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ABSTRACT Spectrum trading is an important aspect of television white space (TVWS) and it is driven by
the failure of spectrum sensing techniques. In spectrum trading, the primary users lease their unoccupied
spectrum to the secondary users for a market fee. Although spectrum trading is considered as a reliable
approach, it is confronted with a spectrum transaction completion time problem, which negatively impacts
on end-users Quality of Service and Quality of Experience metrics. Spectrum transaction completion time
is the duration to successfully conduct TVWS spectrum trading. To address this issue, this paper proposes
simple mechanism auction reward truthful (SMART), a fast and iterative machine learning-assisted spectrum
trading model to address this issue. Simulated results indicate that SMART out-performs referenced VERUM
algorithm in three key performance indicators: bit-error rate, instantaneous throughput, and probability of
dropped packets by 10%, 5%, and 15%, respectively.

INDEX TERMS Iterative auction, machine learning, game theory, truthfulness, mechanism design, factorial

punishment.

I. INTRODUCTION

Recent telecommunications statistics from Cisco Visual Net-
working Index forecast indicated that the annual global
IP traffic is estimated to be around 3.3 Zettabytes (ZB)
(ZB; 1000 Exabytes [EB]) or 278 EB per month by 2021 [1].
Assertively, this is a remarkable 100% increment of the
2016 projection which stood at 1.2 ZB per year or 96 EB
(one billion Gigabytes [GB]) per month. The demand for
mobile data has increased exponentially while that of voice
communications has plateaued out, thus, leading to spec-
trum crunch problem. Ordinarily, several candidate solutions
exist such as: Multiple Input Multiple Out (MIMO)/Massive
MIMO technology [2], Heterogeneous Network architecture
(HetNet) often known as Small cell/ Femtocell archi-
tecture [3], Full Duplex technology [4] and Cognitive
Radio (CR) technology [5]. Of all the aforementioned tech-
niques, database market driven CR remains the most feasible
as it is based on the Dynamic Spectrum Access (DSA)
technique. The DSA scheme enhances spectrum utiliza-
tion efficiency and must be sustained and encouraged.

Moreover, it involves less practical implementation bottle-
necks motivated by financial incentives. While the study
of spectrum sensing technology is on the decline, that
of database market driven TVWS is on the increase [6].
In database market driven TVWS technology, spec-
trum resources are traded between the Secondary Users
(SUs) who make payments to Primary Users (PUs) as
an incentive to temporarily lease their spectrum [7].
Therefore, making TVWS technology similar in context to
the real market. PU and SU trade resources (bandwidth, time
slots or transmission power) under certain market regulations.
Consequently, economics and business methods are the nat-
ural paths to effectively design, analyze and allocate radio
resources in TVWS networks.

The next generation wireless communication in which
TVWS technology is a key player must address not only
future capacity constraint issues but also, fundamental
wireless communication issues notably: network reliability,
network coverage and latency. Specifically, auction driven
TVWS networks must address latency issue considering the
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fact that unlike the traditional wireless networks, TVWS
networks must bid and win the legal right to use a given radio
spectrum before transmission rights are granted. Latency
is inimical to the Quality of Service (QoS) and Quality
of Experience (QoE) of delay sensitive TVWS applications
such as; video streaming, gaming and file sharing. To better
understand the scenario; visualize a TVWS setting com-
prising of say 100 TVWS end-users with information pay-
load to transmit. If it takes for instance 100 nanoseconds
for each TVWS end-users to initiate and execute auction
protocol. Then, for the spectrum auctioneer, it will take mini-
mum of 10 microseconds to receive and finalize trade dispute.
The above scenario is also subject to the type of auction
strategy adopted. Furthermore, if PUs are brought into the
picture, the spectrum auction completion time will further
increase. Consequently, TVWS delay sensitive end-users’
QoE and QoS will deteriorate. Based on this, the cardinal
objective of this study is to propose a low complexity auction
algorithm capable of reducing the computational complexity
of auction protocols in TVWS networks. As referenced in [8],
the widely used Vicrey-Clarke-Groves (VCG) auction is not
strategy proof; it is susceptible to collusion, unfairness and
truthfulness issues [7]. Hence, there is a need to design a
strategy-proof spectrum market model capable of addressing
the aforementioned issues and many more practical questions
highlighted below such as:

a. Several of the auction bidding algorithms have failed
to address the auction completion time and its adverse
effect on end-users QoS [9], [10]. Strategy to reduce
auction bidding overhead is essential since con-
trol information in general accounts for approximate
20-30% of the total assigned spectrum resources [11].

b. Since spectrum auction is driven by profit maximiza-
tion, there is need to incorporate punishment design in
the utility function of the secondary spectrum players.
The primary motive of this punishment design is to
serve as deterrence against acts of cheating in spectrum
auction mechanism [9], [12].

c. How can Independent Private Valuation (IPV)
model [13], [14], facilitate secondary spectrum auction
completion time. And, what are the potential proposals
to ensure competitiveness among the PUs leading to
affordable broadband connectivity.

d. Lastly, strategies to design auction trade resolution
protocol which supports auction efficiency considering
the fact that it is possible for two SUs to indepen-
dently evaluate and submit an equal bid for a spectrum
resource channel.

