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Abstract: Transient receptor potential cation channels are emerging as important physiological and
therapeutic targets. Within the vanilloid subfamily, transient receptor potential vanilloid 2 (TRPV2)
and 4 (TRPV4) are osmo- and mechanosensors becoming critical determinants in cell structure and
activity. However, knowledge is scarce regarding how TRPV2 and TRPV4 are trafficked to the
plasma membrane or specific organelles to undergo quality controls through processes such as
biosynthesis, anterograde/retrograde trafficking, and recycling. This review lists and reviews a subset
of protein—protein interactions from the TRPV2 and TRPV4 interactomes, which is related to trafficking
processes such as lipid metabolism, phosphoinositide signaling, vesicle-mediated transport, and
synaptic-related exocytosis. Identifying the protein and lipid players involved in trafficking will
improve the knowledge on how these stretch-related channels reach specific cellular compartments.

Keywords: ion channel trafficking; transient receptor potential channels; TRPV2; TRPV4;
phosphatidylinositol signaling; stretch-related channels

1. Introduction

Transient receptor potential (TRP) channels are polymodal cation channels involved in
somatosensation at the cellular and tissue levels in vertebrates [1]. Channels in the TRP family
are in charge of sensing physical stimuli such as temperature or mechanical changes to trigger cation-
mediated cell signal transduction pathways [2]. The vanilloid subfamily (TRPV) has six members
(TRPV1-6), where TRPV1-4 have been long related to thermal sensing [3]. More recently, they have
also been linked to mechanical stress, especially the TRPV2 and TRPV4 channels [4,5]. Accordingly,
the function of TRPV2 and TRPV4 is expected to be essential in tissues with high mechanical shearing,
such as skeletal and cardiac muscle.

Expression of TRPV2 is wide (Figure 1a) and TRPV2 is involved in several physiological
processes [6], but the particular role of this channel in skeletal and cardiac muscle is gaining much
attention [7-12]. The expression of TRPV4 is as ubiquitous as TRPV2 (Figure 1a), but it is prominent in
epithelial tissues, evoking calcium currents in response to extracellular stimuli, such as temperature,
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osmotic changes, and mechanical stretch [13-15]. Mutations of TRPV4 are related to involved
in oligomerization, trafficking, and degradation can result in genetic disorders like Brachyolmia,
Charcot-Marie-Tooth disease type 2C, spinal muscular spinal muscular atrophy, arthrogryposis, and
hereditary motor and sensory neuropathy type 2 [16,17]. The identification of these mutations is a
first step to determine the pathogenesis of the associated diseases and to design specific therapies. In
addition, the disruption of the folding-sensitive region of TRPV4 could be a therapeutic option for
diseases in which TRPV4 increases its activity such as pain and skeletal dysplasias [18]. Recently; it
has also been shown that TRPV4 affects the calcium balance in cardiomyocytes, affecting contractility,
leading to cardiac tissue damage in heart physiopathology [19].

An important question regarding TRPV2 and TRPV4 is how these channels are trafficked to
and recycled from the membrane. This is an essential aspect in TRPV2 and TRPV4 function as
Ca®*-dependent stretch-modulated channels. It has been shown that trafficking and/or translocation is
a highly regulated process, and it may be dependent on channel activity. Translocation of TRPV2 to the
membrane is driven by growth factors or chemotactic peptides [6], although is not clear yet whether
TRPV2 is functional when at the plasma membrane and/or internal organelles, mainly because most
the literature regarding TRPV?2 trafficking is based on poor detection antibodies against TRPV2 [20].
The function of TRPV4 is exerted mainly at the plasma membrane and TRPV4 trafficking to the
membrane is regulated by activators, such as GSK1016790A [18]. Controlled and regulated trafficking
of ion channels, especially in excitatory tissues, is fundamental because of the possibility of cation
leakage during trafficking, which leads to unbalanced cation homeostasis promoting cell toxicity and/or
excitotoxicity. This review of the published protein—protein interactions for the TRPV2 and TRPV4
channels [21-24] intends to shed light about the proteins involved in the regulated and constitutive
trafficking of these two mechanosensory cation channels.
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Figure 1. Transient receptor potential vanilloid subfamily TRPV2 and TRPV4 expression and
interactomic profiles. (a) TRPV2 and TRPV4 tissue expression in humans; (b) TRPV2 (left) and
TRPV4 (right) interactomes crossing published results (see main text for details). (c) Protein interactions
overlap among TRPV2 and TRPV4 interactomes. (d) Main biological process terms defined by TRPV2
and TRPV4 gene set enrichment analysis (GSEA).
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2. Sequence and Structure Determinants in Channel Trafficking

