based on sets of similar

Biclusters (Meta-biclusters) obtained by Hierarchical Clustering, after cutting a dendrogram at a given

level is used. After that step, a binary matrix with Meta-biclusters as columns, patients as rows and a final

column for the patient class is constructed, to represent which Meta-biclusters contain Biclusters from

that patient (1 for Yes, 0 for No).

2.6.6 Associative Classification in Healthcare

Lavrač et al. [37] present a case study using Associative Classification for subgroup discovery. This

technique was employed to detect and describe risk groups of Coronary Heart Disease (CHD), where en-

dangered individuals could show only slightly abnormal values of risk factors or combinations of different

risk factors.
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Chapter 3

Discriminative Meta-features Discovery

In this chapter a newDataMiningmethodology calledDiscriminativeMeta-features Discovery (DMD)

is proposed to find disease presentation patterns in two-dimensional EHR data. Furthermore, its imple-

mentation done for this thesis is thoroughly described.

The main objective was to design an exploratory approach that would allow to obtain discriminative,

understandable and intuitive descriptions of medical concepts, which in this work have already been

introduced as Meta-features. The necessity for explainable models in medicine is great since clinicians

must be able to understand the reasoning behind a given model result or prediction before making a

decision that can impact a patient’s life. This type of models are also called “white-box” models, in

contrast with “black-box” models (e.g. Artificial Neural Networks) whose internal decisions are very

hard to interpret [8].

To accomplish this goal, several Machine Learning and Data Mining techniques were combined.

Figure 3.1 shows a simplified workflow of DMD’s most important phases. First, Pattern Mining-based

Biclustering is run on discretized and class-labelled data to find discriminative data patterns in the form

of Biclusters. Afterwards those Biclusters are further used in two distinct branches:

- with Biclustering-based Classification models to understand what features (or subsets of features)

are more important for a good classification, by the means of a Feature Importance metric;

- with Class Association Rules in order to find the subsets of features (and respective values) that

show greater association with each class label.

These two approaches are used in parallel to take advantage of the explainable characteristics of the

underlined models and also to validate the obtained results. Additional flows pointing from the data to

both strategies used after Pattern Mining-based Biclustering (dashed arrows) are present to account for

baseline tests (with all features and a selected subset of them through FS) defined to understand if the

new approaches were being performant.
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Figure 3.1: Simplified workflow of the proposed DMD approach.

3.1 DMD Implementation

The general definition of each phase seen in the previous section can be implemented in a myriad

of different ways and using distinct algorithms. We believe it can be adapted to other types of data (e.g.

temporal data) if the chosen Pattern Mining-based Biclustering algorithm is capable of dealing with it.

Figure 3.2 details the workflow of the DMD methodology, including the technologies used to imple-

ment each layer and each experiment undertook (highlighted with a distinct alphabet letter) in this thesis.

The next subsections further detail the work done in each major phase (light orange blocks on the figure,

or light grey if printed in greyscale).

3.1.1 Data Pre-processing

In order to clean, discretize and label the ONWebDUALS dataset for each Task data pre-processing

pipelines were created using theKNIME tool. KNIME is an open source software written in Java which

allows the creation of pipelines that combine the retrieval (from files, databases or the web), exploration,

analysis and visualization of scientific data, while also allowing the integration of scripts written in pro-

gramming languages widely used in Data Science (e.g. R, Python and Java) and abilities from other

external tools (e.g. machine learning fromWEKA [18]). These pipelines are built by linking nodes with

specific tasks to each other, creating an orderly pipeline with flow control, if necessary. Thus, this tool

was used due to its integration and easy reproducibility of experiments capabilities [16].

One pipeline per Task was designed to create the datasets as described in Chapter 1 Introduction. The

Data Pre-processing steps of these pipelines can be found in Figure 3.3.
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Figure 3.2: Detailed workflow of the proposed DMD approach.

Figure 3.3: Data Pre-processing steps and output.
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Clinically Relevant Feature Choosing

All dataset columns were investigated and deemed useful or not for the current investigation with the help

of our expert clinicians. It was taken in consideration the clinical usefulness, measure correlation, data

type, frequency and clarity of existing values and if it was feasible to discretize the values of the given

column. Time-related data (like dates) when relevant were converted to continuous data (e.g. Date of 1st

Symptoms was converted to Age (1st Symptoms)) before interval discretization, since only static data was

being considered.

Data Cleaning and Transformation

On the questionnaires made to the patients and controls in each question, three fields were available

besides the proper place for a relevant answer: “NA” (Not Applicable), “NR” (Not Relevant) and “NF”

(Not Feasible). While the distinction of these answers might be relevant for a clinician, it would generate

additional entropy or noise for a Biclustering algorithm. For that reason, those uninformative values were

removed and considered as missing values.

Regarding erroneous values, any error that could not be corrected was also converted to missing

values. No missing value imputation was deemed necessary because the chosen Biclustering algorithm

is able to deal with them while mining the data for Biclusters. For more information on this matter please

see Section 3.1.3 Pattern Mining-based Biclustering.

Finally, some columns in the dataset file had duplicate names, due to the existence of similar questions

on different questionnaire sections that were not properly distinguished. This situation was improved by

clarifying those columns’names so their context could be fully understood without the need for additional

information.

Discretization

In order to apply PatternMining-based Biclustering to the ONWebDUALS dataset it had to be completely

discretized. For features that were already categorical, textual integers starting in “1” were attributed as

category values, complying with was already done for questions with closed answers (e.g. Yes = “1”, No

= “2”) and to keep things simple [65]. The only exception to this were the European Skills/Competences,

qualifications and Occupations (ESCO) codes (with two distinct levels) used to normalize the patients’

occupations, which can have category values like “00”, “01”, etc [15].

Most features with real values were discretized with the help of the clinicians, given their greater

domain knowledge. Some of them could be easily discretized in either “Good”/“Bad” values (e.g. High

Density Lipoprotein (HDL)) due to the existence of threshold information, while others were split in

specific time intervals (e.g. Timing of transition between onset regions, in blocks of months). Any other

real-valued features were discretized according to their quartile distribution (e.g. tobacco exposure, in

pack-years) using box-plots, including mild and extreme outliers, if any. Specific features regarding

ALS screening metrics (e.g. Sniff Nasal Inspiratory Pressure (SNIP)) were discretized according to the
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intervals defined in their respective literature [41, 31]. The final result of the dataset discretization can

be found on Appendix A Discretized ONWebDUALS Dataset.

Class Labelling

In both Tasks (defined in Section 1.3 Objectives and Contributions) the class feature is called group. The

added class labels at the end of this Data Pre-processing phase were specific for each Task. For Task 1

the Patients were simply labeled with class “1” and Controls with class “2”. For Task 2 the class for each

Patient was obtained as aforementioned in Section 2.6.4 Progression Groups in ALS. To comply with the

labelling in Task 1 the progression groups “Slow”, “Neutral” or “Fast” were converted to classes “1”, “2”

and “3”, respectively.

Baseline Data Output

In Figure 3.3 the several outputs of the Data Pre-processing phase are shown:

- A Comma-Separated Values (CSV) file with the discretized baseline dataset, to be used as a Base-

line with all features in the Biclustering-based Classification (Figure 3.2, a) BaselineAll Features);

- An Excel (XLSX) file, with the category labels for each feature’s category values, to translate the

final results from the PatternMining-based Biclustering and ClassAssociation RuleMining, whose

algorithms employ intermediate encodings.

3.1.2 Feature Selection

This phase was still performed in the KNIME pipeline, right after Data Pre-processing. All the thresholds

in this phase were determined empirically. As shown in Figure 3.4, to reduce the dimensionality of the

data several FS techniques were used, by removing features:

- With over 70% of missing values;

- With over 70% Correlation with another, in pairwise comparison;

- With very high homogeneity (<10% maximum Entropy for the given features);

- Less associated with the class, according to the Chi-Square statistic.

The Chi-Square step at the end of the FS pipeline allowed to choose a fixed number of features (k =

20), hence picking the k most associated with the class. In case gender and age-related features were not

chosen automatically, they were still added to the final feature set due to their clinical relevance.

This phase has several outputs:

- the discretized FS dataset in ARFF format for the Biclustering phase;

- the discretized FS dataset in CSV format to be used as a Baseline with FS in the Biclustering-based

Classification (Figure 3.2, b) Baseline FS Features);
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- a Tab-Separated Values (TSV) file to map the categorized values of each feature to the indices

according to their appearance in the ARFF file.

This last TSV file was needed to translate the mined Biclusters to the original data values, since

the used Biclustering algorithm works with the category indices when dealing with nominal data (more

details in the next subsection).

Figure 3.4: Feature Selection steps and output.

3.1.3 Pattern Mining-based Biclustering

The BicPAM algorithm was chosen to carry out the Pattern Mining-based Biclustering due to all the

capabilities already seen in Section 2.6.2 Pattern Mining-Based Biclustering Algorithms.

Figure 3.5: Pattern Mining-based Biclustering details.
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As depicted in Figure 3.5, most previously computed outputs are used in this phase. The ARFF file

with the discretized FS data is passed to Java code acting as a wrapper for BicPAMS API. This code

was created to facilitate the definition of batches of experiments (Experiment Sets): for each BicPAM

parameter an array of possible value is passed, and an experiment is created for each possible combination

of parameter values. In Table 3.1 an explanation of each parameter can be found.

Parameter Definition

Coherency Assumption

Defines the correlation of values within a Bicluster. For Constant

models, a pattern is preserved across rows (or columns). Additive,

Multiplicative, Order-preserving and Plaid models are also available,

considering Symmetries or not.

Coherency Strength

Number of items which determines the allowed deviations from

expected values. When working with categorical values, needs to be a

value higher than the maximum number of categories in all features.

Quality (%)

Specifies the maximum number of allowed noisy/missing elements. A

value of 100% implies that no noise is allowed, meaning the pattern is

always the same throughout the Bicluster.

Pattern Representation To search for maximal Biclusters Closed patterns (default) must be used.

Orientation Where the pattern should be observed: across rows (default) or columns.

Normalization
Option that allows to normalize data per Row, Column or for the Overall

data elements. Can be ignored by selecting the None option.

Discretization

Option that allows to discretize data either by selecting cut-off points of

a Gaussian distribution (default) or fixed ranges of values. Can be

ignored by selecting the None option.

Noise Handler

Multi-item assignments can be considered to handle deviations on the

expected values within a Bicluster caused by noise or discretization

issues. Can be ignored by selecting the None option.

Missings Handler

Option to specify the treatment of missing values. The Remove option

(default) excludes them from the searches and the Replace option uses

WEKA’s imputation methods to fill them.

Remove

Uninformative

Elements

Option to remove uninformative data elements. Normally used with

Gene Expression data to ignore genes that are not being

expressed/repressed. Can be ignored by selecting the None option.

Stopping Criteria

The stopping criteria of the search algorithm. It has three possible

values: 1) minimum number of Biclusters before merging (default), 2)

minimum covered area by the discovered Biclusters (% of the elements

of the input data matrix), and 3) minimum support threshold (% of

overall rows per Bicluster).
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Parameter Definition

Stopping Criteria

Value (%)
The value associated with the chosen Stopping Criteria.

Minimum Bicluster

Columns

Minimum number of columns (features) that need to be present in each

Bicluster.

Pattern Miner

Biclustering algorithm used for the Bicluster search. CharmDiffsets

(default), AprioriTID and CharmTID are made available for closed

pattern representations.

Scalability

Boolean option that applies assertive FS to guarantee the scalability of

the searches in large datasets. Can be ignored by selecting the False

option.

Merging Procedure
Closing option to merge Biclusters either in a Heuristic or Exhaustive

fashion.

Filtering Procedure

Another closing option applied after merging to guarantee compact

Biclustering solutions. One Bicluster is filtered if it has not enough

Dissimilar Elements, Dissimilar Rows or Dissimilar Columns against a

larger Bicluster (basically if the first is included in the second).

Filtering Procedure

Value (%)

Percentage value for the Filtering Procedure parameter. For example, a

value of 20% here with a filter for Dissimilar Elements guarantees that

Biclusters sharing more than 80% of their elements against a larger

Bicluster are removed.

Table 3.1: BicPAMS Parameters’ Description

Figure 3.5 also shows that a great amount of intermediate translation work was necessary in order to

obtain the final Biclusters in a readable form. This was necessary since BicPAMS internally usesWEKA’s

Instance class to create the dataset object, which deals with categorical data efficiently by working with

the indexes (starting in 0) of the category values as they appear in the ARFF file, instead of the values

themselves. An example of Translation using theAge (on date of consultation) feature can be seen in List-

ing 3.1, where the feature had its categories interpreted internally in the following fashion: the category

value 6 was a 0, the 8 was a 1, the 9 was a 2, and so on.

...

@ATTRIBUTE ‘Age (on date of consultation)’ {6, 8, 9, 7, 4, 5, 3, 10}

...