Game theory has been extensively used in TVWS secondary
spectrum markets because of its reliable and self-enforcing
among self-rational entities [15]. Exploring TVWS strategy-
proof iterative auction model comprising of game theory and
auction models resulting to mechanism design a subfield of
microeconomics will be an attractive proposition [16]. The
ideal objective of an auction mechanism as a game is to ana-
lyze the dominant equilibrium strategy of buyers and sellers
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with Nash Equilibrium (NE) as a common solution. To reduce
TVWS secondary spectrum resource allocation complexity,
this work proposes SMART (Simple Mechanism Auction
Reward Truthful). SMART is a fast, competitive, iterative and
truthful TVWS auction mechanism-driven algorithm. Our
contributions are as follows:

a. A graphical and analytical approach towards designing
a strategy proof and iterative competitive TVWS auc-
tion allocation algorithm.

b. The proposition of a novel approach for SU (bidders)
to estimate the asking price of the PU (sellers) through
the use of stochastic learning automata. This approach
is novel, as it reduces the TVWS spectrum auction-
completion time.

c. To enforce truthfulness in a TVWS secondary spec-
trum market, we propose a punishment scheme to be
incorporated into the objective function of each of the
players to serve as a deterrent for cheating-inclined
players.

d. The use of First come First serve approach for spectrum
contention resolution protocol by the spectrum broker
to resolve trade issues.

The rest of the article is organized as follows: Section 2 over-
sees related work. The model and problem description is pre-
sented in Section 3 and in Section 4, SMART is formulated.
Section 5, focusses on the simulation results. Finally, we draw
conclusions in Section 6.

Il. RELATED STUDIES

The secondary spectrum auction is a resource optimiza-
tion problem often referred in the literature as Winners’
Determination Problem (WDP) [17]. WDP is an integer/
combinatorial NP-hard problem and cannot be solved in poly-
nomial time [18], [19]. Being the norm, spectrum resources
are only assigned to the buyers when the submitted bids
match or come close to asks. The two notable spectrum
auction transaction modes are flexible time [20] and fixed
time [21], [22]. Though, both have their pros and cons. From
the PUs, the fixed time instance provides ample opportunity
to plan spectrum trading. However, the flexible time instance
looks favorable to the SUs based on the widely held notion
that end-users traffic are stochastic in nature and cannot
be accurately predicted. This observation is the reason why
spectrum traffic is modelled using Poison model. Notable
research work that has considered time flexibilities in spec-
trum auction could be seen in [9], [23], and [24].

The fixed time spectrum auction approach is a more realis-
tic model because of its reduced overhead complexity prop-
erty. Another aspect of spectrum quality considered in auction
mechanism is the Physical (PHY) layer time varying channel
quality/Channel State Information (CSI) attributes [25]. This
concept was further extended in [26]. However, it remains
unclear how to model and incorporate time-varying CSI
considering the difficulties to precisely predict CSI as sup-
ported by the presence of feedback channel loop in channel
configuration architecture. Deep spectrum learning has been

25959



IEEE Access

A. H. Kelechi et al.: SMART: Coordinated Double-Sided Seal Bid Multiunit First Price Auction Mechanism

investigated in which the spectrum sellers recalls previously
concluded spectrum transaction and uses the experience as a
guide to enhance utility [27], [28]. Obviously, this is a form
of artificial intelligence in spectrum auction design and was
implemented in this study.

Truthfulness is a unique feature of spectrum auction and
as such has received immense research attention [9], [20],
[21], [23], [24]. If there is an effective strategy to moti-
vate truthfulness in mechanism design, then, it must be by
incentive or taxation [29]. To explore strategy-proof auc-
tion domain, combinatorial auction for joint spectrum and
transmission scheduling in time multiplexed fashion has been
proposed [20]. Vidal ez al. [30] propose the use of token
credit to enhance truthful spectrum sharing mechanisms.
Similarly, time-frequency domain analysis has as well been
exploited [21], on the fly online spectrum auction mecha-
nism was been proposed in [23]. Considering truthful auction
mechanism in which collusion-resistance design is inevitable
has been investigated in [24]. Location aware context in
spectrum auction framework has been explored to facilitate
interference free secondary spectrum end-users [9]. Mathe-
matical modeling presents a viable tool to express wireless
resources as a physical object making it easy to analyze. Since
radio resources are intangible wireless resources, mathemati-
cal modeling approaches have been widely applied [31], [32].

Dynamic Knapsack and stochastic problem which
targets on maximizing the expected accumulated utility func-
tion modelled after Poisson distribution has been inves-
tigated [31]. Similarly, dynamic Knapsack problem for
resource allocation depicting a sequential arriving requester
aimed at deriving optimal policy leading to revenue maxi-
mization was studied in [32] and [33] analyzed secondary
spectrum auction mechanism from a relaxed Bayesian per-
spective, where buyer valuations were publicly drawn from
a prior distribution. Social efficiency and auction revenue
were two important key parameters considered in [34].
Time—varying spectrum demand from the end-users are of
considerable importance and has been considered. Take for
instance, an end-user’s traffic might be delay tolerance,
such as FTP, e-mail or delay sensitive applications such
as VoIP, video streaming and online gaming. In this case,
the end-user preferences to channel quality can play a major
role in the spectrum auction design. Exploiting this phe-
nomenon, several research works have considered channel
heterogeneity. The case of heterogeneous end-user channel
quality demand in time dependent valuation, delay toler-
ance and starting time instances were considered in [10].
Noticeably, this setting tends to maximize PUs revenue at
the detriment of SUs profit. Furthermore, since the main
objective of TVWS network specifically in the rural area is to
make broadband connectivity affordable. This design setting
is considered counter-productive. A single-step allocation for
a whole time frame rather than the online allocations has been
considered [9], [23], [24].

Notable TVWS market models been proposed
are [12], [13], [19], [30]; however, several critical research
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gaps exist. All the aforementioned mechanism designs suffer
one major issue, which is high overhead complexity. Fur-
thermore, spectrum transactions are conducted over many
rounds [12]. The secondary spectrum markets in which
TVWS operates are characterized by short time leases, which
can be for minutes, hours, days, or months, depending on
the contractual agreement [35]. Consequently, a mechanism
to reduce the TVWS spectrum transaction time will be
highly appreciated. Sinha and Anastasopoulos [13] propose
a methodology to create mechanism which maximize social
welfare at the Nash equilibrium with convex constraints and
a linear message space.

