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1  | INTRODUC TION

The term symbiosis or “the living together of different organisms” 
according to the original deBary definition (De Bary, 1879) is fre‐
quently used to describe a relationship in which all partners mu‐
tually benefit from the association. Later on, symbiosis has been 
described as a shifting continuum from mutualism to parasitism 
(Thrall, Hochberg, Burdon, & Bever, 2007). In mutualistic nutritional 
symbioses, both partners take advantage of being together by devel‐
oping metabolic or nutritional interactions (Table 1). The exchange 

of nutrients allows the host and the symbionts to acquire nutrients 
that are limiting growth and reproduction, to expand their metabolic 
portfolio and, thus, the width and number of ecological niches to 
exploit, thereby avoiding competition with sympatric non‐symbiotic 
species.

Mutualistic nutritional symbioses are widespread in nature. It is 
common to find plants that are associated with microorganisms that 
sequester nitrogen or phosphorus while receiving by‐products of 
host’s photosynthesis (Lugtenberg, 2013; van Rhijn & Vanderleyden, 
1995). In marine ecosystems, nutritional symbioses exist throughout 
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Abstract
Mutualistic nutritional symbioses are widespread in marine ecosystems. They involve 
the association of a host organism (algae, protists, or marine invertebrates) with sym‐
biotic microorganisms, such as bacteria, cyanobacteria, or dinoflagellates. Nutritional 
interactions between the partners are difficult to identify in symbioses because they 
only occur in intact associations. Stable isotope analysis (SIA) has proven to be a use‐
ful tool to highlight original nutrient sources and to trace nutrients acquired by and 
exchanged between the different partners of the association. However, although SIA 
has been extensively applied to study different marine symbiotic associations, there 
is no review taking into account of the different types of symbiotic associations, how 
they have been studied via SIA, methodological issues common among symbiotic as‐
sociations, and solutions that can be transferred from one type of association with 
another. The present review aims to fill such gaps in the scientific literature by sum‐
marizing the current knowledge of how isotopes have been applied to key marine 
symbioses to unravel nutrient exchanges between partners, and by describing the 
difficulties in interpreting the isotopic signal. This review also focuses on the use of 
compound‐specific stable isotope analysis and on statistical advances to analyze sta‐
ble isotope data. It also highlights the knowledge gaps that would benefit from future 
research.
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the pelagic and benthic environments. They involve the association 
of a diverse range of algae, protists, sponges, sea squirts, corals, 
worms, and other marine invertebrates, with microorganisms such 
as bacteria (see reviews by Cavanaugh, 1994; Cavanaugh, McKiness, 
Newton, & Stewart, 2006; Petersen & Dubilier, 2009), cyanobacte‐
ria (reviewed in Carpenter & Foster, 2002), and dinoflagellates (see 
reviews by Goodson, Whitehead, & Douglas, 2001; Venn, Loram, & 
Douglas, 2008). In most associations (except for algae), the hosts are 
heterotrophic and prey on a wide range of particles to meet their nu‐
tritional demand. They, however, complement their nutrient intake 
by hosting symbionts, which provide them with carbon and other 
mineral sources in exchange for protection and access to catabolic 
products (Figure 1; Venn et al., 2008). In some cases, a fraction of 
the heterotrophically acquired nutrients is transferred from the 
host to the symbionts for their own needs (Tremblay, Gori, Maguer, 
Hoogenboom, & Ferrier‐Pagès, 2016). The amount and quality of 
nutrients exchanged between the partners can vary with environ‐
mental conditions (Baker, Freeman, Wong, Fogel, & Knowlton, 2018; 
Shantz, Lemoine, & Burkepile, 2016), as well as with the identity of 
the host and/or symbionts (Leal et al., 2015). Some host–symbiont 
associations can be species‐specific, with one host species being as‐
sociated with a single symbiont species, as it is observed for some 
scleractinian corals that associate with particular Symbiodinium spe‐
cies (Abrego, Ulstrup, Willis, & Oppen, 2008; Baker, 2003). However, 
some invertebrates, such as sponges, can host extremely complex 

and diverse symbiont communities that are not strictly pairwise, or 
even endosymbiotic. Indeed, some marine sponges harbor complex 
communities of generalist symbionts that live associated with the 
host, but not necessarily within the host’s cells (Erwin & Thacker, 
2007). Nevertheless, there are also marine sponges hosting spe‐
cific symbiont species (Wilkinson, Nowak, Austin, & Colwell, 1981). 
Even though some of the associations are species‐specific, the host 
may select best performing symbionts from a population of possible 
partners within the same species, a process known as partner choice 
(Akçay, 2017; Sachs, Mueller, Wilcox, & Bull, 2004). For example, 
scleractinian corals can be associated with different dinoflagellate 
clades of Symbiodinium, depending on the prevailing environmental 
conditions (Little, van Oppen, & Willis, 2004; Thornhill, Howells, 
Wham, Steury, & Santos, 2017). Overall, living with symbiotic part‐
ners and having access to different nutritional pathways is funda‐
mental to many marine organisms, particularly those in nutrient‐poor 
environments.

Nutritional interactions between the partners are particularly 
difficult to identify in endosymbioses because they only occur in in‐
tact associations. Once the partners are isolated, their physiology 
changes completely. Additionally, exchanged nutrients are usually 
metabolites that cannot be tracked through visual observation of 
feeding behavior or gut contents, as often performed for address‐
ing trophic interactions (Calado & Leal, 2015; Leal & Ferrier‐Pagès, 
2016; Nielsen, Clare, Hayden, Brett, & Kratina, 2018). Nevertheless, 

TA B L E  1  Nutritional benefits in mutualistic marine symbioses

Partner Nutrient accessibility Nutritional functions

Symbionts Acquisition of inorganic nutrients (carbon, nitrogen) and 
dissolved organic matter (DOM) 
Access to carbon‐ and nitrogen‐rich host waste products 
Acquisition of diazotrophic‐derived nitrogen 
Acquisition or synthesis of essential metals and vitamins

Provision of entire symbiotic association by photosynthetically or 
chemosynthetically fixed carbon 
Transformation of inorganic nitrogen and/or N2 into organic 
nitrogenous compounds 
Provision of vitamins and metals to the entire association

Host Acquisition of particulate and/or organic nutrients by 
capture of prey

Digestion and provision to the entire symbiotic association of 
essential carbon, nitrogen, and phosphorus compounds

F I G U R E  1  Nutritional relationships between an animal host and its phototrophic and heterotrophic symbionts
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our knowledge on nutritional exchanges in symbioses has bene‐
fited from recent methodological developments, such as proteom‐
ics, metabolomics, lipidomics, and isotopic biomarkers. Proteomics 
monitors change in protein expression of host and symbionts under 
different symbiotic states or environmental conditions, but requires 
genetic information on the studied models and advanced technology, 
such as liquid chromatography/electrospray ionization tandem mass 
spectrometry (Oakley et al., 2016). Metabolomics assess low molec‐
ular weight metabolite profiles (such as amino acids and lipids) of 
host and symbionts, and can detect fine‐scale changes in a rapid and 
quantitative manner (Hillyer, Tumanov, Villas‐Bôas, & Davy, 2016). 
These “omics” methods provide important information on the met‐
abolic competences of each symbiotic partner. However, they are 
not very accurate for tracing metabolite exchanges or at evidencing 
the original nutrient source (Middelburg, 2014). In contrast, stable 
isotope analysis (SIA) provides information on the original nutrient 
source, which makes it one of the most helpful tools for assessing 
food web functioning, that is, tracing energy and nutrients from 
bottom producers to top predators, as well as for estimating trophic 
levels, resource use, and diet composition (Bouillon, Connolly, & Lee, 
2008). In symbiotic associations, SIA can trace nutrients acquired by 
the host or the symbionts both from internal and external inorganic 
and organic sources, including exogenous inorganic nutrient sources 
(Davy, Allemand, & Weis, 2012; Ferrier‐Pagès et al., 2011).