Listing 3.1: Example of feature declaration on a ARFF file.

Due to this issue, initially the found Biclusters were almost impossible to read (or even seemed to

make no sense). To compensate for it, two Translation phases were implemented after the Bicluster
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search: a first to translate category indexes to category values, and then another to translate the category

values to their labels. On the first Translation phase the TSV file mentioned in Section 3.1.2 Feature

Selection would then contain for that feature the reverse translation needed to convert from category

indexes to category values. The matching example for the Age (on date of consultation) feature can be

found on Listing 3.2.

...

‘‘Age (on date of consultation)’’ ‘‘0 −> 6’’ ‘‘1 −> 8’’ ‘‘2 −> 9’’ ...
...

Listing 3.2: Example of feature translation from category indexes to category values.

Then, on the second Translation phase, the XLSX file indicated in Section 3.1.1 Data Pre-processing is

used to convert the feature’s category values to their respective labels. The matching example for the Age

(on date of consultation) feature can be seen in Table 3.2.

Feature values Feature labels

1 [0, 10[ years

2 [10, 20[ years

3 [20, 30[ years

4 [30, 40[ years

5 [40, 50[ years

6 [50, 60[ years

7 [60, 70[ years

8 [70, 80[ years

9 [80, 90[ years

10 >= 90 years

Table 3.2: Example of feature translation from category values to category labels.

To guarantee their correctness (for debug purposes), their intermediate contents for all experiences

were kept in Text files (TXT). Finally, after running all the experiments defined in an Experiment Set, a

XLSX file is produced with three worksheets:

- Metrics for each Biclustering solution as a whole (Precision and Entropy) and for its found Bi-

clusters (Entropy, Purity, statistical significance, number of rows, percentage of dataset rows and

Precision for all classes);

- Experiment-level metrics to easily generate plots for tendencies (e.g. Average percentage of lines

per Bicluster, number of found Biclusters, number of discriminative Biclusters, etc);

- The discriminative Biclusters (their unique id and their class) for each experiment.
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In this thesis, every Bicluster returned in a solution (discriminative or not) was statistically significant

(p-value < 0.05). Moreover, a Bicluster was only considered discriminative if at least 75% of the subjects

in it belonged to the same class (Purity ≥ 75%).

To choose the best Biclustering solution between the considered ones it was not possible to use Ex-

ternal evaluation metrics due to the lack of ground truth and the shortage of Internal evaluation metrics

which support categorical data (only one measure was found, the Goodman and Kruskal τ coefficient,

which works by measuring the association of nominal variables [48][45]). Therefore, a criteria of use-

fulness based on the number of discriminative Biclusters was used to find the best solution: the more

discriminative Biclusters a solution had, the better. This is illustrated in Figure 3.2 by the Discriminative

Biclusters (Meta-features) block.

3.1.4 Biclustering-based Classification

In this phase Random Forest (RF) classifiers from Scikit-learn [4] Python library were used to determine

the most important features (or subsets of features). RFs were chosen for being robust against overfitting,

fast to train and able to return Feature Importance metrics. Since our data had features with different

numbers of categories, the Permutation Importance metric was used to prevent biases.

Experiments (indicated in Figure 3.2) were performed for:

a) Baseline with all features (Raw);

b) Baseline with a subset of the features (FS);

c) Matrix of subject ids × discriminative Bicluster ids (Meta-features);

d) Merged data (joining the data from b) + c)).

The number of tree instances used in each RF classifier was 300, and the Permutation Importance

values (using the MLxtend library [55]) were calculating by performing the mean out of 10 runs. Addi-

tionally, for the experiments involving Biclusters - c) and d) - random sampling was used on the most

frequent class(es) to set the same number of discriminative Biclusters for all classes. The random seeds

were kept static for experiment reproducibility. Classifier evaluation metrics were calculated using strati-

fied 10-fold Cross Validation. Particularly, the Specificity metric was calculated by using a Python library

complementary to Scikit-learn, called Imbalance-learn [38].

3.1.5 Class Association Rule Mining

The Java SPMF library [17] was called from Python scripts to mine regular ARs from frequent closed

itemsets. Given that this generated a great amount of rules the following steps were taken to ease inter-

pretation:

1. Filter rules without the class as the single consequent;
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2. Split CARs to different files according to class;

3. Remove redundant rules per class.

This was inevitably more time consuming than using a CAR mining algorithm that also calculated

the Lift. However, such an algorithm could not be found and to modify an existing one proved outside

of the scope of this work. Experiments (indicated in Figure 3.2) were performed for:

e) Baseline with a subset of the features (FS) and their values;

f) Bicluster Features and Values (Meta-features), where for each Bicluster its pattern plus discrimi-

native class were considered as transactions, repeated as many times as the Bicluster’s number of

rows.

The Baseline e) was calculated with the subset of the features used for experiment b) seen in the

previous section, since to find the rules from the dataset with all features used in experiment a) for both

Tasks proved too time-consuming.

For the f) experiment, by using the Bicluster patterns as transactions, we try to find the most common

patterns associated with the classes they are discriminative for. Since a certain degree of Bicluster over-

lapping may exist, this technique may find patterns that would not be discovered otherwise. Moreover,

for this same experiment, sampling was also applied to consider the same discriminative Biclusters as in

Section 3.1.4 Biclustering-based Classification.

For each experiment the minimum support was also iteratively lowered until a significant number of

CARs for all classes were found. The Minimum Confidence and Lift thresholds used for all experiments

were 90% and 1, respectively.

3.1.6 Workflows and Code

The produced workflows and code used in the DMD approach implementation used in this thesis are

available in the GitHub repository indicated in Appendix D GitHub Repository.
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Chapter 4

Discriminative Meta-features Discovery: A

Case Study in the Portuguese

ONWebDUALS Dataset

In this chapter the proposed DMD approach was applied to perform experiments for both primary tasks.

All figures present in this Chapter can also be found in the GitHub repository indicated in Appendix D

GitHub Repository.

4.1 Task 1 - Discriminative Meta-features between Portuguese ALS Pa-

tients and Controls

4.1.1 Data and Settings

As stated in Chapter 1 Introduction, this Task’s objective is to discover Meta-features which best dis-

tinguish the Portuguese ALS Patients from their Controls, if any. After the Data Pre-processing phase,

the two Baseline datasets (Figure 3.2 a) Baseline with All Features and b) Baseline FS) had 99 and 20

features, respectively. The class label was provided by the clinicians in the ONWebDUALS dataset. The

number of Portuguese Patients and Controls used in this experiment are reported in Table 4.1.

Class Label Absolute Frequency Relative Frequency

Patients 472 61%

Controls 300 39%

Total 772 100%

Table 4.1: Descriptive Frequency Analysis per Class of Used Data for Task 1.
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Table 4.2 shows the parameterization used in the Pattern Mining-based Biclustering phase in Task 1.

Parameter Values

Coherency Assumption Constant Biclusters

Coherency Strength 50 items

Quality (%) 100 (No noise)

Pattern Representation Closed patterns

Orientation Pattern on Rows

Normalization None

Discretization None

Noise Handler None

Missings Handler Remove

Remove Uninformative Elements None

Stopping Criteria Minimum Support

Stopping Criteria Value (%) {60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 2.5, 1}

Minimum Bicluster Columns 3

Pattern Miner CharmDiffsets

Scalability False

Merging Procedure Heuristic

Filtering Procedure Dissimilar Elements

Filtering Procedure Value (%) 25

Table 4.2: BicPAMS Parameter Values for Task 1.

To distinguish ALS Patients from their Controls we wanted to find the largest possible subsets of

similar subjects (Patients or Controls) for given subsets of features. This means that the interesting Bi-

clusters to search for are maximal Biclusters with Coherent Evolution on Columns (Figure 2.3 h)), where

the pattern is observed in the Bicluster’s rows.

No normalization, discretization or noise handling were deemed necessary, since the data was already

discretized beforehand and only Biclusters with the exactly same pattern (Meta-feature) in all their rows

were considered interesting (maximum Quality). Regarding missing values, the Biclustering algorithm

was instructed not to account for them in the found Bicluster patterns.

The only variable parameter between the experiments was the Stopping Criteria Value (%), meaning

that the Minimum Support value used in each experiment was iteratively lowered until discriminative

Biclusters with the highest possible number of rows started to be found. This parameter’s values started

at 60% to account for the largest portion of subjects between all classes (Patient class).

The minimum number of columns was set to at least 3 to avoid discovering Biclusters with a small

amount of features. The CharmDiffsets algorithm was chosen to mine the Biclusters, given that it has
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a better memory management than its available counterparts (CharmTID and AprioriTID). This is done

by using Diffsets: memory structures that help to reduce drastically the amount of memory needed for

intermediate results, by keeping only the differences of a candidate pattern from its prefix pattern in the

transactions [69].

Heuristic merging was used for computational efficiency reasons. Finally, by using the aforemen-

tioned filtering parameters, Biclusters sharing more than 75% of their elements against a larger Bicluster

were filtered out.

For the Biclustering-based Classification phase no further parameterization than the one in Section

3.1.4 Biclustering-based Classification was necessary. In the same fashion, the used parametrization for

the Class Association Rule Mining phase was mostly discussed in Section 3.1.5 Class Association Rule

Mining, with only theminimumSupport percentage being iteratively lowered until a considerable number

of rules for each class were found. The exact levels of Support used in each experiment can be found

further below in Table 4.7.

4.1.2 Results and Discussion

4.1.2.1 Pattern Mining-based Biclustering

Figure 4.1 shows the evolution of the average number of rows between all Biclusters present in each

Biclustering solution (one per Experiment) while the Minimum Support value (Relative Support) is being

lowered. For the 60.0 % and 50.0 % Experiments the value is zero because no Biclusters were found

(shown in Figure 4.3).

Figure 4.1: Average Number of Bicluster Rows vs Relative Support Percentage [Link].

Figure 4.2 displays the Purity evolution between the different Biclustering solutions while the Min-
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imum Support value (Relative Support) is being lowered. As before, for the 60.0 % and 50.0 % Ex-

periments the value is zero because no Biclusters were found. This shows that the Purity is somewhat

constant, with a value of approximately 0.6 (60%).

Figure 4.2: Biclustering Solution Purity vs Relative Support Percentage [Link].

As previously indicated, a criteria of usefulness based on the number of discriminative Biclusters was

used to find the best solution.

Figure 4.3: Number of Total/Discriminative Biclusters vs Relative Support Percentage [Link].

Figure 4.3 shows the number of total Biclusters (in blue/darkest color) and the number of discrimi-

native Biclusters (in red/lightest color) found between the different Biclustering solutions while the Min-

imum Support value (Relative Support) is being lowered. We can see that discriminative Biclusters start
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to appear at 10.0% Support levels and lower. However, at this point it was still necessary to validate if a

considerable amount of Biclusters for each class was discovered.

Figure 4.4: Number of Discriminative Biclusters per Class vs Relative Support Percentage [Link].

Thus, as reported in Figure 4.4, the number of discriminative Biclusters per class was determined.

Only for the 1.0% Support experiment a significant amount of discriminative Biclusters for each class

were present, with this being chosen as the best. We can observe here that for the best experiment many

more discriminative Biclusters were found for the Patient class than for the Controls, which conveys the

natural heterogeneity of the Patient portion of the dataset. Due to this, random sampling was applied to the

most prevalent class to equalize the number of discriminative Biclusters (in this case, 675 for each class).

To sum up, Table 4.3 provides a general view of the number of features used in all the Classification

experiments for Task 1.

Dataset Version Number of Features

a) Baseline All Features 99

b) Baseline FS 20

c) Matrix Meta-features 675 * 2 = 1350

d) Merged data 1350 + 20 = 1370

Table 4.3: Descriptive Analysis of Used Data Features for Task 1.

The list of features present in each Baseline dataset can be found in Appendix B ONWebDUALS

dataset features for Task 1. Additionally, the complete list of discriminative Bicluster patterns for the

1.0% Support experiment can be found in Appendix D.2.1 Discriminative Bicluster Patterns.
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4.1.2.2 Biclustering-based Classification

The evaluation metrics computed for the four experiments delineated in Section 3.1.4 Biclustering-based

Classification by using 10-fold CV are present in Table 4.4 below.

Metric Train Test

Accuracy 1.00 (+/- 0.00) 0.69 (+/- 0.05)

Precision 1.00 (+/- 0.00) 0.63 (+/- 0.09)

Recall /

Sensitivity
1.00 (+/- 0.00) 0.47 (+/- 0.12)

F-measure 1.00 (+/- 0.00) 0.54 (+/- 0.10)

Specificity 1.00 (+/- 0.00) 0.83 (+/- 0.05)

MCC 1.00 (+/- 0.00) 0.32 (+/- 0.13)

AUC 1.00 (+/- 0.00) 0.65 (+/- 0.06)

a) Baseline All Features.