Tan et al. [36] propose an incentive and market-based
framework based on a multi-tier shared spectrum-access
model. Kamble and Walrand [19] proposed a mechanism-
proof strategy to purchase shared resources in a collusion-
resistant environment for a group of buyers with private
utility expectation. The major limitation of these auction
models is collusion which was not solved iteratively. Sec-
ondly, the spectrum price is not competitive. Iterative mod-
els have multiple advantages: they ensure competitiveness
and are considered as transparent process. Recognizing these
structural deficiencies, Manickam et al. [12] propose an
iterative and truthful multi-unit auction that addresses the
limitation of VERITAS [37] and SATYA [38]. Luo et al.
consider the TVWS secondary spectrum market from the
perspective of information trading rather than commodity
trading [35], which allows database operators to design spe-
cific fees for each trading-choice model of the secondary
users.

The preceding works did not exploit the use of learning
algorithm having identify that the secondary spectrum mar-
ket occurs regularly and uses punishment as an incentive
for truthfulness. There should be a mechanism of reusing
already available auction information. Our work is similar to
VERUM, as published in [12]. Both are iterative processes,
which have been shown to reduce collusion and to enhance
truthfulness. However, they are different on many fronts. Our
work is driven by principle of IPV model which simply means
that any buyer who values the spectrum, tenders bidding
price closer to the asking price. This reduces the transaction
period and increasing real-time secondary spectrum trading
in TVWS.

Ill. MODEL AND PROBLEM DESCRIPTION

The system model under consideration and the problem
formulation were discussed in this section. For conve-
nience, Table 1 lists some important notations used in this

paper.

A. SYSTEM MODEL

Consider a TVWS environment consisting of several PUs
denoted with {My, M2, M3, ..., Mg} and SU! denoted
as {Ni,Nz,...,Nk}. Each of the PU owns multiple

1'SU connotes TVWS networks comprising TVBS and TVBD
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TABLE 1. Notable symbols for used.

Symbol Definition

r auction frame
channel bandwidth/slot
the permissible transmit power

connotes the SINR TVBD  receives by using RB, b, at
time ¢

PUs

SUs

modulation scheme

TVBD

data sample period

MaxDopplerShift

Raleigh channel

TVBD instantaneous throughput (Mbps/Hz)

PU utility function of channel, b driven by monetary
b) terms.

T the auction completion indicator function

Re-IESH

==

G

T
o

=

Lm0 dwa zx

=
S

a learning rate

X(j,b) transmitting signal from TVBD user j on leased PU
’ channel b
concave increasing function of the SU service provider

homogeneous orthogonal channels to serve its subscribed
SUs. If at some time there are idle PU channels available,
the PUs can allow SUs to access these channels to obtain
some extra profits. Each SU is a service provider to TVWS
Band Device (TVBD) denoted with {J1, J3, ..., Jx} as illus-
trated in Figure 1. The PUs and SUs trade spectrum band-
width by iterative auction game moderated by the social
welfare Spectrum Broker (SB) [39]. Social welfare connotes
that SB does not take commission for engaging in secondary
spectrum market arbitration. The SB can only allocate the
spectrum/ Resource Block (RB)? to TVBD? only when the
bids submitted by the SU matches the PU asks.

TVWS technology has a long delay spread of >60 u
sec without auction scheme [40]. The inclusion of auction
schemes that entails several rounds of bidding is capable
of degrading the QoS of delay sensitive Guaranteed Bit
Rate (GBR) applications such as VoIP, video streaming.
Furthermore, let’s define auction frame as ' = [0, T — 1],
which consist of I' uniform time slots and b as the number of
SU leased spectrum channel. As the number of auction frame
increases, the TVBD data payload decreases.

B. SCENARIO SETTINGS AND ASSUMPTIONS

For the sake of clarity of expressions, the following assump-
tions were made:

i. The auctioneer serving as TVWS resource allocator
is aware that, there is heavy TVWS end-user traffic.

2 Resource block is the unit for spectrum trading and connotes spectrum
channel/ spectrum bandwidth. Hence, all of the terms connotes same except
explicitly defined.

3 TVBD connotes TVWS end-users and both terms will be used inter-
changeably through this study.
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Hence, exclusive channel sharing mode is needed i.e.
no channel sharing.

ii. The TVBD leases the PU spectrum by making payment
through the TVWS base station (TVBS) using fictitious
currency model [7].

iii. The TVBS informs the SB the position of the TVBD
which it can acquire using the GPS module. The posi-
tion vector is necessary for the SB to avoid inter-TVBS
cellular interference [18], [41].

iv. The spectrum resources are allocated only on the
condition that, the bids matches or close to the
ask resulting in market clearing price [10], [39].
Spectral resources discussed in this work explic-
itly denotes spectrum bandwidth/RBs/Sub-channels.
Hence, transmission power level is left out of
discussions.

v Spectrum is traded based on RBs unit which may
be interleaved or not respecting the OFDM tech-
nology configuration and each RB can sustain a
certain QoS application.

vi TVBD transmits using permissible transmission
power level recommended by the FCC respecting
the transmit power spectral mask [6]. In addition,
TVWS supports symmetrical and asymmetrical
uplink/downlink transmission.