SIA is based on biologically active elements existing in more than 
one isotopic form. Generally, the lighter isotope is more abundant in 
the environment than the heavier isotope, but their relative abun‐
dance is altered by biological, geochemical, and anthropogenic pro‐
cesses (Rundel, Ehleringer, & Nagy, 2012). These processes produce 
variations in the stable isotope ratio of constitutive molecules of 
plant and animal tissues, which provide a good record for the exis‐
tence, and sometimes magnitude, of key processes involved with el‐
emental cycling. For instance, the fractionation of nitrogen isotopes 
by consumers generates a gradient throughout the food web, with 
organisms in the bottom of the food chain displaying low δ15N val‐
ues that gradually increase up through the food chain. This makes it 
possible to use this isotope to measure the trophic level of an indi‐
vidual. Information on such fractionation factor is, however, critical 
for using SIA to compare distributions of isotope ratios between the 
animal host and its symbionts or to the consumed food.

Numerous reviews have been published on the use of stable iso‐
topes for coastal biogeochemistry (Bouillon et al., 2008), plant and 
animal ecology (Dawson, Mambelli, Plamboeck, Templer, & Tu, 2002; 
Martínez del Rio, Wolf, Carleton, & Gannes, 2009; Wolf, Carleton, & 
Martínez del Rio, 2009), and food web reconstructions (Boecklen, 
Yarnes, Cook, & James, 2011; Middelburg, 2014). However, an 
overarching review focusing on the use of SIA to study trophic in‐
teractions in marine symbiotic associations is still missing. In par‐
ticular, there is still little information on how to interpret changes 
in isotopic signals of each symbiotic partner under different envi‐
ronmental and/or nutritional conditions, and how to use isotopes in 
natural abundance or in enrichment experiments tracing nutritional 
interactions in such complex associations. As previously stated, SIA 

has been applied to study different marine symbiotic associations, 
particularly chemosynthetic, photosynthetic, and nitrogen‐fixing 
symbioses. However, and despite sharing methodological and con‐
ceptual frameworks, there is no review that takes into account the 
different types of symbiotic associations, that addresses common 
issues, and that highlights similar solutions. As an increasing number 
of researchers are using SIA to study nutritional interactions in ma‐
rine symbiotic associations, it is important to summarize the current 
knowledge, highlight the difficulties in using SIA in such symbiotic 
models, and provide novel and broad insights arising from such an 
overarching perspective among the various marine symbiotic associ‐
ations. The present review aims to fill such gap in the scientific litera‐
ture by: i) summarizing the current knowledge of how SIA have been 
applied to some key marine symbioses to unravel nutrient exchanges 
between partners, both under natural abundance or in enrichment 
experiments; and ii) describing the difficulties in interpreting the 
isotopic signal and using SIA in such associations. This review also 
focuses on the use of compound‐specific stable isotope analysis, 
statistical advances to analyze stable isotope data, as well as high‐
lights the knowledge gaps that would benefit from future research.

2  | MAIN MARINE SYMBIOSES STUDIED 
USING STABLE ISOTOPES

SIA has been widely applied to study four main types of marine 
endosymbioses: chemosynthetic, photosynthetic, nitrogen‐fixing 
symbioses, and the heterotrophic bacteria–sponge type symbiosis 
(Figure 2). In all these relationships, the animal generally feeds on ex‐
ternal particulate food sources such as phyto‐ and zooplankton or 
detrital organic matter and transfers a fraction of the heterotrophi‐
cally acquired nutrients to the symbionts. Such transfer has been 
evidenced by several studies using prey labeled with the stable iso‐
topes 13C and 15N and showing a transfer of isotopes from the host 
to the symbionts (Hughes, Grottoli, Pease, & Matsui, 2010; Piniak, 
Lipschultz, & McClelland, 2003; Tremblay, Maguer, Grover, & Ferrier‐
Pagès, 2015). However, the type of nutrients that are transferred to 
the symbionts (e.g., sugars, lipids) is still an open question. The animal 
host also provides the symbionts with access to substrates (inorganic 
nutrients), which are necessary for their own generation of energy 
and biomass. In exchange, a portion of the inorganic nutrients fixed 
by the symbionts is transferred to the host for its own use (Figure 1).

First discovered at hydrothermal vents, chemosynthetic symbio-
ses between certain invertebrates (sponges, snails, mussels, clams, 
nematodes, tube worms, shrimps, and sea urchins) and chemoau‐
totrophic or methanotrophic bacteria are widespread in deep en‐
vironments and are responsible for the high biomass observed in 
such extreme environments (reviewed in Cavanaugh et al., 2006). 
Chemosynthetic symbionts are primary producers even in the ab‐
sence of light as they use a range of chemicals, such as reduced 
sulfur compounds, methane, and hydrogen as energy source to fix 
inorganic carbon or methane into organic molecules (Cavanaugh et 
al., 2006). Symbiotic bacteria mainly exchange with the host C1 to 
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C3 carbon compounds, which are then used for host energy and bio‐
synthesis. They are also able to take up ammonium or nitrate in their 
environment (Liao, Wankel, Wu, Cavanaugh, & Girguis, 2014) and 
even fix dinitrogen (Petersen et al., 2017).

Photosynthetic symbioses are widespread associations in‐
volving cyanobacteria or microalgae symbionts. Cyanobacteria 
are mostly associated with marine sponges and diatoms (see re‐
views by Freeman & Thacker, 2011; Foster et al., 2011; Venn et 
al., 2008), although they are also symbionts of haptophytes or 
dinoflagellates (Not et al., 2016). Prochloron, a unicellular pho‐
tosynthetic prokaryote, which is also part of the cyanobacteria 
phylum, is often associated with ascidians. Algae, such as dino‐
flagellates of the genus Symbiodinium, are associated with benthic 
animals such as reef‐building corals, sea anemones, tridacnid mol‐
luscs, jellyfish (Cassiopea sp.), and foraminifera (Freeman, Stoner, 
Easson, Matterson, & Baker, 2016; Sachs & Wilcox, 2006; Venn 
et al., 2008). In the pelagic environment, photosymbiotic interac‐
tions also exist between microalgae and other protists (radiolar‐
ian, foraminifera) or metazoans (ciliates, dinoflagellates), although 
the exact nature of this partnership is often not formally demon‐
strated. Overall, for all these photosynthetic symbioses, light is of 
prime importance because it is needed by the symbionts as an en‐
ergy source to fix inorganic carbon into organic compounds called 
photosynthates, most of which are transferred to the host for its 
own use (Freeman et al., 2016). In addition, algal symbionts play a 
major role in the acquisition of inorganic nitrogen (ammonium, ni‐
trate), phosphorus, and other macro‐ and micronutrients essential 
for the symbiosis (Tanaka, Miyajima, & Koike, 2006). Certain cya‐
nobacterial symbionts, called diazotrophs, can also fix dinitrogen 
(N2) in a symbiotic association (see below).

The third type of symbiosis usually studied with SIA is the one de‐
veloped between animals or algae and diazotrophs. In this association, 

diazotrophs (nitrogen‐fixing bacteria or cyanobacteria) provide their 
host with nitrogen, which is fixed through the reduction of N2 to NH3 
using the nitrogenase complex. Diazotrophs are known to establish sym‐
biosis with various invertebrates, such as sponges (Taylor, Radaz, Steger, 
& Wagner, 2007), annelid worms (Stat, 2016), corals (Bednarz, Grover, 
Maguer, Fine, & Ferrier‐Pagès, 2017; Lema, Willis, & Bourne, 2012), sea 
urchins (Guerinot & Patriquin, 1981), and protists such as dinoflagellates, 
diatoms, radiolarians, and tintinnids (Amin et al., 2015; Foster, Carpenter, 
& Bergman, 2006; Foster, Subramaniam, & Zehr, 2009).