Beyond TRP biogenesis and oligomerization as tetramers [25], TRP channel trafficking is a complex
mechanism, integrating processes such as membrane insertion, glycosylation, Golgi maturation, vesicle
trafficking, and protein—protein interaction (PPI) [26]. The balance between these processes results in a
correct protein distribution in the plasma membrane or the corresponding membrane compartment,
leading to up- and down-regulation of the protein function. The trafficking structural and molecular
determinants in TRP sequence are mediators of PPI and/or lipid—protein interactions (LPIs). In TRPV
channels, both the N- and C-termini were involved in trafficking. The distal N-terminus of TRPV
channels is highly variable and structurally disordered and likely to host several phosphorylation
sites and PPI and LPI domains. Deletion of the distal N-terminus of TRPV2 is enough to deplete the
channel trafficking to the plasma membrane [23], which has also been observed for TRPVS5 [27]. In
addition, the N-terminus of TRPV4 interacts with OS-9 in the endoplasmic reticulum (ER), preventing
channel trafficking to the plasma membrane [28]. Protein kinase C and casein kinase substrate in
neurins proteins (PACSIN) also bind to the TRPV4 distal N-terminal domain (interaction exclusive for
TRPV4 among TRPV channels), enhancing the relative amount of TRPV4 in the plasma membrane [29].
As for the C-terminus, AKAP79/150 binding has been described [24], as well as the ankyrin repeat
domain (ARD), which is involved in PPI, but also in the complex mechanism of trafficking of
TRPV channels. The TRPV4 C-terminus is also involved in trafficking, as shown by C-terminus
deletion mutants, resulting in TRPV4 accumulation in the ER [30]. The characteristic ankyrin repeat
domain (ARD) is involved in PPI, but also in the complex mechanism of trafficking of TRPV channels.
Experiments carried out to map in vitro TRPV2 topology [23] were performed with constructs lacking
either most of the N-terminal domain of the channel (the first 74 amino acids AN74-TRPV2) or the
first 336 amino acids at the distal N-terminus (corresponding to the ARD, AARD-TRPV2). Despite the
N-terminal truncation, TRPV2 was properly folded within the lipid bilayer. The AARD-TRPV2 mutant
was not able to traffic to the plasma membrane, as determined by confocal imaging and biotinylation
assay [23]. Such a fact indicates that the N-terminal region may be needed for additional channel
processes other than insertion in the ER membranes, such as channel tetramerization, glycosylation,
or interaction with chaperone proteins to allow membrane translocation. Although it has not been
described for TRPV2 [31], the ARD indeed plays a key role in channel oligomerization for TRPV4,
as has been shown for ARD mutants in TRPV4 [32]. TRPV mutants lacking ARD or carrying point
mutations in N- or C-terminal domains produce channels that seem unable to tetramerize, which
emphasizes the need for the TRPV cytosolic domains to promote the correct oligomerization of the
subunits [32,33].

Turnover of TRPV channels in the plasma membrane is also controlled by regulated exocytosis,
a process mediated by phosphorylation and interaction with SNAP (soluble N-ethylmaleimide sensitive
fusion attachment protein) receptor (SNARE) complex proteins. SNARESs are a protein complex of more
than 60 members in mammalian cells that mediate vesicle fusion with their target membrane bound
compartment. The complex of SNAREs has a relevant role in cellular processes such as neurotransmitter
release in synapses, exocytosis, or autophagy [34,35]. Upon protein kinase C (PKC) activation, TRPV1
is recruited to the plasma membrane by SNARE mediated vesicle transport, leading to a potentiation of
TRPV1 currents [36]. Interaction of TRPV1 and TRPV2 with Snapin and SynaptotagminIX (SYT9) [36,37].
For TRPV2, the interaction with SNAREs protein is mapped into the highly conserved region of
the membrane proximal domain (MPD), pointing to the conservation of these interactions along the
TRPV1-4 subfamily [37].