C. CHANNEL MODEL
The channel model is facilitated by link budget analysis
in which TVBS j can estimate the instantaneous signal-to-
interference-plus-noise ratio (SINR) at time, ¢, per RB of each
TVBD in its service set as:
y(t) = M + 10*log (k) + log 19 (codeRate)
G-0) ™ Isas 4+ No 10 ’
ey

where, y((].f;?) connotes the SINR TVBD j receives by using
RB, b, Pr, is the permissible transmit power for TVBD stated
at 4 Watts or 36 dBm for the 6 MHz TV channel bandwidth
using IEEE 802.22 Standard, d, denotes the TVBD distance
from the TVBS, 7 is the pathloss component that can modeled
using the ITU-R model [42], Ny is thermal spectrum noise,
G; denote the channel gain, /525 denotes the secondary to
secondary co-channel interference. In IEEE 802.11 Standard,
the convolutional code is the mandatory code rate. Turbo and
shortened block turbo code are optional but recommended.
The parameter, , in (1) is responsible for the adopted modu-
lation scheme and is defined as:

k =log, (o) 2)

o, is the modulation scheme. The IEEE 802.11 Standard
supports various modulation scheme of QPSK, 16-QAM and
64-QAM depending on the SNR. This study adopted Raleigh
channel, H, which can be modeled as:

H = rayleighchan(I1, 2) 3)
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FIGURE 1. Deployment scenario of TVWS spectrum auction settings.

IT is the data sample period and 2 is MaxDopplerShift.
IEEE 802.22 PHY is designed to support mobility of
up to 114 km/hr. The TVBD instantaneous through-
put (Mbps/Hz), ¥ can be estimated as:

v — blog( +v@in)
T

“

T is the auction completion indicator function, which high-
lights the number of bidding rounds to complete a bid.
As the bidding rounds iteration increase, the TVBD through-
put decreases. The importance of decrease in the number of
bidding rounds iterations could be comprehend more in the
case of turbo encoders in which as the number of iterations
increases, the signal processing iterations consumes more
time.

D. UTILITY BASED TVWS BUSINESS MODEL
There must be an interface to connect auction payment
and TVWS radio resources. And this is achieved using
the fictitious currency model (Vidal et al. 2013). The
model is adopted because the secondary spectrum mar-
ket is a spot market configuration. Fictitious currency
denotes a signal representative of some amount of real
currency.

In reality, some of the digital money such as: Bitcoin and
electronic money used by laundry services could be used.
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Compared to real cash, it is easy to circulate in wireless envi-
ronment because machines understand the money. In addi-
tion, the fictitious currency helps SB to punish defaulting
bidders by signaling lower PHY layer transmission param-
eters (Zhang et al. 2012). The achievable bit rate referred as
revenue-based utility model for TVBD at each epoch of time
is stated in (5):

Uy = blog, (1 + ¥G.0)xG.1)) — Pih)» Q)

The term pl(’/?dlj) denotes the bid price TVBD user j pays

through the SU for leasing PU channel b and xj ) is the
transmitted signal symbol from TVBD user j on leased PU
channel b. Uj; ) is an increasing concave function of the SU
service provider and pl(’/?ffb) e N.

E. PROBLEM FORMULATION

In this subsection, we formulate the auction problem which
aims to maximize the expected auction revenue of the PU,
while following the direct revelation principle. In wireless
communication settings, bandwidth is extremely valuable,
scarce and should be assigned in the most efficient man-
ner (Bykowsky et al. 2010; Lu 2007). The SB tries to solve
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FIGURE 2. lllustration of TVWS auction driven resource allocation.

this WDP by solving (P1) stated as:

K K K
. (n)
1 max )% Y UG am Vi
J#p j=1 b=1
Z Z X(j.b) = €js (P1)
j=1b=1
C2:x35p >0, Viel],beB
St 1C3:xqp 10,1}, Vi, b,
K
C4: Z xpy < 1, Vb
b=1
C5:A (1 +pl(’é§‘i’b)> >

The TVWS environment resource allocation definitions are
stated as:

Definition 1: V() represents the PU utility which is
driven by monetary terms.

Definition 2: cj, denotes the channel link j, x(; 5), is the
assignment variables which muste {0, 1}, C denotes case and
the number denotes the case no and s.t is abbreviation of such
that.

Definition 3: C1, C2 and C3 denotes that the assignment
variables must support a TVBD channel link, must be greater
than zero and must be chosen between zero and one.

Definition 4: C4 signifies that the total assignment RBs
must not exceed the available spectrum to avoid inter-cellular
interference.

Definition 5: C5 is the SU profit function which it con-
siders before submitting a bid adopted from (Duan et al.
2010) with slight modification. This parameter drives the
independent private valuation (IPV) model and explained in
the next section.

The SB moderates spectrum auction game between the
SUs and the PUs. The above problem is represented picto-
rially in Figure 2. This WDP which is a convex NP-Hard
problem (Xu et al. 2013). The overall objective function of the
SB is to maximize the network gain with the constraints guar-
anteed. In real world scenario, the SB lacks two important
information which are (Edalat et al. 2011): (i) the knowledge
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of individual private valuation of the bidders resulting in
NP-hard problem and (ii) system global information. The
centralized resource allocation problem is decomposed into
sub-problems and solved iteratively in a distributed fashion
via the non-cooperative game. This approach is known as
a sub-game perfect principle (Luo et al. 2014). The above
strategy leads to the formulation and proposition of SMART
(Simple Mechanism Auction Reward Truthful), a fast and
iterative machine learning-assisted spectrum trading model.
The SMART algorithm is derived using backward induction
strategy.

IV. PROPOSED SMART ALGORITHM

In this section, proposed SMART algorithm is derived based
on backward induction strategy. Backward induction is a
strategy to analyze a dynamic game with a view of finding
the perfect subgame equilibrium (PSE). It is widely used
in game theory involving auction theory (Duan ef al. 2012;
Gibbens et al. 2000). In subgame strategy, the original game
is sub-divided into sub-games, and the NE of the sub-games
metamorphosed into the equilibrium of the original game.
Focusing on the social interactions of TVWS ecosystems,
a four-stage design mechanism is proposed and illustrated
in Figure 3.