The last well‐studied symbiosis is the one between sponges and 
heterotrophic bacteria. Many marine organisms harbor dense and 
diverse microbial communities, but the in situ activity and func‐
tions of these microbes are still poorly known, except in sponges. 
Concerning nutritional functions, stable isotope experiments have, 
among others, demonstrated a role of bacterial symbionts in the ni‐
trogen cycle of sponges, in particular in nitrification, denitrification, 
and anaerobic ammonium oxidation (reviewed in Webster & Taylor, 
2012). Genome sequencing also revealed that “Poribacteria” can un‐
dertake carbon fixation via the Wood–Ljungdahl pathway and pro‐
vide the host with a source of vitamin B12 (Siegl et al., 2011).

3  | STABLE ISOTOPES IN NATUR AL 
ABUNDANCE FOR STUDYING NUTRITIONAL 
INTER AC TIONS

Studies on natural stable isotope abundance are based on the 
small differences in isotopic ratios as found in nature (Hayes, 2001; 
Peterson & Fry, 1987). These changes in stable isotopic ratios are 
caused by the preferential use of the light isotopes compared to the 
heavy ones in many biological and chemical processes, which is called 
isotopic fractionation. SIA provides critical information on carbon 

F I G U R E  2   Main types of nutritional 
symbioses in the marine environment. 
(a) CO2, O2, SO3, SO4, H2S, DIN, CH2O: 
carbon dioxide, oxygen, sulfite, sulfate, 
hydrogen sulfide, dissolved inorganic 
nitrogen, saccharides; (b) CH4, NH4: 
methane and ammonium; (c) H2CO3, DIP, 
DFAA: bicarbonate, dissolved inorganic 
phosphorus, dissolved free amino acids, 
(d) N2: dinitrogen
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and nitrogen origin, on the consumer’s trophic ecology and trophic 
level, as well as on the ecology and evolution of predators and their 
trophic relationships (Bearhop, Adams, Waldron, Fuller, & MacLeod, 
2004; Duarte, Flores, Vinagre, & Leal, 2017). For example, a special‐
ized feeding strategy is evidenced by isotopic data that present low 
variability (or are homogeneous) among individuals, assuming that 
they are presented an isotopically consistent food source or mix of 
food sources. Conversely, large isotopic variability among individuals 
indicates that they specialize on different food sources or feed on 
isotopically distinct microhabitats in a heterogeneous “landscape”.

δ13C (13C:12C) and δ15N (15N:14N) are the two most common stable 
isotopes commonly used for assessing nutritional interactions. In the fol‐
lowing sections, we describe these isotopes and their application to study 
nutritional interactions in marine mutualistic endosymbiosis. Other, less 
used stable isotopes, such as δ18O and δ34S, are also described.

3.1 | δ13C isotopes

δ13C is a very useful tool to help distinguish autotrophic metabolisms, 
because enzymes involved in carbon fixation pathways discrimi‐
nate differently against the use of the heavier carbon isotope (13C) 
(Cavanaugh et al., 2006). Consequently, different primary producer 
symbionts exhibit distinct δ13C values due to diverse carbon fixa‐
tion pathways (Figure 3). For example, algae and phytoplankton pref‐
erentially assimilate the lighter isotope 12C and thus usually display 
δ13C values of −20‰ to −18‰ (Fry & Sherr, 1989; Gearing, Gearing, 
Rudnick, Requejo, & Hutchins, 1984; Goericke, 1994). δ13C derived 
from chemosynthesis occurring at vents is either considerably lighter 
than phytoplankton δ13C (enriched in 12C from −9‰ to −16‰) or heav‐
ier (depleted in 12C, from −27‰ to −35‰) (Fisher & Childress, 1992; 
Levin & Michener, 2002; Robinson et al., 2003). These two extreme 
chemosynthetic groups show contrasting δ13C values due to the use of 
two different forms of ribulose‐1,5‐bisphosphate carboxylase/oxyge‐
nase (Rubisco I and II), which catalyses the carbon fixation step of the 
Calvin‐Benson cycle. Rubisco form I discriminates more than Rubisco 
form II against 13C leading to lower, that is, more depleted, δ13C values 
(Robinson & Cavanaugh, 1995). Finally, symbioses involving methano‐
trophic bacteria can be even more depleted in 13C, with δ13C ranging 
from −37‰ to −55‰ for thermogenic methane, and from −60‰ to 
−80‰ for biogenic methane (Barry et al., 2002; Cavanaugh, 1993).

The δ13C result can be used as an indicator of the main food sub‐
strate(s) because it becomes enriched by only 0.4‰ to 1‰ between 
each trophic level (Conway, 1994; McCutchan, Lewis, Kendall, & 
McGrath, 2003). Therefore, in symbiotic associations, the δ13C values 
of host and symbionts should be similar. Comparisons between δ13C 
values of symbionts and host tissue, or between symbiont‐containing 
and symbiont‐free host tissues, can be theoretically used to trace the 
exchange of carbon between the symbionts and their animal host, and 
to estimate the importance of symbiont‐derived carbon supplied to the 
host. For example, in the coral–dinoflagellate symbiosis, in which car‐
bon is mainly acquired through the dinoflagellates photosynthesis, the 
host tissue will display δ13C values in the same range as the symbionts 
(algal) values, that is, −11‰ to −16‰ (Alamaru, Loya, Brokovich, Yam, 

& Shemesh, 2009). In chemosynthetic symbioses, and similar to sym‐
biotic corals, some animals can totally rely on the carbon transferred 
by the symbionts. This is the case of the solemyid protobranch Solemya 
velum that shows a δ13C value ranging from −38.4 to −45.3‰ (Conway 
& Capuzzo, 1991), the seep vestimentiferan tube worms and some 
methanotrophic mussels that show a δ13C value ranging from −40‰ 
to ‐ 65‰ (Kennicutt II et al., 1992), and thyasirid clams that show on av‐
erage a δ13C value of −38‰ (Fiala‐Médioni, Boulegue, Ohta, Felbeck, 
& Mariotti, 1993). In some situations, however, the δ13C values of the 
host can be difficult to interpret, because host tissues rarely have δ13C 
values solely influenced by the symbionts. Most hosts can indeed use 
alternative (external) sources of nutrition, such as predation on free‐
living zooplankton and phytoplankton, or uptake of dissolved organic 
material. Consequently, the δ13C value of the host tissue will be a mix 
of all the animal’s diet. Such mixed diet is observed, for instance, in 
the western Pacific vent mussel Bathymodiolus brevior. In this spe‐
cies, the symbiont‐containing gill tissue showed δ13C values (−30.8‰ 
to −35.8‰) significantly lower than those from symbiont‐free foot 
tissue, demonstrating that this species supplemented its diet via fil‐
ter feeding on external particles (Dubilier, Windoffer, & Giere, 1998). 
Some organisms also host several symbionts, such as the hydrother‐
mal mussels Bathymodiolus azoricus that live in association with both 
thio‐ and methanotrophic bacteria, which ultimately confounds the 
δ13C value of the host (Cavanaugh, Wirsen, & Jannasch, 1992; Trask 
& Van Dover, 1999). For instance, small‐sized individuals can display 
δ13C values ranging from −27‰ to −34‰, suggesting that thiotrophy 
is the dominant nutritional pathway, with methanotrophy and filter 
feeding emerging as secondary strategies. However, higher δ13C val‐
ues were measured in larger mussels, suggesting that they rely more 
heavily on carbon from methanotrophic endosymbionts as they grow 
(De Busserolles et al., 2009).

