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Integrating Cortical Sensorimotor Representations Across Spatial Scales and Task 

Contexts 

Dylan Albert Royston, PhD 

University of Pittsburgh, 2019 

Abstract 
Our understanding of how brains function is stratified between two very different scales: 

mesoscale (what function a given cortical area performs), measured with tools like fMRI; and 

microscale (what a given neuron does), measured with implanted microelectrodes. While 

extensive research has been done to characterize brain activity at both of these spatial scales, 

describing relationships between these two domains has proven difficult. Identifying ways to 

integrate findings between these scales is valuable for both research and clinical applications, but 

is particularly important for intracortical brain-computer interfaces (BCIs), which aim to restore 

motor function after paralysis or amputation. In humans, the brain is much larger than the 

available microelectrode arrays, so determining where to place the arrays is a critical aspect of 

ensuring optimal performance. BCIs preferentially target primary motor and somatosensory 

cortices, due to their direct relationship to motor control and critical role in skilled and dexterous 

movements. However, despite these areas displaying a relatively ordered spatial organization, it 

is difficult to accurately predict the behavior of neurons recorded from a given area for several 

reasons. Mesoscale activity is overlapping, with activity relating to multiple different movements 

observed in a single area. Additionally, neurons have flexible behavior, displaying different 

“tuning” to similar behavior under different contexts.  

Here I present my research integrating neuroimaging-based cortical mapping with 

directly-recorded neural activity in human sensorimotor cortex. First, I examine how the large-



v 
 

scale organization of sensorimotor representations measured with fMRI is affected by contextual 

sensory information. I then examine how spatially separate neural populations recorded with 

intracortical microelectrode arrays encode different types of movement. Finally, I examine 

whether how population encoding changes to reflect contextual sensory information using the 

same task as in the fMRI study. Together, these results provide a foundation for reconciling 

neural activity across spatial scales and task contexts, and will inform the design and placement 

of more capable BCI systems. 
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1.0 Introduction 
 

 

Our arms and hands are the primary method by which we interact with and shape the 

world around us, and are capable of highly complex and precise movements. This ability is 

driven by many brain areas working together to combine sensory and cognitive information into 

motor commands. In humans, the precentral gyrus is known as the primary motor cortex (M1) 

due to the predominance of its descending anatomical projections (Dum & Strick, 1991) as well 

as the direct relationship between its activity and generated movement (Wilder Penfield & 

Boldrey, 1937). Primary motor cortex, as well as many other sensorimotor brain areas, often 

display large-scale somatotopic spatial organization, where localized activity relates to 

movement of specific body parts (Cunningham, Machado, Yue, Carey, & Plow, 2013; W 

Penfield & Rasmussen, 1950). This organization appears to be partially reflected in the activity 

of individual neurons, such that neural activity recorded from “arm and hand areas” appear to 

correlate with the kinematics of intended arm movements (Georgopoulos, Kalaska, Caminiti, & 

Massey, 1982) and can be decoded to enable the control of computer cursors and neuroprosthetic 

limbs (Jarosiewicz et al., 2014; Kim, Simeral, Hochberg, Donoghue, & Black, 2008; Wodlinger 

et al., 2014). However, the activity of individual neurons throughout M1 are also known to 

display highly variable modulation during different movements (Griffin, Hoffman, & Strick, 

2015; Kakei, Hoffman, & Strick, 1999; M. Schieber & Hibbard, 1993a), suggesting that single 

neurons may provide only a limited sample of the complex information encoded by neural 

populations.  
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This dichotomy highlights one of the central challenges in describing the function of 

specific cortical areas, which is that the neural correlates of cognition and behavior inherently 

operate across multiple spatial scales. A given cortical area perform certain computations, or 

participates in generating certain behaviors, as a result of its component circuits- the activity and 

anatomical connections of individual neurons. There is evidence describing the physiological 

relationship between recorded activity at these different scales (N K Logothetis, Pauls, Augath, 

Trinath, & Oeltermann, 2001; Nikos K. Logothetis & Wandell, 2004; Siero et al., 2014), but few 

results informing their computational relationship (i.e. what imaging activity predicts about the 

behavior of neurons in an area and vice versa). Therefore, if we wish to determine how neural 

populations in a specific cortical area encode information, we should consider both its meso-

scale organization: the coarse activity of many neurons together, such as that measured with 

noninvasive neuroimaging, and the detailed activity of individual neurons within that area. 

 

 

1.1 Recording Neural Activity 

 

As individual neurons are generally considered the basic computational unit of the 

nervous system, the simplest way to study brain activity is to measure the activity of a given 

neuron. We can observe the activity of individual neurons by implanting microelectrodes within 

cortical tissue. These electrodes measure the extracellular voltage of local neural activity, 

composed of signals from nearby neural structures. This voltage signal can be processed to 

identify discrete action potentials (colloquially, “spikes”), which correspond to axonal output, 

and local field potentials (LFPs), which relate to broad changes in dendritic input (Nikos K. 
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Logothetis, 2012). Therefore, by identifying and analyzing these voltage signals, we can measure 

the information output of recorded neurons. With current human-implantable Utah 

microelectrode arrays (Maynard, Nordhausen, & Normann, 1997), it is possible to record from 

hundreds of neurons simultaneously in the human or monkey brain. While the ability to record 

directly from individual neurons at sub-millisecond temporal resolution offers significant 

advantages, these arrays can only sample from a relatively small (16mm2) area of cortex. 

Conversely, neuroimaging methods allow for the recording of activity across large 

portions of the brain, albeit with limited spatiotemporal resolution. Functional magnetic 

resonance imaging (fMRI) can be used to quantify the level of blood oxygenation (i.e. the BOLD 

signal) in a relatively small volume of cortex (~2mm2). This technology can thereby allow us to 

indirectly measure the amount of LFP modulation and therefore dendritic input (N K Logothetis 

et al., 2001; Nikos K. Logothetis, 2012; Nikos K. Logothetis & Wandell, 2004; Siero et al., 

2014). While the BOLD signal relates more closely to input activity, our understanding of 

intracortical signals in humans is driven primarily by interpreting spiking output activity, which 

is directly responsible for generating movement and is therefore more closely related to 

movement parameters (Perel et al., 2015; Todorova, Sadtler, Batista, Chase, & Ventura, 2014). 

Therefore, analyzing sensorimotor activity using both fMRI and intracortical electrophysiology 

can allow us to study neural activity at a range of spatial and temporal scales, providing a basis 

for integrating computational results from separate domains of research. 
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1.2 Role of Sensorimotor Cortex in Generating Movement 

 

One of the brain’s primary purposes is to control the body as it moves through and 

interacts with its environment. In order for activity in the brain to drive muscle activity and 

generate movement, it must be transmitted “downstream” to the spinal cord and periphery 

(body). Therefore, we can define a cortical area as being “motor-related” if it contains neurons 

whose axons project out of the brain and down the spinal cord. Using viral tracers, anatomical 

studies in non-human primates have identified these descending corticospinal neurons in 

multiple cortical areas, providing evidence that movement is controlled by a widespread network 

of neural circuits (Dum & Strick, 1991; Picard & Strick, 1996; Jean-Alban Rathelot, Dum, & 

Strick, 2017). The precentral gyrus contains the majority of these descending white-matter tracts, 

supporting its role as the “primary motor cortex”. 