Stage 1-Auction and allocation

4

Stage II-Primary users competitive asking

price iame

Stage I1I-Secondary users bidding price game

Stage IV- TVWS participants punishment design

FIGURE 3. Four-stage secondary design mechanism model.
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Figure 3 is described as follows: Stage IV commences the
framework via the punishment design for cheating TVWS
networks. At Stage III, inter-secondary users’ price game
was considered. In Stage II, PU bandwidth game was stud-
ied.In Stage I, spectrum auction game and spectrum alloca-
tion are executed by the SB. This work is limited on pure
strategy PSE, which effectively rules out mixed PSE in the
multistage game. This methodology has been widely used in
the literature (Duan et al. 2012). In a recent study, a similar
proposal indicating the hardware modules to drive SMART
algorithm has been illustrated by (Sarkar et al. 2016). The
authors limited their work on just the proposal without show-
ing in great details.

A. STAGE IV - PUNISHMENT DESIGN

The market-driven dynamic spectrum auction is widely
regarded as an efficient way to improve spectrum utilization
in wireless systems (Bykowsky et al. 2010). However, it faces
the significant challenge of market manipulation. Therefore,
a punishment function is highly favourable to establish social
harmony with a view of not degrading the QoS of TVWS net-
works. The first goal of strategy proof punishment function
is to incorporate the punishment function into the objective
function of the players. Secondly, must be analytical and easy
to implement using standard mathematical tools. For this rea-
son, this study adopts the formulated punishment parameter
denoted as: exp (0).

PU is considered cheating when, it does not respect the
agreed SU channel holding time (Riihijédrvi et al. 2010).
When PU cheats, the SU incurs switching cost, transition
cost, and drop in QoS (Kelechi er al. 2016; Saleem &
Rehmani 2014). Thus, resulting in excessive handoff. Here,
the focus is to limit the occurrences of SU channel degra-
dation. On the other hand, SU is considered cheating on the
occasion, it causes Co-Channel Interference (CCI) or Adja-
cent Channel Interference (ACI). ACI may result channel
impairments such as cross talk, premature handoffs, dropped
calls for voice calls leading to degradation of quality of
service (Al-Shalash er al. 2010; Katzela & Naghshineh 1996).
Although channel filters in the TVWS base station and
TVBDs significantly attenuate signal from adjacent channels,
severe interferences may occur in which the resulting signals
are more than the acceptable threshold of the TVWS system.

B. STAGE Il - SU BIDDING PRICE GAME
In this section, the spectrum bidding price is derived accord-
ing to the following proposition. The purpose of Game 1 is
for the SU to estimate the PU asking price so as to reduce
auction bidding rounds. A centralized structure creates a huge
trading volume problem in a TVWS cellular system which
can be a bottleneck. One solution is to allow the individual
players to estimate the spectrum asking price in a competitive
manner. This is anchored by the independent private valua-
tion (IPV) model.

Proposition 6: In the four-stage stage secondary design
mechanism model, the bidding price for the SU without
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considering the IPV model is given by (6).

bid, _ [b(l + J/(G,.,b)x((;l.,b)) l:| ©

PGp) = exp® Y

Proof: The solution to this SU bidding game can be
found by solving Game 1 using non-cooperative game
defined by:

o Players: SUs (Gi, G_;)

o Strategy space: Each G; chooses bid price from the
feasible set p?g jg)) =1, 00)

e Payoff function: G; maximizes the revenue, U(j ;). The
utility function has been given in (5). Implicitly defined
as transmitted data rate.

In this analysis, it is assumed that spectrum resources
are symmetrical in the context of channel quality, chan-
nel impairments and maximum transmission power usage.
Hence, no heterogeneity. The spectrum price SUs are willing
to pay as a function of their revenue is inferred from:

bid,  bid,
(P2): max U, (p(lG,-,b)vp(lG,,-,b)>

B |:b10g2 (1 + ¥Gi.0)X(Gib)) }

bid,

. { Co:A(1-+(1))
' A id, (1) ~ask,(t)
CT29PGby = P(Giib) -

> 7,

where, ¢ is the IPV single parameter, 13‘(1(3;]‘ p)> 18 estimated

PU asking price, A (1 + pf&dt_’ b)> is the SU linear spectrum
demand function with A denoting a constant, 77 (-) denotes SU
profit function. C6 ensures that the SU profits by engaging in
secondary spectrum trading by providing broadband services
to secondary end users. C7 is the hypothesis that the SU’s
bidding price is successful and decreases the losing bid prob-
ability, which is necessary because this is a first-price auction.

1) PROBLEM TRANSFORMATION
In first-auction, the bidder pays the equivalent of the ask-
ing price. At present form, (P2), C6 and C7 are complex
as there is no way to infer the private valuation of others.
Consequently, further decomposition into two sub problems
is required, shown below as.

Sub-Problem I (Constrained Optimization Problem):

) 0) bid,(t) _bid, (1)
(P3) + max U, (p(G,-,b) ’p(G_,-,h))

_ [blo% (1 + V(G[,b)x(G[,b)) }
_p([Gi,b) exp(g)

bid,
s.t HCS TA (1 +p<é;’_,,(,t))) > 7,
Sub-Problem Il (Unconstrained Optimization Problem):
. bid ~ask
C9 PGy = PGy

(P2), C6 and C7 have been successfully transformed into
a convex problem (Xu et al. 2010) with lower complexity.
Many proposals have suggested capturing users preference
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via the IPV model, the common-values model, the correlated-
values model and the almost-value model (Parsons et al.
2011). The IPV model was adopted because it fits rightly into
the study. (P3) and C6 can be successfully solved by using
normal constrained optimization standard procedures. It is
assumed there is enough information to stimulate asking price
game. The initial starting guess of the asking price can be
inferred from the matured TVWS secondary spectrum mar-
ket as currently implemented by Spectrum Bridge Inc. This
type of spectrum pricing scheme falls into the posted price
market scheme (Zhang et al. 2012). Interested SU players can
calculate the current bid price as follows:

PG, =R+, @)

where, R; connotes the reservation price that controls the
losing bid probability, €2; is the SU profit margin and must lie
[0, oo]. The profit margin adopted by any of the SU indicates
the level of market competitiveness.