Several other factors can confound the identification of the 
food sources in symbiotic associations, such as unknown frac‐
tionation factors, the impossibility to isolate the symbionts and 

F I G U R E  3   Different ranges of δ13C according to the C source
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determine their δ13C value, or the small carbon contribution of the 
symbionts to the nutrition of the symbiosis. This latter situation 
applies, for example, to the temperate gorgonian (Eunicella sin‐
gularis) that lives in symbiosis with Symbiodinium dinoflagellates, 
whose photosynthesis (and inorganic nutrient acquisition) is low 
all year round due to low irradiance experienced in temperate 
environments (Cocito et al., 2013). This gorgonian mostly relies 
on the host feeding and therefore shows δ13C (and δ15N) values 
close to the zooplankton values all year round (−23‰ and 8‰ for 
δ13C and δ15N, respectively), despite nutrient acquisition by the 
symbionts (Figure 4). Although autotrophically acquired nutrients 
from inorganic sources are expected to be transferred between 
the symbionts and the host, this nutrient source may represent 
only a small fraction of the total ingested nutrients and cannot 
be traced using the natural isotopic values. The reverse is ob‐
tained with shallow water tropical scleractinian corals (Figure 4). 
These organisms have few planktonic prey in the water and have 
to derive most of their carbon from the symbiotic dinoflagellates 
(Muscatine, McCloskey, & Marian, 1981). The δ13C values of the 
coral tissue are similar to those of the symbionts, and any hetero‐
trophic input from the host will be masked by the large autotrophic 
input from the symbionts (Baker et al., 2015; Leal, Rocha, Anaya‐
Rojas, Cruz, & Ferrier‐Pagès, 2017; Nahon et al., 2013; Reynaud 
et al., 2002). Finally, in autotrophic symbioses, the δ13C signature 
of the symbiotic association also largely varies according to the 

photosynthetic rates of the symbionts, which is primarily asso‐
ciated with light irradiance: Carbon fractionation increases with 
decreasing irradiance, which leads to a lower δ13C signature under 
low light (Heikoop et al., 2000). In this latter condition, δ13C of 
the symbiotic partners will reach the values of living or detrital 
particulate organic matter (POM) suspended in the water column, 
which makes it difficult to decipher if the predominant carbon 
source is autotrophic or heterotrophic. This is the case of scler‐
actinian corals, which can thrive from 5 m, where light reaches a 
daily mean of 500 µmol photons m−2 s−1, down to 150 m depth, 
with an irradiance of 20 µmol photons m−2 s−1. In shallow waters, 
the δ13C of the coral tissue is significantly more positive (−10‰ 
to −14‰) than that of POM (ca. −20‰) (Muscatine, Goiran, Land, 
& Jaubert, 2005; Swart, Saied, & Lam, 2005), which clearly in‐
dicates that the symbiont photosynthates are the main carbon 
source of the coral tissue. With increasing depth, the δ13C of coral 
tissues becomes more negative (−23‰) and approaches that of 
the zooplankton (Swart et al., 2005). In this case, δ13C depletion 
can be due to a higher heterotrophic input following zooplankton 
ingestion (Muscatine, Porter, & Kaplan, 1989) or to a higher car‐
bon fractionation by the symbionts with decreasing light (Swart, 
1983; Williams, Röttger, Schmaljohann, & Keigwin, 1981), as well 
as higher internal carbon cycling between the host and the symbi‐
onts (Einbinder et al., 2009). The δ13C of a symbiotic association fi‐
nally varies with the δ13C values of the seawater inorganic carbon 

F I G U R E  4   Isotopic variability in a temperate and tropical autotrophic symbiosis (dinoflagellate–gorgonian association). The isotopic 
signature of temperate organisms that live in a particle‐rich environment, and in which symbionts are not very active, will mirror the isotopic 
signature of the organic nutrients. In contrast, the isotopic signature of tropical gorgonians that live in oligotrophic and particle‐poor 
environments will be influenced by the activity of the symbionts and by their uptake of dissolved inorganic nitrogen. Isotopic data for the 
gorgonian tissue and organic food are from Cocito et al. (2013), for the temperate system and from Ward‐Paige, Risk, and Sherwood (2005), 
for the tropical system. Isotopic data for the inorganic carbon are from Gillikin and Bouillon (2007) and those for inorganic nitrogen are from 
York, Tomasky, Valiela, and Repeta (2007)
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sources. For example, when seawater has a high partial pressure 
in carbon dioxide (pCO2), such as in pCO2 vents, the δ13C values 
of the symbionts and the host can be significantly lighter than the 
signatures obtained under normal pCO2 levels (Horwitz, Borell, 
Yam, Shemesh, & Fine, 2015). Thus, in the symbiotic sea anemone 
Anemonia viridis, the δ13C value of symbionts shifted from −15‰ 
in control sites to −18‰ in the pCO2 vent, wrongly suggesting that 
the sea anemones were more heterotrophic in the vents.

One way to estimate the contribution of symbionts to the diet 
of their host is to calculate the difference between the δ13C of the 
host (δ13CH) and of the symbionts (δ13CS), also named ∆δ13Chost‐sym‐

biont. The contribution of the symbionts to the diet of their host is 
inversely proportional to the ∆δ13Chost‐symbiont, or, in other words, 
the contribution will decrease from 100% to lower values when 
∆δ13Chost‐symbiont increases from zero to higher values. For example, 
low ∆δ13Chost‐symbiont was recorded in coral species from surface 
waters of Moorea Island (from −1.44 ± 0.23‰ to 2.98 ± 0.58‰), 
which are corals that entirely rely on their symbionts for their ener‐
getic needs (Nahon et al., 2013). In opposite, the ∆δ13Chost‐symbiont of 
deep corals relying on heterotrophic food sources could reach 8‰ 
(Muscatine et al., 1989).

As only one stable isotope does not always allow determining the 
main food source in a mixed diet, most studies often combine several 
stable isotopes (Phillips, 2012). Particularly, the δ15N value is often 
combined with δ13C to obtain a better identification of the main food 
sources or to better address the nutrient exchanges between the 
symbionts and their host.

3.2 | δ15N isotopes

The δ15N value of plants and animals varies according to two 
processes: assimilative and metabolic fractionation (Zanden & 

Rasmussen, 2001). Assimilative fractionation results from isotopic 
discrimination during nitrogen assimilation or isotopic differences 
between nitrogen pools. Metabolic discrimination is due to frac‐
tionation during amino acid transamination and deamination. During 
these processes in non‐symbiotic organisms, 14N amine groups are 
preferentially removed to produce isotopically light metabolites 
(Figure 5a), leaving the remaining nitrogen pool enriched in 15N 
(Gannes, O’Brien, & Del Rio, 1997). This metabolic fractionation 
induces an increase in the δ15N value between prey and predators 
(Figure 5a), which ultimately allows estimating the trophic position 
of consumers (Zanden & Rasmussen, 1999, 2001 ). It is often as‐
sumed that the δ15N value of a consumer is enriched by 2.3‰–3.4‰ 
over that of its diet (Minagawa & Wada, 1984), but the fractionation 
factor is species‐specific, and can differ significantly from this value 
(discussed in Zanden & Rasmussen, 2001). δ15N fractionation in car‐
nivores is indeed relatively stable and varies within a narrow range 
(mean of 3.2‰ ± 0.4‰), whereas δ15N fractionation between plants 
and herbivores is highly variable (mean 2.5‰ ± 2.5‰; Zanden & 
Rasmussen, 2001). No study has, however, determined fractionation 
factors for symbiotic associations such as corals, probably because 
of the difficulties described below.