Regarding LPI, TRPV channels share highly conserved PIP2 binding domains [24]. Binding of
PIP2 to TRPV1 [38], TRPV2 [39], and TRPV3 [40] was mapped to the highly conserved proximal
C-terminal domain, contiguous to the TRP box. The TRPV4 PIP2 binding domain is pinpointed using
bioinformatics [24], although TRPV4 has an additional PIP2 binding site in the distal N-terminal
domain [41]. Two recent works suggest that phosphatidic acid (PA) mediates LPIs between the
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membrane proximal domain (pre-S1 domain) and the C-terminus of TRPV channels in the trafficking
of TRPV channels to the plasma membrane [37,42].

3. Interactomics

Proteomic studies provide useful tools to understand the molecular mechanism of TRPV channels.
Guilt-by-association approaches aiming for mid-throughput interactome discovery for TRPV2 and
TRPV4 were used, combined with standard techniques such as co-immunoprecipitation in mammalian
cell lines and a novel membrane-specific yeast two-hybrid (MYTH) methodology [21,22].

The MYTH is a split-ubiquitin-based system that allows the location of the bait protein (TRPV2,
TRPV4) embedded in the membrane. First, a yeast strain is generated that constitutively expresses the
ion channel fused to the C-terminus of ubiquitin followed by the transcription factor LexA-VP16 (TF).
The bait strain is then transformed with a cDNA library containing more than 10° protein preys fused
to the N-terminus of ubiquitin. The tag carries a mutation to hinder the spontaneous refolding of
ubiquitin, which thus will only occur when a prey protein interacts with the bait. Once the interaction
occurs and ubiquitin is refolded, the bait complex is cleaved and the TF is released. The traffic of TF to
the nucleus starts the expression of reporter genes integrated in the yeast strain, allowing cells to grow
in selective media lacking either Histidine (His) or Adenine (Ade). Moreover, the LacZ reporter gene
is activated upon interaction, so that colonies carrying a putative interactor become blue stained in
the presence of X-Gal. The blue color intensity may be used to determine whether interactions are
strong or constitutive (intense blue color staining) or transient (pale blue color intensity) [43]. Using
MYTH, 20 and 44 new interactors were found for TRPV2 and TRPV4, respectively [21,22] (Table S1
and Figure 1b,c).

Available PPIs for TRP channels are listed in the TRIP database [44]. For TRPV2 and TRPV4 PP],
refer to Supporting Table S1 and Figure 1b,c. The TRIP database is an excellent tool to get relevant
information of biological processes regarding TRP channels. To the best of our knowledge, the database
was last updated in August 2015, not including any new PPIs, such as the TRPV2 and TRPV4 membrane
yeast two-hybrid (MYTH) dataset from these studies [21,24]. Figure 1 and Supplementary Table S1 list
all the interactions for TRPV2 and TRPV4. However, for the PPI trafficking analysis performed in this
study, only the PPIs identified in MYTH studies [21,22] are used. Using the list of TRPV2 and TRPV4
PPIs, a gene set enrichment analysis (GSEA) is performed, and then all ion channels and transporters
filtered out to avoid the bias towards transport and cation transport gene ontology terms. Out of the
59 protein list, the GSEA resulted in 10 enriched biological process categories, including the following;:
neural nucleus development (GO:0048857); phosphatidylinositol biosynthetic process (GO:0006661);
myelin sheath (GO:0043209); phospholipid biosynthetic process (GO:0008654); regulation of cellular
amide metabolic process (GO:0034248); modulation of chemical synaptic transmission (GO:0050804);
regulation of vesicle-mediated transport (GO:0060627); Ras GTPase binding (GO:0017016); regulation
of cellular localization (GO:0060341); and cellular lipid metabolic process (GO:0044255).