2) EXISTENCE & UNIQUENESS OF NEP

The proposed game satisfies the requirements of the non-
cooperative game which are: uniqueness and NE point (NEP)
phenomenon. Adopting (Fudenberg & Tirole 1991) the solu-
tion concept must show that NEP exists if:

1) €, the support domain of U (p?g by ) is a non-empty,
convex and compact subset of a certain Euclidean space
RE and ‘
2) U (pflGdi b)> is continuous and quasi-convex in pl("Gd[_ by
Theorem 7 k{_Existence and Uniqueness): There exists a
«Di
unique NEP p; ¢ for the reduced price competition game
% xbid
and thus a unique NEP B(G, 5), P G, 1) for the original game.
Proof: A sketchy proof for the uniqueness of NE of
the original game can be achieved through the principles of
the log-transformed game of the original game to a reduced
perfect game ¢, denoted by the tuples:

.= (N, {p'(’g,b)} ; [log Y (P?g b))})

It is trivial to show that the log-transformed game, ¢ is a
subgame perfect and thus has at least one NE. It can be
achieved by invoking the property of monotone transforma-
tion (Cachon & Netessine 2004). Intuitively, the NE of the
log-transformed game is also the NE of the original game.
The proof of the uniqueness of NE is conducted by checking
the second-order condition to locate where it is negative:
821’%1 by’ -y 9°B(G,.0) TPGub) 5 pid, pid,
—l i

PG, b)p(G by Vie K

®

Eq. (8) implies that the log-transformed game has a unique
NE (Milgrom & Roberts 1990). The NE is the solution to the
utility optimization problem for each player given all other
players’ actions. Therefore, the Lagrange solution to (P.3) and
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C6 is obtained:

bid,
L (P<G[,b)f k)
blog, (1 + V(G XGib) — Ples by exp“’))
—AgG; (A (1 +P[(7é‘;1;’h) exp(e)) - 7Ti)

where A > 0, is a non-negative Lagrangian multiplier easily
obtained using the sub-gradient technique. After calculus
manipulation and respecting the Karush-Kuhn-Tucker (KKT)
conditions, the final expression for the bidding price is stated
as:

. 9

ia, | b+ vGprGn) 1 10
PGip) = exp(9) _x s (10)

Important observation made from (10) is that the spectrum
price and cheating are inversely related. Thus, the SU will
only bid from the PUs known not to engage in acts of cheat-
ing. In the context of SU players, the strategy can be updated
on the arrival of new market information. Consequently, there
is a need to implement iterative bidding price. Driven by
aesthetic, let the spectrum price be denoted simply as:

_ |:b(1 + VG XGib) 1}

11
exp® A (i

Then, adopting the Widrow-Hoff back propagation approach
in neural networks (Lee ef al. 1992), the iterative bidding
price is stated as:

Oy =0+ (1 —-a)p (CD — @(1)), (12)

where «, 8, @, T denote learning momentum, learning rate
coefficient target price and iteration respectively. With careful
parameter selection, the iterative bidding price is bound to
converge.

Sub-Problem Il (Independent Private Valuation Modelling)
In general, there is a trade-off between auction efficiency and
implementation. The main idea of IPV model is that buyer’s
bid cannot exceed the valuation of the commodity for which
the buyer bids, so the buyer has a positive gain after the
auction. Similarly, it is assumed that the asking price from
the seller must be higher than the valuation for the spectrum
to be sold leading to positive profit (Zhang et al. 2012). The
final price will be somewhere in between seller’s valuation
and buyer’s valuation for transmission rights to be granted.

The secondary spectrum market consists of short-term
spectrum leasing and it is expected to be characterized with
high liquidity. Hence, there is a need to reuse the previous
asking price, thereby lowering the auction bidding rounds.
Invariably, the TVWS secondary spectrum market will be
migrating from commodity trading to information trading,
as recently studied in (Luo et al. 2014). Therefore, this
work proposes the asking-price prediction model using a
structured stochastic gradient descent algorithm as illustrated
in Table 2 of Algorithm 1.
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TABLE 2. The stochastic descent algorithm for single parameter IPV
model.

Algorithm 1 PU asking price estimation algorithm via [PV
model

A

Input: ¢ ,step size &, u ,pf’Gidb), p sk

(Gi.b)

Output: Spectrum bidding price parameter estimation.
Set number of realizations ¢

foru=1: 7 do

for ¢ =1:1 do

R U S B
¢i,z’+l_¢t,‘r 5’4([)[]7( ‘.,b)¢z’ p(Gi,b)]

end

end

C. STAGE II- PU COMPETITIVE ASKING PRICE

This study does not consider the difference in the wholesale
and retail prices because they are not strategic for the PU.
Given pf‘;,’f) by and the cost, ¢, the PU compute the spectrum
profit (i.e., demand x asking price) per bandwidth stated

below (Luo et al. 2014):

V(P s)) = bl APy X0 ©) = e (13)

where A is the PU competitive indicator given as A € [0, 1).
PU can easily compute the instantaneous spectrum asking
price given the probability distribution of other PUs. This is
the cumulative distribution function, given as:

F (o) =Pr (i <rhue) 09
Pr(.) is the probability density function (pdf). p?},’t_" base) 18 the

base asking price. Hence, in competitive TVWS secondary
market, PU i will win the market when the other PUN quote
a higher spectrum price, given as