The significance of M1 in controlling movement is also supported by studies examining 

the activity of directly recorded single neurons. Georgopolous et al recorded from individual 

neurons in the “hand area” of M1 while macaques used their arms to perform a center-out reach 

task. They found that spiking activity was clearly modulated during arm movements, and that the 

behavior of individual neurons could be modeled with a “tuning curve”, firing faster during 

reaches in a particular direction and slower during reaches in the opposite direction 

(Georgopoulos et al., 1982). Thus, by recording from multiple neurons and calculating a 

“population vector”, it is possible to decode the direction of a movement purely by examining 

M1 activity (Georgopoulos, Schwartz, & Kettner, 2009). This principle of modeling linear 

relationships between movement direction and single-neuron firing rate has since been adapted 

and implemented in human participants, providing them with a brain-computer interface (BCI) 
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able to control the movement of computer cursors and robotic limbs (Collinger et al., 2012; Kim 

et al., 2008; Wodlinger et al., 2014) and demonstrating a direct relationship between M1 neural 

activity and the cortical representation of intended movement kinematics. However, these results 

are based on activity sampled during simple and highly-trained movements, from an extremely 

small portion of M1 during a limited range of movements. There remains an open question of 

how motor cortical activity relates to the varied parameters of complex ongoing movement. 

These population-vector results illustrate how single-neuron activity relates to end-point 

velocity, but other studies have demonstrated similar relationships to various movement-related 

variables such as grasp force (Intveld, Dann, Michaels, & Scherberger, 2018) and hand posture 

(Schaffelhofer, Agudelo-Toro, & Scherberger, 2015). It remains unclear how the activity of 

neurons in different areas of M1 coordinate to encode these and other parameters of ongoing 

movement. 

 

 

1.3 Spatial Organization of Sensorimotor Representation in M1 

 

Our understanding of the relationship between cortical activity and movement generation 

(described above) is robust, but built on recordings from spatially limited areas of cortex. 

Determining how the spatial organization of activity within M1 enables dexterous motor control 

remains a core question in neuroscience. Early studies by Penfield et al revealed orderly spatial 

organization, known as somatotopy, in M1/S1 by showing that stimulating different areas evoked 

movement of different body parts, often represented by a clear and orderly homunculus (W 
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Penfield & Rasmussen, 1950; Wilder Penfield & Boldrey, 1937). Based on these results, we 

might imagine that neurons in a “hand” area would be more active during hand movement 

compared to those from an “arm” area. However, even the authors here suggested that this is a 

simplified map of very overlapping patterns.  

Many studies take large-scale somatotopy as a canonical truth, referring to anatomical 

“hand areas” (especially in non-human primate research) based on the movements evoked by 

stimulation and the peripheral targets (retrograde tracers from arm/hand muscles eventually mark 

neurons in this area of M1 (as well as multiple other brain areas, illustrating that motor control 

involves multiple cortical areas))(Dum & Strick, 1991). In humans, representations of specific 

body parts in M1 are often identified using fMRI, where areas displaying increased activity 

during movement production are labeled as their representation. Many neuroimaging studies 

investigating the spatial organization of M1 activity have found that while there does appear to 

be a large-scale somatotopic gradient, there is also substantial overlap between activity generated 

during different movements (Beisteiner et al., 2001; Choe et al., 2015; Dechent & Frahm, 2003; 

Hlustik, 2001; Lotze et al., 2000; Plow, Arora, Pline, Binenstock, & Carey, 2010). 

While we have evidence that neurons from a “hand area” display activity related to hand 

movements, cortex is large and it is not clear how activity in a “hand area” differs from that in an 

“arm area”, i.e. the degree to which M1 displays “spatial specialization”. Indeed, it has been 

shown that neighboring neurons in the “hand area” display responses to movement (kinematics), 

muscles (EMG activity), and both (J.-A. Rathelot & Strick, 2006), indicating that even these 

basic parameters are not represented in strictly separated cortical areas.  

Marc Schieber reviewed evidence of spatial organization in M1 and argued that rather 

than an orderly spatial mapping between cortex and muscles, M1 demonstrates distributed 
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organization with redundancy and overlaps between representations (M. H. H. M. H. Schieber, 

2001). He argued that while the cortical sheet is 2D, the “number of dimensions represented in 

M1 is arguably much more than three, if each muscle, each degree of freedom at each joint, and 

each kinematic or dynamic parameter of movement constitutes a possible dimension”. 

Furthermore, based on the demonstrated anatomical connectivity of M1 neurons, he suggested a 

“distributed system, networked by convergence, divergence, and horizontal connections”, where 

frequently-used combinations of muscle activation, and therefore movement, can be represented 

redundantly. This interpretation suggests that the conventional model of somatotopy may be one 

dimension of representation, which overlaps with other gradients; therefore, a given area of 

cortex may encode multiple parameters, and a given parameter may be encoded similarly by 

multiple areas. 

This view is supported by anatomical studies; Peter Strick et al have shown that the upper 

limb representation (as defined by conventional anatomical limits) is subdivided into “old and 

new M1” in an anterior/posterior axis based on the prevalence of direct corticomotoneuronal 

(CM) connections (J.-A. Rathelot & Strick, 2009). “Old M1” lacks direct CM neurons, projects 

to “integrative mechanisms of the spinal cord”, is phylogenically older, and more related to 

coarse movements, while “New M1” has direct CM neurons, is phylogenically newer, and allows 

for refined control of skilled/precise movements (particularly of individual fingers). However, 

even these CM neurons, which directly affect muscle activity, display different activity when 

their target muscle is used in different contexts, demonstrating “functional tuning” even in 

directly-connected neurons (and providing evidence against “hard-wired” interpretations of 

motor encoding) (Griffin et al., 2015). Anatomical and functional studies have also demonstrated 

the presence of “parallel cortical networks”, where different areas of M1 contain anatomical 
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connections to and from other cortical areas (premotor and parietal) in “clusters” (Dea, 

Hamadjida, Elgbeili, Quessy, & Dancause, 2016; Hamadjida, Dea, Deffeyes, Quessy, & 

Dancause, 2016). Furthermore, an extension of early stimulation studies showed that while short 

bursts of stimulation in a specific area of cortex evoked small movements, longer stimulation 

trains evoked more complex movements (Graziano, Taylor, & Moore, 2002). In other words, 

rather than simply causing muscle contraction, activity in a specific area of M1 evoked 

stereotyped and complex movements, suggesting that “actions” can be encoded in small areas of 

cortex (Graziano, 2016). 

