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Abstract 

This work is based on data records associated with the insect Collections from the Museu 

Nacional de História Natural e da Ciência (MNHNC) and Instituto de Investigação Científica 

Tropical (IICT), Universidade de Lisboa. In 2014 a dataset with 30 535 records was published in 

the Global Biodiversity Information Facility (GBIF). Since then data has been improved and new 

records acquired. Currently, the collection catalogue includes 39 139 validated records, 

corresponding to 79 885 specimens, with much more to be added from collections donated by 

private collectors or unprocessed samples. The data for these specimens was cleaned, formatted 

and geocoded and published on the GBIF.  

During this work, different APIs were tested to allow automated geocoding of sampling locations. 

Google Maps achieved the best results, with 57.6% of results within 1000 m of the correct 

location. A citizen science project was developed and tested to accelerate the digitization process, 

including two workflows with different objectives. One was focused on the transcription of 

specimen label data, which resulted in the data for 130 specimens being successfully transcribed. 

The other was focused on the taxonomic identification of specimens from photographs, directed 

to specialists in the respective group’s taxonomy, which resulted in 61 new identifications and 

the verification of identifications for the remaining 69 specimens. 

The MNHNC and IICT collections contain collections of horseflies (Order Diptera, Family 

Tabanidae) which are of particular importance due to its size and completeness of associated data. 

Horseflies are widely distributed worldwide and are important vectors in transmission of diseases 

to humans and cattle. The IICT collection includes a sub-collection which was compiled and 

studied by J. A. Travassos Santos Dias, a prominent specialist in this group. The specimens in 

these collections were photographed, all the associated data were transcribed, taxonomic 

identifications were verified and records were geocoded, resulting in a dataset of 1666 specimens. 

These specimens were collected between 1899 and 2018, mainly in Portugal, but also in São 

Tomé and Príncipe, Guinea-Bissau, Mozambique, Spain and other countries. To better understand 

the distribution of this group, distribution maps were made for the most well-represented species 

in the collections. 

Keywords 

Natural history collections; data digitization; data cleaning; geocoding; citizen science 
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Resumo alargado 

Este trabalho foca-se na digitalização, tratamento e análise de dados de colecções de história 

natural fazendo uso de ferramentas da informática da biodiversidade. Foram usados dados das 

colecções de insectos do Museu Nacional de História Natural e da Ciência (MNHNC) e do 

Instituto de Investigação Científica Tropical (IICT), Universidade de Lisboa. Em 2014, um 

dataset com 30 535 registos da colecção de insectos do MNHNC foi publicado no Global 

Biodiversity Information Facility (GBIF). Desde então, novos registos foram digitalizados e 

foram adicionados novos dados, tais como novas identificações taxonómicas, entre outros. 

Actualmente, o catálogo da colecção de insectos do MNHNC inclui 39 139 registos validados, 

que correspondem a cerca de 98% do total, referentes a 79 885 espécimes. Para que este dataset 

actualizado pudesse ser publicado, foram aplicadas ferramentas de limpeza de dados para 

detecção e correcção de erros, bem como a georreferenciação de registos, de forma a que os dados 

possam ser localizados num mapa a partir das coordenadas. Relativamente à limpeza e 

homogeneização de dados, todos os campos foram limpos e formatados de acordo com as normas 

do modelo de metadados DarwinCore. Este processo incluiu a verificação de identificações 

taxonómicas para detectar sinonímias e erros ortográficos, alteração do formato de datas e horas, 

e aplicação de um vocabulário controlado para os restantes campos. 

Paralelamente a este processo, foram testadas ferramentas para acelerar a digitalização em duas 

fases diferentes: transcrição e georreferenciação de dados a partir de etiquetas de espécimes. 

Foram testadas cinco ferramentas de georreferenciação que disponibilizam Application 

Programming Interfaces (APIs), que podem ser usadas para georreferenciar registos 

automaticamente a partir de nomes de localidades: Google Maps, MapQuest, GeoNames, 

OpenStreetMap e GEOLocate. Destes, a ferramenta Google Maps foi a que produziu melhores 

resultados, com 57.6% dos resultados a uma distância de 1000 m ou menos do local correcto. 

Foi também desenvolvido e testado um projecto de ciência cidadã na plataforma Zooniverse, que 

contemplou duas vertentes: uma de transcrição de dados a partir de fotografias de espécimes com 

etiquetas, direccionada ao público geral, e uma de identificação taxonómica de espécimes a partir 

de fotografias, direcionada a especialistas na taxonomia do respectivo grupo. A primeira vertente 

resultou na transcrição com sucesso dos dados de todos os 130 espécimes disponibilizados. A 

segunda resultou na identificação dos 61 espécimes que não tinham identificação prévia, e na 

verificação das identificações dos restantes 69 espécimes. Conclui-se, portanto, que os projectos 

de ciência cidadã serão uma boa maneira de acelerar o projecto de digitalização, desde que sejam 

implementados métodos de verificação e correcção de erros adequados. 

Por forma a focar todos os passos do processo de digitalização de uma forma mais completa, 

foram selecionadas as colecções de tabanídeos (Diptera: Tabanidae) do IICT e do MNHNC. Este 

grupo é de especial interesse por incluir importantes vectores de transmissão de doenças a 

humanos e gado, e por ter uma distribuição ampla em todo o Mundo. A colecção de tabanídeos 

do IICT é particularmente importante por ter sido, na sua maioria, compilada e estudada por J. A. 

Travassos Santos Dias, um especialista neste grupo que publicou extensos trabalhos com base nos 

espécimes da colecção. Ambas as colecções incluem espécimes tipo de espécies descritas por 

Travassos Santos Dias e outros autores. Apesar da sua importância, a informação associada aos 

espécimes das colecções do IICT/MNHNC ainda não estava digitalizada. Neste trabalho, foram 

fotografados todos os espécimes e transcritos os seus dados, resultando num dataset com 1 666 

exemplares. Foi feita a georreferenciação dos registos sempre que possível. Os espécimes da 

colecção foram recolhidos entre 1899 e 2018, maioritariamente em Portugal, mas também em São 
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Tomé e Príncipe, Guiné-Bissau, Moçambique, Espanha e outros países. Para uma melhor 

visualização da distribuição geográfica dos espécimes, foram criados mapas de distribuição, 

recorrendo a R, para as espécies mais bem representadas nas colecções. A publicação deste dataset 

na plataforma GBIF será uma mais-valia para o estudo da distribuição deste grupo, devido à sua 

ampla cobertura geográfica e temporal, bem como ao facto da maioria dos espécimes (85.1%) 

estarem identificados até à espécie ou subespécie. 

 

Palavras-chave 

Colecções de história natural; digitalização de dados; limpeza de dados; georreferenciação; 

ciência cidadã 
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1. Introduction 

Natural history collections (NHC) are a powerful source of information for research with many possible 

applications. They are essential for systematic studies, since type specimens used to describe species are 

stored there and constitute an important reference. Moreover, many new species are identified from 

specimens in these collections [1]. Often, specimens stored in museums represent species that would be 

difficult or impossible to collect or study in the present time, due to population reduction or extinction, 

costs of revisiting field sites or restrictive export policies [2]. These collections can be used for training 

taxonomic specialists [3, 4] and the information contained in these records can be used for population 

distribution analysis and modelling, for molecular biology and morphology studies [5–7], as well as to 

define strategies to deal with ecosystem changes due to issues such as climate change, deforestation, 

overfishing, infectious diseases, and invasive species [8–10]. According to Drew (2011), conservation 

biology benefits from natural history institutions in three main ways: collection-based research projects 

and taxonomic expertise, collections data digitization and public engagement. Because NHC usually 

contain specimens collected over several decades or even centuries, they hold data that can be used for 

studies across long periods of time [3]. By combining data from several collections, especially if it is 

available online and in a standardized format, studies can be conducted within wide geographic and 

temporal ranges, allowing large scale analyses of changes in biodiversity and species distribution.  

In 2002, the Convention on Biological Diversity, ratified by 196 Countries, set a target to significantly 

reduce the worldwide rate of biodiversity loss by 2010, which was incorporated in the United Nations 

Millennium Development Goals. Not only this target was missed, but also some of the factors 

contributing to biodiversity loss have increased in this period. The five main factors identified by 

member countries were habitat loss, the unsustainable use and overexploitation of resources, climate 

change, invasive alien species, and pollution. Some of the main obstacles pointed out to achieving a 

reduction on biodiversity loss were the lack of scientific information and lack of awareness among the 

public and decision makers regarding this issue [11]. Making biodiversity data freely accessible, not 

only to the scientific community but also to Governments and the general public, will be an important 

step to raise awareness and generate the necessary detailed information to drive conservation measures 

to counter biodiversity loss [12]. This illustrates the importance of making biodiversity data publicly 

accessible, in particular that of NHC, as they represent a rich source of information. As technology 

advances, NHC specimens and record data will have even more applications [9]. In fact, there have been 

concerted global efforts to digitize these collections and to make that information public [9, 13]. 

Thousands of biodiversity datasets, related to NHC, observation data, and others, have been published 

on digital repositories, where they can be freely accessed and retrieved for analysis. For instance, the 

Global Biodiversity Information Facility (GBIF, www.gbif.org) currently includes over 45 000 datasets, 

including data from NHC, field observations, among others; the Integrated Digitized Biocollections 

portal (iDigBio, www.idigbio.org/) contains over 1 600 NHC datasets. Despite this effort and the 

importance and usefulness of NHC data, only a small part is published and available online. The most 

recent estimates indicate that a total number of 1.2 to 3 x 109 specimens are stored in museums 

worldwide [9, 14, 15]. There are currently 164 x 106 records based on preserved specimens stored on 

GBIF, corresponding to 5.3% of the estimated total of 3 x 109. The percentage of digitized information 

for insect collection specimens is estimated to be lower than 2% [2].  

One of the main obstacles to publishing biodiversity data has to do with the backlog of data yet to be 

digitized, particularly in NHC. In some cases, a significant part of the specimens hasn’t been screened 

and catalogued yet. Additionally, for many of the specimens already processed data have not been 

digitized due to the lack of resources, mainly staff. Therefore, major efforts are being made in natural 

history museums worldwide to digitize data on their collections [3], and to develop methods to automate 

http://www.gbif.org/
https://www.idigbio.org/
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digitization, either for specimen-level data capture or in bulk – for example, using whole-drawer imaging 

methods [16–18]. Wheeler et al. (2012) proposed a set of guidelines to describe and redescribe 10 

million animal and plant species within 50 years. One of the steps proposed is to digitize all NHC data, 

with a special focus on type specimens, including storing recorded data and photographs on biodiversity 

databases – ultimately creating a catalogue of all museum specimens worldwide. Taxonomy literature 

should also be digitized and freely accessible to complement this data. The ultimate goal of this work is 

to create a knowledge base of life on Earth, including morphology data, distribution, genomic sequences 

and automated classification tools based on morphology and sequence data [9]. 

In order to publish a dataset of NHC records, it is first necessary to digitize, normalize and validate the 

data, as most of the original records consist of index cards, labels or registry books and do not follow 

standard metadata models. The five main stages of the digitization of NHC are pre-digitization curation 

and staging, specimen image capture, specimen image processing, electronic data capture, and 

geocoding locality descriptions [19]. According to Guralnick et al. (2006), the three main challenges of 

creating such a dataset are: i) transcribing the data to a computer database, ii) geocoding the records,  

and iii) publishing it online [20]. Several tools have been developed and optimized to address these 

challenges, which are discussed throughout this work.  

1.1. Objectives 

The main objective of this work was to foster the digitization, verification/validation and online 

publishing of biodiversity data from two of the largest entomological collections in Portugal, held by 

the IICT and MNHNC, from the University of Lisbon, therefore increasing the collections accessibility 

and visibility to scientists and the civil society.  

For this end several methods were tested and implemented with the objective of a faster and more 

accurate processing of large datasets, with specific objectives presented and developed in four different 

chapters:  

1) Comparison of methods for automated geocoding;  

2) Cleaning, enrichment and publication of the MNHNC insect collection data;  

3) Implementation of a project on the Zooniverse platform to assess the possible contribution of citizen 

science to digitization of NHC data;  

4) Digitization, publication and analysis of a tabanid fly dataset.  
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2. Evaluation of automated geocoding tools 

2.1. Introduction 

Geocoding occurrence records is an important step of the digitization and data enrichment process of 

NHC records. Geocoding, or georeferencing, consists of obtaining geographic coordinates from a 

location description, for example, the name of a city or an address [21]. For the vast majority of NHC 

specimens, the coordinates of the sampling location are not recorded in the field, but rather a textual 

description of the sampling locality. Accurate geocoding of sampling locations is very important, as it 

will affect the quality of the data and the accuracy of any distribution models derived from it [22]. 