Metric Train Test

Accuracy 1.00 (+/- 0.00) 0.66 (+/- 0.05)

Precision 1.00 (+/- 0.00) 0.59 (+/- 0.10)

Recall /

Sensitivity
1.00 (+/- 0.00) 0.44 (+/- 0.10)

F-measure 1.00 (+/- 0.00) 0.50 (+/- 0.08)

Specificity 1.00 (+/- 0.00) 0.81 (+/- 0.06)

MCC 1.00 (+/- 0.00) 0.26 (+/- 0.11)

AUC 1.00 (+/- 0.00) 0.62 (+/- 0.05)

b) Baseline FS.

Metric Train Test

Accuracy 0.99 (+/- 0.00) 0.74 (+/- 0.06)

Precision 1.00 (+/- 0.00) 0.67 (+/- 0.08)

Recall /

Sensitivity
0.99 (+/- 0.00) 0.64 (+/- 0.10)

F-measure 0.99 (+/- 0.00) 0.65 (+/- 0.08)

Specificity 1.00 (+/- 0.00) 0.80 (+/- 0.06)

MCC 0.99 (+/- 0.00) 0.45 (+/- 0.12)

AUC 0.99 (+/- 0.00) 0.72 (+/- 0.06)

c) Matrix Subject ID × Biclusters.

Metric Train Test

Accuracy 1.00 (+/- 0.00) 0.74 (+/- 0.05)

Precision 1.00 (+/- 0.00) 0.74 (+/- 0.11)

Recall /

Sensitivity
1.00 (+/- 0.00) 0.53 (+/- 0.09)

F-measure 1.00 (+/- 0.00) 0.61 (+/- 0.09)

Specificity 1.00 (+/- 0.00) 0.88 (+/- 0.06)

MCC 1.00 (+/- 0.00) 0.45 (+/- 0.12)

AUC 1.00 (+/- 0.00) 0.70 (+/- 0.06)

d) Merged Data.

Table 4.4: Evaluation Metrics for RF Classifier - 10-fold CV in Task 1.

Given the results presented above we can see that:

- Every Training evaluationmetric in every experience had a value of 1 or very near, which combined

with the much lower Test metric values indicates overfitting of the RF model to the data;

- Feature Selection alone (Table 4.4 b)) worsened the classification over the Baseline with all features

(Table 4.4 a));

- Using the matrix of subject ids × discriminative Bicluster ids by itself (Table 4.4 c)) slightly im-

proved over the Baseline with all features (Table 4.4 a));
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- Merging the individual feature space with the Meta-features space (Table 4.4 d)) had mixed results:

it improves the matrix experiment results on most metrics except for Recall/Sensitivity and its

related F-measure.

Nonetheless, the Merged Data experiment (Table 4.4 d)) seems to be the overall best from the four.

Most Important Features

The features considered most important by the RF models for each Classification experiment can be

found below, from Figure 4.5 to Figure 4.8, in descending order of mean Permutation Imputation values.

When more than 30 features are considered for an experiment (as seen in Table 4.3), only the 30 with

higher mean Permutation Imputation values are shown due to space limitations.

Figure 4.5: Top-30 Most Important Features - a) Baseline All Features for Task 1 [Link].

According to Figure 4.5 for the experiment a) Baseline All Features, the 5 most important features

wereMild PE (Physical Exercise), Lived in Rural or UrbanAreamore than 5 years ago,MainOccupation

more than 5 years ago (level 1),Was there ALS in the family and Statins. Mild PE’s importance is around
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the double for the model compared to the other four features. Some studies sought an association between

physical exercise andALS, with conflicting results [13]. It cannot be seen in Figure 4.5, but the features’

mean Permutation Imputation values eventually reach zero and even negative values, meaning that the

model could benefit from their removal.

Figure 4.6: Top-30 Most Important Features - b) Baseline FS for Task 1 [Link].

For the experiment b) Baseline FS only 20 features were used in total, thus all of them being visible in

Figure 4.6. Here we can see that the 5 most important features changed a bit: Main Occupation more than

5 years ago (level 1),Nonsteroidal anti-inflammatory drug (NSAID),Regular physical exercise,Was there

ALS in the family and Mother alive. Additionally, the mean Permutation Importance of the best features

are overall lower than in Figure 4.5. Figure 4.6 shows clearly why the Classification results (Table 4.4

b)) were the worse of the lot: most of the remaining features were considered harmful to the model, given

their mean Permutation Importance negative values. This may also imply that the FS applied was not the

best for the problem at hand.
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Figure 4.7: Top-30 Most Important Features - c) Matrix Subject ID × Biclusters for Task 1 [Link].

Figure 4.7 contains the mean Permutation Importance values for the top-30 most important features

in experiment c) Matrix Subject ID × Biclusters, which considers only Biclusters. In a general fashion,

the mean Permutation Importance values are much more uniform and lower than before, probably due

to the high number of features/Biclusters used for this experiment (Table 4.3). The patterns of the top-5

Biclusters can be found in Table 4.5.

Bicluster Id Class Rows Pattern

Bic_30707 Controls 9 {Blood hypertension = No, NSAID = No,Mother alive = No, Reg-

ular physical exercise = No, Thoracic Spine surgery in the last 5

years = No, Main Occupation in the last 5 years (level 1) = 10

Pensioner / Out of job, Main Occupation more than 5 years ago

(level 1) = 10 Pensioner / Out of job, Place of living in the last

5 years = Large town > 100 000, Lived in Rural or Urban Area

more than 5 years ago = Urban area}

Bic_432 Patients 24 {Hypercholesterolemia =No, Primary cancer =No,NSAID =No,

Other severe disease 1 of mother = 11 Diseases of the circulatory

system,Mother alive = No,Mothers cause of death = 11 Diseases

of the circulatory system, Thoracic Spine surgery in the last 5

years = No, Lived in Rural or Urban Area more than 5 years ago

= Urban area}
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Bicluster Id Class Rows Pattern

Bic_30046 Controls 7 {Gender =Male, Place of birth = Large town > 100 000,Mothers

Place of birth characteristics =Urban area,Hypercholesterolemia

= No, Primary cancer = No, Psychiatric medication = No, NSAID

= No,Was there ALS in the family = No,Mother alive = No, Reg-

ular physical exercise = No, Thoracic Spine surgery in the last 5

years = No, Place of living in the last 5 years = Large town > 100

000, Lived in Rural or Urban Area more than 5 years ago = Urban

area}

Bic_32676 Controls 7 {Mothers Place of birth characteristics =Rural area, Blood hyper-

tension = No, NSAID = No, Mother alive = No, Thoracic Spine

surgery in the last 5 years = No, Main Occupation in the last 5

years (level 1) = 10 Pensioner / Out of job,Main Occupation more

than 5 years ago (level 1) = 10 Pensioner / Out of job, Place of

living in the last 5 years = Large town > 100 000, Lived in Rural

or Urban Area more than 5 years ago = Urban area}

Bic_17165 Patients 28 {Age (on date of consultation) = [50, 60[ years, Mothers Place

of birth characteristics = Rural area, Blood hypertension = No,

Hypercholesterolemia = No, NSAID = No, Was there ALS in the

family =No, Thoracic Spine surgery in the last 5 years=No, Lived

in Rural or Urban Area more than 5 years ago = Urban area}

Table 4.5: Top-5 Most Important Bicluster Patterns - c) Matrix Subject ID × Biclusters for Task 1.

In this table we can see that the found patterns generally have a large number of features and the Bi-

clusters for the Patient class tend to have a greater number of rows than the ones found for the Controls.

However, the appearance of several Biclusters of the Controls class as the most important for the Clas-

sification indicates a greater homogeneity in the Controls data comparing with the Patients’ data, which

was expected. The complete list of Bicluster patterns present in Figure 4.7 can be found in Appendix

D.2.2 Top-30 Most Important Bicluster Patterns - c) Matrix Subject ID × Biclusters.

Finally, Figure 4.8 below reports the mean Permutation Importance values for the top-30 most impor-

tant features in experiment d) Merged Data. Only one individual feature appears in this top-30 (Father’s

cause of death), with the rest of the positions being occupied by Biclusters. The patterns of the top-5

Biclusters for this last experiment can be found in Table 4.6. This overall predominance of Biclusters as

the most important features clearly indicates that individual features might not be enough to distinguish

Patients from Controls, making it necessary to consider subsets of features for that effect. Nonetheless,

given the size and variety of the found patterns it was hard to discern a clear subset of features which

would allow to discriminate between these two classes. The complete list of Bicluster patterns present in

58



Chapter 4 DMD: A Case Study in the Portuguese ONWebDUALS Dataset

Figure 4.8 can be found in Appendix D.2.3 Top-30 Most Important Bicluster Patterns - d) Merged Data.

Figure 4.8: Top-30 Most Important Features - d) Merged Data for Task 1 [Link].

Bicluster Id Class Rows Pattern

Bic_25185 Controls 24 {Gender = Male, Blood hypertension = Yes, Primary cancer =

No, Psychiatric medication = Yes, Was there ALS in the family =

No,Mother alive = No,Mother’s cause of death = 21 Symptoms,

signs or clinical findings, not elsewhere classified, Thoracic Spine

surgery in the last 5 years = No, Main Occupation in the last 5

years (level 1) = 10 Pensioner / Out of job}

Bic_25651 Controls 9 {Blood hypertension = Yes, NSAID = No, Was there ALS in the

family = No, Mother alive = No, Thoracic Spine surgery in the

last 5 years = No,Main Occupation in the last 5 years (level 1) =

10 Pensioner / Out of job,MainOccupation more than 5 years ago

(level 1) = 24 Business and administration professionals, Place of

living in the last 5 years = Large town > 100 000, Lived in Rural

or Urban Area more than 5 years ago = Urban area}
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Bicluster Id Class Rows Pattern

Bic_27737 Controls 9 {Blood hypertension = Yes, Hypercholesterolemia = Yes, Was

there ALS in the family = No, Other severe disease 1 of mother

= 02 Neoplasms, Thoracic Spine surgery in the last 5 years = No,

Main Occupation in the last 5 years (level 1) = 10 Pensioner / Out

of job, Place of living in the last 5 years = Large town > 100 000,

Lived in Rural/Urban Area more than 5 years ago = Urban area}

Bic_23302 Controls 10 {Gender = Female, Blood hypertension = Yes, Psychiatric med-

ication = No, Was there ALS in the family = No, Mother alive =

No, Father’s cause of death = 11 Diseases of the circulatory sys-

tem, Regular physical exercise = No, Thoracic Spine surgery in

the last 5 years = No, Main Occupation in the last 5 years (level

1) = 10 Pensioner / Out of job, Lived in Rural or Urban Area more

than 5 years ago = Urban area}

Bic_20255 Patients 8 {Age (on date of consultation) = [60, 70[ years, Primary cancer =

No, NSAID = No,Was there ALS in the family = No,Mother alive

= No, Father’s cause of death = 12 Diseases of the respiratory

system, Regular physical exercise = No, Thoracic Spine surgery

in the last 5 years = No}

Table 4.6: Top-5 Most Important Bicluster Patterns - d) Merged Data for Task 1.

4.1.2.3 Class Association Rule Mining

The experiments with Class Association Rules outlined in Section 3.1.5 Class Association Rule Mining

found rules to characterize both classes considered in this Task (Patients and Controls). Table 4.7 contains

the minimum thresholds of Support used, the size of the transaction database and the number of rules

found (before and after filtering the redundant rules):

Experiment Class Support (%) Transactions Rules Non-Redundant Rules

e) Patients 1.25% 772 1903 517

e) Controls 1.25% 772 44 28

f) Patients 5% 15350 113 37

f) Controls 5% 15350 23 8

Table 4.7: Metrics of Class Association Rule Mining experiments for Task 1.

All non-redundant rules for the Controls on both experiments had Lift values above 2, showing high
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levels of association between the found patterns and the respective class. However, for the Patients class

the Lift values started on 1.4 and tended to be found in larger numbers. This complies with what was seen

in the previous section, where the Patient-related data contains more distinct patterns than the Controls.

The complete list of non-redundant rules for all experiments and classes can be found in Appendix D.2.4

Non-Redundant Class Association Rules.

Given the limited space, the most relevant rules for each Experiment and class were chosen in the

following fashion: since the Confidence thresholds were kept very high (minimum of 90%), from the set

of rules with the higher Lift values, the ones with the largest Support were selected. Additionally, since

the number of transactions between the two experiments (e) and f)) is strikingly different (by two orders

of magnitude), the Relative Support (%) is used to show how frequently the given patterns appear instead

of the number of rows/transactions. Thus, for Task 1, the said rules are present in Table 4.8.