In symbiotic organisms, the δ15N value of the host (consumer) 
does not follow the same rule as for asymbiotic organisms. Due to 
the assimilative fractionation, the δ15N of the “entire” symbiotic as‐
sociation (i.e., host and symbionts) varies depending on the main 
nitrogen source(s) (atmospheric, dissolved, or particulate) used by 
each partner. The δ15N value also varies with the importance of the 
internal recycling between the symbionts and the host. Figure 5b is 
an example of the differences between symbiotic and asymbiotic 
organisms due to the internal recycling. Compared to asymbiotic 
organisms, the 14N of the particulate food ingested by the host is 
not excreted as waste product, but recycled by the symbiont, and 

F I G U R E  5   Difference in the isotopic 
signature of non‐symbiotic and symbiotic 
organisms. In non‐symbiotic organisms, 
the light isotopes are removed first 
during the processes of respiration and 
excretion, leaving the heavy isotopes 
in the tissue. The tissue will thus be 
enriched by ca. 3‰ in 15N and 1‰ in 
13C at each trophic step. In symbiotic 
associations, nutrients are continuously 
recycled within the association, and the 
isotopic signature of the symbiosis will be 
a mix between the different food sources
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re‐transferred to the host, thereby “diluting” the heterotrophic 15N 
enrichment. This host‐mediated signal is also combined with the 
symbiont‐mediated signal. Symbionts tend to take up the light iso‐
tope (14N) from the inorganic nutrient pool, leaving the heavy iso‐
tope (15N) in seawater. This light isotope is again translocated to the 
host for its own needs. The final δ15N value of the symbiotic associa‐
tion will thus be a mix of all these nitrogen sources. In addition, sym‐
bionts and hosts can assimilate nitrogen sources with different δ15N 
values (summarized in Sigman, Karsh, & Casciotti, 2009). In sum‐
mary, atmospheric nitrogen (N2), which has a very low δ15N value 
close to 0‰ (Petersen et al., 2017), can only be fixed by diazotroph 
symbionts, which lowers the δ15N value of the symbiotic association 
(France, Holmquist, Chandler, & Cattaneo, 1998). Dissolved inor‐
ganic nitrogen sources (DIN), such as ammonium, nitrate, and urea, 
which are assimilated by the symbionts, have a higher δ15N, closer to 
4‰–6‰. This is the same for the dissolved organic sources, taken 
up by both symbionts and hosts ((Sigman et al., 2009). Finally, par‐
ticulate detrital or living nitrogen sources (PON) taken up by animal 
hosts display an even higher δ15N value (6‰‐14‰), except when 
it originates from mangrove forests, where the values are lower 
(Corbisier et al., 2006; Kao, Tsai, Shih, Tsai, & Handley, 2002; Riera, 
Stal, & Nieuwenhuize, 2004). In symbiotic associations, these dif‐
ferent sources are often used in combination and continuously re‐
cycled within the association (Figure 5b), which make it difficult to 
interpret the δ15N value and the original nitrogen source. In autotro‐
phic symbioses, for example, the δ15N value is often a mix between 
DIN taken up by the symbionts (Grover, Maguer, Reynaud‐Vaganay, 
& Ferrier‐Pages, 2002) and PON captured by the host (Houlbrèque 
& Ferrier‐Pagès, 2009), and is usually in the range of that of surface 
organic material (4‰–10‰). It is, therefore, difficult to estimate 
which nitrogen source is predominant. In addition, photosynthetic 
processes affect the final δ15N value of the symbiotic association. 
As for carbon, decreasing light level significantly decreases the δ15N 
value of the symbiotic association (Baker, Kim, Andras, & Sparks, 
2011; Heikoop et al., 1998). This is due to an important assimilation 
of DIN by the symbionts under high light, which strongly depletes 
the host DIN pool and leads to a reduced fractionation relative to 
external DIN. In symbiotic associations involving more than one 
symbiont type, such as those containing both autotrophic and di‐
azotrophic symbionts (Bednarz et al., 2017; Mohamed, Colman, 
Tal, & Hill, 2008), the δ15N value will be the result of both symbiont 
contributions. If the nitrogen supply by diazotrophs largely exceeds 
that by the algae/animal, the δ15N values of the animal tissue will be 
very low. This has been observed in autotrophic–symbiotic sponges 
that presented δ15N values ranging from 0‰ to 4‰ (Freeman & 
Thacker, 2011; Mohamed et al., 2008). A similar depletion in 15N 
(low to negative δ15N values) has been observed in chemoautotro‐
phic and methanotrophic symbioses, because of an important con‐
tribution of N2 (Lee & Childress, 1994; Petersen et al., 2017) and an 
important biomass of methane‐oxidizing bacteria highly depleted in 
15N (Macko, Fogel, Hare, & Hoering, 1987). Finally, the δ15N value 
of the symbiosis will also vary with anthropogenic DIN pollution, 
with a consistent δ15N enrichment in symbionts of polluted areas 

compared to oligotrophic ones (Baker, Murdoch, Conti‐Jerpe, & 
Fogel, 2017; Wong, Duprey, & Baker, 2017).

3.3 | Other stable isotopes

δ34S is not commonly used to study nutritional symbioses, although 
it can be useful to trace the production of sulfur compounds such 
as DMS(P) by symbionts. These compounds are involved in multiple 
physiological functions in algae and bacteria, such as osmoprotection 
(Motard‐Côté & Kiene, 2015), antioxidant defense (Sunda, Kieber, 
Kiene, & Huntsman, 2002), dissipation of excess energy (Stefels, 
2000), among others. DMSP production has been monitored in sym‐
biotic protists (Gutierrez‐Rodriguez et al., 2017) and anthozoans such 
as corals (Gardner, Raina, Ralph, & Petrou, 2017; Jones, Curran, Swan, 
& Deschaseaux, 2017). The interpretation of isotopic changes in δ34S 
during DMSP cleavage into DMS is, however, complex, because of dif‐
ferent fractionation factors between taxonomically different groups. 
For example, δ34S‐DMSP and δ34S‐DMS values were similar in micro‐
bial assemblages of the Red Sea, while the δ34S value of DMS pro‐
duced by symbiotic acantharians was 1.5% lower than that of DMSP 
(Amrani, Said‐Ahmad, Shaked, & Kiene, 2013). In the same way, there 
is usually a slight 34S‐depletion in DMSP in symbiotic organisms com‐
pared to seawater SO4

2‐, even though a high enrichment was also 
observed in a protist–microalgae symbiosis (Gutierrez‐Rodriguez et 
al., 2017). δ34S can also be used to help discriminate organic matter 
sources, particularly between terrestrial and marine sources (Granek, 
Compton, & Phillips, 2009), as well as in hydrothermal systems where 
sulfur is critical for biogeochemical cycles (Kennicutt II et al., 1992). 
Overall, these few studies with, sometimes, opposite results clearly 
show that more investigations are needed to understand the factors 
and processes affecting the δ34S value of symbiotic associations.

Future research involving stable isotopes in natural concen‐
trations should start focusing on combining the isotopes reviewed 
above with others that have been ignored in marine nutritional stud‐
ies. For example, changes in the stable isotope value of metals, such 
as δ66Zn and δ65Cu, have been widely used in mice and humans, to 
trace pathological conditions (Balter et al., 2015) or different di‐
etary conditions (Costas‐Rodríguez, Van Heghe, & Vanhaecke, 2014; 
Jaouen, Pons, & Balter, 2013; Jaouen, Szpak, & Richards, 2016). In 
corals, δ66Zn and δ65Cu can also be used as tracers to record bleach‐
ing (Ferrier‐Pagès, Sauzéat, & Balter, 2018). Their combination with 
δ13C and δ15N, whose changes with environmental conditions or tro‐
phic status are better explored, is likely to bring novel insights into 
the nutritional interactions of marine symbioses.