Therefore, in order to conduct any kind of geographic analysis, such as species distributions, records 

must be geocoded. This is usually done during the digitization process. The most common practice for 

geocoding is to record the coordinates for the point that most closely matches the description of the 

sampling locality. Since in most cases it is impossible to pinpoint the exact location retrospectively, in 

addition to latitude and longitude, it is also necessary to estimate an uncertainty value,  usually in the 

form of a radius, in meters, around the estimated sampling point [22, 23]. The uncertainty radius might 

define, for example, the approximate boundaries of the locality where the sampling took place.  

Geocoding is a difficult and time-consuming task, and for some records it is almost impossible to obtain 

coordinates, due to missing or incomplete information registered at the time of collection. Of the 164 

million records of preserved specimens currently available in GBIF, only 87 million (53%) include 

coordinates. Regardless of the methods used for geocoding, the results always have to be individually 

verified. There can be errors, for example, if there are different locations with the same name, or if a 

certain location had its name changed or ceased to exist. For geocoding, as for transcription of record 

data, citizen science has been proposed as a way to make the process faster, especially if the volunteers 

are given records of specimens collected in countries or areas they are familiar with [24]. 

Since geocoding has many applications and is used in many fields of research, several tools have been 

developed to offer an Application Programming Interface (API) for automated/batch geocoding. 

Examples of these are Google Maps (https://www.google.com/maps), Mapquest 

(https://www.mapquest.com), Geonames (https://www.geonames.org) and OpenStreetMap 

(https://www.openstreetmap.org). Because geocoding is such a significant part of the effort to digitize 

biodiversity data, GEOLocate (http://www.geo-locate.org) has been developed as a specific tool for this 

purpose. Its website includes a user interface that allows the user to select a point from a list of results 

and to define an uncertainty radius or polygon on a map. It also allows matching water bodies or 

highway/river crossings for aquatic specimens. 

Of the geocoding services mentioned, only Google Maps has usage restrictions – it currently allows 

around 40 000 free geocoding requests per month, beyond which the service is paid. This might be a 

factor to consider for very large databases. 

In 2004, Murphey et al. published a comparative review of the geocoding tools available for museum 

collections data and concluded that the fastest and most accurate method for geocoding collection 

records was manual geocoding [25]. This was mainly due to the time required to pre-process data and 

to validate results obtained with the existing automated tools. Since then, new tools for geocoding have 

been developed and optimized.  

2.1.1. Objectives 

The objective of this work was to test different geocoding APIs using R with records of the MNHNC 

insect collection catalogue, to assess which one presents better results in terms of total number of results 

and their accuracy. 

https://www.google.com/maps
file:///C:/Users/Leonor/Downloads/(https:/www.mapquest.com
https://www.geonames.org/
https://www.openstreetmap.org/
http://www.geo-locate.org/
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2.2. Methods 

Five geocoding services were selected for comparison: Google Maps, MapQuest, GeoNames, 

OpenStreetMap and GEOLocate. 

A test dataset of 100 records from the catalogue of the MNHNC insect collection was selected, including 

sampling locations from 14 countries. Of the records selected, 50 were from Portugal, due to the high 

prevalence of specimens from this country in the collection; the records were selected to include simple 

locations, such as names of cities or villages. These records were individually geocoded, to be used as 

a standard (reference location) for comparison against the automated method results. A csv file was 

created with columns for the sampling country, state/province, island, county, municipality and locality, 

all in the DarwinCore format. For each record, all available data was included in this file. Geocoding 

was done according to the protocol by Chapman and Wieczorek (2006) [23]. Each location was 

geocoded using the GEOLocate Web Application (https://www.geo-locate.org/web/WebGeoref.aspx), 

and when necessary, coordinates were confirmed using the Google Maps website 

(https://www.google.com/maps). The results were saved in a csv file containing the latitude, longitude 

and uncertainty in meters for each location. All coordinates used were in the WGS84 standard. 

An R [26] script was created to iterate through all the locations, concatenate all data available for each 

record in a string and call the API for each of the 5 services to obtain coordinates. In the cases where 

more than one result was returned by the API, only the first one in the list was considered. The results 

were saved in csv files, containing the latitude, longitude and uncertainty in meters in the case of 

GEOLocate, and only the latitude and longitude for the other four services. The script used is available 

in Annex A. 

For a second test, a subset of records of specimens collected in Portugal and with complex location 

descriptions, such as between x and y or 5 km North of x was manually selected and geocoded using the 

same method as before. In order to ensure optimal results for each tool, location descriptions were 

translated into English prior to geocoding. 

Two factors were considered in evaluating accuracy: 1) total number of results obtained and 2) distance 

to the reference location. For each result, the distance to the reference location was calculated using the 

geosphere R package, with the 'Vincenty' (ellipsoid) great circle distance function, corresponding to the 

function distVincentyEllipsoid [27].  

For the second test using complex location descriptions, because Google Maps and GEOLocate yielded 

results with very similar average distances to the reference location, a test was performed in R to 

compare the distance values obtained. The distances to reference locations obtained with Google Maps 

and GEOLocate, for locations that yielded results in both tools, were saved in a dataframe. The function 

shapiro.test() was used to test normality of the differences between the values, resulting in a p-value < 

2.2-16, meaning the hypothesis of normality is rejected. Therefore, a paired samples Wilcoxon test was 

performed to compare whether or not the two vectors of distances were significantly different, using the 

function wilcox.test(), with the null hypothesis that difference between the distances obtained with the 

two tools was equal to 0. 

For each tool, four indicators were calculated: 

1. Total number of results for which coordinates were returned;  

2. Average distance to the reference location, considering all results returned; 

3. Total number of results that were at a distance of 1000 m or less from the reference location; 

https://www.geo-locate.org/web/WebGeoref.aspx
https://www.google.com/maps
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4. Total number of results with a distance to the reference location smaller than the reference 

uncertainty radius. 

Two different measures of distance (number of results less than 1000 m from the reference location and 

number of results within the uncertainty radius) were considered due to the fact that the size of the 

sampling location can vary by several orders of magnitude; e.g. for large cities it can be several 

kilometres, for small villages it can be hundreds of meters. In either case, any result within the given 

area should be considered acceptable. 

2.3. Results 

A first test was conducted with a random set of 100 locations from the whole insect database. The results 

of this test are summarized in Table 2.1. Of the five programs tested, Google Maps yielded the most 

results (99) and was the most accurate with 57 results within 1000 m from the reference location and 79 

within the reference uncertainty radius. GEOLocate provided results for 87 locations, of which 47 were 

within 1000 m of the correct location, and 57 were within the uncertainty radius. The other 3 services 

tested had less than 35 results within 1000 m from the reference location, and less than 50 results within 

the uncertainty radius. Regarding the average distance from the reference location, Google Maps and 

OpenStreetMap were the most accurate with comparable results, both around 5 500 m. The average 

distance for the results from GEOLocate was much higher (111 277 m), because 13 results were over 

150 km off the reference location; of these, the maximum distance from the reference location was of 1 

719 km. 

Table 2.1 Results of geocoding 100 insect records with the 5 APIs tested. Coordinates and uncertainty radius for the reference 

location of each record were obtained by geocoding using the GEOLocate Web Application, confirmed by Google Maps where 

necessary. Distance to the reference location for each result was calculated using the 'Vincenty' (ellipsoid) great circle distance 

function. 

 GEOLocate GeoNames Google Maps MapQuest OpenStreetMap 

Total number of results 87 56 99 39 61 

Average distance from 

reference location (m) 
111 277 12 665 5 544 858 870 5 582 

Number of results within 

1000 m (% of total 

results) 

47 (54.0) 27 (48.2) 57 (57.6) 12 (30.8) 34 (55.7) 

Number of results within 

uncertainty radius (% of 

total results) 

57 (65.5) 38 (67.9) 79 (79.8) 17 (43.6) 47 (77) 

 

For a second test, a subset of 100 records of the insect collection was selected, consisting only of 

locations in Portugal with especially complex descriptions. The results are summarized in Table 2.2. 

For the complex location descriptions, GeoNames returned no results, and OpenStreetMap returned only 

2. As in the previous test, GEOLocate and Google Maps presented the best results, with 97 and 100 

results respectively, and an average distance from the reference point over 100 000 m. GEOLocate 

generated 7 results less than 1 km from the reference location, and 20 were within the uncertainty radius. 

Google Maps produced 10 results within 1 km of the reference point, and 25 within the uncertainty 

radius. MapQuest returned a total of 54 results, with an average distance 3 750 248 m from the reference 

location. Only 3 of the results were less than 1 km off the reference location and within the uncertainty 

radius. 
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Table 2.2 Results of geocoding 100 insect records with complex location descriptions, with the 5 APIs tested. Coordinates and 

uncertainty radius for the reference location of each record were obtained by geocoding using the GEOLocate Web Application, 

confirmed by Google Maps where necessary. Distance to the reference location for each result was calculated using the 

'Vincenty' (ellipsoid) great circle distance function. 

 GEOLocate GeoNames Google Maps MapQuest OpenStreetMap 

Total number of results 97 0 100 54 2 

Average distance from 

reference location (m) 
104 197 - 108 109 3 750 248 4 377 

Number of results within 

1000 m (% of total results) 
7 (7.2) 0 10 (10) 3 (5.6) 1 (50) 

Number of results within 

uncertainty radius (% of total 

results) 

20 (20.6) 0 25 (25) 3 (5.6) 1 (50) 

 

In order to assess if accuracy of the results obtained with Google Maps and with GEOLocate for complex 

location descriptions was significantly different, a paired samples Wilcoxon test was performed on the 

vectors of distances to the reference locations obtained with each tool. This resulted in a p-value of 

0.0002219, so the null hypothesis that the distances obtained by both tools were not significantly 

different was rejected at any reasonable significance level. Although the average distance obtained with 

GoogleMaps is higher (approximately 108 km against approximately 104 km for GEOLocate), this 

happens due to outliers, as is suggested by the fact that Google Maps produced more results within 1000 

m and within the uncertainty radius than GEOLocate. 

2.4. Discussion 

In order to evaluate the tools tested, all factors considered should be taken into account. In terms of 

number of results, Google Maps and GEOLocate clearly stand out, with 99% / 87% of simple locations, 

returning results, and 100% / 97% for complex locations, respectively. Regarding complex location 

descriptions, results were expected to be less in number and less accurate than for simple ones. 

Interestingly, both tools, as well as MapQuest, returned more results for complex locations than for 

simple ones. This may be related to the fact that often, complex locality descriptions include two or 

more place names, sometimes with references to roads and rivers (e.g. “Rio Ponsul, E.N.332 near 

Idanha-a-Velha”, one of the locations used for testing); it is more likely for the service to find one of 

these locations than in cases where only one location name is provided as input. Therefore, for complex 

locations more results were returned, but with very little accuracy. For instance, for the previous 

example, GEOLocate returned the coordinates for the center of Idanha-a-Velha, since it is not able to 

interpret the road and river used as references for the sampling location. For the same description, 

Google Maps returned a different point of the river Ponsul, 27 km from the actual sampling location. 

For locations of the type x km from y, the geocoding services will likely return the coordinates for one 

locality, without considering the offset. Of the tools tested, GEOLocate is the only one that was 

developed to handle these cases. Because it was developed specifically for NHC data, it can identify 

displacements. However, this service is not available in Portuguese yet, so to use this functionality it is 

necessary to first translate all locality descriptions into English. 

As for the accuracy of the results for simple locations Google Maps and GEOLocate again delivered the 

best results, both returning over 40% of results within 1000 m of the reference location and over 50% 

within the uncertainty radius. When considering the average distance from the reference location, 

Google Maps and OpenStreetMap had similar results, both around 5500 m. However, OpenStreetMap 

yielded much less results in total (61% vs. 99% for Google Maps). The results generated were, however, 
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more accurate than the results returned by GEOLocate, with 77% of the total 61 within the uncertainty 

radius, against 65.5% of a total of 87 for GEOLocate. 

Overall, both in terms of total number of results and their accuracy, Google Maps seems to be the most 

suitable API for geocoding both simple and complex sampling locations. Although the results obtained 

for complex location descriptions seem to be similar for Google Maps and GEOLocate, a paired samples 

Wilcoxon test showed that they are significantly different. Furthermore, in the case of geocoding of 

sampling locations of NHC collections, the results always have to be verified manually, meaning that it 

is preferable to have a higher number of results close to the reference location (considered to be the 

correct one), than to have a lower average distance, but also a lower number of results close to the 

reference location, as was the case with GEOLocate. 