4. Understanding Channel Trafficking through Protein-Protein Interactions

In this review, the focus lies in terms related to two aspects: (i) lipid and phosphoinositides,
and (ii) synaptic and vesicle-regulated trafficking. Because both aspects are tightly entangled, they
and are difficult to study independently [21-24,37]. Lipids are key effectors in signal transduction
and protein function, but also in protein trafficking [45]. Phosphoinositides (PIs) provide cellular
organelles with specific lipid signatures, facilitating the binding of specific proteins. Membrane protein
traffic is mediated by accessory proteins containing distinct lipid—protein binding domains, which
promote binding depending on the lipids physico-chemical nature [45]. Regulated (e.g., synaptic-
based exocytosis) and constitutive vesicle-mediated transport for TRP channels have already been
reviewed, mostly based on TRPV1 studies [46]. This review aims to expand the knowledge on
vesicle/synaptic-based trafficking by shedding some light on accessory proteins involved in these
processes, as listed in Table 1.



Biomolecules 2019, 9, 791 60f 13

Table 1. List of interactors related to trafficking processes derived from a membrane yeast two

hybrid approach.
Gene Symbol Interactor Gene Name Gene ID Process 2
ABHD16A TRPV4 abhydrolase domain containing 16A 7920 1
ANXA2 TRPV4 annexin A2 302 1,2
ARF1 TRPV2 Adenosine diphosphate (ADP) ribosylation factor 1 375 1,2,3,4,5
ATP13A2 TRPV4 Adenosine triphosphate (ATP)ase cation transporting 13A2 23400 2,3
CAMK2B TRPV4 calcium/calmodulin dependent protein kinase II beta 816 4
CASK TRPV4 calcium/calmodulin dependent serine protein kinase 8573 2,34
CDK16 TRPV4 cyclin dependent kinase 16 5127 2
INPP5F TRPV2 inositol polyphosphate-5-phosphatase F 22876 1,2,3,56
PIP4K2B TRPV2 phosphatidylinositol-5-phosphate 4-kinase type 2 beta 8396 1,56
SACMIL TRPV2 SACT1 like phosphatidylinositide phosphatase 22908 1,56
SDC3 TRPV2 syndecan 3 9672 1,2,3,4,5
SHISA6 TRPV2 shisa family member 6 388336 2,4
SNAPIN TRPV2/TRPV1 SNAP associated protein 23557 2,3,4
SPTLC1 TRPV4 serine palmitoyltransferase long chain base subunit 1 10558 1,6
SYT9 TRPV2/TRPV1 synaptotagmin 9 143425 2,3,4
TBC1D5 TRPV4 TBC1 domain family member 5 9779 3

2 Processes: 1, cellular lipid metabolism; 2, regulation of cell localization; 3, regulation of vesicle-mediated transport;
4, modulation of chemical synaptic transmission; 5, phosphatidylinositol biosynthesis; 6, phospholipid biosynthesis.
TRPYV, transient receptor potential vanilloid subfamily; SNAP, soluble NSF attachment protein.

Among the list of interactors (Table S1), the literature is revised regarding proteins/enzymes related
to phosphoinositide signaling as markers of specific lipidic composition among cellular organelles, but
also to trafficking and vesicle-mediated accessory proteins (Figure 2). This review provides an overview
of the TRPV2 and TRPV4 trafficking process. Side information on TRPV2 and TRPV4 trafficking is
found in the literature, such as the role of PACSIN3 for TRPV4 [29,41], recombinase gene activator
(RGA) protein, and ras-related protein 7 (Rab7) for TRPV2 [47,48], and the Snapin/Syt9 pair for TRPV1
and TRPV2 [21,36,37]. However, the role of the lipid-mediated PPI for TRPV channels deserves extra
attention, not only because of the complexity of the mechanism, but also because of the diversity of
mechanisms depending on the tissue of interest (Figure 1a).

The lipase/acyl-transferase dehydrogenase enzyme (ABHD16A) is a TRPV4 interactor involved
in lipid metabolism [49]. Proteins of the ABHD family are involved in lipidic modifications, such
as palmitoylation, and in negative regulation of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor trafficking. The depalmitoylase ABHD17A is crucial for synaptic targeting and
vesicle sorting of AMPA receptors, through PSD-95 depalmitoylation [49,50]. In line with AMPA, but
also to N-methyl-p-aspartate (NMDA) receptors trafficking, the calcium/calmodulin dependent protein
kinase II beta (CAMK2B) and the calcium/calmodulin dependent serine protein kinase (CASK), both
TRPV4 interactors, are trafficking regulatory proteins [51-53]. Another kinase interacting with TRPV4
is the cyclin dependent kinase 16 (CDK16), a key regulator of vesicle trafficking [54-56]. The kinase
CDK16 interacts directly with COPII complexes modulating secretory cargo transport.