Together, these results indicate that while a large-scale somatotopic organization is 

present in M1, it is a simplified (1-dimensional) interpretation of what we now know to be an 

overlapping (high-dimensional) combination of multiple “layers” of organization. Based on this, 

we can expect that neurons recorded from an area shown to be active in fMRI (for example) 

during finger movement will likely display finger-related modulation; but since movement 

representations are complex and widespread, they are also likely to be modulated during other 

movements. This distributed organization poses a challenge for efforts to integrate our 

understanding of both large-scale organization (how different functions are represented by 

different areas of cortex) and micro-scale computation (how different functions are represented 

by a specific population of neurons).  

This question is particularly relevant to the development of implanted BCI systems, 

which rely on placing a limited number of recording devices in cortical areas that produce 

activity relevant to the desired control parameters. Some groups have investigated the feasibility 

of using presurgical imaging to map the behavior-related activity underlying BCI control for 

planning purposes (Collinger et al., 2014; Yoo et al., 2018). To maximize the utility of this pre-
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surgical imaging and planning, it is important to improve our understanding of the relationship 

between the large-scale activity recorded using neuroimaging and the fine-grained activity 

recorded using electrophysiology. Additionally, the complex organization observed in M1 

indicates that it may be both important and valuable to investigate the differences and similarities 

between the behavior of univariate measures (such as simple task-related neuroimaging and 

single-neuron recordings) and multivariate models which integrate the concept of high-

dimensional representations. 

 

 

1.4 Analyzing Population-Level Activity Patterns 

 

Much of our understanding of the neural correlates of cognition and behavior (including 

the work described above) focuses on analyzing the activity of individual neurons. As discussed 

previously, single neurons are often thought of as the “basic computational unit” of the nervous 

system. Correspondingly, much of the research aiming to identify relationships between motor 

cortex activity and movement parameters is framed in a “representation model”, which posits 

that the temporal firing activity of single neurons represents the temporal profile of movement 

kinematics and/or muscle activity. Experimental results based on this representational model 

have proven valuable and enabled the development of highly capable BCI systems. However, as 

discussed above, this framework may be insufficient to fully explain the encoding of multivariate 

movement parameters.  
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Alternatively, modern theories of neural computation have shifted away from exclusively 

interpreting the activity of individual neurons, instead focusing on describing the coordinated 

activity of neural populations. This framework posits that populations of neurons serve to 

generate an overall pattern of descending activity by functioning as a distributed system (Shenoy, 

Sahani, & Churchland, 2013). As the population-level activity pattern encodes the kinematic and 

muscle parameters necessary for generating movement, these variables may be observed in the 

activity of individual neurons within the population. These representational models utilize 

dimensionality reduction techniques, which identify patterns of variance (i.e. principal 

components, neural factors) in temporal activity shared across populations of neurons, to identify 

the degree to which each neuron displays each component. We can then use this transformation 

to describe the shared population activity as a single “neural state”, i.e. the position of each 

timepoint in a space defined by the components which explain the largest portion of the overall 

observed variance in neural activity.  

Focusing on this high-dimensional perspective reveals many novel insights into how 

populations of neurons use coordinated activity to generate and regulate movement production. 

State-space models have been used to reveal how complex task information (object shape, hand 

posture) is represented differently across sequential cortical areas in the motor-control network 

(parietal, premotor, M1) (Menz, Schaffelhofer, & Scherberger, 2015; Schaffelhofer et al., 2015; 

Schaffelhofer & Scherberger, 2016), provide a potential explanation for how kinematically-

similar movements can be uniquely represented in the same cortical area through “untangled” 

population dynamics (Russo et al., 2018), and determine the natural constraints on which types 

of behavior can be learned (Sadtler et al., 2014). 
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Additionally, similar population-level analyses have also proven valuable for interpreting 

large-scale neuroimaging data. Multiple studies investigating the spatial distribution of activity 

during individual finger movements have observed that per-finger BOLD activity is broadly 

somatotopic but displays high variability between individuals (Ejaz, Hamada, & Diedrichsen, 

2015; Kikkert et al., 2016). Analyzing the “pairwise digit representational similarity of 

multivoxel patterns”, i.e. quantifying the statistical distance between the high-dimensional neural 

activity throughout M1/S1 (Kriegeskorte, 2008; Oosterhof, Wiestler, Downing, & Diedrichsen, 

2011), revealed a “representational structure” which reflected the statistics of natural finger 

movement and was consistent across individuals. While univariate BOLD activity demonstrated 

some spatial organization, interpreting multi-voxel activity as components of a unified 

population-level pattern revealed a more complex and behaviorally-relevant representation of 

movement. 

 

 

1.5 Mapping Cortical Sensorimotor Representations in Chronic Spinal Cord Injury 

 

As discussed above, intracortical brain-computer interfaces (BCIs) have been 

successfully used to allow individuals with tetraplegia due to spinal cord injury (SCI) to control 

prosthetic arms and hands (Collinger et al., 2012; Hochberg et al., 2006; Wodlinger et al., 2014). 

In addition to their clinical value, these BCI systems also provide an opportunity to directly study 

the behavior of populations of neurons in the human cerebral cortex during natural motor 

control. However, as participants in such studies are recruited specifically for clinical trials as a 
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result of their impairment conditions, it is important to consider the potential neurological effects 

of chronic tetraplegia when interpreting such results. In chronic SCI, descending efferent motor 

connections and ascending somatosensory afferent connections are physically disrupted, which 

can lead to anatomical and functional reorganization throughout the nervous system, but 

primarily in subcortical structures (Jones & Pons, 1998). Numerous neuroimaging studies have 

found that while somatotopic sensorimotor representations are generally preserved after SCI (i.e. 

significant activity is still observed during natural motor tasks), they often display higher 

variability in magnitude and spatial extent (K. J. Kokotilo, Eng, Curt, & Boyd, 2009; Urbin, 

Royston, Weber, Boninger, & Collinger, 2019). There is evidence that these representations may 

undergo a degree of reorganization, such as activity during preserved movements extending into 

cortical territory previously relating to impaired movements (Henderson, Gustin, Macey, 

Wrigley, & Siddall, 2011) and decreases in cortical activity during completely impaired but not 

partially impaired movements (Foldes, Weber, & Collinger, 2017). However, another study in 

upper-limb amputees revealed that the underlying structure of disconnected finger 

representations was largely preserved (Kikkert et al., 2016), suggesting that the use-based 

structure of sensorimotor representations are generally intact even after chronic disconnection. 

Additionally, the use of cortical sensorimotor activity to operate limb-related intracortical BCIs 

(Wodlinger et al., 2014) and drive muscle-specific stimulation to restore motor function (Ajiboye 

et al., 2017) suggests that the detailed encoding of intended limb movements is preserved after 

injury, further supporting the study of natural movement encoding in BCI participants with 

tetraplegia. 