For the case of biodiversity data and NHC, other factors besides the geocoding accuracy need to be 

taken into account. For instance, because GEOLocate was developed specifically to use with 

biodiversity data, it has a series of functionalities that are not available on Google Maps. It can detect 

displacements from a locality, and it provides an option to snap the coordinates to the nearest water 

body, which is useful for geocoding records of aquatic species. Another advantage of GEOLocate is the 

Collaborative Georeferencing Web Portal (http://www.geo-locate.org/web/webcomgeoref.aspx). This 

platform allows users to create datasets that are available to other users to be geocoded. In this way, 

different staff members or volunteers can collaborate to geocode the sampling locations of a collection. 

Another factor to take into account is usage limits. Although all tools tested are free to use to some 

extent, Google Maps has some restrictions. It only allows around 40 000 free geocoding requests per 

month, beyond which the service is paid. This could be a limitation for very large collections. However, 

considering that the number of locations to be geocoded does not exceed the limit of 40 000 per month, 

a possible approach would be to automatically geocode all records using Google Maps, and then validate 

the results and determine an uncertainty radius using the GEOLocate Collaborative Georeferencing Web 

Portal. This would be a way to take advantage of both the accuracy and automation provided by the 

Google Maps API, and the possibility of manual confirmation (required for all records) and defining the 

uncertainty radius, offered by the GEOLocate web portal. 

  

http://www.geo-locate.org/web/webcomgeoref.aspx
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3. Data cleaning and enrichment of the MNHNC insect collection catalogue 

3.1. Introduction 

The primary goal of digitizing NHC data is to make it accessible to the scientific community, through 

online repositories or biodiversity databases. Costello et al. (2013) argued that all biodiversity data 

should be made available online with high quality, otherwise it cannot be used efficiently [28]. The 

increasing recognition of the importance of publishing datasets lead to the outset of data papers, i.e. 

papers describing datasets that can be cited to acknowledge authors who publish them [29]. Data papers 

were proposed as a way to increase the amount of primary biodiversity data available for analysis and 

citation. They consist of a description of a dataset that is accessible online in a specific database. This 

description includes information such as the taxonomic, spatial and temporal coverage of the dataset, by 

whom it was created and which tools were used [30]. It can also contain some preliminary analysis, 

depending on the data and the goals of its description. 

Several repositories have been established over the years to store biodiversity data, some focusing on 

specific groups – e.g. Tropicos (http://www.tropicos.org) for plant specimens, AntWeb 

(https://www.antweb.org) for ant specimens, Avibase (https://avibase.bsc-eoc.org) for bird taxonomy 

and distribution - or locations – e.g. Georgian Biodiversity Database (http://www.biodiversity-

georgia.net) for animals, plants, and fungi observations in Georgia, Naturdata (https://naturdata.com) 

for biodiversity data in Portugal, and others [10]. Two of the larger, worldwide biodiversity repositories 

are the Global Biodiversity Information Facility (GBIF; https://www.gbif.org), and the Integrated 

Digitized Biocollections database (iDIgBio; https://www.idigbio.org). GBIF was created in 2001 to 

store global biodiversity records of preserved specimens, observations and material samples, among 

others, and currently contains over 1.3 x 109 occurrence records. iDigBio was created as an infrastructure 

for the digitization and publishing of NHC records in the United States, and its database currently 

contains over 119 million specimen records. 

In order for data to be shared, interoperable and easily used for analysis, stardardization procedures are 

necessary  [10]. The GBIF uses the Darwin Core format, a metadata standard specific for biodiversity 

data derived from the Dublin Core metadata format for digital resources. Darwin Core was established 

in 2009 to define a standard to organize and format biodiversity data. It includes terms to describe an 

occurrence event, its location, geological context, taxonomy, among other details [31].  

There are several ways to digitize the data from a NHC. The first step of this process mainly consists of 

transcribing information in labels, field notebooks, record books or cards. Sometimes, in the lack of 

human resources for these tasks, institutions turn to volunteers, who can either work at the museum or 

through citizen science digitization projects, which can be created in platforms such as Zooniverse 

(https://www.zooniverse.org) or SciStarter (https://scistarter.org). The second step is to compile all the 

information in the form of a database using a suitable metadata standard. After that data can be enriched, 

e.g. by geocoding sampling locations or adding taxonomic identifications.  

After data are digitized they need to be cleaned and checked for inconsistencies and errors, especially 

very large databases. This is a laborious process that must be completed before data analysis and/or 

publishing on public repositories [19]. The most common errors in biodiversity data are geocoding errors 

and taxonomic identification errors [21]. When cleaning biodiversity data for publication and analysis, 

it is recommended that all species names are valid and in accordance to accepted taxonomic databases 

or checklists [32]. Another issue is format incongruence, for example, the collection dates for different 

records may be written in different ways (for instance, “2 December of 1989”, “2-12-1989” and ”1989-

12-2” may all be used for the same date if recorded or transcribed by different people and a specific 

format has not been initially defined). Some tools have been developed to address these issues, such as 

http://www.tropicos.org/
https://www.antweb.org/
https://avibase.bsc-eoc.org/
http://www.biodiversity-georgia.net/
http://www.biodiversity-georgia.net/
https://naturdata.com/
https://www.gbif.org/
https://www.idigbio.org/
https://www.zooniverse.org/
https://scistarter.org/
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automated workflows for data cleaning and homogenization, R packages for taxonomic data verification 

and reconciliation services for use with Open Refine [33]. The use of these tools and other resources 

generally requires expert knowledge. 

OpenRefine (http://openrefine.org) is a powerful tool for data cleaning that allows the use of General 

Refine Expression Language (GREL), a language specifically developed for cleaning and manipulating 

data, including making use of regular expressions. Reconciliation services can be added for specific 

cleaning steps; these allow for terms in a column of data to be searched across a database and matched 

to similar terms [34]. For example, a column containing the country where a specimen was collected 

may be reconciled against a database of countries, to check for misspellings or other errors. 

The taxize R package was created to aid in the verification of taxonomic classifications of biodiversity 

data [35]. It uses several taxonomy databases, such as GBIF Backbone Taxonomy, Encyclopedia of 

Life, ITIS and NCBI Taxonomy, to resolve taxonomic names, returning for each a list of the closest 

matches in the selected databases. The function to resolve names uses fuzzy matching, allowing the 

detection of spelling errors, and retrieves the most up to date names in cases of synonymy. It can also 

return higher level taxonomic information and taxon authorship, among other details. 

3.1.1. Objectives 

In 2014, a dataset of the MNHNC insect collection of was published on GBIF, containing 30 535 records 

corresponding to approximately 66 000 specimens [36] and 26% geocoded records. This dataset did not 

include data from all the specimens held in the collection, as a large part still remains to be sorted, 

prepared and catalogued. Furthermore, since then the collection has grown significantly with the 

integration of two private collections and many more specimens were catalogued and their associated 

data digitized, which warranted the publication of an updated version of the dataset.  

The MNHNC insect collection catalogue currently includes over 39 000 records, corresponding to over 

79 000 specimens. In order to publish the complete dataset on GBIF, it was first necessary to clean and 

format the data. The objective of this work was to clean and enrich the collection database and increase 

the number of records, through several steps: 

1. Formatting existing data according to the DarwinCore standard; 

2. Geocoding as many sampling localities as possible for the remaining records; 

3. Publishing the insect collection catalogue on GBIF. 

Publication of an updated version of the dataset is a way to increase the accessibility of the MNHNC 

insect collection data, both in terms of the total number of records and the quality of data, which now 

includes a higher number and percentage of geocoded records and taxonomic determinations. 

  

http://openrefine.org/
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3.2. Methods 

The dataset of the MNHNC insect collection contains 39 139 records of specimens and is stored in an 

Excel spreadsheet. Each record includes data related to the collection event, geographic location, 

taxonomic identification and location in the museum, among others.  

 

Figure 3.1 Steps employed in data cleaning and visualization for the MNHNC insect collection catalogue. 

The methods used here (Figure 3.1) included a data cleaning process and then data completeness 

evaluation (i.e., information and taxonomic, temporal and geographic coverage of the collection) 

through visualization.  The methods were applied as follows: 

The first step of the data cleaning process was to format dates. The DarwinCore standard format best 

practice is defined to conform to the ISO 8601 international standard to represent date and time [37]. 

This format was used for the fields startDate, endDate and eventDate, and corresponds to “YYYY-MM-

DD” for dates and “YYYY-MM-DD/YYYY-MM-DD” for date intervals. The dataset included dates in 

various formats, such as “DD/MM/YY” and “(DD-DD)-MM-YYYY”. All of these formats were 
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identified and the Transform function of OpenRefine was used to change the dates to the correct format. 

To do this, regular expressions were constructed for each individual format using GREL. An example 

is shown below, to transform a string of format “(DD-DD)-MM-YYYY” to the format “YYYY-MM-

DD/DD”. 

if(isNotNull(value.match(/\([0-9]{2}-[0-9]{2}\)-[0-9]{2}-[0-

9]{4}/)), slice(value,11,15) + "-" + slice(value,8,10) + "-" + 

slice(value,1,3) + "/" + slice(value,4,6), value) 

For the field eventTime, the same method was used to format all entries according to the DarwinCore 

standard, which is “hh:mm”. 

In order to confirm and correct taxonomic data, several steps were necessary. First, a list of canonical 

names was imported to OpenRefine and reconciled using the NCBI taxonomy standard service [38]. 

The reconciled names were verified individually to check for errors or incorrect matches, and the genera 

and/or specific epithets were updated where necessary. As a second verification step, the list of canonical 

names was imported into R [26], and the gnr_resolve function of the taxize package [35] was used to 

produce a list of corrected canonical names. For each canonical name, the corresponding Family and 

Order was obtained using the upstream function. The names that were different from the original were 

verified to check for errors. The resulting list was saved as a csv file and imported into Excel, where the 

VLOOKUP function was used to add the correct canonical name, Family and Order to matching records. 

For the geocoding process, the first step was to homogenize location descriptions. For this, the Cluster 

feature of OpenRefine was used. Key collision methods were used first for clustering, followed by the 

nearest neighbour method. For each method, all clusters corresponding to the same location described 

in different manners, with differences in punctuation, letter case, etc. were merged. The columns 

continent and country were reconciled against the Wikidata knowledge base to correct misspellings. 

After that, a csv file was created containing all individual locations that hadn’t been geocoded yet. For 

each individual location, columns for the country, state/province, island, county, municipality and 

locality were included. This file was imported into R using the read.csv function; for each location a 

string was created containing all existing information, and these were geocoded using the Google Maps 

API to obtain latitude and longitude. The resulting coordinates were then individually verified through 

the GEOLocate web application, to check if they corresponded to the correct location, and an uncertainty 

radius was attributed to each location. The csv file including location descriptions, coordinates and 

uncertainty radii was imported to Excel, where the VLOOKUP function was used to add coordinates 

and uncertainty to all the records sampled from each location. 

The last cleaning step consisted in homogenizing the remaining fields and defining controlled 

vocabularies where possible. The collector field was represented by several columns, one for each 

collector name; the Cluster feature of OpenRefine was used to homogenize names known to be different 

representations but corresponding to the same collector throughout all columns, which were then 

concatenated using “|” as separator, to create the column recordedBy. For the fields sex, lifeStage, 

preparations and collectionMethod, controlled vocabularies were defined and used to replace all values. 

After cleaning and enriching the data, plots were produced using R to evaluate the completeness of the 

information and for a better visualization of the taxonomic, temporal and geographic coverage of the 

collection. All graphs were produced using the R graphics package [26], except the barplot with a gap 

produced to represent the countries where specimens were collected, for which the gap.barplot function 

of the plotrix package [39] was used. 
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3.3. Results 

The dataset published on GBIF is available at https://www.gbif.org/dataset/79673413-746f-48f2-bd8a-

7cf27807317e.The insect collection catalogue includes a total of 39 139 validated records, 

corresponding to a total of 79 885 specimens. Each record corresponds either to a single specimen or to 

a sample containing several specimens, collected at the same date and time, at the same location and by 

the same collector. The number of specimens for each record varies between 1 and 353.  

A significant part of the collection was donated by private collectors. Only a small part of these donated 

collections was already catalogued. Of those that have been digitized and data integrated in the database, 

the Mendoça collection is the most well-represented in the collection catalogue, with 12 812 specimens 

recorded (16.0% of the total number of specimens). Other significant contributions are the collection 

donated by Teresa Pité, with 9897 specimens (12.4%), and the specimens collected in the EB network 

Biodiversity Stations (901 specimens, 1.1%) and by the Tagis – Butterfly Conservation Center (464 

specimens, 0.6%).  

The specimens in the MNHNC collection were collected between 1905 and 2018. The number of 

specimens collected per decade is shown in Figure 3.2. The decades when most specimens were 

collected were 1970-1979 (20 517, 25.7% of total) and 2000-2009 (30 405, 38.1% of total).  