Experiment Class Rule Support (%) Lift

e) Patients Hypercholesterolemia = No ∧ NSAID = No ∧
Was there ALS in the family = Yes ⇒ Class =

Patients

≈ 2.59 ≈ 1.64

e) Controls Main Occupation more than 5 years ago (level

1) = 42 Customer services clerks ∧ NSAID =

No ∧ Primary cancer = No ∧ Thoracic Spine

surgery in the last 5 years = No ∧ Was there

ALS in the family = No⇒ Class = Controls

≈ 1.55 ≈ 2.57

f) Patients Place of birth = Village with < 1000 inhabitants

⇒ Class = Patients

≈ 17.8 ≈ 1.7

f) Controls Main Occupation more than 5 years ago (level

1) = 23 Teaching professionals ∧ Thoracic

Spine surgery in the last 5 years = No⇒ Class

= Controls

≈ 6.72 ≈ 2.42

Table 4.8: Most Relevant Class Association Rules for Task 1.

From the table above we can see that usingARM techniques leads to smaller patterns than those seen

in the previous section, since the common items between the different transactions are found to form the

antecedent of each rule. Moreover, the antecedents of the rules found in the f) experiment tend to be

smaller than those from e), which might help explain their higher levels of Support.

The rules obtained for the Controls in both experiments showed higher Lift values than for Patients.

The most relevant rules for the Patient class are totally different between the two experiments, and do not

have many features in common with the patterns obtained in the previous section. However, a thorougher

analysis of the large amount of obtained rules might discover some common ground between the results.
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4.2 Task 2 - DiscriminativeMeta-features between ProgressionGroups on

Portuguese ALS Patients

4.2.1 Data and Settings

As stated inChapter 1 Introduction, this Task’s objective was to discoverMeta-features which caracterize

ALS patients’ progression groups, if any. These groups are relative to the speed of disease progression:

Slow, Neutral or Fast, as aforementioned in Section 2.6.4 Progression Groups in ALS. After the Data

Pre-processing phase, the two Baseline datasets (Figure 3.2 a) Baseline withAll Features and b) Baseline

FS) had 198 and 22 features, respectively. The effective numbers of Portuguese Patients used in this

experiment are reported in Table 4.9.

Class Label Absolute Frequency Relative Frequency

Slow 149 32%

Neutral 190 40%

Fast 133 28%

Total 472 100%

Table 4.9: Descriptive Frequency Analysis per Class of Used Data for Task 2.

Table 4.10 shows the parameterization for the Pattern Mining-based Biclustering phase in Task 2.

Parameter Values

Coherency Assumption Constant Biclusters

Coherency Strength 50 items

Quality (%) 100 (No noise)

Pattern Representation Closed patterns

Orientation Pattern on Rows

Normalization None

Discretization None

Noise Handler None

Missings Handler Remove

Remove Uninformative Elements None

Stopping Criteria Minimum Support

Stopping Criteria Value (%) {40, 35, 30, 25, 20, 15, 10, 5, 2.5, 1}

Minimum Bicluster Columns 3

Pattern Miner CharmDiffsets [69]

Scalability False
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Parameter Values

Merging Procedure Heuristic

Filtering Procedure Dissimilar Elements

Filtering Procedure Value (%) 25

Table 4.10: BicPAMS Parameter Values for Task 2.

The parameterization for the Pattern Mining-based Biclustering phase was kept mostly the same in

comparison with Task 1, since to distinguish between the severalALS Patient classes we also want to find

maximal Biclusters with Coherent Evolution on Columns (Figure 2.3 h)). The only variable parameter

between the experiments was still the Stopping Criteria Value (%), to find the discriminative Biclusters

with the highest possible number of rows. For this Task it started at 40% given the largest portion of

patients between all classes (Neutral class).

As in Task 1, for the Biclustering-based Classification phase no further parameterization than the one

seen in Section 3.1.4 Biclustering-based Classificationwas necessary. Likewise, the used parametrization

for the Class Association Rule Mining phase was mostly discussed in Section 3.1.5 Class Association

Rule Mining, with the Minimum Support being iteratively lowered until a considerable number of rules

for each class were found. For this Task the levels of Support used in each experiment can be found in

Table 4.16.

4.2.2 Results and Discussion

4.2.2.1 Pattern Mining-based Biclustering

Figure 4.9 shows the average number of rows’ evolution between all Biclusters present in each Biclus-

tering solution (one per Experiment) while the Minimum Support value (Relative Support) is lowered.

Figure 4.9: Average Number of Bicluster Rows vs Relative Support Percentage [Link].
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Some experiments have the exact same average of Bicluster rows due to the discovery of the exact

same number of Biclusters with different levels of Relative Support (this is shown in Figure 4.11). Figure

4.10 displays the Purity metric’s evolution between the different Biclustering solutions while the Min-

imum Support value (Relative Support) is being lowered. This shows that the Purity is slowly rising,

starting on 0.5 (50%) and towards 0.6 (60%).

Figure 4.10: Biclustering Solution Purity vs Relative Support Percentage [Link].

The same criteria of usefulness based on the number of discriminative Biclusters used in Task 1 was

employed to find the best Biclustering solution. Figure 4.11 shows the number of total Biclusters (in

blue/darkest color) and the number of discriminative Biclusters (in red/lightest color) found between the

different Biclustering solutions while the Minimum Support value (Relative Support) is being lowered.

For this Task discriminative Biclusters also start to appear at 10.0% Support levels and lower. However,

a considerable amount of Bicluster for each class was still needed.

Figure 4.11: Number of Total/Discriminative Biclusters vs Relative Support Percentage [Link].
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Thus, as shown in Figure 4.12, the number of discriminative Biclusters per class was determined.

Only for the 2.5% Support experiment a significant amount of discriminative Biclusters for each class

were present, with this experiment being chosen as the best. At this point we can observe that more

discriminative Biclusters were found for the Slow and Fast classes than for the Neutral, possibly by

being the classes that are more easily distinguishable. To equalize the number of discriminative Biclusters

random sampling was also applied to the most prevalent classes (in this case, 72 for each class).

Figure 4.12: Number of Discriminative Biclusters per Class vs Relative Support Percentage [Link].

Table 4.11 summarizes the number of features used in all the Classification experiments for Task 1.

Dataset Version Number of Features

a) Baseline All Features 198

b) Baseline FS 22

c) Matrix Meta-features 72 * 3 = 216

d) Merged data 216 + 22 = 236

Table 4.11: Descriptive Analysis of Used Data Features for Task 2.

The list of features present in each Baseline dataset can be found in Appendix C ONWebDUALS

dataset features for Task 2. Additionally, the complete list of discriminative Bicluster patterns for the

2.5% Support experiment can be found in Appendix D.3.1 Discriminative Bicluster Patterns.

4.2.2.2 Biclustering-based Classification

The evaluation metrics for the four experiments delineated in Section 3.1.4 Biclustering-based Classifi-

cation are present in Table 4.12.
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Metric Test

Accuracy 0.65 (+/- 0.07)

Precision 0.67 (+/- 0.07)

Recall / Sensitivity 0.65 (+/- 0.07)

F-measure 0.65 (+/- 0.07)

Specificity 0.82 (+/- 0.04)

MCC 0.47 (+/- 0.11)

AUC 0.73 (+/- 0.05)

a) Baseline All Features.

Metric Test

Accuracy 0.72 (+/- 0.06)

Precision 0.74 (+/- 0.06)

Recall / Sensitivity 0.72 (+/- 0.06)

F-measure 0.73 (+/- 0.06)

Specificity 0.86 (+/- 0.03)

MCC 0.58 (+/- 0.09)

AUC 0.79 (+/- 0.04)

b) Baseline FS.

Metric Test

Accuracy 0.70 (+/- 0.05)

Precision 0.73 (+/- 0.05)

Recall / Sensitivity 0.68 (+/- 0.06)

F-measure 0.69 (+/- 0.06)

Specificity 0.84 (+/- 0.03)

MCC 0.54 (+/- 0.08)

AUC 0.76 (+/- 0.04)

c) Matrix Subject ID × Biclusters.

Metric Test

Accuracy 0.74 (+/- 0.05)

Precision 0.76 (+/- 0.06)

Recall / Sensitivity 0.74 (+/- 0.04)

F-measure 0.74 (+/- 0.05)

Specificity 0.86 (+/- 0.02)

MCC 0.61 (+/- 0.07)

AUC 0.80 (+/- 0.03)

d) Merged Data.

Table 4.12: Evaluation Metrics for RF Classifier - 10-fold CV in Task 2.

For this Task a complementary Python library to Scikit-Learn called Multiscorer [64] was used to

easily compute 10-fold metrics for the Multiclass Classification case. However, it lacked documentation

on how Training metrics could be obtained, explaining why those results are not presented.

From the results presented in Table 4.12 we can see that:

- Some overfitting might be occurring, it was not possible to verify without Training metrics;

- FS (Table 4.12 b)) greatly improved the classification over the other Baseline (Table 4.12 a));

- Using thematrix of subject ids× discriminative Bicluster ids by itself (Table 4.12 c)) also improved

over the Baseline with all features (Table 4.12 a));

- Merging the individual feature spacewith theMeta-features space (Table 4.12 d)) helped to improve

the results on all metrics comparing with the either the Baseline FS (Table 4.12 b)) or the matrix

experiment (Table 4.12 c)), clearly being the overall best from the four.

Most Important Features
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The features considered most important by the RF models for each Classification experiment can be

found below, from Figure 4.13 to Figure 4.16, in descending mean Permutation Imputation order.

Figure 4.13: Top-30 Most Important Features - a) Baseline All Features for Task 2 [Link].

As before, when more than 30 features are considered for an experiment (as seen in Table 4.11), only

the 30 with higher mean Permutation Imputation values are shown due to space limitations. According to

Figure 4.13 above for the experiment a) Baseline All Features, the 5 features considered most important

were Diagnostic Delay, ALSFRS-R Total, ALSFRS-R number 7,Weak Cough and Time gap between first

medical observation and diagnosis. Diagnostic Delay’s importance is around the double for the model

compared to the next most important feature, ALSFRS-R Total.
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Figure 4.14: Top-30 Most Important Features - b) Baseline FS for Task 2 [Link].

For the experiment b) Baseline FS only 22 features were used in total, and thus all of them are visible in

Figure 4.14. Here we can see that most of the 5 most important features stayed the same, even though not

in the same order: ALSFRS-R Total, Diagnostic Delay, Time gap between first medical observation and

diagnosis, Timing of transition from region 1 to 2 and Timing of transition from region 2 to 3. Additionally,

the mean Permutation Importance for the best features are much higher than in Figure 4.13. Moreover, in

this figure it is very noticeable why the Classification results (Table 4.12 b)) improved comparing to the

Baseline with all features: most of the remaining features were considered useful to the model, mainly

the first two (with more than the triple of the relative importance of the subsequent features). This proves

that the FS applied was successful for this Task.
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Figure 4.15: Top-30 Most Important Features - c) Matrix Subject ID × Biclusters for Task 2 [Link].

Figure 4.15 contains the mean Permutation Importance values for the top-30 most important features

in experiment c)Matrix Subject ID×Biclusters, which considers only Biclusters. As onTask 1, the values

are much more uniform and lower than before, probably due to the high number of features/Biclusters

(Table 4.11). The patterns of the top-5 Biclusters can be found below in Table 4.13:

Bicluster Id Class Rows Pattern

Bic_2404 Slow 12 {Diagnostic delay = [36, 48[ months, ALSFRS-R number 1 = 4,

ALSFRS-R number 2 = 4, ALSFRS-R number 3 = 4}

Bic_3633 Fast 17 {Diagnostic delay = [6, 12[ months, 1st region (Pattern of spread-

ing) = 1>, ALSFRS-R number 7 = 3}

Bic_1176 Fast 11 {Diagnostic delay = [12, 18[ months, ALSFRS-R number 5 = 1,

Time gap between first medical observation and diagnosis = [12,

18[ months}

Bic_1071 Fast 17 {Diagnostic delay = [0, 6[ months, Timing of transition from re-

gion 1 to 2 = [0, 3[ months, Timing of transition from region 2 to

3 = [0, 3[ months}

Bic_1181 Slow 42 {ALSFRS-R number 1 = 4, ALSFRS-R number 2 = 4, ALSFRS-R

number 3 = 4, ALSFRS-R number 6 = 4}

Table 4.13: Top-5 Most Important Bicluster Patterns - c) Matrix Subject ID × Biclusters for Task 2.
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In this table we can see that the found patterns generally have a small number of features, much

smaller than on Task 1. The appearance of Biclusters of the Slow and Fast classes as the most important

for the Classification was expected, given that these are the classes that can be discriminated more easily.

Additionally, theDiagnostic delay feature appears consistently in almost all of them. The complete list of

Bicluster patterns present in Figure 4.15 can be found in Appendix D.3.2 Top-30Most Important Bicluster

Patterns - c) Matrix Subject ID × Biclusters.

Figure 4.16: Top-30 Most Important Features - d) Merged Data for Task 2 [Link].