M

pr(piin) = (1-F (0)) 9

The superscript M indicates the cardinality of the PUNs.
Eq. (15) is the complementary cumulative distribution func-
tion (CCDF), which can only be evaluated when the PUs are
able to explicitly define the type of distribution parameter
involved. Common form of distribution function that can be
used include Rayleigh, Beta, Gamma and Gaussian. In any
case, the PUs must generate the first and second moments
before extrapolating the pdfs. Based on the above scenario,
a non-cooperative spectrum trading game tuple is denoted by

sk,
T= (N, {(b(P,-,b),P?;)I.,bD}ieK ; {Vi}ieK),

where:
o N is a set of game players (PUs)
. (b(pi,b),p?f,]f’b) is the strategy of player i, where

ask

b(P,-,b) > (0 and p(],—,b) >0
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o Vi is the payoff of player i
It is assumed that the strategy space of each PU is a compact
convex bound with minimum and maximum spectrum band-

widths, denoted by b‘g},i;f py and b?l’,e:’_"b), respectively, according
to

K
. {" b < B
i=1

bgm)fb@w)sbgzﬁieKL (16)

D. STAGE I-SPECTRUM AUCTION DESIGN AND
ALLOCATION
In this subsection, SMART and its characteristics are illus-
trated. The system consists of SUs bidding for channels in
their location. Each SU is assumed to have provided an
evaluation to generate a marginal preference for the chan-
nels. Gradient descent is an information-hungry algorithm,
indicating that more information leads to better performance.
This is logical because if a bidder evaluates a channel more
favorably, it will make more effort to gather information
about the PU to win the channel. Before presenting SMART,
certain definitions and rules are needed.

Definition 8 (Allocation Binary Variables): Allocated RBs
must not intersect (¥;x;, b; N b; = 0). Consider a binary vari-
able, (Vixj, bi N bj = 0) which defines allocation as:

1, if bi=b;

b; (k) =
i (k) 0, Otherwise

a7

The two most widely used bidding languages are the
exclusive-OR (XOR), and additive-OR (OR). The XOR
allows a bidder to submit multiple bids at once with one of
the bids standing the chance of clinching. While in additive-
OR (OR), the bidder submits multiple bids with the possibil-
ity that any non-intersecting combinations can win. The XOR
language was adopted.

Definition 9 (Conflict Graph): Given as G = (V,E),
is such that a vertex, V, denoting a TVBS, and an edge,
e = (i,j) € E, denoting a TVBD exist whenever SU i, j
interfere with each other if both transmit in the same epoch
on the same channel. The importance of conflict graph is that,
it enables the SB to generate adjacency matrix. Adjacency
matrix illustrates the interference map otherwise known as
critical neighborhood function.

Definition 10 (Bid Arrival Time): The SB collects the
SUs’ estimated asking price f)?j[k b) i.e. the bidding price and
matches it with the PUs asking price, p"j{_’f py- If two SUs have
the same bid, the tie is broken by sorting the bid arrival
time f)‘&k by using first-come first-serve (FCES) principle.
In practice, this could be implemented by inspecting the bid
arrival timestamp.

Theorem 11 (SMART is Truthful):

Proof: Auction mechanism can be considered as truthful
if the winning price is irrelevant, and the allocation strategy
optimal. It was shown in (Archer & Tardos 2001) that for
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TABLE 3. SMART algorithm.

TABLE 4. Simulation parameter settings.

Algorithm 4.2 Coordinated Double-sided Seal Bid Multiunit
First Price Auction Mechanism

ask bid,
P(pp)> PlG.p)> "™ "

Qutput: Spectrum allocation decision

Input:

1: Adjacent matrix generation
For i=1:n,do
The SB compute the location vector of the SUs, then
Generate adjacent matrix
G(V,E)
2: SU pfg“{ ) ascending order sorting

For i =1:n,do

Sort pbid

in nding order
Gl ascending orde

3: PU p(ai;fb) descending order sorting

For m =1: m, do
|_ Sort p(’;"b)( )in descending order

4: Matching
While
pf’c’;i”b)(n) = p(’lg’fb)(m) && no edge (E), then
Match
5: Contention resolution
Else if

bid __ ask
l_ PG, = Ple.b),

Resort by first come, first serve (Auction frame timestamp)
Match
6: Allocate spectrum bandwidth
7: Repeat 2-5

) && edge (F), then

End for
End while
End if
End

single parameter settings, using heuristics auction allocation
is necessary and sufficient for strategy proof auction. SMART
is driven by single parametric function. Hence, it is truthful.
To prove that SMART is truthful, it is necessary to show
that the pricing function is not the prerogative of the win-
ning player, comprised of the PU and the SU. Evidently,
the winning bid is a function of the bid submission time
and the demand of the conflict-graph neighbours. Moreover,
the punishment function introduced in the objective functions
of the players serve as a deterrence for any player intending
to cheat.

Price Monotonicity: For the case of monotonicity, if SU
wins a channel at bid ph.’ddg ), then at any epoch, it will still win
the channel provided it showed sufficient interest. SMART
does not depend on the winning bidder. The only way SU will
not win the channel can be when the aggregate demand of SU
increases by indicated by bid reporting time. It is assumed
that the marginal demand is weakly decreasing, leading to
monotonically decreasing demand.
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Symbol Quantity

No of RB 25
Code Rate 2/3
Encoder Convolutional Code
Modulation Scheme 16 QAM

bid 1
P (sti)
Decoder Viterbi
c specific magnetization
Pr 36 dBm
BitRate 239880
Modulated symbol time 66.7 us
Channel bandwidth 6 MHz

V. SIMULATION RESULTS

The simulation setting, scenario and results are defined and
presented in this section. The focus of this results is to the
highlight the superiority of our designed spectrum allocation
algorithm and its performance in terms of auction QoS, delay
profile and bit-error-rate. Table 4 highlights some of the
evaluation parameters.

=©—BS position | ~

Km
(=)

Critical neighbourhood

-20/- Area N
Critical neighbourhood
30|~ Area

~50 -40 -30 -20 -10 0 10 20 30 40 50

FIGURE 4. TVBS conflict graph.