Annexin 2 (AnxA2) is a lipid raft associated trafficking factor in the plasma membrane and the
endosomal system, related to both endo- and exocytosis [57]. Binding of AnxaA2 to phospholipids in a
Ca?*-dependent manner [58], generating microdomains suitable for the binding of membrane proteins,
such as the renal cotransporter NKCC2 [59]. AnxA2 has been shown to interact with fibroblast growth
factor 1 (FGF1) (Table S1), forming heteroligomers capable of interacting with acidic membrane lipids,
such as PA. Viral infection hijacks AnxA2, which is used for the virus advantage in cell-attachment,
replication, and proliferation processes [60]; thus, AnxA?2 is a likely candidate protein to play a role in
the TRPV4-DDX3X mechanism in viral infectivity [22].
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Figure 2. Cellular overview of the main TRPV2 and TRPV4 trafficking-related protein—protein
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interactions (PPIs) organized by cellular compartment (see main text for details).

The ADP-ribosylation factor (Arf) small G proteins, such as Arfl, are related to lipid droplet
metabolism, clathrin independent endocytosis, and other membrane dynamics processes [61-63].
N-terminus miristoylated Arfl only tethers to the membrane when bound to guanosine triphosphate
(GTP) [64]. Guanosine exchange factors (GEF) and GTPase activating proteins (GAP) are required by
Arfs. Hydrolysis of GTP by Arf and Arf-like proteins regulate the enzymatic activity of proteins, such
as PI kinases and phosphatases. Among the TRPV2 interactors, Phosphatidylinositol-5-phosphate
4-kinase type 2 beta (PIP4K2B), inositol polyphosphate-5-phosphatase F (INPP5F, also known as
Sac2), and SAC1 like phosphatidylinositide phosphatase (SACMI1L, also known as Sacl) are enzymes
involved in phosphoinositide regulation as signals for membrane traffic. The Arfl pathway is related
to phospholipase D (PLD), which is responsible for the production of phosphatidic acid as a signaling
molecule, shown to interact with TRPV channels [37,42]. The Arfl-PLD pathways are responsible
for vesicle-mediated endocytosis and exocytosis, as well as the formation of multivesicular bodies
(MVBs) through phosphoinositides binding/signaling [45]. The putative interaction between TRPV2
and Arfl is an important hint regarding vesicle-mediated constitutive trafficking of TRPV channels.
Other proteins that could be related to the Arfl pathway, identified as TRPV2 and TRPV4 interactions,
are Arl15 (Arf-like protein) and the CALM/CamK2B/Cask subset, respectively (Table S1 and Table 1).

Enzymes involved in phosphoinositide regulation are TRPV2/TRPV4 interactors, such as PIP4K2B
and the SACM1L and INPP5F pair, Sacl and Sac2, respectively. The kinase PIP4K2B regulates the levels
of phosphatidylinositol 5-phosphate (PI5P) [65] by converting it to phosphatidylinositol 4,5-biphosphate
(PI(4,5)P2), alipid involved in TRPV2 and TRPV4 function [6,41]. The non-abundant PISP phosphoinositide
is related to the Akt kinase pathway and relevant for several cellular processes, such as survival and
cell growth, with a prominent role in cancer [66]. Hydrolysis of phosphatidylinositol 3-phosphate
(PI3P), phosphatidylinositol 4-phosphate (PI4P), and phosphatidylinositol 3,5-bisphosphate(PI(3,5)P2)
is carried out by SACM1L/Sacl, which is enriched at the Golgi membrane, but is also present in
ER membranes [67]. The preferential substrate for this enzyme is PI4P. The spatial distribution of
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PI4P in Golgi is defined by SACM1L/Sacl, creating the optimal conditions to maintain the cisternal
identity of the Golgi, which is critical to membrane protein trafficking [68]. Inositol polyphosphate-5-
phosphatase F (INPPSE, also known as Sac2) has a specific activity for PI(4,5)P2 and phosphatidylinositol
3,4,5-trisphosphate (PI(3,4,5)P3) to generate PI4P and PI(3,4)P2. INPP5F/Sac2 colocalizes with early
endosomal markers and is related to the regulation of endocytic recycling [69].