 



 

13 
 

1.6 Task Context and Multisensory Enrichment 

 

Although the fundamental structure of cortical sensorimotor representations appears to be 

preserved after chronic SCI, they often display increased variability in the magnitude and spatial 

extent of activity (K. Kokotilo, Eng, & Curt, 2009; Urbin et al., 2019). This variability may 

relate to the prolonged lack of sensory feedback during movement. Studies of arm movements in 

patients without proprioception have shown that without feedback, reaching movements become 

less controlled and more variable, indicating that the continuous somatosensory feedback is 

involved in constraining ongoing movements (Gordon, Ghilardi, & Ghez, 1995). This variance 

was especially pronounced when patients could not see their limbs, but reduced with both simple 

cursor feedback and vision of their arm’s position prior to movement (Ghez, Gordon, & Ghilardi, 

1995), indicating that visual information alone could be integrated and used to control the 

kinematics of intended movement. These results suggest that multisensory information may be 

integrated by the motor control network and used to maintain the overall pattern of activity 

necessary for limb control by selectively enhancing relevant activity while suppressing 

unnecessary variance (Mahan & Georgopoulos, 2013).  

As this multisensory feedback is disrupted in SCI, it may be possible to leverage 

additional sensory cues to restore this feedback and increase the robustness of movement 

encoding. This idea is supported by neuroimaging results demonstrating that individuals with 

SCI display more activity in widespread sensorimotor areas during attempted movement 

compared to imagined (Hotz-Boendermaker et al., 2008), suggesting that these cortical networks 

may recruit additional neural resources when processing incongruent motor and sensory signals. 

Other studies examining the embodiment of artificial limbs have shown that both sensorimotor 
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activity and subjective embodiment are maintained by congruent visual and somatosensory 

stimulation, but disintegrate when the sensory cues are conflicting,  demonstrating the 

significance of such multisensory information for limb representation (Gentile, Guterstam, 

Brozzoli, & Ehrsson, 2013). Additionally, recent results have shown that somatosensory finger 

representations evoked through purely visual stimulation (Kuehn, Haggard, Villringer, Pleger, & 

Sereno, 2018) and active movement (Sanders, Wesselink, Dempsey-Jones, & Makin, 2019) are 

both spatially and structurally similar to those elicited through tactile stimulation. These results 

indicate that the underlying structure of sensorimotor representations are robust and inherently 

multisensory, supporting the potential utility of contextual sensory cues to drive strong 

movement representations.  

As discussed above, M1 receives input from multiple premotor and parietal areas (Dea et 

al., 2016), suggesting that higher-order multisensory and cognitive processes may affect activity 

in M1. Several studies examined the activity of neural populations from these three areas while 

macaques performed reach-to-grasp tasks towards a variety of objects and showed that visual 

object properties are sequentially transformed into motor commands for specific hand postures 

(Menz et al., 2015; Schaffelhofer et al., 2015; Schaffelhofer & Scherberger, 2016), 

demonstrating that context-related visual information informs activity in M1. Additionally, 

recent results have shown that during neuroprosthetic limb control, M1 neurons displayed 

increased activity when reaching towards an object compared to similar reaches to empty space 

(Downey et al., 2017), and that providing task-related tactile information via intracortical 

microstimulation (Flesher et al., 2016) in conjunction with visual feedback improves arm control 

compared to purely visual feedback (Flesher et al., 2019). Together, these results suggest that 
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multisensory contextual information can be used to facilitate robust limb representations in 

individuals with SCI. 

 

 

1.7 Summary of Work 

 

The spatial organization of movement-related activity in primary motor cortex has been 

studied extensively in humans using noninvasive neuroimaging and in non-human primates 

using intracortical electrophysiology. While large-scale somatotopic organization has been 

frequently observed in neuroimaging results, recordings from single neurons indicate that 

sensorimotor encoding is widely distributed across M1. Additionally, individual neurons display 

variable tuning to different movement parameters based on task context, suggesting that neural 

populations display more complex computational organization than previously thought. In order 

to reconcile findings from these disparate fields, it is necessary to develop interpretive 

frameworks that integrate the behavior of neural populations from cortical areas displaying 

different large-scale patterns of activity. Elucidating the nature of these multi-scale relationships 

is particularly important for understanding neural activity in humans, which are capable of 

performing dexterous sensorimotor tasks in highly variable behavioral contexts.   

The recent development and clinical testing of intracortical brain-computer interfaces in 

human participants provides a unique opportunity to examine the activity of human neural 

populations. This dissertation seeks to identify novel insights into the correspondence between 

large-scale cortical organization and the function of spatially separate neural populations in 
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human M1 during arm and hand movements under various sensory contexts. First, functional 

neuroimaging was used to characterize how the spatial organization of activity in primary 

sensorimotor cortex is affected by contextual multisensory enrichment of different upper-limb 

movements and sensations (Chapter 2). Next, intracortical recordings from human motor cortex 

were compared during arm and hand tasks to determine how spatially separate neurons 

contribute to encoding different movements (Chapter 3).  Finally, a separate set of intracortical 

recordings were compared during multisensory enrichment of different upper-limb tasks to 

determine whether spatially separate neural populations are affected by multisensory information 

(Chapter 5).  
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2.0 Mapping Mesoscale Sensorimotor Representations Using Enriched Covert Imagery 
 

 

The work described in this chapter focuses on determining how cortical activity during 

motor and sensory imagery is affected by supplementary multisensory cues. Determining how 

sensory information influences activity in sensorimotor cortex is vital to understanding the neural 

correlates of goal-driven behavior. It is also particularly relevant for integrating neuroimaging 

and electrophysiological domains. Text for this chapter is adapted from a manuscript in 

preparation. 

 

 

2.1 Introduction 

 

There is significant scientific and clinical value in mapping the cortical activity 

underlying motor and sensory imagery, particularly in individuals with impairments such as 

spinal cord injury. This activity can be used as a biomarker for identifying and tracking 

rehabilitative treatments (Urbin et al., 2019), as well as identifying desirable locations for 

implantable BCI systems (Collinger et al., 2014; Yoo et al., 2018). As such systems generally 

target the primary motor (M1) and somatosensory (S1) cortices, there is a specific need to 

develop effective ways to map the spatial distribution of activity within primary sensorimotor 

cortex (SMC). Due to the “canonical” somatotopic organization frequently observed in SMC 

(Wilder Penfield & Boldrey, 1937), many studies use simple “localizer” tasks to map the areas 

which are most responsive to a given movement/sensation/body part (Alkadhi et al., 2002). 
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However, there is no current “standard” behavioral task used to identify specific representations; 

different studies use a wide range of different paradigms to elicit sensorimotor activity (K. J. 

Kokotilo et al., 2009). Interpreting activity elicited during different behaviors as the “same” 

representation can cause uncertainty about what information is represented in a given brain area. 