Finally, Figure 4.16 reports the mean Permutation Importance values for the top-30 most important

features in experiment d) Merged Data. After merging the individual features from b) experiment with

the matrix containing the Bicluster patterns from c) experiment, we see that some individual features

keep being the most important: Diagnostic Delay, Timing of transition from region 1 to 2 and ALSFRS-R

Total. Since all of these features have been appointed as relevant on the previous experiments, this proves

their importance in solving this group characterization problem. The complete list of Bicluster patterns

present in Figure 4.16 can be found in Appendix D.3.3 Top-30 Most Important Bicluster Patterns - d)

Merged Data.
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Nonetheless, some Biclusters are also considered as important for the Classification. Table 4.14

shows the patterns of the top-5 Biclusters for this last experiment.

Bicluster Id Class Rows Pattern

Bic_833 Fast 12 {Diagnostic delay = [0, 6[ months, Timing of transition from re-

gion 1 to 2 = [0, 3[ months, ALSFRS-R number 1 = 3, ALSFRS-R

number 2 = 3}

Bic_2126 Slow 17 {1st region (Pattern of spreading) = 5a>, ALSFRS-R number 1

= 4, ALSFRS-R number 2 = 4, ALSFRS-R number 3 = 4, Main

Occupation in the last 5 years (level 1) = 10 Pensioner / Out of

job}

Bic_1176 Fast 11 {Diagnostic delay = [12, 18[ months, ALSFRS-R number 5 = 1,

Time gap between first medical observation and diagnosis = [12,

18[ months}

Bic_1402 Slow 15 {1st region (Pattern of spreading) = 5a>, ALSFRS-R number 1

= 4, ALSFRS-R number 3 = 4, ALSFRS-R number 4 = 4, Main

Occupation in the last 5 years (level 1) = 10 Pensioner / Out of

job}

Bic_2323 Fast 21 {Diagnostic delay = [0, 6[ months, Timing of transition from re-

gion 1 to 2 = [0, 3[ months, ALSFRS-R number 6 = 3}

Table 4.14: Top-5 Most Important Bicluster Patterns - d) Merged Data for Task 2.

TheDiagnostic Delay and Timing of transition from region 1 to 2 features regularly appear in the most

important Biclusters of the Fast class. Additionally, the ALSFRS-R scale questions present never reach

the maximum value of 4, implicating a visible decline in functional performance. These results were

confirmed by the clinicians, since shorter diagnostic delay and shorter times of transition between body

regions (disease spreading, in short periods of 0-3 months) are is usually associated with faster disease

progression [66].

For the Slow class, 1st region (Pattern of spreading), ALSFRS-R number 1, ALSFRS-R number 3

and Main Occupation in the last 5 years (level 1) are common features. As expected, the ALSFRS-R

scale questions present seem to always have the maximum value since Slow progressing patients tend to

maintain their functional capabilities longer than the other classes. Slow progressors also tend to have a

larger life expectancy, being able to reach retirement age.

Neutral class Biclusters only start to appear after the top-5, confirming that they are considered less

discriminative to distinguish between the different progression groups, as postulated before. To try to

understand the most important features for this class, some patterns found for Neutral Biclusters are

present in Table 4.15.
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Bicluster Id Class Rows Pattern

Bic_3573 Neutral 22 {Gender = Female, ALSFRS-R number 3 = 3, ALSFRS-R number

5 = 3,Main Occupation in the last 5 years (level 1) = 10 Pensioner

/ Out of job}

Bic_4748 Neutral 11 {Age (1st Symptoms) = [60, 70[ years, 1st region (Pattern of

spreading) = 1>, ALSFRS-R number 6 = 4}

Bic_5001 Neutral 12 {Timing of transition from region 1 to 2 = [3, 6[ months, ALSFRS-

R number 5 = 3, ALSFRS-R number 7 = 4}

Table 4.15: Examples of Bicluster patterns for Neutral class - d) Merged Data for Task 2.

The values associated with theALSFRS-R scale questions present in the patterns for the Neutral class

seem to fluctuate between 3 and 4, halfway between the Slow and Fast class, as expected. Particularly,

here we can see that the fifth question of theALSFRS-R scale, ALSFRS-R number 5, tends to appear with

the value 3, implicating some compromise of the ability of cutting food and handling utensils [7].

4.2.2.3 Class Association Rule Mining

The experiments with Class Association Rules outlined in Section 3.1.5 Class Association Rule Mining

were able to find rules to characterize all the classes. Table 4.16 contains the minimum thresholds of

Support used, the size of the transaction database and the number of rules found (before and after filtering

the redundant rules):

Experiment Class Support (%) Transactions Rules Non-Redundant Rules

e) Slow 2.0% 473 75 36

e) Neutral 2.0% 473 22 14

e) Fast 2.0% 473 73 49

f) Slow 2.5% 3064 94 34

f) Neutral 2.5% 3064 15 15

f) Fast 2.5% 3064 12 12

Table 4.16: Metrics of Class Association Rule Mining experiments for Task 2.

All non-redundant rules for all classes on both experiments had Lift values above 2 (and even above

3), showing high levels of association between the found patterns and the respective classes. The complete

list of non-redundant rules for all experiments and classes can be found inAppendix D.3.4 Non-Redundant

Class Association Rules.

Given the limited space, the most relevant rules for each Experiment and class were chosen in the

same fashion as in Task 1 (from the set of rules with the higher Lift values, the ones with the largest
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Support were selected). Thus, for Task 2, the said rules are present in Table 4.17.

Experiment Class Rule Support (%) Lift

e) Slow ALSFRS-R number 6 = 4 ∧ ALSFRS-R number 7

= 4 ∧ ALSFRS-R total = 46⇒ Class = Slow

≈ 3.38 ≈ 3.15

e) Neutral ALSFRS-R number 7 = 4∧Diagnostic delay = [6,

12[ months ∧ Time gap between first medical ob-

servation and diagnosis = [6, 9[ months⇒ Class

= Neutral

≈ 2.75 ≈ 2.49

e) Fast Diagnostic delay = [0, 6[ months ∧ Timing of

transition from region 1 to 2 = [0, 3[ months ∧
Timing of transition from region 2 to 3 = [0, 3[

months⇒ Class = Fast

≈ 3.59 ≈ 3.56

f) Slow ALSFRS-R number 3 = 4 ∧ ALSFRS-R number 4

= 4⇒ Class = Slow

≈ 17.3 ≈ 2.46

f) Neutral ALSFRS-R number 2 = 4 ∧ ALSFRS-R number 5

= 3⇒ Class = Neutral

≈ 5.35 ≈ 3.47

f) Fast Diagnostic delay = [0, 6[ months ∧ Timing of

transition from region 1 to 2 = [0, 3[ months ⇒
Class = Fast

≈ 7.73 ≈ 3.28

Table 4.17: Most Relevant Class Association Rules for Task 2.

The rules obtained in the Baseline experiment (e)) showed higher Lift values for the Slow and Fast

classes, while the discriminative Bicluster experiment (f)) showed higher values for Neutral and Fast

classes. Regarding the pattern contents, these results confirm what was found in the previous section.

For the Fast class, the Diagnostic Delay and Timing of transition from region 1 to 2 features keep appear-

ing regularly in the most relevant rules of the Fast class, implying a great characterizing power of this

pattern. For the Slow class, theALSFRS-R scale questions keep having the maximum value. Finally, for

the Neutral class the ALSFRS-R number 5 feature appears again with the value 3 in the f) experiment.

According to these results and those of the previous section, the individual ALSFRS-R questions are

important features to characterize, in particular, the Slow and Neutral progression groups. Furthermore,

according to expert clinicians, these rules were considered clinically relevant and characterizing of their

respective Patient subgroups.
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In this thesis a new approach (DMD) based on Biclustering was proposed and used to find disease pre-

sentation patterns in the form of Meta-features, in order to characterize patients withALS as a whole and

to distinguish between patient progression groups in ALS.

More specifically, in Task 1 no Meta-features which distinguish the Portuguese ALS Patients from

their Controls could be clearly identified. In retrospective, the complexity of this Task was far greater

comparing to the second Task, being the subject of investigation of many renowned researchers with very

limited success.

However, according to the Classification results using discriminative Biclusters was meaningful in

Task 2, implying that considering subsets of features are relevant to find disease presentation patterns be-

tween the progression groups. Additionally, the most important individual features to distinguish between

the groups were Diagnostic Delay, Timing of transition from region 1 to 2 and ALSFRS-R Total.

The Association Rules considered more relevant by expert clinicians for each progression group

showed high positive values of Lift, meaning that the Meta-features found on their antecedents were

highly associated with each class. Moreover, parts of the rule’s antecedents matched the patterns found

on the most important Biclusters, indicating greater discriminative power.

These results were confirmed by the clinicians, who highlighted thatALS is an inevitably progressive

disease, but the individual rate of clinical deterioration is quite variable. Furthermore, the Diagnostic

Delay, i.e. the delay from first symptoms until the diagnosis is a recognized prognostic factor in ALS

(with a shorter delay associated with faster progression) [66]. Moreover, it has been observed that shorter

times of transition between body regions (disease spreading, in short periods of 0-3 months) are also

associated with faster progression.

The individualALSFRS-R questions assessing salivation (ALSFRS-R number 2), swallowing (ALSFRS-

R number 3), handwriting (ALSFRS-R number 4), cutting food and handling utensils (ALSFRS-R number

5), dressing and personal hygiene (ALSFRS-R number 6) and turning on bed and adjusting bed clothes

(ALSFRS-R number 7) were considered to be important features to characterize the Slow and Neutral

progression groups.
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In conclusion, the obtained results suggest that our Biclustering-based approach is a promising way to

unravel disease presentation patterns and can be applied to similar problems and other diseases. Nonethe-

less, it is always possible to improve on a given solution, especially if it has identified problems.

In this work the obtained discriminative Biclusters tended to generally have a small number of rows.

This happened due to the assumption that all rows in a Bicluster had to be exactly alike, not allowing for

any deviation. By relaxing this restriction, taller Biclusters would most likely be found. Nonetheless, in

that case the pattern of a Bicluster would have to be found in a different way (e.g. most frequent pattern,

or the set of all present patterns), which would increase the complexity of the problem.

Additionally, the used RF models suffered from overfitting due to the high number of Biclusters from

the experiments chosen. Thus, some form of filtering/sampling should have been applied to the obtained

Biclusters on the to help diminishing that effect, e.g. using the Chi-Square statistic (in a similar way as

in Section 3.1.1 Data Pre-processing) to choose a number of Biclusters most associated with each class.

Regarding future experiments, we would like to try other forms of Feature Selection with Task 1 data

to see if it enhances the results. Additionally, we would like to verify if the alternative patient stratification

mentioned in Section 2.6.4 Progression Groups in ALS would improve the results for the ALS patients

in Task 2. Moreover, other Biclustering algorithms (if available) could be tested in place of BicPAM to

check for general improvements.

As for new future approaches we would like to apply the DMD approach to other types of data

(e.g. temporal data) by using other Biclustering algorithms with the ability to deal with the said data

types. We would also like to suggest possible improvements to BicPAM to better support Biclustering

over categorical data, to avoid having to perform the implemented translation steps, allowing to obtain

interpretable Biclusters more easily. Finally, another idea was the creation of a complete pipeline, in the

form of a full-fledged application like BiGGEsTS (an integrated environment for biclustering analysis of

time series gene expression data) [19] that would allow the integrated treatment of the data and then the

use of the several techniques employed by the DMD approach, including (if possible) a dynamic way to

optimize the diverse thresholds used throughout the workflow.
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Appendix A

Discretized ONWebDUALS Dataset

Feature Name Category Value Category Label

Age (on date of consultation)

1 [0, 10[ years

2 [10, 20[ years

3 [20, 30[ years

4 [30, 40[ years

5 [40, 50[ years

6 [50, 60[ years

7 [60, 70[ years

8 [70, 80[ years

9 [80, 90[ years

10 >= 90 years

Age (1st Symptoms)

1 [0, 10[ years

2 [10, 20[ years

3 [20, 30[ years

4 [30, 40[ years

5 [40, 50[ years

6 [50, 60[ years

7 [60, 70[ years

8 [70, 80[ years

9 [80, 90[ years

10 >= 90 years

Gender
1 Female

2 Male

Note: some features with the same categories were condensed into one to occupy less space.
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Feature Name Category Value Category Label