3.4 | Mixing models

The estimation of the contribution of the different food sources to a 
consumer’s diet has largely benefited from Bayesian mixing models 
(Parnell et al., 2013; Phillips, 2012). These models take into account 
of the isotopic ratios of the consumers’ tissues and food sources, as 
well as the isotopic fractionation, or trophic enrichment factor, from 
the prey to the predator. Mixing models are, however, not always the 
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best tools for tracing food sources, especially when the signature of 
the food sources largely overlaps in isotope space or when the con‐
sumers feed on a large diversity of prey. There are also other com‐
mon problems that often lead to an incorrect use of mixing models. 
For instance, the type of food consumed by the animal host is often 
unknown, which can lead to the analysis of food sources that are 
ecologically irrelevant but that might show a stable isotope signature 
that fits within the stable isotopic niche potentially consumed by the 
target species.

The application of mixing models to marine mutualistic sym‐
bioses is relatively scarce, with most studies targeting food web 
dynamics of deep‐sea benthic communities. Levin and Michener 
(2002) were among the firsts using mixing models to show that the 
combination of low δ15N and δ13C values evidenced chemoauto‐
trophic symbioses in bivalve and pogonophoran taxa. Using similar 
statistical methods, McLeod, Wing, and Skilton (2010) as well as 
Riekenberg, Carney, and Fry (2016) assessed the carbon contribu‐
tion from chemoautotrophic and methanotrophic symbiotic bacteria 
to bivalve nutrition. In tropical symbioses, a mixing model was used 
by Freeman and Thacker (2011) to quantify the percentage of symbi‐
ont‐derived versus POM‐derived carbon assimilated by reef sponges 
with microbial symbionts.

While stable isotope mixing models are becoming increasingly 
used in ecology and evolution studies, as well as becoming more 
complex and accurate (Phillips et al., 2014), their application to pro‐
vide new insights on the nutritional ecology of marine mutualistic 
symbioses is still poorly explored. This is likely associated with the 
poor number of studies using combined stable isotope values of the 
symbiotic host and symbionts, as well as the relatively low sample 
size that is used in such studies. Some of these studies (Cocito et 
al., 2013; Ferrier‐Pagès et al., 2011; Leal et al., 2014) calculated the 
theoretical food source based on subtracting a trophic enrichment 
factor from the δ13C and δ15N values of the host organism (1‰ for 
δ13C, and 3.5‰ for δ15N). While this simple approach is scientifi‐
cally valid, it fails to consider several factors that are examined in 
mixing models, particularly the isotopic variability of the different 
food sources, the variability of trophic enrichment factors between 
consumers and the different food sources, and concentration de‐
pendence means, that is, the estimated proportion of carbon and 
nitrogen in each food source (Parnell et al., 2013). Moreover, the spa‐
tial distance between the theoretical food source and the isotopic 
values of the different food sources cannot be statistically analyzed 
using the stable isotope value of the theoretical food source. A mix‐
ing model approach can provide statistically robust estimates and 
confidence intervals for the contribution of each food source to the 
nutrition of the coral host. Future studies that aim to apply such mix‐
ing models should use a robust number of replicate samples to max‐
imize the statistical accuracy of the mixing models. Second, the TEF 
used to fuel the model should be obtained empirically and not based 
on previous estimates. Not only more accurate TEF are needed, but 
variability estimates are also important to improve the quality of the 
mixing model output. Third, and although it is not mandatory, the 
mixing model requires the proportion of carbon and nitrogen of each 

food source. This primary and fundamental information is not always 
available as most studies fail to perform such simple analyses. For in‐
stance, while the carbon and nitrogen content of live planktonic or‐
ganisms is usually known, their proportion in an individual organism 
is usually unknown. Such gap of knowledge is important to address 
in order to improve the estimates of stable isotope mixing models.

3.5 | Compound‐specific isotope analyses (CSIA)

Compound‐specific isotope analysis (CSIA) has been increasingly 
used in ecological studies as a new tool for analyzing natural food 
webs, especially coupled with bulk stable isotope analysis. Compared 
to SIA, which is based on the stable isotope value of the total tis‐
sues or that of total plankton cells, CSIA corresponds to the isotopic 
signature of the organic matter compounds, that is, fatty acids (FA) 
and amino acid (AA). CSIA is at the biochemical building‐block level 
and thus allows tracing the exchange of precise molecules in a food 
web (Evershed et al., 2007). In addition, the interpretation of CSIA 
requires fewer assumptions than bulk isotopic values. Specifically, 
the physiological forces affecting isotopic values of a single group 
of compounds are less numerous and often better understood than 
the diversity of forces that are known to affect bulk tissues. CSIA 
is, therefore, particularly more successful than the other trophic 
markers when (a) organisms cannot be physically isolated from each 
other, such as in symbiotic associations; (b) when there is a need to 
trace quantitatively minor but qualitatively important components; 
or (c) when different food sources have similar bulk δ13C signatures 
(Gladyshev, Sushchik, Kalachova, & Makhutova, 2012).

Fatty acid compound‐specific isotope analysis (CSIA‐FA) is 
based on the fact that δ13C values of a specific FA compound 
reflect its synthetic pathway and hence its source (Hayes, 1993; 
Teece, Fogel, Dollhopf, & Nealson, 1999). These values will thus 
be different when compounds are derived from direct biosynthe‐
sis or from an indirect dietary source (Abrajano Jr, Murphy, Fang, 
Comet, & Brooks, 1994; Fang et al., 1993). Essential fatty acids 
(EFA), such as the “omega‐6” and “omega‐3” FA (linoleic acid, ara‐
chidonic acid, eicosapentaenoic acid, and docosahexaenoic acid), 
cannot be directly synthesized by animals and have to be acquired 
through predation or symbiont transfer; therefore, the δ13C‐EFA 
values of the animal will be comparable to that of the symbionts 
or the external prey, since little or no isotopic fractionation oc‐
curs during this process (Treignier, Tolosa, Grover, Reynaud, & 
Ferrier‐Pagès, 2009). In the case of non‐essential FAs, which can 
be synthesized de novo by the animal, the δ13C values will reflect 
the competing processes of assimilation from external food and de 
novo synthesis (Gladyshev et al., 2012; Villinski, Hayes, Villinski, 
Brassell, & Raff, 2004). For the de novo synthesis of fatty acids, 
transferase and desaturase induce a δ13C isotope depletion in the 
synthesized fatty acid, while elongase provide a δ13C enrichment 
in the synthesized fatty acid (Figure 6). CSIA‐FA has been used in 
symbiotic associations for the first time to evaluate the dietary 
strategies of marine mytilids from a normal coastal ecosystem and 
from a cold hydrocarbon seep ecosystem (Abrajano Jr et al., 1994). 
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Data showed that fatty acid δ13C compositions were more nega‐
tive (depleted) for the seep mussels (−56.9‰ to −49.0‰ against 
−34.4‰ to −24.9‰), which relied almost exclusively on endo‐
symbiotic methanotrophic bacteria as a carbon source, than for 
coastal mussels, which had a mixed dietary intake from a large di‐
versity of food sources. After this pioneer work, CSIA‐FA has been 
extensively used to study nutritional pathways of chemosynthetic 
symbioses (Fang et al., 1993; MacAvoy, Macko, & Joye, 2002; 
Pruski et al., 2017; Streit, Bennett, Dover, & Coleman, 2015). For 
other symbiotic associations, FA‐CSIA has proved to be partic‐
ularly useful in elucidating dietary preferences of scleractinian 
corals. The coral animal can indeed acquire essential FA directly, 
through the translocation of FA by their symbionts, or indirectly, 
through zooplankton predation. As δ13C values of FA produced by 
dinoflagellates and zooplankton differ by more than 5‰, FA δ13C 
of the coral tissue allows tracing which FA is obtained through one 
or the other pathway (Teece, Estes, Gelsleichter, & Lirman, 2011; 
Treignier et al., 2009). CSIA‐FA was also used to detect differences 
in feeding behavior within and between coral species and within 
reef sites (Teece et al., 2011).