 

Figure 3.2 Histogram of specimens of the MNHNC insect collection by decade of collection. 

The number of specimens collected per country, for the countries represented by over 100 specimens in 

the collection, is shown in Figure 3.3. The large majority of the specimens were collected in Portugal 

(65 838, corresponding to 82.4% of all specimens). For other countries, the most represented ones are 

Guinea-Bissau, Angola, São Tomé and Príncipe and Mozambique (all ranging between 1000 and 2000 

specimens). Of the 39 139 records, 27 746 (70.9% of total) are geocoded. Of these, 9 252 were geocoded 

during this work. 

https://www.gbif.org/dataset/79673413-746f-48f2-bd8a-7cf27807317e
https://www.gbif.org/dataset/79673413-746f-48f2-bd8a-7cf27807317e
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Figure 3.3 Bar graph of specimens of the MNHNC insect collection by sampling country. The plot includes the countries where 

100 or more specimens were sampled. 

Regarding the taxon rank to which specimens are identified (Figure 3.4 B), the majority are classified 

to the Species level (21 471, 26.9% of total) or to the Order level (49 824, 62.4% of total). Of the 

remaining specimens, 5313 (6.7%) are classified to the Family, 2757 (3.5%) to the Genus and 520 

(0.7%) to the Subspecies.  

The previous version of the MNHNC insect collection dataset was published on GBIF in 2014. The 

current version is more complete, includes more records and more detailed validated data. The version 

published in 2014 included a total of 30 535 records, corresponding to a total of 64 008 specimens. Of 

all records, 7916 (25.9%) were geocoded. In the new version of the dataset, the percentage of geocoded 

records increased to 70.9%. The percentage of specimens identified to each taxon rank in the dataset 

published in 2014 is shown in Figure 3.4 A. Thanks to the contribution of specialists, there was a 

significant increase in the percentage of specimens classified to the Species level (5.4% to 26.9%), along 

with a decrease in the percentage of specimens classified to the Order level (83.6% to 62.4%), meaning 

the taxonomic characterization of the collection is more complete in the current dataset. 
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Figure 3.5 illustrates the taxonomic coverage of the insect collection, represented as the number of 

specimens contained in the collection for the most well represented Orders (over 100 specimens). 

Diptera is the most represented Order in the collection, with 23 270 specimens (29.1% of total), followed 

by Coleoptera (16 886 specimens, 21.1% of total) and Hemiptera (14 327 specimens, 17.9% of total). 

Specimens belonging to the Class Entognatha, which includes the Orders Collembola, Diplura and 

Protura, are included in the insect collection, even though they do not belong to the Class Insecta. In 

fact the MNHNC collection includes specimens from the subphylum Hexapoda, which comprises both 

classes. 

 

Figure 3.5 Bar graph of specimens of the MNHNC insect collection by Order. The plot includes the Orders represented by 

more than 100 specimens in the collection. 

The number of specimens of each Family, for the Families represented by over 200 specimens in the 

collection, is shown in Figure 3.6. The most common Families in the collection are Drosophilidae (Order 

A B 

Figure 3.4 Percentage of specimens of the insect collection catalogue identified to each taxon rank, in the dataset 

published on GBIF in 2014 (A) and in the dataset published in 2019 (B). In (A), Class is omitted for clarity, accounting 

for 0.4% of specimens. 
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Diptera; 9985 specimens, 12.5% of total), Nymphalidae (Order Lepidoptera; 2166 specimens, 2.7%), 

Chrysomelidae (Order Coleoptera; 1533 specimens, 1.9%), Chironomidae (Order Diptera; 1453 

specimens, 1.8%) and Pieridae (Order Lepidoptera; 1016 specimens, 1.3%). 

 

Figure 3.6 Bar graph of specimens of the MNHNC insect collection by Family. The plot includes the Families represented by 

more than 200 specimens in the collection. 

The MNHNC collection includes a total of 67 type specimens representing 42 species. Of these, 32 are 

holotypes, 5 are allotypes and 45 are paratypes.  
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3.4. Discussion 

The main contribution of this work has been the overall quality improvement of the insect collection 

catalogue, as new data have been produced, such as many new geocoded records, improvement of 

existing data quality by data standardization and the publishing on GBIF of the improved dataset. In the 

current collection catalogue, all dates and times are standardized to the DarwinCore format. Fields such 

as collector name, sampling locality, life stage and preparation method have been standardized to a 

controlled vocabulary. 

The new version of the dataset is more complete, both in terms of number of specimens (64 008 in 2014 

vs. 79 885 in the current dataset) and in terms of geographic data available (25.9% of records geocoded 

in 2014 vs. 70.9% in the current dataset). During this work, taxonomic identifications were also verified 

and updated in cases of synonymy, meaning this data is more accurate. The use of specific tools for data 

cleaning, such as R and OpenRefine, allowed the data cleaning process to be done quickly and 

efficiently. After the dataset was complete, these tools were also used to visualize the data in terms of 

temporal, geographic and taxonomic coverage. 

It is important to note that some of the donated collections already stored in the museum include more 

specimens, but a significant part of the data associated with them hasn’t been digitized or included in 

the catalogue yet, and so it wasn’t accounted for in the results presented here. Of these collections, the 

number of specimens yet to be digitized is estimated to be almost as much as the total number of 

specimens currently in the collection catalogue. The process of adding specimen data to the collection 

catalogue may be accomplished more quickly with the help of volunteers through a citizen science 

project, discussed in Section 4 of this work. There are also many specimens and samples in the museum 

that haven’t been screened, prepared or digitized yet. An important future work will be to continue these 

tasks as it is calculated that over 50% of the specimens in the MNHNC insect collection remain to be 

catalogued (L. F. Lopes personal communication). This will be an important contribution to biodiversity 

knowledge, making a significantly larger and more complete dataset available that can be used for 

research projects in different areas, such as species distribution modelling and studies of invasive 

species. As previously mentioned, NHC can represent species that are no longer possible to collect, for 

instance due to population reduction or extinction [2]. Therefore, it is, important to have these data, and 

preserved specimens, available for use when studying changes in biodiversity over time. 

The MNHNC collection includes type specimens, which are of particular importance because they were 

used to describe a species, and therefore can be used as a comparison to identify other specimens. An 

important future work will be to exhaustively verify the data for these specimens in the dataset and 

document the type specimens in the collection. 
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4. Zooniverse project for data digitization 

4.1. Introduction 

Citizen science, consisting of involving the general public in research, has been used for centuries in 

fields such as astronomy and meteorology. However, it has become more widespread in the last decades, 

with the development of online tools that facilitate the participation of volunteers. Online citizen science 

projects are most helpful for analysing or interpreting large amounts of data that require detection of 

patterns and anomalies unrecognized by computers [40]. They have been successfully used for purposes 

as diverse as designing self-assembling RNA molecules [41] and transcribing historical documents [42]. 

Currently, the most used tool for developing citizen science projects is Zooniverse 

(www.zooniverse.org), which has 1.7 million registered volunteers worldwide. It includes a free project 

builder platform which allows researchers to create projects quickly and at no cost [40]. 

One of the most time-consuming steps of NHC data digitization is the transcription of specimen data. 

Sampling information for most specimens is registered in labels, index cards and/or field notebooks, 

requiring transcription to a digital database. Several methods can be used to achieve this. One is having 

associated staff or volunteers transcribing each record individually from labels or paper records, which 

is time-consuming. An alternative is to use optical character recognition (OCR) software to transcribe 

data from photographs or scanned documents. This has proven useful for typewritten labels, but it is still 

not efficient for handwritten text [43, 44], which is the most common in NHC labels. Moreover, OCR 

can’t interpret or infer information, e.g. from abbreviations, and it doesn’t categorize the text into 

separate fields for collector, sampling location, sampling date, etc. 

Citizen science projects have proven very useful for NHC specimen data transcription. They can be 

hosted on accessible online platforms where volunteers can transcribe data remotely from digitized 

representations of the labels or other paper records. Several institutions have developed platforms 

specifically for this purpose, such as DigiVol, developed by the Australian Museum and the Atlas of 

Living Australia [45], Les Herbonautes, of the French National Museum of Natural History [46], Notes 

from Nature, developed by the Natural History Museum in London, the Southeast Regional Network of 

Expertise and Collections organization, Calbug and the University of Colorado Museum [44], and the 

Smithsonian Transcription Center [47].  

Besides being useful to reduce the time necessary to digitize NHC data, these platforms are also 

important tools for engaging scientific communication and education, since the volunteers learn more 

about the subjects of the projects as they participate. Citizen science projects involving data collection, 

such as species monitoring, increase the participant’s knowledge in the field [48]. For example, 

volunteers gathering data to monitor invasive plant species, showed increased awareness of invasive 

plants and their effects on ecosystems [49]. Data processing projects, such as transcription or image 

classification, are thought to raise public awareness to previously unknown fields of scientific research 

[48]. 

When provided with clear instructions or training, e.g. a tutorial on the structure of the records, 

volunteers can separate the different elements in the label (e.g. sampling date, location, the name of the 

collector, and taxonomic identification) in a way that cannot yet be done automatically. When the 

volunteers are fluent in the language the labels are written in, they can correct spelling errors and update 

location names that have changed since the sampling took place, given that information is easily 

available. Citizen science projects can also be used to enrich the information associated with the 

specimens, e.g. regarding damage to the specimen or morphological features, and even taxonomic 

determination data can be acquired from volunteers with expertise on the taxonomy of the target group 

[24]. 

http://www.zooniverse.org/
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One of the problems of volunteer work, either locally or through citizen science platforms, is the 

enhanced possibility of error, especially if volunteers are not familiar with the data. In fact, the resulting 

datasets may have errors or inconsistencies which need to be corrected, and data must be validated.  Two 

main strategies have been proposed to deal with this. One is to have one volunteer transcribing the data 

and another validating and/or correcting it, another is to allow transcription of the same data by multiple 

volunteers independently, and then reconcile the data – if all fields match, the record is considered 

correct; if there are differences between transcriptions, the record is marked for revision by museum 

staff [24, 44]. 

4.1.1. Objectives 

The objective of this part of the work was to create and optimize a citizen science project on the 

Zooniverse platform, to aid in specimen label transcription and taxonomic identification of the MNHNC 

insect collection. Once implemented the project will continue, allowing volunteers to participate in the 

digitization process and learn more about the MNHNC insect collection. 

4.2. Methods 

To develop an effective citizen science project, a set of photographs (N = 130 subjects/specimens) was 

used with the objective of testing the project and evaluating the participation by volunteers and the 

accuracy of their contributions, in order to optimize the project structure (workflow organization and 

supporting information) and define the best method to process and validate the contributions. These 

preliminary analyses provided useful information to develop the final project to be published on the 

Zooniverse platform.  

A citizen science project with the title “MB-07 - The Insects of the Museu Nacional de História Natural 

e da Ciência” was  created on the Zoniverse platform (www.zooniverse.org), and was made available 

for beta testing (https://www.zooniverse.org/projects/lfilipevsl/mb07-the-insects-of-the-museu-

nacional-de-historia-natural-e-da-ciencia). The project included two workflows designed for different 

audiences. One was delineated for the general public and is a simple text transcription activity 

(hereinafter referred to as transcription workflow). The other was conceived for expert volunteers on 

insect taxonomy able to contribute with accurate taxonomic information (hereinafter referred to as 

taxonomic workflow). Both workflows guide the volunteers through a series of tasks that need to be 

completed. These tasks are of two types: 1) multiple choice questions; 2) free text input. 

As part of all projects created on Zooniverse, a workflow is considered to be a set of tasks that the 

volunteer is asked to complete. Each workflow is applied to a set of subjects (in this work, the subjects 

were photographs of specimens). A task is a single step, e.g. to transcribe the sampling date in a label. 

When a volunteer completes all tasks in a workflow, he/she is asked to review the responses. The set of 

responses provided by a volunteer for each subject, is termed as a classification. The set of classifications 

can be downloaded as a csv file by the creators of the project. 

The tasks for the transcription workflow are shown in the flowchart below (Figure 4.1). 

http://www.zooniverse.org/
https://www.zooniverse.org/projects/lfilipevsl/mb07-the-insects-of-the-museu-nacional-de-historia-natural-e-da-ciencia
https://www.zooniverse.org/projects/lfilipevsl/mb07-the-insects-of-the-museu-nacional-de-historia-natural-e-da-ciencia
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Figure 4.1 Flowchart representing the tasks in the transcription workflow of the project developed on the Zooniverse platform. 

Rectangles represent tasks where the user is prompted for text input, squared rectangles represent multiple answer questions. 
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The tasks for the taxonomic workflow are shown in the next flowchart (Figure 4.2). 