Ethinicity

1 Caucasian

2 African

3 Asian

4 Not feasible

Place of birth

1 Village < 1000 inhabitants

2 Country towns [1000 - 5000]

3 Small town [5000 - 20000]

4 Middle town [20000 – 100000]

5 Large town > 100000

Place of birth characteristics
1 Rural Area

2 Urban Area

Mother’s Place of birth charac-

teristics

1 Rural Area

2 Urban Area

Father’s Place of birth character-

istics

1 Rural Area

2 Urban Area

Diagnostic delay

1 [0, 6[ months

2 [6, 12[ months

3 [12, 18[ months

4 [18, 24[ months

5 [24, 36[ months

6 [36, 48[ months

7 [48, 60[ months

8 [60, 72[ months

9 [72, 84[ months

10 [84, 96[ months

11 [96, 108[ months

12 [108, 120[ months

13 >= 120 months

Limbs onset
1 Yes

2 No

Bulbar onset
1 Yes

2 No

Neck onset
1 Yes

2 No

Thoracic or Abdominal onset
1 Yes

2 No
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Feature Name Category Value Category Label

Respiratory onset
1 Yes

2 No

Dyscognition onset
1 Yes

2 No

Generalized onset
1 Yes

2 No

UMN vs LMN manifestation at

onset

1 UMN

2 LMN

3 UMN+LMN

Limb onset

1 No

2 Upper limb

3 Lower limb

4 Upper and lower

Predominant side

1 Left

2 Right

3 Symmetric

Predominant impairment

1 Distal

2 Proximal

3 Distal and proximal

Fasciculations at onset
1 Yes

2 No

Weight loss
1 Yes

2 No

Emotional lability at onset
1 Yes

2 No

Cognitive symptoms at onset
1 Yes

2 No

Handedness

1 Left

2 Right

3 Ambidextrous

Tongue spasticity (Bulbar UMN)
1 Yes

2 No

Jaw clonus (Bulbar UMN)
1 Yes

2 No

Brisk jaw jerk (Bulbar UMN)
1 Yes

2 No
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Feature Name Category Value Category Label

Tongue atrophy (Bulbar LMN)
1 Yes

2 No

Tongue fasciculations (Bulbar

LMN)

1 Yes

2 No

Weak orbicularis oris (Bulbar

LMN)

1 Yes

2 No

Facial muscle fasciculations

(Bulbar LMN)

1 Yes

2 No

Masseter atrophy (Bulbar LMN)
1 Yes

2 No

Hyperreflexia (Upper Limbs

UMN)

1 Yes

2 No

Finger flexion or Hoffman sign

(Upper Limbs UMN)

1 Yes

2 No

Spasticity (Upper Limbs UMN)
1 Yes

2 No

Atrophy and Weakness (Upper

Limbs LMN)

1 Yes

2 No

Fasciculations at onset (Upper

Limbs LMN)

1 Yes

2 No

Hyporeflexia (Upper Limbs

LMN)

1 Yes

2 No

Hyperreflexia (Lower Limbs

UMN)

1 Yes

2 No

Finger flexion or Babinskis sign

(Lower Limbs UMN)

1 Yes

2 No

Spasticity (Lower Limbs UMN)
1 Yes

2 No

Atrophy and Weakness (Lower

Limbs LMN)

1 Yes

2 No

Fasciculations at onset (Lower

Limbs LMN)

1 Yes

2 No

Hyporeflexia (Lower Limbs

LMN)

1 Yes

2 No

Neck weakness
1 Yes

2 No
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Feature Name Category Value Category Label

Thoracic muscle fasciculations
1 Yes

2 No

Resting respiratory fatigue
1 Yes

2 No

Othopnea
1 Yes

2 No

Paradoxical respiration
1 Yes

2 No

Weak cough
1 Yes

2 No

Diagnosis

1 Definite

2 Probable

3 Possible

4 Probable-laboratory supported

5 PMA

Emotional lability
1 Yes

2 No

Cognition (Qualitative evalua-

tion)

1 Normal

2 Abnormal

Depression (Qualitative evalua-

tion)

1 Normal

2 Abnormal

1st (to 13th) region (Pattern of

spreading)

1 1>

2 1/

3 2>

4 2/

5 2a>

6 2a/

7 2b>

8 2b/

9 3>

10 3/

11 3a>

12 3a/

13 3b>

14 3b/

15 4>
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Feature Name Category Value Category Label

16 4/

17 4a>

18 4a/

19 4b>

20 4b/

21 5>

22 5/

23 5a>

24 5a/

25 5b>

26 5b/

27 6>

28 6/

29 7>

30 7/

31 8>

32 8/

33 9>

34 9/

Region 1 (Region progression)

1 Bulbar

2 Cervical

3 Thoracic

4 Lumbo-sacral

5 Dyscognition

Region 2 (Region progression)

1 Bulbar

2 Cervical

3 Thoracic

4 Lumbo-sacral

5 Dyscognition

Timing of transition from Re-

gion 1 to 2

1 [0, 3[ months

2 [3, 6[ months

3 [6, 9[ months

4 [9, 12[ months

5 [12, 18[ months

6 [18, 24[ months

7 [24, 36[ months

8 [36, 48[ months
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Feature Name Category Value Category Label

9 > 48 months

Region 3 (Region progression)

1 Bulbar

2 Cervical

3 Thoracic

4 Lumbo-sacral

5 Dyscognition

Timing of transition from Re-

gion 2 to 3

1 [0, 3[ months

2 [3, 6[ months

3 [6, 9[ months

4 [9, 12[ months

5 [12, 18[ months

6 [18, 24[ months

7 [24, 36[ months

8 [36, 48[ months

9 > 48 months

ALSFRS-R number 1 (to 12)

0 0

1 1

2 2

3 3

4 4

ALSFRS-R total

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15
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Feature Name Category Value Category Label

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

CK level
1 Above max value (bad)

2 Below max value (good)

Albumin level 1 Below min value (bad)
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Feature Name Category Value Category Label

2 Above min value (good)

Creatinine level
1 Below min value (bad)

2 Above min value (good)

Total Cholesterol level
1 Above max value (bad)

2 Below max value (good)

HDL Cholesterol level
1 Below min value (bad)

2 Above min value (good)

LDL Cholesterol level
1 Above max value (bad)

2 Below max value (good)

Triglycerides level
1 Above max value (bad)

2 Below max value (good)

Diagnostic EMG (bulbar region)
1 Normal

2 Abnormal

Diagnostic EMG (upper limbs)
1 Normal

2 Abnormal

Diagnostic EMG (lower limbs)
1 Normal

2 Abnormal

Diagnostic EMG (Nerve con-

duction studies)

1 Yes

2 No

Brain MRI

1 Normal

2 Tumor

3 Stroke

4 Multiple sclerosis

5 Trauma

6 Hypoxia

Spinal cord MRI Cervical

1 Normal

2 Tumor

3 Stenosis

4 Myelitis

5 Trauma

6 Syringomyelia

7 Other

Spinal cord MRI Thoracic

1 Normal

2 Tumor

3 Stenosis

4 Myelitis
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Feature Name Category Value Category Label

5 Trauma

6 Syringomyelia

7 Other

Spinal cord MRI Lumbosacral

1 Normal

2 Tumor

3 Stenosis

4 Myelitis

5 Trauma

6 Syringomyelia

7 Other

FVC (% predicted values)

1 < 40 % (very bad)

2 [40, 60[ % (bad)

3 [60, 80[ % (acceptable)

4 > 80 % (good)

SNIP absolute value (cmH2O)

1 < 40 cmH2O (bad)

2 [40, 60] cmH2O Female / [40, 70]

cmH2O Male (acceptable)

3 > 60 cmH2O Female / > 70 cmH2O

Male (good)

Blood hypertension
1 Yes

2 No

Diabetes type I or II
1 Yes

2 No

Hypercholesterolemia
1 Yes

2 No

Hypertriglyceridemia
1 Yes

2 No

Hyperthyroidism
1 Yes

2 No

Hypothyroidism
1 Yes

2 No

Autoimmune rheumatologic dis-

order

1 Yes

2 No

Autoimmune intestinal disorder
1 Yes

2 No

Stroke 1 Ischemic
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Feature Name Category Value Category Label

2 Hemorrhagic

3 Unknown

4 No

Heart ischemia
1 Yes

2 No

Heart arrhytmia
1 Yes

2 No

Heart insufficiency
1 Yes

2 No

Primary cancer

1 No

2 Brain

3 Neck

4 Breast

5 Lung

6 Other Thoracic

7 Gastric

8 Colon

9 Rectum

10 Other Abdominal

11 Prostate

12 Uterus

13 Other Pelvic

14 Spine

15 UL bone and sarcomas

16 LL bone and sarcomas

17 Skin

18 Leukemia

19 Lymphoma

20 Other blood

Metastasis

1 No

2 Brain

3 Neck

4 Breast

5 Lung

6 Other Thoracic

7 Gastric
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Feature Name Category Value Category Label

8 Colon

9 Rectum

10 Other Abdominal

11 Prostate

12 Uterus

13 Other Pelvic

14 Spine

15 UL bone and sarcomas

16 LL bone and sarcomas

17 Skin

18 Leukemia

19 Lymphoma

20 Other blood

Cancer treatment (Chemother-

apy)

1 Yes

2 No

Cancer treatment (Radiother-

apy)

1 Yes

2 No

Cancer treatment (Radiotherapy

of head or neck)

1 Yes

2 No

Smoking
1 Smokes/smoked

2 No

Stopped smoking
1 Yes

2 No

Tobacco exposure (pack years)

1 [0, 25[ % (Q1)

2 [25, 50[ % (Q2)

3 [50, 75[ % (Q3)

4 > 75 % (Q4, not outlier)

5 Mild outlier (> Q3 + 1 IQR)

6 Extreme outlier (> Q3 + 3 IQR)

Psychiatric medication
1 Yes

2 No

Supplements
1 Yes

2 No

Riluzole
1 Yes

2 No

Antiepileptc drug 1 Yes
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Feature Name Category Value Category Label

2 No

Statins
1 Yes

2 No

NSAID
1 Yes

2 No

Steroids
1 Yes

2 No

Immunosupressors
1 Yes

2 No

Abnormal C9orf72 repeat ex-

pansion

1 Yes

2 No

Was there ALS in the family
1 Yes

2 No

Mother (ALS in the family)
1 Yes

2 No

Father (ALS in the family)
1 Yes

2 No

Was there FTD in the family
1 Yes

2 No

Mother (FTD in the family)
1 Yes

2 No

Father (FTD in the family)
1 Yes

2 No

Was there AD in the family
1 Yes

2 No

Mother (AD in the family)
1 Yes

2 No

Father (AD in the family)
1 Yes

2 No

Was there PD in the family
1 Yes

2 No

Mother (PD in the family)
1 Yes

2 No

Father (PD in the family)
1 Yes

2 No

Was there MS in the family 1 Yes
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Feature Name Category Value Category Label

2 No

Mother (MS in the family)
1 Yes

2 No

Father (MS in the family)
1 Yes

2 No

Other severe disease 1 of mother

1 01 Certain infectious or parasitic dis-

eases

2 02 Neoplasms

3 03 Diseases of the blood or blood-

forming organs

4 04 Diseases of the immune system

5 05 Endocrine, nutritional or

metabolic diseases

6 06 Mental, behavioural or neurode-

velopmental disorders

7 07 Sleep-wake disorders

8 08 Diseases of the nervous system

9 09 Diseases of the visual system

10 10 Diseases of the ear or mastoid pro-

cess

11 11 Diseases of the circulatory system

12 12 Diseases of the respiratory system

13 13 Diseases of the digestive system

14 14 Diseases of the skin

15 15 Diseases of the musculoskeletal

system or connective tissue

16 16 Diseases of the genitourinary sys-

tem

17 17 Conditions related to sexual health

18 18 Pregnancy, childbirth or the puer-

perium

19 19 Certain conditions originating in

the perinatal period

20 20 Developmental anomalies

21 21 Symptoms, signs or clinical find-

ings, not elsewhere classified
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Feature Name Category Value Category Label

22 22 Injury, poisoning or certain other

consequences of external causes

23 23 External causes of morbidity or

mortality

24 24 Factors influencing health status or

contact with health services

25 25 Codes for special purposes

26 26 Traditional Medicine conditions -

Module I

Other severe disease 1 of father

1 01 Certain infectious or parasitic dis-

eases

2 02 Neoplasms

3 03 Diseases of the blood or blood-

forming organs

4 04 Diseases of the immune system

5 05 Endocrine, nutritional or

metabolic diseases

6 06 Mental, behavioural or neurode-

velopmental disorders

7 07 Sleep-wake disorders

8 08 Diseases of the nervous system

9 09 Diseases of the visual system

10 10 Diseases of the ear or mastoid pro-

cess

11 11 Diseases of the circulatory system

12 12 Diseases of the respiratory system

13 13 Diseases of the digestive system

14 14 Diseases of the skin

15 15 Diseases of the musculoskeletal

system or connective tissue

16 16 Diseases of the genitourinary sys-

tem

17 17 Conditions related to sexual health

18 18 Pregnancy, childbirth or the puer-

perium

19 19 Certain conditions originating in

the perinatal period

99



Feature Name Category Value Category Label

20 20 Developmental anomalies

21 21 Symptoms, signs or clinical find-

ings, not elsewhere classified

22 22 Injury, poisoning or certain other

consequences of external causes

23 23 External causes of morbidity or

mortality

24 24 Factors influencing health status or

contact with health services

25 25 Codes for special purposes

26 26 Traditional Medicine conditions -

Module I

Mother alive
1 Yes

2 No

Mother’s cause of death

1 01 Certain infectious or parasitic dis-

eases

2 02 Neoplasms

3 03 Diseases of the blood or blood-

forming organs

4 04 Diseases of the immune system

5 05 Endocrine, nutritional or

metabolic diseases

6 06 Mental, behavioural or neurode-

velopmental disorders

7 07 Sleep-wake disorders

8 08 Diseases of the nervous system

9 09 Diseases of the visual system

10 10 Diseases of the ear or mastoid pro-

cess

11 11 Diseases of the circulatory system

12 12 Diseases of the respiratory system

13 13 Diseases of the digestive system

14 14 Diseases of the skin

15 15 Diseases of the musculoskeletal

system or connective tissue

16 16 Diseases of the genitourinary sys-

tem
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Feature Name Category Value Category Label