The ATPase cation transporting 13A2 (ATP13A2 or PARKY) is an endo-/lysosomal associated
ATPase related to intracellular trafficking under proteotoxic stress [70]. In a MYTH-based proteomics
approach [71], the authors have identified 43 PARK9-interacting proteins related to trafficking. The
putative TRPV4-PARKY and the TRPV2-INPPSF interactions identified in studies [21,22] could be
interesting to understand TRPV channels recycling in the endosome/lysosome pathways.

Syndecan-3 (SDC3) is a heparan-sulfate proteoglycan and a TRPV2 interactor, related to leukocyte
migration [72]. Modification of cytoskeleton is carried out by SDC3, but no relationship between SDC3
and membrane protein trafficking has been shown so far. However, SDC4 modulates the activity and
membrane expression of TRPC6 in glomerular permeabilization [73].

The trafficking of AMPA receptors towards the synapse has been thoroughly studied [74], and
among the proteins involved in locating AMPA receptors at the synapse, SHISA6 is found as a TRPV2
interactor. The C-terminal characteristic PDZ domain in SHISA6 binds to post-synaptic density
protein 95 (PSD95), which confines AMPA receptors at the postsynaptic density [75]. Proteins, such as
SHISA6, ABHD16A, Snapin, and SYT9 (Snapin and SYT9 revised earlier), interact with TRPV channels,
mediating synaptic exocytosis, suggesting conservation of some elements in regulated exocytosis of
TRPV channels [21,36,37,46].

The TRPV4 interactor serine palmitoyltransferase long chain base subunit 1 (SPTLC1), which
resides in the ER, drives the synthesis of sphingomyelin [76], sphingolipid that needs to be trafficked
to the plasma membrane. Specific lipid composition in membrane domains may argue for the need
of specific lipids bound to TRPV channels during trafficking. SPTLC1, teaming up with ORMDLS3,
are involved in ceramide synthesis [77,78], in response to ER stress and calcium homeostasis, factors
influencing the trafficking of membrane proteins, such as TRPV channels.

The TBC1 domain family member 5 (TBC1D5) plays a significant role in the regulation of the
endosomal pathway. TBC1D5 interacts with TRPV4 in a yeast two-hybrid approach [22]. In the
endosomal system, TBC1D5 inhibits the retromer and promoting autophagy. It is also a key factor in
membrane turnover and membrane protein recycling through Rab7 [79]. The Rab7 and TRPV2 pair
has been shown to colocalize in the endosome. As a result of such a trafficking situation, TRPV2 relates
to nervous system development by enhancing neurite outgrowth [48]. Among TRPV channels, TRPV2
is the most likely to play a role in the regulation of the endosomal pathway [80].

5. Concluding Remarks

This review of the literature aims toward a better understanding of the mechanisms driving
the trafficking of TRPV2 and TRPV4 to specific membrane compartments, derived from a
guilt-by-association approach based on PPI (Table S1). The interaction of TRPV2 and TRPV4 with
lipids and/or with lipid modifying enzymes points to the fact that the lipid environment is fundamental
for TRPV2 and TRPV4 trafficking, beyond the TRPV2 and TRPV4 lipid requirement for ion channel
function. Future perspectives should include the study of the tight inactivation mechanisms of ion
channels involved in the trafficking of these proteins, to prevent cation leakage inside the cell. In
the case of TRPV2 and TRPV4 (and other TRP channels), the focus so far has resided on which lipid
signaling molecules activate/inhibit the channel at the site of function. The identification of LPI and
PPI interactions preventing cation leakage during trafficking toward avoiding detrimental cell toxicity
effects provides another potentially interesting area of study, which may be especially relevant in
tissues under high stretch stress conditions, such as skeletal and cardiac muscle. Knowledge on how
TRPV2 and TRPV4 are specifically trafficked in these tissues might provide invaluable benefits in
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the therapeutic management of muscle physiopathology, where cation transport and balance play a
cardinal role.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/12/791/s1,
Table S1. TRPV2 and TRPV4 interactomes.
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