 

Figure 4.2 Flowchart representing the tasks in the taxonomic identification workflow of the project developed on the Zooniverse 

platform. Rectangles represent tasks where the user is prompted for text input, squared rectangles represent multiple answer 

questions. 
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A set of 130 photos of moth specimens (Order Lepidoptera, Family Sphingidae) of the collection 

donated by José Passos de Carvalho were included in the project, and were made available for both 

workflows (Figure 4.1, Figure 4.2). Each photograph depicts a specimen, a scale bar and all the specimen 

label(s) associated with it.  

An example of a task (a step in the workflow), presented to volunteers as part of the transcription 

workflow is shown in Figure 4.3. The instructions, included in a “Tutorial” section, and help text were 

provided both in English and Portuguese, to allow volunteers to choose the language they were most 

comfortable with and enabling Portuguese and English speakers to participate in the project. Each 

subject was withdrawn after the submission of 5 different classifications from different users. 

 

Figure 4.3 Image of the first task that volunteers were asked to complete in the transcription workflow of the project developed 

on the Zooniverse platform. 

The classification data was downloaded as a set of CSV files on May 16, 2019. The classification file 

contained data processed by volunteers, the workflow data file contained all the tasks included in each 

workflow, and the subject data file contained a list of subjects, with the filename of the photograph and 

the corresponding Zooniverse ID. 

Panoptes_aggregation, a software created specifically for extracting data from the csv files exported 

from Zooniverse [50], was used to extract the data from these files. As a first step, two extractor 

configurator files were created, one for each workflow. The extractor configurator files listed all tasks 

in the workflow, including the type of each task, so that the responses could be extracted correctly. The 

files were created using the panoptes_aggregation graphical user interface (GUI), using the workflow 

data csv file as input, and then edited manually to assign the appropriate task type to each task. These 

files were used to extract data from the classification data file, also using the panoptes_aggregation GUI. 

This resulted in two csv files with all classifications made by volunteers. 

An R script was written to format these files, creating a csv file for each workflow, organized by 

specimen, with classification information by each volunteer for a single subject in one row, with one 

column for each task. This script is available in Annex B. 

The final csv files were used to evaluate volunteer classification data. Each was assigned one of three 

values: correct (all answers to tasks correspond to the data in the subject photograph); incorrect (with 

one or more incorrect values); or blank (only blank values). These values were then counted to evaluate 

the number of correct, incorrect and blank responses for each workflow. 
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4.3. Results 

Although the project is still in a testing phase and it is not yet available on the main page of Zooniverse, 

there was a call, from the platform, for beta testers. Furthermore, it was advertised through the MNHNC 

social media and has received contributions by volunteers. In May 16, 2019, data was extracted from 

the project to evaluate participation and the quality of contributions. 

For the transcription project, a total of 582 classifications were made by 104 individual volunteers, with 

an average of 5.7 classifications per volunteer. One classification corresponds to a volunteer completing 

all tasks for a single subject photograph. Of these classifications, 78 (13.4%) contained only blank 

values, 129 (22.2%) contained incorrect transcriptions, and 375 (64.4%) contained correct 

transcriptions. Classifications were considered correct when all responses to tasks corresponded to the 

data in the label of the subject. For each subject, there was an average of 4.5 classifications. On average, 

2.9 of them were correct, 1.0 was incorrect and 0.6 were blank values. 

The number of classifications made per day is shown in Figure 4.4. 

 

Figure 4.4 Transcriptions made by volunteers per day, between December 2018 and April 2019. Each transcription corresponds 

to completing all the tasks by one volunteer. Each image is transcribed by more than one volunteer. 

In the taxonomic identification workflow, 194 classifications were made by 13 volunteers. In order to 

evaluate the classifications, values were considered expected when they matched the corresponding 

fields, since only an expert can verify if taxonomic identifications are correct or not. Of these 
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classifications, 65 (33.5%) were blank, and 129 (66.5%) had expected values. None of the classifications 

had unexpected values. The number of classifications made per day is shown in Figure 4.5. 

 

Figure 4.5 Contributions to the taxonomic workflow made by volunteers per day, between December 2018 and March 2019. 

Each contribution corresponds to either a transcription and confirmation of taxonomic identification labels in one specimen, or 

a new taxonomic identification of a specimen, done by a volunteer. Each image can be classified by more than one volunteer. 

For each subject, there was on average 1 classification containing expected data, and 0.5 classifications 

with only blank values. 

Regarding the taxonomic identification of specimens, a total of 61 identifications were provided for 

specimens with no taxonomic identification. The remaining 69 specimens already had taxonomic 

identifications in the labels; the identifications for those specimens were verified. 

As a part of the Zooniverse testing process, volunteers who made classifications were asked by the 

platform to fill out a feedback survey. This allows the Zooniverse staff and the project creators to 

evaluate volunteer interest in the project, and the likelihood of volunteers participating once it is 

advertised on the projects section of Zooniverse (www.zooniverse.org/projects). The answers to this 

survey were not separated by workflow, thus they are assumed to apply to both workflows. 

The questions in the survey were mostly intended to evaluate the difficulty of the project, if the help and 

tutorials provided were suitable, and the interest of volunteers in the project. A total of 32 volunteers 

answered the survey. Regarding difficulty of the tasks, 34.4% of volunteers found the tasks moderately 

easy, 9.4% found them very easy, 43.8% found them somewhat hard, and 9.4% found them very hard 

(Figure 4.6). The main reasons pointed out by volunteers who found the tasks somewhat hard or very 

hard were difficulty in reading the labels, and not being sure of which term corresponded to which field 

(especially for taxonomic identifications, and for volunteers who were not familiar with binomial 

nomenclature). 

http://www.zooniverse.org/projects
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Figure 4.6 Answers by volunteers to the question “How easy or difficult did you find the task?” in the feedback survey for the 

Zooniverse project. The survey was filled out by 32 volunteers who contributed with a classification. 

The volunteers were asked whether or not the project was suitable for Zooniverse (Figure 4.7). To this 

question, 28 of the participants (87.5%) answered “Yes”, 1 participant (3.1%) answered “No”, and 3 

volunteers (9.4%) provided no response. 

 

Figure 4.7 Answers by volunteers to the question “In your opinion, is this project suitable for the Zooniverse?” in the feedback 

survey for the Zooniverse project. The survey was filled out by 32 volunteers who contributed with a classification. 

The final question in the survey evaluated the willingness of volunteers to participate in the project once 

it becomes an official Zooniverse project and it is available through the website homepage (Figure 4.8). 

To this question, 10 volunteers (31.2%) replied “Yes” and 4 (12.5%) replied “Yes and I'll bring friends!”. 
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Of the remaining answers, 13 volunteers (40.6%) replied “Not sure”. Only 3 of the volunteers (9.4%) 

answered “No”, and 2 participants (6.2%) provided no answer. 

 

Figure 4.8 Answers by volunteers to the question “If we decide to launch this project publicly, do you think you will take part?” 

in the feedback survey for the Zooniverse project. The survey was filled out by 32 volunteers who contributed with a 

classification. 
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4.4. Discussion 

Citizen science has been shown to be an effective way of speeding up the digitization of biodiversity 

data labels and field notebooks. It has also been used to geocode sampling locations and annotate images 

of specimens [24]. The objective of this work was to evaluate if it would be a suitable tool to speed up 

the process of specimen data digitization. 

The transcription workflow yielded an average of 2.9 correct classifications per subject, versus 1 

incorrect classification. Based on this result, an error correction method can be proposed, in which the 

majority of similar answers to each task is accepted as the correct value. Another possible verification 

method is to define some volunteers as advanced users, who can verify others´ classifications. It is also 

expected that, as the project continues, volunteers will become more experienced and provide more 

reliable classifications, since most classifications are made by a small number of volunteers – in a study 

of seven different citizen science projects, it was concluded that the top 10% of contributors were 

responsible for 71% to 88% of classifications [51]. 

For the taxonomic identification workflow, 61 new identifications were provided for the total of 130 

subjects included. All but one of the new taxonomic identifications were provided by the curator of the 

collection. This demonstrates that the Zooniverse project is useful not only to allow participation by 

volunteers, but also to facilitate the work of museum staff. After the specimens are photographed and 

uploaded as subjects, both volunteers and museum staff working in the digitization of collections can 

contribute with transcriptions and taxonomic identifications. 

In the future, this project will be used to expedite the MNHNC digitization process for specimens that 

have labels but weren’t included in the collection catalogue yet, such as the remaining specimens of the 

Passos de Carvalho collection. It will first be necessary to photograph the specimens of the collection 

with the accompanying labels; after that, the photographs can be uploaded to the website, where more 

classifications can be done by volunteers. Currently, the project is under review, meaning it is not an 

official Zooniverse project yet; it is expected that, once the project becomes an official Zooniverse 

project, there will be more participation by Zooniverse volunteers, as it will be featured on the 

Zooniverse Projects Page (www.zooniverse.org/projects), where 1.7 million volunteers registered in 

Zooniverse will be able to access it and make their contribution [52]. Furthermore, the museum should 

also use its own communication channels to disseminate the project. 

Results of the feedback survey suggest a positive response of volunteers to the project. Although it is 

not possible to distinguish between the two workflows in the volunteers’ responses, it can be 

hypothesized that the volunteers who considered the project very hard were mainly referring to the 

taxonomic identification workflow, which is not intended for the general public. There is also an added 

level of difficulty for volunteers who are not Portuguese speakers, since most of the labels available to 

transcribe are in Portuguese and refer to sampling locations and collectors from Portugal or Portuguese-

speaking countries. 

Citizen science projects similar to the transcription workflow created here have achieved astounding 

results; for example, in February 2015, the Atlas of Living Australia’s DigiVol had obtained 130 816 

transcriptions from 860 contributors, and Zooniverse’s Notes from Nature had 1 042 592 transcriptions 

from 6 833 contributors [24]. Both these projects used a reward system to encourage volunteer 

participation, with badges attributed to volunteers that make the most contributions, or upon reaching a 

certain number of contributions [24, 44].  

The resulting data will need further processing in order to be included in the database, mostly for error 

correction and converting data to the DarwinCore format. However, even with this required data 

http://www.zooniverse.org/projects
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cleaning step, it will make the digitization process faster, contributing to the MNHNC insect collection 

data being digitized, accessible and searchable. 

As an additional benefit, this citizen science project will give more visibility to the MNHNC insect 

collection, and it will be a way to increase interest in entomology and natural history among the general 

public, as citizen science is not only a tool for research, but also for education and science dissemination 

[24].  
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5. Tabanid collection data digitization 

5.1. Introduction 

Tabanid flies (order Diptera, family Tabanidae), which include the commonly called horse and deer 

flies, are vectors of mechanical and biological infectious diseases transmitted to animals. Examples of 

disease agents transmitted to livestock and other animals include protozoan parasites, such as 

Trypanosoma theileri [53] and Trypanosoma vivax [54], the haemoplasma Mycoplasma (E.) wenyonii 

[55] and viruses such as the Equine infectious anemia virus and Indiana vesiculovirus [56]. Tabanids 

can also carry agents that transmit infectious diseases to humans, such as the nematode Loa loa 

(cyclically transmitted by Chrysops silaceus and C. dimidiatus) [57], the bacteria causing anthrax 

(Bacillus anthracis) [56] and tularemia (Francisella tularensis) [54]. Cases of anaphylaxis as a result of 

tabanid bites have been also reported [58]. 

There are currently 4300 described species of tabanids, comprised in 133 genera [54]. Female tabanids 

of most species take a blood meal during egg development, while males usually feed exclusively on 

nectar [59]. For most species, females are more active than males, especially in bright sunlight and 

during the spring and summer [54]. Tabanids are widely distributed worldwide and are present in a wide 

range of habitats and climates [60]. Therefore, acquiring scientific knowledge on tabanid species and 

their distribution is of special interest for disease control and livestock protection [61]. Studies have 

been conducted to characterize the distribution of Tabanids in different locations [62, 63] and to create 

checklists of Tabanidae in NHC [64], but more information is necessary.  

The entomological collections of the Instituto de Investigação Científica Tropical (IICT) include a 

collection of tabanid flies, compiled and classified by the researcher J. A. Travassos Santos Dias, but its 

data had not yet been digitized, and its reduced visibility hampered its use in scientific studies. This 

collection includes specimens collected in the decades of 1920-1990, mainly in Portugal, Spain, 

Mozambique, Angola and São Tomé and Príncipe, among other countries worldwide. It includes 1051 

specimens. In addition to this collection, other tabanids were collected more recently by Luis Mendes 

and other researchers, which are also stored at the IICT. The IICT collections have recently become part 

of the University of Lisbon patrimony, and are under the care of the MNHNC, which also holds tabanid 

specimens in its insect collection. All of these specimens were included in the dataset developed during 

this work. Most of these specimens were determined to the species level by Travassos Santos Dias and 

other specialists. Some of the specimens correspond to species described by Travassos Santos Dias 

himself, and both collections include type specimens. 