Amino acid compound‐specific isotope analysis (AA‐CSIA, Popp 
et al., 2007) is based on the same principle as for FA, but has been 
much less developed for both normal trophic chains and symbiotic 
associations. Both carbon and nitrogen isotopes of AA can be used 
to understand diet composition and metabolic processes. The δ15N 
and δ13C values of the average amino acids often mirror bulk δ15N 
and δ13C (Boecklen et al., 2011; McClelland & Montoya, 2002). 
However, CSIA‐AA allows comparing “trophic” AAs with “source” 

AAs (Gerringer, Popp, Linley, Jamieson, & Drazen, 2017; McMahon, 
Hamady, Thorrold, & Review, 2013; McMahon, Thorrold, Elsdon, & 
McCarthy, 2015). Trophic AAs (AAt), mainly glutamic acid, alanine, 
aspartic acid, leucine, isoleucine, and proline, are strongly fraction‐
ated relative to diet (up to 7‰ for some AAs) during transamination 
and deamination, since they reflect variation in catabolism and ori‐
gins of the carboxyl and amine groups (Figure 7). On the contrary, 
source or essential AAs (AAs), such as glycine, phenylalanine, and 
histidine, are not strongly fractionated relative to diet, because its 
dominant metabolic processing does not form or break C‐N bonds. 
δ15N and δ13C values of source AAs can thus provide information 
about the origin of nitrogen in an animal’s food (Gerringer et al., 
2017). To our best knowledge, CSIA‐AA has been used only once in a 
marine symbiotic association (Mueller, Larsson, Veuger, Middelburg, 
& Oevelen, 2014).

There are, however, limitations to the CSIA technique. At this 
time, only a limited number of laboratories provide CSIA services. 
Collaboration with academic laboratories is thus needed. In addition, 
while the method is quite sensitive, there are limitations for such sen‐
sitivity. For example, not all AA or FA can be obtained in sufficient 
quantity for the determination of their δ13C values (Tolosa, Treignier, 
Grover, & Ferrier‐Pages, 2011). Isotopic fractionation may also be so 
minimal that little or no isotopic enrichment is detected. This effect 
can occur in molecules with many of the same atoms (e.g., several C 
atoms in one molecule). Another problem is the variability in amino 
acid nitrogen isotope fractionation between diet and consumer across 
a wide range of species and diet types (McMahon et al., 2013). Finally, 
the samples cannot be derivatized and shipped for analysis, as they 

F I G U R E  6   The δ13C of essential fatty acids (EFA) in the animal 
is comparable to that of the symbionts or the external prey, since 
little or no isotopic fractionation occurs during this process. 
However, for the de novo synthesis of fatty acids from pool of 
acetate in the animal tissue: Transferases/desaturases induce an 
isotope depletion in the synthesized fatty acid, while elongase 
adds carbon atom from the acetate pool and thereby provides the 
isotope enrichment in the synthesized fatty acid (modified from 
Gladyshev et al., 2012)

F I G U R E  7  A schematic diagram of fractionation in individual 
amino acids nitrogen isotope value with trophic transfer. Trophic 
amino acids (AAt), with higher δ15N (B) than source amino acids 
(AAs), show large fractionation with each trophic transfer. On the 
contrary, source amino acids (AAs) show little to no fractionation 
with trophic transfer (adapted from McMahon et al., 2015)
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are suspended in volatile solvent and undergo loss. Future research 
should aim to develop a standard and easy procedure for these analy‐
ses in marine samples, so that more laboratories can apply CSIA.

4  | ISOTOPIC L ABELING E XPERIMENTS

The basic idea behind isotopic labeling experiments is that stable 
isotope‐enriched compounds (i.e., 13C, 15N, 35S‐compounds) have 
higher concentrations of the rare isotope than the natural abun‐
dance. The enrichment in such rare isotope can be used to follow 
its incorporation into specific molecules within an organism’s tis‐
sue, exactly in the same way as for radioactive tracers. It can also 
be used to calculate incorporation and degradation rates, deter‐
mine the transformation pathways, and identify which partner from 
the symbiotic association is involved in matter fluxes. The experi‐
ments consist in enriching seawater or particulate matter serving 
as a food source, and following the enrichment in the symbionts, 
the host, or surrounding medium during time‐series incubations. 
Both inorganic and organic compounds have been applied to sym‐
biotic associations to measure the assimilation of different nutri‐
ent sources, the nutrient transfer to the symbiotic partner and/or 
external organisms, and overall make important conclusions about 
symbioses and evolution.

Tracing inorganic labeled compounds allows estimating the con‐
tribution of the symbionts to the provision of food to the symbi‐
otic association. For example, 13C‐bicarbonate has been intensively 
used to follow the assimilation and partitioning of autotrophic 
and chemosynthetic‐acquired carbon in sponges (Freeman, Baker, 
Easson, & Thacker, 2015), corals (Tremblay, Naumann, Sikorski, 
Grover, & Ferrier‐Pagès, 2012), or deep vent organisms (Riou et al., 
2008). 15N‐nitrate and 15N‐ammonium tracers have instead shown 
that the symbionts of most symbiotic associations, from the deep 
ones with methanotrophic or chemosynthetic bacterial symbionts, 
to the shallower ones with algal symbionts, are able to assimilate 
inorganic nitrogen dissolved in seawater and translocate them to 
the host (Freeman et al., 2015; Grover et al., 2002; Grover, Maguer, 
Allemand, & Ferrier‐Pagès, 2003; Liao et al., 2014; Morganti, Coma, 
Yahel, & Ribes, 2017; Rädecker, Pogoreutz, Voolstra, Wiedenmann, 
& Wild, 2015). Finally, 15N‐N2 gas was used to show the assimila‐
tion of dinitrogen by diazotrophs associated with animals such as 
sponges and corals (Bednarz et al., 2017; Benavides et al., 2016; 
Ribes, Dziallas, Coma, & Riemann, 2015), or by the chemosynthetic 
symbionts of some marine invertebrates (Petersen et al., 2017). 
Tracing labeled dissolved or particulate organic matter (DOM and 
POM, respectively) allows estimating the contribution of the animal 
host to the provision of food to the symbiotic association. However, 
few studies have followed the fate of DOM and POM within a sym‐
biotic association as compared to inorganic compounds (Hughes & 
Grottoli, 2013; Piniak et al., 2003; Tremblay et al., 2015). Overall, 
the assimilation of inorganic or organic compounds by the symbi‐
onts and hosts varies with the environment, and the organisms’ tro‐
phic state and genotype. Therefore, it was demonstrated that the 

acquisition of autotrophic carbon was not correlated to symbiont 
abundance, but rather to the amount of light received by the symbi‐
otic association or with the ratio of gross productivity to respiration 
(Freeman, Thacker, Baker, & Fogel, 2013; Tremblay, Grover, Maguer, 
Hoogenboom, & Ferrier‐Pagès, 2014). Exposure to light is an im‐
portant parameter for the uptake of inorganic nitrogen (Grover et 
al., 2002), which also increases with the availability of nitrogen in 
seawater or with the nitrogen starvation state of the association 
(Kopp et al., 2013; Tremblay et al., 2015). In corals, symbiont iden‐
tity determines the rates of inorganic carbon and nitrogen assim‐
ilation (Baker, Andras, Jordán‐Garza, & Fogel, 2013; Ezzat, Towle, 
Irisson, Langdon, & Ferrier‐Pagès, 2016). In particular, symbionts 
of clade D, which are known to present a particular resistance to 
thermal stress, are less efficient in assimilating nutrients than clade 
C, which is more widely distributed among coral species but is not 
resistant to high temperatures (Baker et al., 2013).