A. SIMULATION SETTINGS

It is assumed that a single auctioneer handles bidders in
a large geographical area consisting of 20 TVBS (bidders)
in a square 100 x 100 km? randomly place. By using the
ITU-R propagation model the conflict graph as illustrated
in Figure 4 is generated.

Figure 4 indicates that TVWS networks in close proximity
will not be assigned the same TV channel. This is to avoid
internetwork interference which will be adversely affects the
QoS of TVWS end-users. Adopting IEEE 802.22 standard,
each 6 MHz channel bandwidth consists of 2048 subcarri-
ers. 28 subcarriers of which 4 are pilots channels forms a
TVWS sub-channel or 1 RB (IEEE 802.22 2010). To demon-
strate improvement on the instantaneous throughput defined
in (4), SMART is compared with similar algorithm named
VERUM (Manickam et al. 2014). The evaluation starts by
evaluating the impact of different step size values on bidding
price as derived in (6). It is seen that in Figure 5, it takes
five (5) iterations for the algorithm to converge when the
alpha value (learning rate) is 0.03.
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FIGURE 5. Distributed PU bidding price with alpha 0.03.
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FIGURE 6. Distributed PU bidding price with alpha 0.003.
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FIGURE 7. Distributed PU bidding price with alpha 0.0003.

As the learning rate decrease by 10 %, the convergence was
extended as shown in Figure 6. A similar effect could be seen
Figure 7. Convergence indicator is an important parameter for
distributed game theory helping to further reduce the bidding
rounds.

The convergence indicates that, despite the initial starting
point chosen by various players, NEP remains the only fea-
sible point in which no player lacks the motivation to seek
an alternative strategy. Clearly, the convergence is fast as it is
facilitated by careful choice of learning momentum, learning
rate coefficient and target price respectively. The important
lesson drawn from this simulation is that learning rate values
impact heavily on the convergence of TVWS bidding price
game.

Figure 8-11 is generated using Algorithm 2. As dis-
cussed earlier, SMART enhances auction efficiency (i.e. 4).
Figures 8 and 9 further examines the performance of different
spectrum allocation algorithms of SMART and VERUM.
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FIGURE 9. Sum Rate as a Function of No of RBs.

First, it can be seen that the proposed algorithm achieves a
higher efficiency than iterative VERUM of about 10%. This
is as a result of SMART being based on the principle of first-
price mechanism and the First-Come, First-Serve tie breaking
strategy. VERUM needs to address uncertainty regarding
valuation faced by bidders, which is an inherent feature of
auctions.

Hence, it is not an optimal strategy. It can be seen from
Figure 8 that as the number of bidders increases, the sum rate
drops by 20 %. The drive for this improved performance is
attributed to the fact SB expends many resources in resource
allocation algorithm which involves higher computing power
and complex algorithms. VERUM might not suitable for QoS
sensitive application as it might support the desired data rate.
Conversely, the sum rate increases as the RBs increases.
From another perspective, Figure 10 shows the sum rate of
TVBS as a function to SINR. At the beginning of the sim-
ulation, both SMART and VERUM suffers from low SINR
values. However, the values of SMART increases faster than
VERUM. At 70 % mark, both algorithms intercept. However,
VERUM’s efficiency starts to decline. The reason being the
complexity of allocating RBs to many TVBS as their number
increases.

Figure 11 compares SMART and VERUM with respect to
Bit-Error-Rate (BER). From this figure, it was observed that
the BER of SMART is higher that of VERUM. This implies
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FIGURE 10. CDF Comparison between SMART and VERUM.
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FIGURE 11. BER Comparison between SMART and VERUM.

that SMART is capable of sustaining certain QoS without
the need of retransmission and hence improves the TVBS
QoE. More importantly, SMART is bandwidth efficient when
compared to VERUM. In fact, the performance will increase
when as the Doppler Spectrum parameter decreases.

The outcome of any auction depends upon the way in
which participants bid. Thus, any analysis will have to model
this behavior. Single parametric functions cannot be explic-
itly modelled in implicit terms, and hence, a generic valuation
approach seems the most attainable. Each bidder employs a
bid function converting his/her valuation of the object into
a buyer function considering its previous bid and private
evaluation. At this point, there are several issues to take into
account influencing bidding behaviour.

The single-value parametric approach herein maps a bid-
der’s true valuation into reality. As seen from Figure 11
(Algorithm 1), as the bidder deploys more information,
the error in predicting the estimated PU’s asking price
decreases. Hence, the accuracy depends on the number of
data samples available to secondary users. Note, Figure 12,
is generated by implementing Algorithm 1. This is a curve
fitting approach widely used in statistics. The error between
the actual and estimate decreases with a number of data
samples. Based on Figures 8-10 above, it can be seen that
all the SUs can attain same bidding price irrespective of
their starting point under difference parameter estimation.
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FIGURE 12. Stochastic Primary-user Parameter Estimation.

Furthermore, the discrepancies from the results indicate as
the data set increases, the probability of predicting the asking
price increases with little error. The data set denotes interest
a bidder shows for a particular spectrum channel.

VI. CONCLUSION

In this paper, TVWS spectrum auction based on stochastic
learning for homogeneous channel quality was discussed.
The secondary spectrum auction is market driven and it is
essential to use market models to drive spectrum utiliza-
tion and subsequently, increase spectrum efficiency. It was
clearly seen that the proposed algorithm outperforms the
existing algorithm in TVBD QoS metrics. The superior per-
formance of the proposed scheme is attributed to the IPV
model which allocates spectrum resources to TVBS based on
market forces. In conclusion, this study tends to support the
general notion that spectrum efficiency can only be attained
by market strategies. Hence, TVWS secondary spectrum auc-
tion must be driven by the IPV model.
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