5.1.1. Objectives 

The objective of this part of the work was to digitize and analyse the data of the IICT and MNHNC 

tabanid collections, including several steps: 

1. Photographing all specimens in the collection and associated labels; 

2. Transcribing label data to create a dataset; 

3. Geocoding the collection locations; 

4. Publishing the resulting dataset on GBIF; 

5. Analysing the dataset in terms of geographic, temporal and taxonomic coverage, by comparing 

it to existing data published on GBIF and in the literature, and by producing distribution maps 

for the more well-represented species. 

Studying this collection will increase the existing knowledge about this group, especially regarding its 

geographical distribution through time, as the dataset has an extensive temporal and geographic 

coverage.  
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5.2. Methods 

As a first step, all the specimens in the collections that hadn’t been digitized yet were photographed with 

the accompanying labels and a scale. Specimens were photographed using a Canon EOS 7D Camera 

with a macro lens. Photographs were then edited using Adobe Photoshop CS5 version 12.0 to add the 

complete species name and to edit white balance, color levels, contrast and brightness. An example of 

an edited photograph is shown in Figure 5.1.  

A taxonomic review was done, using the GBIF database as reference, to verify the current validity of 

the taxonomic classifications and to add synonyms for species where necessary. All the photographs 

were sent to a tabanid taxonomy specialist, Hélcio Gil, of Instituto Oswaldo Cruz, to confirm the 

taxonomic identifications and further cases of synonymy.  

 

Figure 5.1 - Example of a photograph of a specimen of the Tabanid collection, with collection and classification labels. 

Data was compiled in an Excel spreadsheet, by transcribing information contained in the labels for each 

individual specimen. These data include the collector, sampling date and location, taxonomic 

classification (updated if necessary, but maintaining a record of previous data) and sex. Some specimens 

included other additional information, such as previous collection number or the host from which the 

specimen was collected, which was also transcribed and included in the dataset.  

After compiling all data, records were geocoded using the same method used in section 3.2. 

In order to evaluate the geographic, temporal and taxonomic coverage of this dataset, graphs were 

produced using R [26]. A distribution map for the countries represented in the collection and another 

for all specimens sampled in Portugal, the most represented country, were produced using the tmap 

package [65]. Distribution maps for the species represented by more than 30 specimens in the collections 

with geocoded sampling locations were produced using the mapview package [66]. 
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5.3. Results 

The dataset contains a total of 1666 records, each corresponding to one pinned specimen. Taxonomic 

coverage of the dataset is very complete, with 1415 specimens (84.9% of the total) classified to the 

Species level. Of the remaining specimens, 179 (10.7%) are classified to the Family, 68 (4.1%) to the 

Genus and 4 (0.2%) to the Subspecies (Figure 5.2). 1065 specimens were identified by Travassos Santos 

Dias, and 377 are of Species described by Travassos Santos Dias. 

 

Figure 5.2 Percentage of tabanid specimens in the IICT/MNHNC collections identified to each taxon rank. 

The most represented Genus is Tabanus (956 specimens), followed by Haematopota (241), Chrysops 

(52), Atylotus (47) and Pangonius (46). The most represented species are Tabanus monocallosus 

Travassos Dias, 1955 (260 specimens), Tabanus eggeri Schiner, 1868 (120), Haematopota italica 

Meigen, 1804 (84), Tabanus autumnalis Linnaeus, 1760 (68), Tabanus bromius Linnaeus, 1758 (43) 

and Tabanus sudeticus Zeller, 1842 (43). Figure 5.3 shows the Genera represented by 10 or more 

specimens in the collections; the species represented by 20 or more specimens in the collections are 

shown in Figure 5.4.  

In what concerns gender, 1177 specimens (70.6%) are females, 118 (7.1%) are males and 371 (22.3%) 

are of undetermined sex. The higher number of female than male specimens was expected, since females 

are more active and thus more likely to be sampled. 
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Figure 5.3 Bar graph of tabanid specimens in the IICT/MNHNC collections by Genus, for Genera represented by 10 or more 

specimens in the collections. 

 

Figure 5.4 Bar graph of tabanid specimens in the IICT/MNHNC collections by species. Species represented by 20 or more 

specimens in the collection are shown. 
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The collections contain a total of 88 type specimens corresponding to 53 species described by Travassos 

Santos Dias, Portillo, Portillo and Schacht, and Coscarón and Fairchild. These include 41 holotypes, 1 

allotype and 46 paratypes. Of the 53 species, 22 have since been considered junior synonyms of other 

ones. Mendes et al. (1988) [67] published an annotated list of all insect type specimens stored in the 

IICT, where the sampling location and conservation state of each type specimen were described in detail. 

A list of type specimens stored in the IICT collection is presented in Table 5.1, including the specimens 

listed by Mendes et al. and species described by Travassos Dias after 1988. Tabanidae type specimens 

stored in the MNHNC collections are also listed in   
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Table 5.2. For 2 of the species described by Travassos Santos Dias (Philoliche luderitzi and Philoliche 

penrithi), it was not possible to find the work where the species description was published; therefore, 

these are not included in the list of type specimens. 

 

Table 5.1 Type specimens of the IICT tabanid collection. The number of holotypes, allotypes and paratypes in the collection 

is accounted for each species. Scientific name refers to the species described by the author. For the cases where the species was 

later considered a synonym of another the updated name is given under Current name. 

Genus Scientific name Current name Holotypes Allotypes Paratypes Ref. 

A
ty

lo
tu

s 

Atylotus fairchildi  

Travassos, 1983 

Atylotus agrestis 

(Wiedemann, 1828) 
1   [68] 

Atylotus olsufjevi  

Travassos, 1983 

Atylotus latistriatus (Brauer, 

1880) 
1   [68] 

B
ar

to
lo

m
eu

-

d
ia

si
el

la
 

Bartolomeudiasiella atlanticus  

Travassos Santos Dias, 1987 
   2 [69] 

C
h

ry
so

p
s 

Chrysops piresi  

Travassos, 1985 

Chrysops caecutiens 

(Linnaeus, 1758) 
1   [70] 

H
ae

m
at

o
p

o
ta

 

Haematopota amicoi  

Travassos Santos Dias, 1996 
   1 [71] 

Haematopota angolensis 

Travassos Santos Dias, 1989 
 1   [72] 

Haematopota arrabidaensis 

Travassos, 1985 

Haematopota ocelligera  

(Krober, 1922) 
1  1 [70] 

Haematopota chongoroiensis  

Travassos Santos Dias, 1989 
 1  2 [73] 

Haematopota conninckae  

Dias, 1993 
   1 [74] 

Haematopota eugeniae  

Portillo & Schacht, 1984 
   1 [75] 

Haematopota gamae  

Travassos, 1991 

Haematopota lambi 

Villeneuve, 1921 
1   [76] 

Haematopota intrincata 

Travassos, 1985 

Haematopota ocelligera  

(Krober, 1922) 
1   [70] 

Haematopota quartaui 

Travassos, 1985 

Haematopota lambi 

Villeneuve, 1921 
1   [77] 

Haematopota ribeirorum 

Travassos, 1984 

Haematopota enriquei 

Leclerq, 1971 
1   [78] 
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Haematopota salomae 

Travassos, 1990 

Haematopota ocelligera  

(Krober, 1922) 
1   [76] 

Haematopota serranoi 

Travassos, 1984 

Haematopota eugeniae 

Portillo & Schacht, 1984 
1  2 [79] 

H
y

b
o

m
it

ra
 

Hybomitra alegrei  

Travassos, 1984 

Hybomitra tamujosoi 

Schacht & Portillo, 1982 
1   [80] 

Hybomitra medeirosi 

Travassos Santos Dias, 1989 
 1   [81] 

Hybomitra mendesi  

Travassos Santos Dias, 1989 
 1   [82] 

Hybomitra tamujosoi  

Schacht & Portillo, 1982 
   1 [83] 

Hybomitra zaballosi  

Portillo, 1991 
   2 [84] 

P
an

g
o

-

n
iu

s Pangonius brancoi  

Travassos, 1984 

Pangonius hermanni Krober, 

1921 
1   [85] 

P
h

il
o

li
ch

e 

Philoliche dubiosa  

Travassos Santos Dias, 1991 
   1 [86] 

Philoliche pamelae  

Travassos Santos Dias, 1991 
   2 [86] 

Philoliche penrithi    2  

P
o

ec
il

o
-

d
er

as
 

Poeciloderas pampeanus  

(Coscarón and Fairchild, 1976) 
   1 [87] 

T
ab

an
u

s 

Tabanus brancoi  

Travassos Santos Dias, 1989 
 1   [81] 

Tabanus capelai  

Travassos, 1992 

Tabanus flavofemoratus  

Strobl, 1908 
1   [88] 

Tabanus cruzesilvai  

Dias, 1980 

Tabanus bromius Linnaeus, 

1758 
1   [89] 

Tabanus ilharcoi  

Travassos, 1990 

Tabanus nemoralis Meigen, 

1820 
1   [90] 

Tabanus luizae  

Travassos Santos Dias, 1979 
 1   [91] 

Tabanus mateusi  

Travassos Santos Dias, 1980 

Tabanus brassofortei 

Travassos, 1980 
1   [91] 

Tabanus mesquitelai 

Travassos Santos Dias, 1991 
 1  15 [92] 
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Tabanus pseudolunatus  

Dias, 1980 
 1   [91] 

Tabanus pseudothoracinus 

Travassos Santos Dias, 1996 
   4 [71] 

Tabanus rosarioi Dias, 1994  1 1  [93] 

Tabanus rubioi  

Travassos, 1987 

Tabanus nemoralis Meigen, 

1820 
1   [94] 

Tabanus tendeiroi  

Travassos, 1980 

Tabanus barbarus 

Coquebert, 1804 
1   [89] 

Tabanus varelai Dias, 1980  1   [89] 
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Table 5.2 Type specimens of the MNHNC tabanid collections. The number of holotypes, allotypes and paratypes in the 

collections is accounted for each species. Scientific name refers to the species described by the author. For the cases where the 

species was later considered a synonym of another the updated name is given under Current name. 

Genus Scientific name Current name Holotypes Allotypes Paratypes Ref. 

C
h

ry
so

p
s Chrysops angolensis 

Travassos Dias, 1974 
 1   [95] 

Chrysops passosi 

Travassos, 1980 

Chrysops caecutiens 

(Linnaeus, 1758) 
1  1 [89] 

H
ae

m
at

o
p

o
ta

 

Haematopota grandvauxi 

Travassos Dias, 1973 
 1   [96] 

Haematopota mendossaorum 

Travassos Santos Dias, 1992 

Haematopota ocelligera 

(Krober, 1922) 
1   [97] 

Haematopota passosi 

Travassos Dias, 1973 
 1   [96] 

Haematopota teixeirai 

Travassos Dias, 1974 
 1   [95] 

H
y

b
o

m
it

ra
 

Hybomitra portucalensis 

Travassos Santos Dias, 1985 

Hybomitra ciureai 

(Séguy, 1937) 
1   [98] 

T
ab

an
u

s 

Tabanus bivari 

Travassos Santos Dias, 1985 
 1   [98] 

Tabanus brassofortei 

Travassos, 1980 
 1  2 [89] 

Tabanus maiombensis 

Travassos Dias, 1973 
 1  2 [96] 

Tabanus mendossai 

Travassos, 1992 

Philipomyia aprica 

(Meigen, 1820) 
1   [97] 

Tabanus mossambicensis 

Travassos Santos Dias, 1985 
 1   [99] 

Tabanus passosi 

Travassos Dias, 1974 
 1   [95] 

 

The countries where 10 or more specimens of the IICT/MNHNC collections were sampled are shown 

in Figure 5.5. The majority of the specimens were collected in Portugal (938, 57.2% of total), São Tomé 

and Príncipe (270, 16.5%), Guinea-Bissau (96, 5.9%), Mozambique (74, 4.5%), Spain (71, 4.3%) and 

Angola (53, 3.2%). Geographic distribution of the specimens sampling locations is further detailed in 

section 5.3.1, including distribution maps for some species. 
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Figure 5.5 Bar graph of Tabanidae specimens in the IICT/MNHNC collections by sampling country. Countries represented by 

10 or more specimens in the collections are shown. 

Regarding temporal coverage, specimens in the collections were sampled between 1899 and 2018. Only 

one specimen was sampled in 1899, the remaining specimens were sampled after 1920. The majority of 

the specimens were sampled after 1970, and 674 (40.5%) of them were sampled between 1980 and 1990 

(Figure 5.6).  