Mapping sensorimotor representations in patient populations compounds these 

challenges, due to impaired ability to overtly perform motor and sensory tasks. In individuals 

with spinal cord injury (SCI), there is disagreement about whether SMC remains active during 

engagement of impaired body parts. While there is evidence that the nervous system can 

“reorganize” and display altered sensorimotor activity (Urbin et al., 2019) after SCI, studies 

demonstrating altered activity during attempted or imagined movements often instruct subjects to 

perform self-paced movements without any visual or temporal cues (Hotz-Boendermaker et al., 

2008). Many results have demonstrated that SMC activity can be affected by goal-related 

multisensory information (Kuehn et al., 2018; Schaffelhofer & Scherberger, 2016), meaning that 

in chronic SCI, it may be possible to enhance individuals’ subjective embodiment and cortical 

activity by supplementing motor and sensory imagery tasks with additional multisensory cues 

(Gentile et al., 2013; Ratcliffe & Newport, 2017). 

Here we seek to determine how large-scale sensorimotor representations in SMC are 

affected by goal-directed multisensory information (i.e. “enrichment”) by developing and testing 

an effective paradigm to elicit sensorimotor activity during covert motor and somatosensory 

imagery supplemented with additional sensory cues, such as visual object interaction (Fabbri, 

Stubbs, Cusack, & Culham, 2016) and auditory and tactile timing cues. The primary goal of this 

study was to quantify changes in the volume, magnitude and location of sensorimotor cortex 

activity by comparing fMRI activity from able-bodied control subjects and participants with SCI 
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during tasks enriched with goal-related visual, auditory, and vibrotactile stimulation. We 

hypothesized that enriching sensorimotor imagery tasks with context-related sensory cues 

(visual, audio, and vibrotactile) would increase the volume and magnitude of cortical activity in 

both AB controls and participants with SCI. 

2.2 Methods 

2.2.1 Participants 

In order to examine sensorimotor enrichment, we collected fMRI data from 8 participants 

with chronic tetraplegia due to SCI (see Table 1 for demographics) and 20 age-matched able-

bodied control subjects while they performed a novel covert imagery task.  

Table 1: Subject demographics for SCI group 

Subject Age Years since injury ASIA Level ASIA Scale 

CMS01 30 12 C3 A 
CMS02 48 20 C3 A 
CMS03 47 15 C4 A 
CMS04 24 9 C4 B 
CMS06 30 5 C5 B 
CMS07 23 6 C6 B 
CMS09 52 25 C5 B 
CMS13 60 11 C4 C 
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2.2.2 Behavioral task design 

The goal of this experiment was to determine how varying levels of multimodal sensory 

information alter the sensorimotor activity generated during motor and somatosensory imagery. 

To that end, we created a novel behavioral paradigm based on enriching simple motor imagery 

with additive levels of goal-directed sensory information (Figure 1). To identify cortical areas 

likely to be active during enriched imagery, we first designed “Overt” conditions for each task 

type. The Overt-Motor task consisted of 5 movements (lip purse, wrist flex, hand grasp, finger 

tap, ankle flex), cued with simple looped videos of each movement, which all subjects were 

instructed to attempt to perform (i.e. “imitate”) as much as they were physically able. The Overt-

Sensory tasks consisted of 2 somatosensory stimuli (passive wrist movement, fingertip brushing) 

which were delivered while subjects were instructed to focus on the sensation. 

To examine the effects of multisensory enrichment, we then designed 5 “Covert” 

paradigms which consisted of 3 motor imagery tasks (wrist flex/extend, hand grasp, sequential 

finger taps) and 2 somatosensory imagery tasks (passive wrist movement, tactile fingertip 

stimulation). Each of these Covert imagery tasks consisted of 4 enrichment conditions: Simple 

(unenriched), Goal (visual context), Audio (Goal + auditory timing cue), and Stim (Goal+ Audio 

+ vibrotactile stimulation). The “Simple” conditions were defined by videos of simple rhythmic

movements being performed against a featureless background. “Goal” conditions were defined 

by videos of similar movements directed towards a specific object/goal. “Audio” conditions were 

defined by the “Goal” condition videos and additional auditory cues synched to the moment of 

peak object contact. “Stim” conditions were defined by the “Audio” stimuli (video + sound) and 

additional vibrotactile stimulation synched to the moment of peak object contact, delivered using 
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piezoelectric stimulators (Dancer Designs). Since subjects with SCI were generally unable to 

detect somatosensory stimuli on the hand, we placed these stimulators on the clavicle (where 

sensation was generally preserved) in order to ensure the detection of timing-related tactile 

information. To control for potential differences in the location of this “referred” sensation, the 

AB subject group was split into two subgroups based on the location of the vibrotactile 

stimulation: “hand sensation”, where stimulation was delivered to the hand; and “referred 

sensation”, where stimulation was delivered to the clavicle.  
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Figure 1: fMRI behavioral paradigm. Multisensory enrichment stimuli used in the fMRI behavioral paradigm to cue motor 
(finger tap, wrist flex, hand grasp) and somatosensory (fingertip sensation, passive wrist movement) imagery.  
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fMRI data were collected while subjects viewed stimulus videos of rhythmic movements 

being performed and were instructed to simulate the movements/sensations in time with the 

videos. For able-bodied subjects, who were able to physically perform the movement tasks, we 

wished to examine the effects of the goal-directed enrichment without involving the actual 

somatosensory feedback inherently produced during overt movement production. As such, the 

AB subject group was instructed to attempt to physically execute the “Overt” movements, and to 

imagine (without actually moving) all “Covert” movement conditions. For subjects with SCI, 

who all had impaired hand function, we wished to elicit the maximum amount of sensorimotor 

activity. As such, the SCI subject group was instructed to attempted to physically execute (as 

much as they were able) both Overt and Covert movement tasks. All subjects were asked to 

verbally confirm their understanding of each task’s movement instruction before and after the 

scans. 

2.2.3 Scan parameters 

Imaging data was collected using a 3T Siemens Trio scanner with a 32-channel head-coil. 

Anatomical images were collected using T1-weighted scans at 1mm3 isovoxel, 176 slices, 

256x256 in-plane resolution. Whole-brain functional data were collected using T2*-weighted 

echo-planar imaging (EPI) sequences (TR=2000ms, TE=29ms, voxel size = 1.964x1.964mm, 

slice thickness=2mm, image dimensions=112x112x60mm, 20 slices, GRAPPA multi-band=3). 