17 17 Conditions related to sexual health

18 18 Pregnancy, childbirth or the puer-

perium

19 19 Certain conditions originating in

the perinatal period

20 20 Developmental anomalies

21 21 Symptoms, signs or clinical find-

ings, not elsewhere classified

22 22 Injury, poisoning or certain other

consequences of external causes

23 23 External causes of morbidity or

mortality

24 24 Factors influencing health status or

contact with health services

25 25 Codes for special purposes

26 26 Traditional Medicine conditions -

Module I

Father alive
1 Yes

2 No

Father’s cause of death

1 01 Certain infectious or parasitic dis-

eases

2 02 Neoplasms

3 03 Diseases of the blood or blood-

forming organs

4 04 Diseases of the immune system

5 05 Endocrine, nutritional or

metabolic diseases

6 06 Mental, behavioural or neurode-

velopmental disorders

7 07 Sleep-wake disorders

8 08 Diseases of the nervous system

9 09 Diseases of the visual system

10 10 Diseases of the ear or mastoid pro-

cess

11 11 Diseases of the circulatory system

12 12 Diseases of the respiratory system

13 13 Diseases of the digestive system
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Feature Name Category Value Category Label

14 14 Diseases of the skin

15 15 Diseases of the musculoskeletal

system or connective tissue

16 16 Diseases of the genitourinary sys-

tem

17 17 Conditions related to sexual health

18 18 Pregnancy, childbirth or the puer-

perium

19 19 Certain conditions originating in

the perinatal period

20 20 Developmental anomalies

21 21 Symptoms, signs or clinical find-

ings, not elsewhere classified

22 22 Injury, poisoning or certain other

consequences of external causes

23 23 External causes of morbidity or

mortality

24 24 Factors influencing health status or

contact with health services

25 25 Codes for special purposes

26 26 Traditional Medicine conditions -

Module I

Regular Physical Exercise
1 Yes

2 No

Intense (mod. or vig.) Physical

Exercise

1 Yes

2 No

Mild Physical Exercise
1 Yes

2 No

Head or Neck trauma in the last

5 years

1 Head/Neck

2 No

Head or Neck trauma more than

5 years ago

1 Head/Neck

2 No

Other Cervical trauma in the last

5 years

1 Yes

2 No

Other Thoracic trauma in the last

5 years

1 Yes

2 No
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Feature Name Category Value Category Label

Other Lumbosacral trauma in the

last 5 years

1 Yes

2 No

Other Cervical traumamore than

5 years ago

1 Yes

2 No

Other Thoracic trauma more

than 5 years ago

1 Yes

2 No

Other Lumbosacral trauma more

than 5 years ago

1 Yes

2 No

Cervical Spine surgery in the last

5 years

1 Yes

2 No

Thoracic Spine surgery in the

last 5 years

1 Yes

2 No

LumboSacral Spine surgery in

the last 5 years

1 Yes

2 No

Cervical Spine surgery more

than 5 years ago

1 Yes

2 No

Thoracic Spine surgery more

than 5 years ago

1 Yes

2 No

LumboSacral Spine surgery

more than 5 years ago

1 Yes

2 No

Upper Limb surgery in the last

years

1 Yes

2 No

Lower Limb surgery in the last 5

years

1 Yes

2 No

Upper Limb surgery more than 5

years ago

1 Yes

2 No

Lower Limb surgery more than 5

years ago

1 Yes

2 No

Abdominal surgery in the last 5

years

1 Yes

2 No

Abdominal surgery more than 5

years ago

1 Yes

2 No

Thoracic surgery in the last 5

years

1 Yes

2 No

Thoracic surgery more than 5

years ago

1 Yes

2 No
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Feature Name Category Value Category Label

Pelvic Surgery in the last 5 years
1 Yes

2 No

Pelvic Surgery more than 5 years

ago

1 Yes

2 No

Head or neck Surgery in the last

5 years

1 Yes

2 No

Head or neck Surgery more than

5 years ago

1 Yes

2 No

Main Occupation in the last 5

years (or more than 5 years ago)

(level 1)

01 01 Commissioned armed forces offi-

cers

02 02 Non-commissioned armed forces

officers

03 03 Armed forces occupations, other

ranks

10 10 Pensioner / Out of job

11 11 Chief executives, senior officials

and legislators

12 12 Administrative and commercial

managers

13 13 Production and specialised ser-

vices managers

14 14 Hospitality, retail and other ser-

vices managers

21 21 Science and engineering profes-

sionals

22 22 Health professionals

23 23 Teaching professionals

24 24 Business and administration pro-

fessionals

25 25 Information and communications

technology professionals

26 26 Legal, social and cultural profes-

sionals

31 31 Science and engineering associate

professionals

32 32 Health associate professionals
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Feature Name Category Value Category Label

33 33 Business and administration asso-

ciate professionals

34 34 Legal, social, cultural and related

associate professionals

35 35 Information and communications

technicians

41 41 General and keyboard clerks

42 42 Customer services clerks

43 43 Numerical and material recording

clerks

44 44 Other clerical support workers

51 51 Personal service workers

52 52 Sales workers

53 53 Personal care workers

54 54 Protective services workers

61 61 Market-oriented skilled agricul-

tural workers

62 62 Market-oriented skilled forestry,

fishery and hunting workers

63 63 Subsistence farmers, fishers,

hunters and gatherers

71 71 Building and related trades work-

ers, excluding electricians

72 72 Metal, machinery and related

trades workers

73 73 Handicraft and printing workers

74 74 Electrical and electronic trades

workers

75 75 Food processing, wood working,

garment and other craft and related

trades workers

81 81 Stationary plant and machine op-

erators

82 82 Assemblers

83 83 Drivers and mobile plant operator

91 91 Cleaners and helpers
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Feature Name Category Value Category Label

92 92 Agricultural, forestry and fishery

labourers

93 93 Labourers in mining, construction,

manufacturing and transport

94 94 Food preparation assistants

95 95 Street and related sales and service

workers

96 96 Refuse workers and other elemen-

tary workers

Second Occupation in the last 5

years (or more than 5 years ago)

(level 1)

01 01 Commissioned armed forces offi-

cers

02 02 Non-commissioned armed forces

officers

03 03 Armed forces occupations, other

ranks

10 10 Pensioner / Out of job

11 11 Chief executives, senior officials

and legislators

12 12 Administrative and commercial

managers

13 13 Production and specialised ser-

vices managers

14 14 Hospitality, retail and other ser-

vices managers

21 21 Science and engineering profes-

sionals

22 22 Health professionals

23 23 Teaching professionals

24 24 Business and administration pro-

fessionals

25 25 Information and communications

technology professionals

26 26 Legal, social and cultural profes-

sionals

31 31 Science and engineering associate

professionals

32 32 Health associate professionals
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Feature Name Category Value Category Label

33 33 Business and administration asso-

ciate professionals

34 34 Legal, social, cultural and related

associate professionals

35 35 Information and communications

technicians

41 41 General and keyboard clerks

42 42 Customer services clerks

43 43 Numerical and material recording

clerks

44 44 Other clerical support workers

51 51 Personal service workers

52 52 Sales workers

53 53 Personal care workers

54 54 Protective services workers

61 61 Market-oriented skilled agricul-

tural workers

62 62 Market-oriented skilled forestry,

fishery and hunting workers

63 63 Subsistence farmers, fishers,

hunters and gatherers

71 71 Building and related trades work-

ers, excluding electricians

72 72 Metal, machinery and related

trades workers

73 73 Handicraft and printing workers

74 74 Electrical and electronic trades

workers

75 75 Food processing, wood working,

garment and other craft and related

trades workers

81 81 Stationary plant and machine op-

erators

82 82 Assemblers

83 83 Drivers and mobile plant operator

91 91 Cleaners and helpers
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Feature Name Category Value Category Label

92 92 Agricultural, forestry and fishery

labourers

93 93 Labourers in mining, construction,

manufacturing and transport

94 94 Food preparation assistants

95 95 Street and related sales and service

workers

96 96 Refuse workers and other elemen-

tary workers

Main Occupation in the last 5

years (or more than 5 years ago)

(level 2)

0 0 Armed forces occupations

1 1 Managers

2 2 Professionals

3 3 Technicians and associate profes-

sionals

4 4 Clerical support workers

5 5 Service and sales workers

6 6 Skilled agricultural, forestry and

fishery workers

7 7 Craft and related trades workers

8 8 Plant and machine operators and as-

semblers

9 9 Elementary occupations

10 10 Pensioner / Out of job

Second Occupation in the last 5

years (or more than 5 years ago)

(level 2)

0 0 Armed forces occupations

1 1 Managers

2 2 Professionals

3 3 Technicians and associate profes-

sionals

4 4 Clerical support workers

5 5 Service and sales workers

6 6 Skilled agricultural, forestry and

fishery workers

7 7 Craft and related trades workers

8 8 Plant and machine operators and as-

semblers

9 9 Elementary occupations
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Feature Name Category Value Category Label

10 10 Pensioner / Out of job

Place of living in the last 5 years

(or more than 5 years ago)

1 Village < 1000 inhabitants

2 Country towns [1000 - 5000]

3 Small town [5000 - 20000]

4 Middle town [20000 – 100000]

5 Large town > 100000

Lived in Rural Area or Urban in

the last 5 years (or more than 5

years ago)

1 Rural area

2 Urban area

ALS cases in the neighborhood
1 Yes

2 No

ALS disease in coworkers
1 Yes

2 No

ALS disease in friends
1 Yes

2 No

Time gap between first medical

observation and diagnosis

1 [0, 3[ months

2 [3, 6[ months

3 [6, 9[ months

4 [9, 12[ months

5 [12, 18[ months

6 [18, 24[ months

7 [24, 36[ months

8 [36, 48[ months

9 > 48 months

End of Table
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Appendix B

ONWebDUALS dataset features for Task 1

Feature Name a) Baseline with All Features b) Baseline FS

Age (on date of consultation) Yes Yes

Gender Yes Yes

Ethinicity Yes

Place of birth Yes Yes

Place of birth characteristics Yes

Mother’s Place of birth characteristics Yes Yes

Father’s Place of birth characteristics Yes

Blood hypertension Yes Yes

Diabetes type I or II Yes

Hypercholesterolemia Yes Yes

Hypertriglyceridemia Yes

Hyperthyroidism Yes

Hypothyroidism Yes

Autoimmune rheumatologic disorder Yes

Autoimmune intestinal disorder Yes

Stroke Yes

Heart ischemia Yes

Heart arrhytmia Yes

Heart insufficiency Yes

Primary cancer Yes Yes

Metastasis Yes

Cancer treatment (Chemotherapy) Yes

Cancer treatment (Radiotherapy) Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Cancer treatment (Radiotherapy of head or

neck)

Yes

Smoking Yes

Stopped smoking Yes

Tobacco exposure (pack years) Yes

Psychiatric medication Yes Yes

Supplements Yes

Antiepileptc drug Yes

Statins Yes

NSAID Yes Yes

Steroids Yes

Immunosupressors Yes

Was there ALS in the family Yes Yes

Mother (ALS in the family) Yes

Father (ALS in the family) Yes

Was there FTD in the family Yes

Mother (FTD in the family) Yes

Father (FTD in the family) Yes

Was there AD in the family Yes

Mother (AD in the family) Yes

Father (AD in the family) Yes

Was there PD in the family Yes

Mother (PD in the family) Yes

Father (PD in the family) Yes

Was there MS in the family Yes

Mother (MS in the family) Yes

Father (MS in the family) Yes

Other severe disease 1 of mother Yes Yes

Other severe disease 1 of father Yes

Mother alive Yes Yes

Mother’s cause of death Yes Yes

Father alive Yes

Father’s cause of death Yes Yes

Regular Physical Exercise Yes Yes

Intense (mod. or vig.) Physical Exercise Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Mild Physical Exercise Yes