 

Figure 5.6 Histogram of tabanid specimens in the IICT/MNHNC collections by sampling year aggregated per decade. 
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5.3.1. Distribution maps 

In order to provide a more complete characterization of the geographic distribution of the IICT/MNHNC 

Tabanidae collections, distribution maps are presented for the 9 species with over 30 specimens with 

geocoded sampling locations in the dataset. Figure 5.7 shows sampling countries for all specimens in 

the collections. The collections have a wide geographic distribution. Portugal is the country where most 

specimens were collected, being the continental territory well represented in the collection (Figure 5.8). 

For species that also have occurrences published on GBIF, maps of countries represented on GBIF and 

in the IICT/MNHNC collections are shown. The datasets used for GBIF occurrences are referenced in 

Annex C. 

In general, the sampling locations of specimens are in accordance with the known distributions of the 

species, with a few exceptions that should be noted. For Haematopota csikii, distribution is reported by 

Portillo (2002), in Portugal, for Alentejo [100], while one of the specimens in the IICT/MNHNC 

collections was collected further North, in Gerês. Hybomitra solstitialis has been reported for Minho, 

while in the IICT/MNHNC collections there is one specimen collected in Beja and one in Serra da 

Estrela. Both of these specimens were identified as Hybomitra bimaculata, which was considered a 

junior synonym of Hybomitra solstitialis [100]. Pangonius haustellatus hasn’t been reported for 

Portugal, only for Spain [100]; one specimen of P. haustellatus is included in the collections, sampled 

in Santarém, Portugal. 

 

Figure 5.7 World map representing the countries where Tabanidae specimens of the IICT/MNHNC collections were collected. 

Circle size represents the number of specimens collected in each country. 
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Figure 5.8 Map of sampling locations of Tabanidae of the IICT/MNHNC collections in Portugal. Circle size represents the 

number of specimens sampled at each location. Inset shows the Azores islands. 
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Tabanus monocallosus Travassos Dias, 1955 

The IICT collection includes 260 specimens of Tabanus monocallosus, collected between 1972 and 

2018. Of these, 77 were collected in São Tomé island, 174 in Príncipe island, and the other 9 don´t 

include information about the collection location other than the country. The sampling locations that 

were possible to geocode are shown in Figure 5.9. GBIF currently contains only one record of this 

species, collected in São Tomé and Príncipe, without further information about collection location or 

date. 

 

 

 

 

 

 

 

 

 

 

 

  

A B 

Figure 5.9 Collection location for specimens of Tabanus monocallosus of the IICT/MNHNC collection collected in São 

Tomé and Príncipe, in the islands of (A) São Tomé and (B) Príncipe. Circle size corresponds to the uncertainty area for each 

sampling location, fill colour represents the number of specimens collected. 
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Tabanus eggeri Schiner, 1868 

This species is widely distributed throughout the Mediterranean region and is very common in the 

Iberian Peninsula [100]. GBIF lists occurrences in Portugal, France, Greece, Czech Republic, Turkey 

and Lebanon (Figure 5.10). Considering the IICT/MNHNC collections, 3 specimens were collected in 

Spain and 116 in Portugal across the continental territory (Figure 5.11). 

 

Figure 5.10 Countries where sampling of specimens of Tabanus eggeri has been registered on GBIF (blue) and where T. eggeri 

specimens of the IICT/MNHNC collections were sampled (yellow). Portugal, which has occurrences of T. eggeri registered on 

GBIF and is also represented in the MNHNC/IICT collections is shown in green. 
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Figure 5.11 Locations where specimens of Tabanus eggeri in the IICT/MNHNC collections were collected. Circle size 

represents the geocoding uncertainty of the sampling locality, for localities with uncertainty greater than 3000 m. Locations 

with geocoding uncertainty smaller than 3000 m are represented by lozenges. In both cases, fill color represents the number of 

specimens collected in each location (minimum = 1, maximum = 27). 
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Haematopota italica Meigen, 1804 

According to Portillo (2002) this species occurs in all of Europe except Finland and Norway, and in 

North Africa [100]. GBIF also lists occurrences of this species throughout Europe, including Finland 

and Norway (Figure 5.12). 84 specimens included in the IICT/MNHNC collections were sampled in 

Portugal (82) and Spain (2). Of these, it was possible to geocode the sampling locality of 77 specimens 

from Portugal. Specimens sampled in Portugal were mostly from the North of the country, although 

there were some specimens collected in Santarém (5), Setúbal (6), Faro (1) and Portalegre (1), as shown 

in Figure 5.13. 

 

Figure 5.12 Countries where sampling of specimens of Haematopota italica has been registered on GBIF (blue) and where H. 

italica specimens of the IICT/MNHNC collections were sampled (red). 



50 

 

 

Figure 5.13 Locations where specimens of Haematopota italica in the IICT/MNHNC collections were collected. Circle size 

represents the geocoding uncertainty of the sampling locality, for localities with uncertainty greater than 2500 m. Locations 

with geocoding uncertainty smaller than 2500 m are represented by lozenges with black trim. In both cases, fill color represents 

the number of specimens collected in each location (minimum = 1, maximum = 34). 
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Tabanus autumnalis Linnaeus, 1761 

This species is widely distributed, but most common in low to medium altitude areas; it occurs in the 

western half of the Palearctic region [100]. Occurrences reported on GBIF are listed all over Europe 

(but none in Portugal and only 3 in Spain, in the Balearic Islands and in Barcelona), as well as in Algeria 

and Pakistan (Figure 5.14). In the IICT/MNHNC collections, 65 specimens are from Portugal, and one 

from Spain (Figure 5.15). The specimens from Portugal were collected mainly in the South (Lisbon, 

Santarém, Setúbal, Beja, Faro), although 3 were collected further North, and one was collected in the 

Azores (Figure 5.16). 

 

Figure 5.14 Countries where Tabanus autumnalis specimens have been registered on GBIF (blue) and in the IICT/MNHNC 

collections (yellow). The only country where specimens of T. autumnalis of the IICT/MNHNC collections were sampled and 

where there are occurrences of this Species registered on GBIF is Spain, shown in green. 
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Figure 5.15 Locations where specimens of Tabanus autumnalis in the IICT/MNHNC collections were sampled. Circle size 

represents the geocoding uncertainty of the sampling locality, for localities with uncertainty greater than 2500 m. Locations 

with geocoding uncertainty smaller than 2500 m are represented by lozenges with black trim. In both cases, fill color represents 

the number of specimens collected in each location (minimum = 1, maximum = 3). 

 

Figure 5.16 Sampling location for the specimen of Tabanus autumnalis in the IICT/MNHNC collections sampled in São Miguel 

island, Azores. 
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Tabanus sudeticus Zeller, 1842 

This species is more commonly found in hills and mountains and has a known distribution through 

Europe, Asia Minor and North Africa [100]. GBIF contains occurrences in almost all of Europe, but 

none in Portugal (Figure 5.17). The IICT/MNHNC collection contains 43 specimens of this species. 

These were collected in Spain (10), Portugal (32) and France (1), with collection locations shown in 

Figure 5.18 and Figure 5.19. Almost all of them were collected in mountainous regions: Sierra Nevada 

(10), Serra da Cabreira (21), Serra da Estrela (10) and Serra do Gerês (1). 

 

Figure 5.17 Countries where Tabanus sudeticus specimens have been registered on GBIF (blue) and in the IICT/MNHNC 

collections (yellow). The countries where specimens of T. sudeticus of the IICT/MNHNC collections were sampled and where 

there are occurrences of this Species registered on GBIF are Spain and France, shown in green. 
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Figure 5.18 Sampling locations of Tabanus sudeticus specimens from Portugal found in the IICT/MNHNC collections. Circle 

size represents the geocoding uncertainty of the sampling locality, for localities with uncertainty greater than 2500 m. Locations 

with geocoding uncertainty smaller than 2500 m are represented by lozenges with black trim. In both cases, fill color represents 

the number of specimens collected in each location (minimum = 1, maximum = 18). 
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Figure 5.19 Sampling locations of Tabanus sudeticus specimens in the IICT/MNHNC collections sampled in Portugal (32 

specimens), Spain (10 specimens, all in the same location in Andalucia) and France (1 specimen). 
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Tabanus bromius Linnaeus, 1758  

This species is found all over Europe, the Middle East and North Africa [100]. GBIF contains 

occurrences located throughout Europe, in Northern Africa, the United States and Australia (Figure 

5.20). The IICT collection contains 43 specimens collected in Portugal, including 2 specimens classified 

as Tabanus cruzesilvai (one of them a holotype), a species described by Travassos Dias in 1980 [89] 

which was considered a synonym of T. bromius by Portillo (2002) [100]. These specimens were 

collected across continental Portugal (Figure 5.21). 

 

Figure 5.20 Countries where sampling of specimens of Tabanus bromius have been registered on GBIF (blue) and where T. 

bromius specimens of the IICT/MNHNC collections were sampled (red). 
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A B 

Figure 5.21 Locations where specimens of Tabanus bromius in the IICT/MNHNC collections were collected, in the (A) 

North and (B) South of Portugal. Circle size represents the geocoding uncertainty of the sampling locality, for localities 

with uncertainty greater than 2500 m. Locations with geocoding uncertainty smaller than 2500 m are represented by 

lozenges with black trim. In both cases, fill color represents the number of specimens collected in each location (minimum 

= 1, maximum = 10). 
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Tabanus barbarus Coquebert, 1804 

Portillo (2002) cites this species as occurring in the Southwest of Europe and Northern Africa [100]. 2 

occurrences sampled in Tunisia are published on GBIF. 33 specimens of IICT/MNHNC collections were 

collected in Portugal, of which it was possible to geocode the sampling locations of 31 (Figure 5.22). 

All of the specimens were sampled in the region of Lisboa, Setúbal, Santarém and Leiria, since in 

Portugal, this species occurs in center-west region [100]. 

 

Figure 5.22 Locations where specimens of Tabanus barbarus in the IICT/MNHNC collection were collected. Circle size 

represents the geocoding uncertainty of the sampling locality, for localities with uncertainty greater than 1000 m. Locations 

with geocoding uncertainty smaller than 1000 m are represented by lozenges with black outlines. In both cases, fill color 

represents the number of specimens collected in each location (minimum = 1, maximum = 7). 
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Ancala fasciata (Fabricius, 1775) 

GBIF lists occurrences of this species in Cameroon, Central African Republic, Gabon, Ghana, Nigeria 

and Senegal (Figure 5.23). Considering the specimens in the IICT/MNHNC collections, 39 were found 

in Guinea-Bissau, 31 of which were possible to geocode (Figure 5.24). 

 

Figure 5.23 Countries where occurrences of Ancala fasciata have been registered on GBIF (blue) and in the IICT/MNHNC 

collections (red).  

 

Figure 5.24 Locations where specimens of Ancala fasciata in the IICT/MNHNC collections were sampled. Circle size 

represents the uncertainty of the sampling locality. Circle color represents the number of specimens sampled in each location 

(minimum = 1, maximum = 22). 



60 

 

Tabanus mesquitelai Travassos Santos Dias, 1991 

35 specimens of this species are contained in the IICT/MNHNC collections, all sampled in Guinea-

Bissau, including 1 holotype and 15 paratypes. Of these, it was possible to geocode the sampling 

locations of 31 (Figure 5.25). There are currently no occurrences of this species published on GBIF. 

 

Figure 5.25 Locations where specimens of Tabanus mesquitelai in the IICT/MNHNC collections were sampled. Circle size 

represents the uncertainty of the sampling locality. Circle color represents the number of specimens sampled in each location 

(minimum = 4, maximum = 14). 
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5.4. Discussion 

In this work, a dataset representing 1666 specimens of the Tabanidae (Diptera) Family was digitized 

and characterized. Publication of this dataset on GBIF will significantly increase the data available about 

this group. The collections represented in the dataset are of special importance considering that most of 

the specimens were compiled and/or identified and studied by Travassos Santos Dias, a specialist who 

described many species in this family.  

Several of the species in this list have few or no occurrences published on GBIF. For example, Tabanus 

monocallosus, a species known to occur only in São Tomé and Príncipe, has only one occurrence 

published on GBIF, but with no associated coordinates for the sampling location. The publication of this 

dataset will add 260 occurrences to São Tomé and Príncipe, with specimens sampled in both islands. 

238 of these occurrences are geocoded. Tabanus eggeri, a widespread species in Europe, has just 18 

registered occurrences on GBIF, and only 10 include coordinates. The publication of this dataset will 

add 120 more occurrences to this species, 108 of which are geocoded.  