24 

2.2.4 fMRI processing 

Functional MRI data were processed through SPM12 using a standard set of 

preprocessing operations; functional data were spatially realigned to the mean using a rigid-body 

transformation, co-registered to the anatomical image, segmented into gray matter/white 

matter/CSF, normalized into MNI-152 space , and spatially smoothed with a 6mm FWHM 

Gaussian kernel. We performed a general linear model (GLM) analysis to produce per-

movement activity maps for each subject. Movement conditions were fitted with a boxcar 

predictor and convolved with a canonical hemodynamic response function, with motion nuisance 

regressors subtracted. This GLM can be summarized by the following equation: 

BOLD = (D ∗ HRF) ∗  β + E (2 − 1) 

Each voxel can be described with a time-series (BOLD), representing the recorded fMRI 

signal. The GLM seeks to explain this signal by identifying the regression beta-value (β) relating 

to the design matrix (D), convolved with a hemodynamic response function (HRF) accounting 

for the physiological delay between neural activity and BOLD signal (Devor et al., 2005), and 

removing any motion-related signal (E). This model produces a 3D image where each voxel is 

related to a given task by its beta-value, which can then be used for subsequent analysis, and a T-

statistic (student’s t-test) conveying its significance. 
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2.2.5 Group-level image statistics 

Task-related activity was quantified by extracting voxel data from the anatomically-

defined regions of M1/S1 (i.e. the precentral and post-central gyri, which together include the 

banks of the central sulcus) (Desikan et al., 2006; Tzourio-Mazoyer et al., 2002). In order to 

further segment the spatial distribution of activity in these areas, we divided each ROI into its 

dorsal and ventral halves, and report quantitative values (activation volume and amplitude) 

separately for each aspect. We defined “activation volume” as the number of voxels with a T-

statistic above a given threshold. Since the group-level T-statistic images were calculated 

independently (i.e. each condition is generated from a separate set of beta-coefficients) and 

yielded slightly different distributions, they each displayed a different “significance threshold” as 

calculated using the false-discovery rate (FDR, p< 0.05). To allow data from different conditions 

to be compared, we defined a common significance threshold as the mean of each condition’s 

individual threshold, in this case T>2. I then defined “activation amplitude” as the distribution of 

beta-coefficient values from the voxels significantly active in each condition. Since these beta-

coefficient values correspond to the degree of correlation between a voxel’s BOLD time-series 

activity and movement periods relative to rest, they can be either positive or negative (i.e. 

correlated or anti-correlated). However, since our hypotheses are structured to be one-directional 

(i.e. determining whether an area displays increased activity during a given task), we focused on 

only comparing the distributions of significantly positive beta-coefficient values. This procedure 

means that the number of samples (beta-coefficients) is different in each condition; thus, in order 

to determine significant differences between these distributions, we determined between-

condition significance using the Wilcoxon rank-sum test. 
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2.2.6 Quantifying between-condition enrichment 

While the technique of calculating group-level images are valuable for estimating the 

overall task-related activity during a given condition, it is less ideal for assessing differences 

between similar conditions. In order to determine how the addition of contextual sensory 

information affected activity during a specific sensorimotor task, we focused on analyzing this 

“enrichment effect” directly. For each individual subject, we calculated the difference in beta-

coefficient values between each pair of conditions:  

∆𝛽𝛽 =   ∆𝛽𝛽 (𝐶𝐶) −  ∆𝛽𝛽 (𝐶𝐶 − 1) (2 − 2) 

To determine how increasing levels of enrichment altered activity, differences were 

calculated between additive enrichment conditions (i.e. Goal – Simple, Audio – Goal, etc). This 

produced 6 enrichment images for each subject, which were then averaged across subjects to 

create 6 group-level enrichment images. In this image, each voxel’s value describes the across-

subject enrichment effect between conditions.  
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2.3 Results 

2.3.1 Analyzing sensorimotor fMRI activity 

Full sets of task data were collected from 20 AB and 8 SCI subjects. Although it is 

important to determine whether there are any significant differences between the AB and SCI 

subject groups, the primary focus of this research was to identify consistent effects within each 

group. Therefore, data from each group was processed and analyzed separately. 

We calculated a group-level image for each task-condition by normalizing each subject’s 

functional data into a standardized coordinate space and averaging the whole-brain 3D beta-

coefficient matrices across all subjects in a group. we then used this 4D matrix to calculate a T-

statistic image across each subject group, indicating the areas which displayed significant task-

related activity. Since each voxel’s significance in the group-level image is calculated using data 

from each subject, this group image reveals areas that may not be highly active in each 

individual, but which are significant at the group level (citations). 

2.3.2 Overt movement representations 

First we characterized motor-related activation using a block-design Overt movement 

paradigm, as it is often used as a localizer task (Caspers, Zilles, Laird, & Eickhoff, 2010). 

Inspecting how basic attempted movements are represented provides a frame of reference for 

comparing these results to more conventional sensorimotor mapping studies. In this condition, 
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both subject groups (AB and SCI) were instructed to attempt to perform different simple 

movements in time with the stimulus videos. Figure 2 shows the group-level activity from the 

AB group during each task.  This activity reveals the expected large-scale somatotopic 

organization, with hand-related representations located between face (ventral) and leg (dorsal) 

activity. The areas of peak activation for wrist, grasp, and finger movements are each distributed 

across a common region of sensorimotor cortex, consistent with the anatomical “hand knob” 

(Figure 2B).   

Since overt production of these three movements involves the activation of similar distal 

arm muscles, this overlapping “hub” of activation supports the idea that movements involving 

similar muscle activation are represented by similar cortical areas (Kakei et al., 1999). However, 

each movement also displays different areas of activation beyond this shared hub; clusters of 

wrist and grasp activity appear to be more prevalent in the dorsal aspect of SMC, while finger 

activity appears more widespread, especially in ventral areas (Figure 2C). While these three 

movements involve recruiting a similar pool of muscles, each task requires different 

spatiotemporal patterns of muscle activation. As such, we might expect that these movements are 

encoded by different combinations neurons, thereby displaying BOLD activity in different areas 

of PSMC. To quantify the degree of these differences in spatial activation, we divided both 

M1/S1 into dorsal and ventral halves, and compared the volume and amplitude of task-activated 

voxels in each sub-ROI.  
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Figure 2: AB group-level activity during overt movement.  (A) Combined average activity from AB group (n=20) during 
overt lip movement, projected onto inflated cortical surface (thresholded at T>2). (B) Overlaid peak activation during hand-
related movements (wrist/hand/fingers, T>7). Blue = wrist, yellow = grasp, red = fingers. (D) Volume and amplitude of 
significant (T>2) positive activity in dorsal (left) and ventral (right) aspects of SMC. 
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Figure 2D depicts the volume and amplitude of activation in the dorsal and ventral 

aspects of SMC during each condition. The dorsal aspects of both ROIs (which contain the 

majority of the anatomical hand knob) displayed both high volume and amplitude during all 

three hand-related conditions, confirming the qualitative observation of substantial overlap in 

these areas. These areas also contained low levels of activity during lip and ankle movement, 

illustrating that while the activation peaks are spatially separated, such activity can be widely 

distributed throughout SMC. It is worth noting that while ankle-related activity is clearly present 

in the surface renders, it is minimally captured in the dorsal sub-ROI statistics. This is due to the 

anatomical boundaries used to define the M1/S1 ROIs, which do not fully extend to the 

hemispheric fissure (Tzourio-Mazoyer et al., 2002).  