Head or Neck trauma in the last 5 years Yes

Head or Neck trauma more than 5 years ago Yes

Other Cervical trauma in the last 5 years Yes

Other Thoracic trauma in the last 5 years Yes

Other Lumbosacral trauma in the last 5 years Yes

Other Cervical trauma more than 5 years ago Yes

Other Thoracic trauma more than 5 years ago Yes

Other Lumbosacral trauma more than 5 years

ago

Yes

Cervical Spine surgery in the last 5 years Yes

Thoracic Spine surgery in the last 5 years Yes Yes

LumboSacral Spine surgery in the last 5 years Yes

Cervical Spine surgery more than 5 years ago Yes

Thoracic Spine surgery more than 5 years ago Yes

LumboSacral Spine surgery more than 5 years

ago

Yes

Upper Limb surgery in the last years Yes

Lower Limb surgery in the last 5 years Yes

Upper Limb surgery more than 5 years ago Yes

Lower Limb surgery more than 5 years ago Yes

Abdominal surgery in the last 5 years Yes

Abdominal surgery more than 5 years ago Yes

Thoracic surgery in the last 5 years Yes

Thoracic surgery more than 5 years ago Yes

Pelvic Surgery in the last 5 years Yes

Pelvic Surgery more than 5 years ago Yes

Head or neck Surgery in the last 5 years Yes

Head or neck Surgery more than 5 years ago Yes

Main Occupation in the last 5 years (level 1) Yes Yes

Main Occupation more than 5 years ago (level

1)

Yes Yes

Second Occupation in the last 5 years (level 1) Yes

Second Occupation more than 5 years ago

(level 1)

Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Main Occupation in the last 5 years (level 2) Yes

Main Occupation more than 5 years ago (level

2)

Yes

Second Occupation in the last 5 years (level 2) Yes

Second Occupation more than 5 years ago

(level 2)

Yes

Place of living in the last 5 years Yes Yes

Lived in RuralArea or Urban in the last 5 years Yes

Place of living more than 5 years ago Yes

Lived in RuralArea or Urban more than 5 years

ago

Yes Yes

ALS cases in the neighborhood Yes

ALS disease in coworkers Yes

ALS disease in friends Yes

End of Table
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Appendix C

ONWebDUALS dataset features for Task 2

Feature Name a) Baseline with All Features b) Baseline FS

Age (1st Symptoms) Yes Yes

Age (on date of consultation) Yes

Gender Yes Yes

Ethinicity Yes

Place of birth Yes

Place of birth characteristics Yes

Mother’s Place of birth characteristics Yes

Father’s Place of birth characteristics Yes

Diagnostic delay Yes Yes

Limbs onset Yes

Bulbar onset Yes

Neck onset Yes

Thoracic or Abdominal onset Yes

Respiratory onset Yes

Dyscognition onset Yes

Generalized onset Yes

UMN vs LMN manifestation at onset Yes

Limb onset Yes

Predominant side Yes

Predominant impairment Yes

Fasciculations at onset Yes

Weight loss Yes

Emotional lability at onset Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Cognitive symptoms at onset Yes

Handedness Yes

Tongue spasticity (Bulbar UMN) Yes

Jaw clonus (Bulbar UMN) Yes

Brisk jaw jerk (Bulbar UMN) Yes

Tongue atrophy (Bulbar LMN) Yes

Tongue fasciculations (Bulbar LMN) Yes

Weak orbicularis oris (Bulbar LMN) Yes

Facial muscle fasciculations (Bulbar LMN) Yes

Masseter atrophy (Bulbar LMN) Yes

Hyperreflexia (Upper Limbs UMN) Yes

Finger flexion or Hoffman sign (Upper Limbs

UMN)

Yes

Spasticity (Upper Limbs UMN) Yes

Atrophy and Weakness (Upper Limbs LMN) Yes

Fasciculations at onset (Upper Limbs LMN) Yes

Hyporeflexia (Upper Limbs LMN) Yes

Hyperreflexia (Lower Limbs UMN) Yes

Finger flexion or Babinskis sign (Lower Limbs

UMN)

Yes

Spasticity (Lower Limbs UMN) Yes

Atrophy and Weakness (Lower Limbs LMN) Yes

Fasciculations at onset (Lower Limbs LMN) Yes

Hyporeflexia (Lower Limbs LMN) Yes

Neck weakness Yes

Thoracic muscle fasciculations Yes

Resting respiratory fatigue Yes

Othopnea Yes

Paradoxical respiration Yes

Weak cough Yes

Diagnosis Yes

Emotional lability Yes

Cognition (Qualitative evaluation) Yes

Depression (Qualitative evaluation) Yes

1st region (Pattern of spreading) Yes Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

2nd region (Pattern of spreading) Yes

3rd region (Pattern of spreading) Yes Yes

4th region (Pattern of spreading) Yes Yes

5th region (Pattern of spreading) Yes Yes

6th region (Pattern of Spreading) Yes

7th region (Pattern of spreading) Yes

8th region (Pattern of spreading) Yes

9th region (Pattern of spreading) Yes

10th region (Pattern of spreading) Yes

11th region (Pattern of spreading) Yes

12th region (Pattern of spreading) Yes

13th region (Pattern of spreading) Yes

Region 1 (Region progression) Yes

Region 2 (Region progression) Yes

Timing of transition from region 1 to 2 Yes Yes

Region 3 (Region progression) Yes Yes

Timing of transition from region 2 to 3 Yes Yes

ALSFRSR number 1 Yes Yes

ALSFRSR number 2 Yes Yes

ALSFRSR number 3 Yes Yes

ALSFRSR number 4 Yes Yes

ALSFRSR number 5 Yes Yes

ALSFRSR number 6 Yes Yes

ALSFRSR number 7 Yes Yes

ALSFRSR number 8 Yes Yes

ALSFRSR number 9 Yes Yes

ALSFRSR number 10 Yes

ALSFRSR number 11 Yes

ALSFRSR number 12 Yes

ALSFRSR total Yes Yes

CK level Yes

Albumin level Yes

Creatinine level Yes

Total Cholesterol level Yes

HDL Cholesterol level Yes

117



Feature Name a) Baseline w/All Features b) Baseline FS

LDL Cholesterol level Yes

Triglycerides level Yes

Diagnostic EMG (bulbar region) Yes

Diagnostic EMG (upper limbs) Yes

Diagnostic EMG (lower limbs) Yes

Diagnostic EMG (Nerve conduction studies) Yes

Brain MRI Yes

Spinal cord MRI Cervical Yes

Spinal cord MRI Thoracic Yes

Spinal cord MRI Lumbosacral Yes

FVC (% predicted values) Yes

SNIP absolute value (cmH2O) Yes

Blood hypertension Yes

Diabetes type I or II Yes

Hypercholesterolemia Yes

Hypertriglyceridemia Yes

Hyperthyroidism Yes

Hypothyroidism Yes

Autoimmune rheumatologic disorder Yes

Autoimmune intestinal disorder Yes

Stroke Yes

Heart ischemia Yes

Heart arrhytmia Yes

Heart insufficiency Yes

Primary cancer Yes

Metastasis Yes

Cancer treatment (Chemotherapy) Yes

Cancer treatment (Radiotherapy) Yes

Cancer treatment (Radiotherapy of head or

neck)

Yes

Smoking Yes

Stopped smoking Yes

Tobacco exposure (pack-years) Yes

Psychiatric medication Yes

Supplements Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Riluzole Yes

Antiepileptc drug Yes

Statins Yes

NSAID Yes

Steroids Yes

Immunosupressors Yes

Abnormal C9orf72 repeat expansion Yes

Was there ALS in the family Yes

Mother (ALS in the family) Yes

Father (ALS in the family) Yes

Was there FTD in the family Yes

Mother (FTD in the family) Yes

Father (FTD in the family) Yes

Was there AD in the family Yes

Mother (AD in the family) Yes

Father (AD in the family) Yes

Was there PD in the family Yes

Mother (PD in the family) Yes

Father (PD in the family) Yes

Was there MS in the family Yes

Mother (MS in the family) Yes

Father (MS in the family) Yes

Other severe disease 1 of mother Yes

Other severe disease 1 of father Yes

Mother alive Yes

Mother’s cause of death Yes

Father alive Yes

Father’s cause of death Yes

Regular Physical Exercise Yes

Intense (mod. or vig.) Physical Exercise Yes

Mild Physical Exercise Yes

Head or Neck trauma in the last 5 years Yes

Head or Neck trauma more than 5 years ago Yes

Other Cervical trauma in the last 5 years Yes

Other Thoracic trauma in the last 5 years Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Other Lumbosacral trauma in the last 5 years Yes

Other Cervical trauma more than 5 years ago Yes

Other Thoracic trauma more than 5 years ago Yes

Other Lumbosacral trauma more than 5 years

ago

Yes

Cervical Spine surgery in the last 5 years Yes

Thoracic Spine surgery in the last 5 years Yes

LumboSacral Spine surgery in the last 5 years Yes

Cervical Spine surgery more than 5 years ago Yes

Thoracic Spine surgery more than 5 years ago Yes

LumboSacral Spine surgery more than 5 years

ago

Yes

Upper Limb surgery in the last years Yes

Lower Limb surgery in the last 5 years Yes

Upper Limb surgery more than 5 years ago Yes

Lower Limb surgery more than 5 years ago Yes

Abdominal surgery in the last 5 years Yes

Abdominal surgery more than 5 years ago Yes

Thoracic surgery in the last 5 years Yes

Thoracic surgery more than 5 years ago Yes

Pelvic Surgery in the last 5 years Yes

Pelvic Surgery more than 5 years ago Yes

Head or neck Surgery in the last 5 years Yes

Head or neck Surgery more than 5 years ago Yes

Main Occupation in the last 5 years (level 1) Yes Yes

Main Occupation more than 5 years ago (level

1)

Yes

Second Occupation in the last 5 years (level 1) Yes

Second Occupation more than 5 years ago

(level 1)

Yes

Main Occupation in the last 5 years (level 2) Yes

Main Occupation more than 5 years ago (level

2)

Yes

Second Occupation in the last 5 years (level 2) Yes
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Feature Name a) Baseline w/All Features b) Baseline FS

Second Occupation more than 5 years ago

(level 2)

Yes

Place of living in the last 5 years Yes

Lived in RuralArea or Urban in the last 5 years Yes

Place of living more than 5 years ago Yes

Lived in RuralArea or Urban more than 5 years

ago

Yes

ALS cases in the neighborhood Yes

ALS disease in coworkers Yes

ALS disease in friends Yes

Time gap between first medical observation

and diagnosis

Yes Yes

End of Table
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Appendix D

GitHub Repository

Due to space limitations, the data pre-processing workflows, code and additional results produced in the

context of this thesis were made available online (GitHub Repository).

D.1 DMD_approach GitHub Repository

- GitHub Repository Link

D.2 Task 1 Additional Results

Due to space limitations, these results were made available online (GitHub Repository). For Appen-

dices D.2.1, D.2.2 and D.2.3 the Bicluster patterns’ format is different from what was seen in the main

document: the first line has the features’ names and the line below contains the values.

D.2.1 Discriminative Bicluster Patterns

- GitHub Repository Link

D.2.2 Top-30 Most Important Bicluster Patterns - c) Matrix Subject ID x Biclusters

- GitHub Repository Link
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https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_2_1_Discriminative_Biclusters_Patterns_Task_1.xlsx
https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_2_2_Most_Important_Bicluster_Patterns_Matrix_subject_bics_Task_1.xlsx


D.2.3 Top-30 Most Important Bicluster Patterns - d) Merged Data

- GitHub Repository Link

D.2.4 Non-Redundant Class Association Rules

- GitHub Repository Link

D.3 Task 2 Additional Results

Same as above, the Appendices D.3.1, D.3.2 and D.3.3 the Bicluster patterns’ format is different from

what was seen in the main document: the first line has the features’ names and the line below contains

the values.

D.3.1 Discriminative Bicluster Patterns

- GitHub Repository Link

D.3.2 Top-30 Most Important Bicluster Patterns - c) Matrix Subject ID x Biclusters

- GitHub Repository Link

D.3.3 Top-30 Most Important Bicluster Patterns - d) Merged Data

- GitHub Repository Link

D.3.4 Non-Redundant Class Association Rules

- GitHub Repository Link
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https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_2_3_Most_Important_Bicluster_Patterns_Merged_data_Task_1.xlsx
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https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_3_1_Discriminative_Biclusters_Patterns_Task_2.xlsx
https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_3_2_Most_Important_Bicluster_Patterns_Matrix_subject_bics_Task_2.xlsx
https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_3_3_Most_Important_Bicluster_Patterns_Merged_data_Task_2.xlsx
https://github.com/jssm/DMD_approach/blob/master/Thesis_Appendices/Appendix_D_3_4_ARM_summary_Task_2.xlsx
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