This work also provides a characterization of the distribution of 9 species of tabanids through 

distribution maps. For these species, mostly sampled in Portugal, São Tomé and Príncipe and Guinea-

Bissau, a wider understanding of their distribution is gained. Although many of these occurrences were 

reported by Travassos Dias individually, a comprehensive geographic analysis has not yet been done 

for these collections. Therefore, this work provides a better understanding of the locations where 

Tabanus monocallosus, Tabanus eggeri, Haematopota italica, Tabanus autumnalis, Tabanus sudeticus, 

Tabanus bromius, Tabanus barbarus, Ancala fasciata and Tabanus mesquitelai occur.  

The sampling countries represented in the IICT/MNHNC collections were compared with the countries 

where occurrences of the same species were previously published on GBIF. This leads to the conclusion 

that for most of the species occurring in Portugal, no occurrences in this country were previously 

published in that platform. In fact, Portugal is underrepresented in terms of occurrences of Tabanidae 

published on GBIF; of 156 651 occurrences of the Tabanidae family published on GBIF prior to this 

work, only 42 were sampled in Portugal.  

The publication of the dataset described here on GBIF, and the characterization of the IICT/MNHNC 

collections done in this work, will be available for further scientific studies of significant medical and 

veterinary importance, and on the distribution of this group, respectively. 
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6. Conclusions 

In this work, focusing on the digitization of NHC data, the main steps of the digitization process were 

covered. These included enrichment of specimen data through automatic geocoding of sampling 

locations, the cleaning, enrichment and publication on GBIF of the MNHNC insect collection catalogue, 

the creation of a citizen science project in the Zooniverse platform, and the digitization of the data 

pertaining to a significant collection of specimens of the Tabanidae family, stored at the IICT and the 

MNHNC. 

Different tools were tested to geocode sampling locations in an automated way through the use of APIs. 

This led to the conclusion that Google Maps presents the most accurate results, but the only tool that 

provides uncertainty radii, necessary for the gocoding of NHC sampling locations, is GEOLocate. These 

findings were published in [101]. A method combining both tools was chosen to geocode sampling 

locations in the MNHNC insect collection catalogue: the Google Maps API was first used to obtain 

coordinates, and the GEOLocate web interface was then used to confirm the coordinates and obtain 

uncertainty radii. 

The insect collection catalogue was enriched by geocoding sampling locations, homogenizing and 

formatting data according to the DarwinCore standard. This resulted in a more complete, enriched 

dataset to be published on GBIF and available for consultation. 

As a way to make the digitization process faster, a citizen science project was created in the Zooniverse 

platform and tested with specimens of the MNHNC insect collection. The results showed that citizen 

science is a very effective tool for the digitization process, as long as effective error checking 

methodologies are implemented. It also proved to be a tool that can be used by museum staff as a 

practical digitization platform, allowing the easy simultaneous view of the specimen together with a 

form to submit specimen data. A description of the citizen science project and the results achieved so 

far have been published in [102]. 

The digitization and publication of the tabanid collections of the IICT/MNHNC on GBIF resulted in an 

important source of information becoming available, providing a large number of new online records of 

wide geographic and temporal coverage. Moreover, distribution maps were produced for the most 

represented species in the collection to better illustrate their sampling locations. These data can be used 

in the future for studies of this group of insects of great medical and veterinary importance. 

Since all steps of a digitization process were covered in this work, it is possible to revisit the conclusions 

of Guralnick et al. (2006) [20], proposing three main challenges to create a NHC dataset: i) transcribing 

the data to a computer database, ii) geocoding the records, and iii) publishing it online [20]. Based on 

the findings of the present work, a new structure for these challenges can be proposed: i) specimen 

imaging and management of resulting files; ii) transcribing the data to a computer database, iii) 

geocoding the records, iv) adding and verifying taxonomic identifications, v) cleaning and standardizing 

data; vi) publishing it online. The challenge of publishing the dataset online has been greatly facilitated 

by the development of specific databases for biodiversity data, such as GBIF and iDigBio, but it is still 

relevant. 

While digitization of NHC always presents challenges, insect collections have specificities that make 

them different from collections of other taxonomic groups. In general, the number of specimens in these 

collections is much larger than in collections of other groups [2], meaning that there are more records 

to digitize. Citizen science projects are an excellent way to deal with this issue, and they are versatile 

enough to allow transcription of both handwritten and typewritten data. This can also be seen as an 

advantage to insect collections, due to the sheer amount of information contained in them. Additionally, 
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insects are an especially diverse group [103], leading to challenges in taxonomic data cleaning. These 

can be countered with the use of taxonomic checklists to validate data. Fuzzy matching is important to 

detect transcription errors, but it has to be used with caution to avoid swapping very similar species 

names. 

These challenges show the importance of applying biodiversity informatics tools to the digitization of 

NHC data. While significant efforts are being taken to digitize this information, there is still much work 

left to be done; automation of tasks will be key to achieving the goal of having all NHC data digitized 

and available online. While some methods were tested in this work, others can be proposed for other 

steps of the digitization process. For instance, advances in optical character recognition (OCR) 

technology may in the future allow automatic transcription of handwritten data. Machine learning might 

be helpful in the taxonomic identification of species; deep learning has been tested to identify herbarium 

specimens to the species level with an accuracy between 58.5% and 79.6% [104]. With the development 

of deep learning models and with sufficiently large training datasets it may be possible to identify some 

species of insects from photographs.  
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7. Annex A. Script used for geocoding with APIs 

For APIs that require a username or key, these are not provided in this script. 

library(httr) 

 

#Import list of locations to test 

 

locais <- read.csv("Locais_teste_BDinsecta.csv", header = T, stringsAsFactors = F) 

 

lista_locais <- c() 

for (n in 1:nrow(locais)){ 

  local <- paste(gsub(" ", "+", locais[n,8]), gsub(" ", "+", locais[n,7]), gsub(" ", "+", locais[n,6]), gsub(" 

", "+", locais[n,5]),  

                 gsub(" ", "+", locais[n,4]), gsub(" ", "+", locais[n,3]), sep="+") 

  local <- gsub(" ", "", local, fixed = TRUE) 

  local <- gsub("++", "+", local, fixed = TRUE) 

  print(local) 

  lista_locais <- c(lista_locais, local) 

} 

 

####################### 

##Geonames 

####################### 

 

locais_geonames <- locais 

user <- "" 

 

for(n in 1:length(lista_locais)){ 

  URL=paste0("http://api.geonames.org/searchJSON?q=", lista_locais[n], 

"&maxRows=1&username=", user) 

  response=GET(url=URL) 

  if(content(response)$totalResultsCount!=0){ 

    locais_geonames$DwC.Decimal.Latitude[n] <- content(response)$geonames[[1]]$lat 

    locais_geonames$DwC.Decimal.Longitude[n] <- content(response)$geonames[[1]]$lng 

     

  } 

} 

 

#locais_geonames 

write.csv(locais_geonames, "geonames-results.csv", row.names=FALSE) 

 

####################### 

##Mapquest 

####################### 

 

MapquestKey <- "" 

 

locais_mapquest <- locais 
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for(n in 1:length(lista_locais)){ 

  URL=paste0("http://www.mapquestapi.com/geocoding/v1/address?key=", MapquestKey, 

"&location=", lista_locais[n], "&outFormat=json") 

  response=GET(url=URL) 

  if(response$status_code!=400){ 

    locais_mapquest$DwC.Decimal.Latitude[n] <- 

content(response)$results[[1]]$locations[[1]]$latLng$lat 

    locais_mapquest$DwC.Decimal.Longitude[n] <- 

content(response)$results[[1]]$locations[[1]]$latLng$lng 

  } 

} 

 

#locais_mapquest 

write.csv(locais_mapquest, "mapquest-results.csv", row.names = F) 

 

####################### 

##Geolocate 

####################### 

 

locais_geolocate <- locais 

 

for (i in 1:nrow(locais_geolocate)){ 

  url <- paste0("http://geo-locate.org/webservices/geolocatesvcv2/glcwrap.aspx?Country=", gsub(" ", 

"+", locais$DwC.Country[i]),  

                "&Locality=", gsub(" ", "+", locais$DwC.Locality[i]),  

                "&State=", gsub(" ", "+", locais$DwC.State.Province[i]),  

                "&County=", gsub(" ", "+", locais$DwC.County[i])) 

  response <- GET(url=url) 

  if(content(response)$numResults!=0){ 

    print(paste("RESULT NUMBER:", i)) 

    locais_geolocate$DwC.Decimal.Latitude[i] <- 

content(response)$resultSet$features[[1]]$geometry$coordinates[[2]] 

    locais_geolocate$DwC.Decimal.Longitude[i] <- 

content(response)$resultSet$features[[1]]$geometry$coordinates[[1]] 

    locais_geolocate$DwC.coordinateUncertaintyInMeters <- 

content(response)$resultSet$features[[1]]$properties$uncertaintyRadiusMeters 

 

  } 

} 

write.csv(locais_geolocate, "geolocate-results.csv", row.names = F) 

 

####################### 

##Google Maps 

####################### 

 

locais_google <- locais 

 

GoogleKey <- "" 

 

for (i in 1:nrow(locais_geolocate)){ 
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  url <- paste0("https://maps.googleapis.com/maps/api/geocode/json?address=", lista_locais[i], 

"&key=", GoogleKey) 

  response <- GET(url=url) 

  if(content(response)$status!="ZERO_RESULTS"){ 

    locais_google$DwC.Decimal.Latitude[i] <- content(response)$results[[1]]$geometry$location$lat 

    locais_google$DwC.Decimal.Longitude[i] <- 

content(response)$results[[1]]$geometry$location$lng 

  } 

   

} 

 

write.csv(locais_google, "googlemaps-results.csv", row.names = F) 

 

####################### 

##OpenStreetMap/Nominatim 

####################### 

 

locais_OSM <- locais 

 

for (i in 1:nrow(locais_OSM)){ 

  url <- paste0("https://nominatim.openstreetmap.org/search/", gsub("\\+", "%20", lista_locais[i]), 

"?format=json") 

  response <- GET(url=url) 

  if(length(content(response))!=0){ 

    locais_OSM$DwC.Decimal.Latitude[i] <- content(response)[[1]]$lat 

    locais_OSM$DwC.Decimal.Longitude[i] <- content(response)[[1]]$lon 

  } 

   

} 

 

write.csv(locais_OSM, "openstreetmaps-results.csv", row.names = F) 
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8. Annex B. Script used to clean csv files exported from Zooniverse after 

panoptes_aggregation 

#File names 

input_file <- "slider_extractor_lepidoptera-classification-extractions.csv" 

output_file <- "dados_lepidoptera.csv" 

 

#Read input file 

dados <- read.csv(input_file, header = T, stringsAsFactors = F) 

dados <- data.frame (user_name = dados$user_name, task = dados$task, task_description = 

dados$task_description, date = dados$created_at,  

                     file = dados$filename, result = dados$data.slider_value, stringsAsFactors = F) 

 

#Dimensions 

nrows <- nrow(unique(data.frame(dados$file, dados$user_name, dados$date))) 

ntasks <- length(unique(dados$task)) 

tasks <- dados$task_description[1:ntasks] 

 

#Create ataframe to save extracted data 

dados_ext = data.frame(matrix(nrow = nrows, ncol = ntasks+3)) 

colnames(dados_ext) <- c("file", "user", "date", tasks) 

 

#Extract data 

frow <- 1 

for (i in 1:nrows){ 

  lrow <- frow+ntasks-1 

  data <- dados[frow:lrow,] 

  dados_ext$file[i] <- data$file[1] 

  dados_ext$user[i] <- data$user[1] 

  dados_ext$date[i] <- data$date[1] 

  dados_ext[i,4:ncol(dados_ext)] <- t(data$result) 

  frow <- lrow+1 

} 

 

#Save extracted data as csv 

 write.csv(dados_ext, output_file,row.names = F) 
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9. Annex C. List of GBIF Tabanidae datasets per species 

 

Tabanus monocallosus Travassos Dias, 1955 

GBIF.org (04 September 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.eifena 

 

Tabanus eggeri Schiner, 1868 

GBIF.org (21 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.1wcwrs 

 

Haematopota italica Meigen, 1804 

GBIF.org (22 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.55jmqm 

 

Tabanus autumnalis Linnaeus, 1761 

GBIF.org (22 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.b1gomk 

 

Tabanus sudeticus Zeller, 1842 

GBIF.org (23 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.devdih 

 

Tabanus bromius Linnaeus, 1758 

GBIF.org (23 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.s5o8m5 

 

Tabanus barbarus Coquebert, 1804 

GBIF.org (04 August 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.d5kupq 

 

Ancala fasciata (Fabricius, 1775) 

GBIF.org (16 May 2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.s8ilpo 
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