In contrast, the ventral aspects displayed more dramatic differences between condition 

activity. Lip-related activity showed very high volume and amplitude in both ROIs, consistent 

with the ventral aspects’ greater proximity to Broca’s area and speech-related representations 

(Anumanchipalli, Chartier, & Chang, 2019). All 3 hand-related movements displayed significant 

activity, indicating a wide spatial distribution from the peaks observed in the dorsal aspects. 

Finger activity was represented most strongly in both M1/S1, followed by grasp and wrist, 

consistent with the widespread activity observed in the surface renders.  

Comparing the relative strength of this activity in dorsal and ventral SMC reveals a 

degree of large-scale somatotopy, with hand-related activity located in cortical areas bracketed 

by face and leg representations, consistent with the classical interpretation of spatial organization 

in M1 and S1. However, this data demonstrates that hand-movement representations are both 

significantly overlapping (particularly in the dorsal aspects) and widespread (as seen in the 

ventral aspects). The substantial overlap between hand-related representations indicates that 
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while each movement is encoded by separate areas (voxels that were only significant during one 

condition), they also involve activity in cortical areas which contribute to encoding multiple 

movements. Similarly, the large spatial extent of each movement’s activation suggests that while 

there may be a “hub” where these commands are predominantly represented, large areas of 

PSMC may participate in encoding ongoing movements. 

Next, we examined Overt movement activity in the SCI group. Figure 3 shows the 

group-level activity from SCI subjects during attempted Overt movements. The surface 

visualizations (Figure 3C) reveal striking differences in the extent of activation compared to the 

AB group, with each task’s activity appearing less “focal”, with high-amplitude activity less 

tightly clustered and more widely distributed throughout SMC, especially during the three hand-

related tasks. This spatial expansion is apparent in the ventral aspects of M1 and S1, where hand-

related activity displays substantial volume and amplitude (Figure 3D). Indeed, we found that 

the SCI group displayed significantly stronger activity in both aspects of M1/S1 during each 

Overt hand-condition, except in dorsal M1/S1 during the Hand condition (p<0.05, Wilcoxon 

rank-sum).  
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Figure 3: SCI group-level activity during overt movement.  (A) Combined average activity from SCI group (n=8) during 
overt lip movement, projected onto inflated cortical surface (thresholded at T>2). (B) Overlaid peak activation during hand-
related movements (wrist/hand/fingers, T>7). Blue = wrist, yellow = grasp, red = fingers. (D) Volume and amplitude of 
significant (T>2) positive activity in dorsal (left) and ventral (right) aspects of SMC. 



33 

2.3.3 Group-level activity during covert Motor enrichment 

To investigate the extent to which sensorimotor activity in SMC is affected by 

enrichment, I repeated these analyses on fMRI data collected while subjects performed covert 

movements with varying degrees of multisensory enrichment. For each of the hand-related tasks 

(wrist flex/extend, whole-hand grasp/open, sequential individual finger tapping), we compared 

the volume and amplitude of group-level activity in dorsal and ventral SMC during each of the 4 

enrichment conditions (Simple, Goal, Audio, Stim). Figure 4A shows surface maps of AB 

group-level activity for each condition during enriched covert movements. Although these AB 

subjects were performing motor imagery and thus not moving overtly, significant activation was 

observed throughout SMC during each covert condition, both within and extending beyond the 

areas displaying activity during Overt performance of the same movements. Within each task, 

areas of cortex can be seen which are consistently active across conditions, while others are 

selectively active depending on enrichment. 

Figure 4B shows the volume and amplitude of activity in dorsal and ventral SMC for 

each condition. In almost all tasks and areas, the Simple condition displayed the least activity, 

while both volumes and amplitudes increased with additive enrichment. The Wrist task displayed 

the most dramatic increase from Simple to Goal, with Audio and Stim activity below Goal but 

still above Simple. The Grasp task displayed largely linear increases in activity across 

enrichment conditions, particularly in both aspects of S1. The Finger task displayed less ordered 

changes in activation across conditions, with Stim and Goal displaying overall increases across 

most regions.  
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Figure 4: AB group-level activity during enriched Motor tasks.  (A) surface renders (T-vals thresholded at FDR>0.05, T>2)). 
(B) Volume and beta amplitude of significant voxels (T>2)
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Figure 5 shows the spatial distribution (A) and quantitative comparisons (B) of SCI 

group-level activity during each the enriched covert hand-related tasks. In all task conditions, 

activity was widely distributed throughout SMC, consistent with the activity seen during Overt 

attempted movement. Interestingly, the SCI group displayed a strong spatial disparity between 

activity in dorsal and ventral aspects. While dorsal M1/S1 displayed similar or greater activity 

across enrichment conditions compared to Simple for each task, Goal and Audio conditions 

appeared to significantly decrease activity in ventral areas during the Wrist and Grasp. This 

effect was not observed during the Stim conditions, where activity volume and amplitude was 

similar or greater than Simple for each task. Such decreases were also much less pronounced in 

the Fingers task.  When we compared each condition’s +β-value distribution between subject 

groups, we found that the SCI group displayed significantly greater activation in every region 

and condition (p<0.001, Wilcoxon rank-sum). 
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Figure 5: SCI group-level activity during enriched Motor tasks.  (A) surface renders (T-vals thresholded at FDR>0.05, T>2)). 
(B) Volume and beta amplitude of significant voxels (T>2)
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2.3.4 Directly calculating enrichment effect 

These results illustrate that group-level activity during each hand-related task displays 

significant changes across different multisensory contexts, generally increasing in volume and 

amplitude with additive enrichment. To explore how activity changes between each condition, 

we then sought to directly quantify the effects of enrichment across individual subjects.  

Figure 6 shows the AB group-level enrichment values (∆β) for each pair of conditions 

within each motor task. The Wrist task displayed substantial enrichment in all SMC areas during 

all 3 conditions compared to Simple, consistent with changes observed in the group-level 

activity. Both Audio and Stim displayed negative enrichment from Goal, indicating that much of 

the observed increases in activity across conditions derive primarily from the Goal condition. 

The Hand task displayed more diverse enrichment effects, with the Audio condition displaying 

the greatest enrichment, especially in S1. The Fingers task displayed little enrichment in either 

Goal or Audio conditions, but showed dramatic increases in the Stim condition relative to all 

others.  