Studies, which have followed the isotope tracer within the sym‐
biotic association, have demonstrated that a fraction of the food as‐
similated by the symbionts or the host is translocated to the other 
partner for its own needs (Tremblay et al., 2015; Tremblay, Naumann, 
et al., 2012). Symbiont’s food is also shared between symbiotic and 
non‐symbiotic tissues, as demonstrated in jellyfish, for which 13C‐
labeled compounds are translocated from photosymbiont‐rich oral 
arm tissue to bell tissue (Freeman, Stoner, Easson, Matterson, & 
Baker, 2017). In corals, by coupling light and dark bottle incubations 
(P/R) with 13C‐bicarbonate tracers (Figure 8), it was shown that the 
percentage of autotrophic carbon assimilated by the symbionts (Z2 
in Figure 8), translocated (Z3), and retained in the host tissue (Z5), or 
lost as respiration and mucus (Z6) depends on the environment and 
trophic state of the symbiotic association (Baker et al., 2015, 2018 ; 
Tremblay et al., 2016). Therefore, under low light (i.e., limited auto‐
trophic acquisition) or warm conditions, coral symbionts sequester 
more resources for their own growth, thus parasitizing their hosts 
(Figure 8, pie charts). In octocorals, experiments using 13C‐bicarbon‐
ate have highlighted a correlation between colony morphology, polyp 
size, and productivity showing that productivity and polyp size have 
strong phylogenetic signals (Baker et al., 2015). A higher productivity 
was thus obtained for colonies with high polyp surface area/volume 
ratio. These productive species also maintained specialized, obligate 
symbioses, and presented a higher resistance to coral bleaching. On 
the contrary, generalist and facultative associations, with lower pro‐
ductivity, were more sensitive to bleaching. Finally, recent studies 
using 13C‐bicarbonate tracer also allowed following the fate of auto‐
trophically acquired carbon by coral symbionts within the coral reef 
food chain (Rix et al., 2017, 2018, 2016 ). They labeled coral mucus 
with 13C and 15N and showed a transfer of mucus compounds into 
the tissue and phospholipid fatty acids of different sponge species 
living in tropical and cold water reefs environments, demonstrating a 
direct trophic link between corals and reef sponges. Part of the car‐
bon and nitrogen transferred was subsequently released as detritus, 
feeding the sponge loop (Rix et al., 2016).

The use of enriched compounds in symbiotic associations has also 
several limitations. The first difficulty is to obtain a good separation of 
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the host and the symbionts to accurately estimate the percentage of 
nutrients assimilated by each partner. In addition, the determination 
of assimilation rates and the calculation of fluxes (i.e., amount of nutri‐
ents transferred from one partner to the other one) require knowing 
the size of each compartment. Symbionts are generally representing 
a smaller fraction of the total biomass of the symbiotic association 
compared to that of the host. They are, therefore, more enriched in 
the labeled compound that the host (in terms of % total enrichment) 
since the assimilated compound is “diluted” in a smaller amount of 
biomass. However, when the “dilution factor” is taken into account, 
the assimilation rates can be equivalent. The same problem applies to 
the calculation of fluxes, which has to take into account the volume in 
which the labeled compounds is transferred. To avoid dilution prob‐
lems, or to get a finer localization and identification of the compounds 
synthesized by each symbiotic partner, isotopes can be combined 
with different advanced technologies. For example, 13C‐bicarbonate 
has been combined with HPLC‐MS (high‐performance liquid chroma‐
tography, mass spectrometry) to investigate the lipogenesis in sym‐
biotic cnidarians (Dunn, Pernice, Green, Hoegh‐Guldberg, & Dove, 
2012). Results showed that fatty acids derived from the symbionts 
were not used directly in host lipogenesis, suggesting that additional 
sources of carbon, such as host heterotrophy could be important for 
the lipogenesis of FA in the host. Isotopes can also be combined with 
metabolomics instead of HPLC‐MS to trace each metabolite synthe‐
sized by both partners (see the review by Gordon & Leggat, 2010). For 
specific compounds, the relative metabolic contribution of different 

symbiotic partners can be assessed nowadays with single‐cell reso‐
lution, by combining isotopic enrichments with nanoscale secondary 
ion mass spectrometry (NanoSIMS) or matrix‐assisted laser desorp‐
tion ionization mass spectrometry imaging (MALDI‐MSI; Kopp et al., 
2015; Pernice et al., 2012). NanoSIMS can indeed provide direct imag‐
ing and quantification of seven different isotopes at the individual cell 
level (Achlatis et al., 2018; Berry et al., 2013; Kopp et al., 2013; Musat, 
Foster, Vagner, Adam, & Kuypers, 2012; Pernice et al., 2012). Although 
NanoSIMS has a great potential yet to be explored, it currently has 
numerous limitations, such as a limited number of reference materials, 
a reduced number of research facilities were able to afford this ex‐
pensive equipment, and only a few of those have an imaging interface 
for live tissues; NanoSIMS has been primarily used for geological and 
cosmochemical applications. MALDI‐MSI rather enables identification 
of compounds on surfaces, such as in tissue sections (Gagnon et al., 
2012). For instance, it has been used to localize metabolites within 
the tissues (epidermis, gastrodermis) of symbiotic and asymbiotic sea 
anemones (Kopp et al., 2015).

5 | CONCLUSIONS

In moving forward toward understanding nutritional interactions in 
marine symbiotic associations via stable isotope analysis, a better un‐
derstanding of the sources and processes affecting nutrient isotopes 
in each environment and within each symbiotic association is urgently 

F I G U R E  8  Autotrophic carbon budget in a coral–dinoflagellate symbiosis. The budget can be determined using 13C‐dissolved inorganic 
carbon (13C‐DIC), and measurements of gross photosynthesis and respiration of symbionts and host using oxygen measurements. The 13C 
can be followed within the symbiotic association, in particular the amounts retained in symbionts and host biomass. By applying adapted 
equations (Tremblay, Grover, Maguer, Legendre, & Ferrier‐Pages, 2012), the fate of the autotrophic carbon incorporated can be estimated 
under different conditions. The pie charts represent the percentage of the carbon incorporated into the host tissue and symbionts or lost 
after 24 hr under normal (high light), or under reduced light and high temperature conditions
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needed. Indeed, the isotopic values of the different food sources, es‐
pecially of the dissolved organic and inorganic sources, are not always 
precisely known, and the fractionation factors corresponding to the 
assimilation and exchanges of nutrients are even less understood. 
In addition, in natural abundance studies, multiple isotope markers 
(13C, 15N, 34S) have to be taken into account to constrain organic 
matter sources used by the symbiotic associations. Furthermore, 
analyzing the nitrogen and carbon stable isotope content of specific 
amino acids and fatty acids could be very useful, since some com‐
pounds show no change with trophic level, and therefore could be 
used to indicate the isotopic composition of the nutritional sources. 
Simultaneously, other compounds show a large increase with each 
trophic level, thereby allowing for definition of trophic level. Such an 
analysis could also help to better calibrate the bulk tissue isotope val‐
ues. For such compound‐specific isotope analyses, the technique of 
HPLC‐IRMS would greatly broaden the types of biomarkers that can 
be analyzed. Several attempts have been published to directly couple 
HPLC with high precision isotope analysis. Commercial machines are 
however not available and sensitivity in terms of amounts of carbon 
needed is still rather low, so further development of these machines 
is needed. Finally, it is expected that future experimental manipula‐
tions using compounds enriched in δ13C and δ15N, followed by cell 
separation and compound‐specific isotope analyses, will shed consid‐
erable light on both symbiont and host metabolic pathways.
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