Overall, these results demonstrate that in able-bodied subjects, multisensory enrichment 

increased task-related activity throughout SMC during motor imagery. This elevated activation 

was not spatially limited to the cortical areas involved in driving overt movements, but was 

instead distributed throughout SMC. Indeed, the areas most consistently active during enriched 

covert tasks displayed different spatial trends in motor and somatosensory cortices. Enriched 

activity in M1 was frequently observed in more anterior and ventral areas, as well as the dorsal 

and posterior areas dominant in Overt tasks, while enrichment in S1 was generally located in 

more posterior areas relative to Overt activity. 
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Figure 6: AB group-averaged per-voxel enrichment effects between pairwise conditions.  Boxes show median, interquartile 
range, and 5/95%. *** = significance between arrays, p<0.05 Wilcoxon rank-sum 
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We then examined the per-voxel enrichment effect in the SCI group. Figure 7 shows the 

distribution of per-voxel ∆β for each task’s pairwise enrichment. The Wrist task displayed 

substantial positive enrichment during the Audio and Stim conditions, while Goal enrichment 

was negligible. Interestingly, strong Audio enrichment was present in dorsal but less so in ventral 

aspects, while Stim enrichment was present in all regions and especially pronounced in ventral 

aspects (especially S1). The Hand task generally displayed only minor enrichment in Goal and 

Audio conditions, but strong positive enrichment in all areas during the Stim condition, 

particularly in both ventral regions. The Fingers task displayed a similar pattern, where activity 

did not change substantially in Goal and Audio conditions, but increased dramatically in all areas 

with Stim enrichment. In comparison to the AB group, SCI subjects displayed similar patterns of 

conditional enrichment across tasks, with less overall response (positive enrichment) during Goal 

and Audio conditions, but much more response to Stim conditions.  

This dichotomy was confirmed when we directly compared each region’s pairwise 

enrichment between groups. Within Wrist and Hand conditions, we found that baseline 

enrichment (Enrich – Simple) was significantly greater in the AB group across regions, while 

cumulative enrichment (EnrichN – EnrichN-1) was greater in the SCI group across regions. Within 

Finger conditions, the SCI group displayed greater enrichment in almost every region and 

condition pair (18/24) p<0.001, two-tailed t-test).  
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Figure 7: SCI group-averaged per-voxel enrichment effects between pairwise conditions. Boxes show median, interquartile 
range, and 5/95%. *** = significance between arrays, p<0.05 Wilcoxon rank-sum. 
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2.3.5 Group-level activity during covert Sensory enrichment 

We next examined the effect of contextual enrichment during Sensory tasks, which were 

designed to elicit somatosensory-related activity rather than motor imagery. Figure 8 shows the 

AB group-level activity during enrichments of passive wrist movement and fingertip stimulation. 

Although these tasks are focused on somatosensory sensations, we observed significant activity 

in M1 as well as S1 during each task-condition. During Sensory-Wrist imagery, we found that 

the volume and amplitude of activity in each enrichment condition was decreased relative to 

Simple, contrasting the effects seen during Motor-Wrist imagery. Activity volume during the 

Sensory-Finger task appeared to increase most dramatically with Goal enrichment, while 

amplitude was significantly greater across regions in each condition compared to Simple.  

Conversely, during Sensory-Wrist imagery the SCI group (Figure 9) displayed higher 

activity volume and amplitude in M1 compared to S1, with significantly stronger activity during 

the Goal condition, particularly in dorsal aspects. During the Sensory-Fingers task we observed 

substantial activity in each condition, but surprisingly found that each enrichment condition 

reduced the amplitude of activity relative to simple. As in the Motor tasks, directly comparing 

each condition’s amplitude between groups revealed stronger SCI activity in a majority of 

regions and conditions (14/16 comparisons, p<0.05 Wilcoxon rank-sum). 
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Figure 8: AB group-level activity during enriched Sensory tasks.  (A) surface renders (T-vals thresholded at FDR>0.05, 
T>2)). (B) Volume and beta amplitude of significant voxels (T>2)
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Figure 9: SCI group-level activity during enriched Sensory tasks.  (A) surface renders (T-vals thresholded at FDR>0.05, 
T>2)). (B) Volume and beta amplitude of significant voxels (T>2)
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When we directly calculated each group’s pairwise per-voxel ∆β we found that within the 

Sensory-Wrist task, the AB group (Figure 10) only displayed substantial increases specifically 

in the Stim condition, predominantly in dorsal SMC. During the Sensory-Finger task, we 

observed greatly increased activity with Goal enrichment in both aspects of SMC , with 

additional increases due to Audio (particularly in ventral aspects) and Stim (particularly in dorsal 

aspects). In the SCI group (Figure 11), we found strong Goal-driven increases in both regions 

(particularly dorsal) during the Sensory-Wrist task, while additional enrichment appeared to 

reduce this effect. We found more complex changes during the Sensory-Finger task; ventral S1 

activity increased relative to Simple in each enrichment condition, while dorsal S1was reduced 

by Audio cues but increased again with Stim. Activity in M1 was either unchanged or decreased 

with enrichment, with the exception of an increase in the dorsal aspect during the Stim condition. 

Directly comparing per-voxel distributions between groups revealed that while both groups 

displayed only moderately increased activity during Sensory tasks, these effects were greater in 

the AB group across a majority of task-condition pairs (16/24, p<0.05, Wilcoxon rank-sum). 
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Figure 10: AB enrichment during Sensory tasks. Boxes show median, interquartile range, and 5/95%. *** = significance 
between arrays, p<0.05 Wilcoxon rank-sum. 
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Figure 11: SCI enrichment during Sensory tasks.  Group-averaged per-voxel enrichment effects between pairwise Sensory 
conditions in dorsal (left) and ventral (right) aspects. Boxes show median, interquartile range, and 5/95%. *** = significance 
between arrays, p<0.05 Wilcoxon rank-sum. 
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2.4 Discussion 

We designed and tested a novel behavioral paradigm to determine how cortical 

sensorimotor activity during motor and somatosensory imagery is affected by additional 

multisensory cues. We observed substantial activation throughout M1 and S1 during each covert 

task in both able-bodied subjects and individuals with SCI.  This Covert activity partially 

overlapped with the representations seen during Overt movement, but was also frequently 

observed in more ventral regions of cortex. 

The activation profiles observed during overt movements suggests that even in “simple” 

tasks, hand-related sensorimotor control involves significant portions of M1 and S1, which can 

be both selective (preferentially active during certain conditions) and shared (active during 

multiple conditions). Since the three upper-limb overt conditions (wrist flex/extend, hand 

grasp/open, sequential finger tap) differ primarily in the specific patterns of muscle contraction 

necessary to perform them, these spatial trends suggest that rather than being tightly clustered, 

the neural circuits underlying hand use involve activity throughout SMC, and that activity in a 

given area may contribute differently to encoding similar motor commands under different 

behavioral contexts. 

During enriched Wrist movement, the AB group displayed substantially increased 

activity in the Goal condition compared to simple, particularly in the dorsal aspects of both 

M1/S1. Both group-level activity and per-subject enrichment increased with enrichment, 

suggesting that Goal enrichment may drive increased activity in a relatively small cortical area. 

AB-group activity primarily rose with Audio enrichment during Hand movement and with Stim 

enrichment during Finger movement, indicating that while Goal enrichment may not increase 
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activity during all movements, the additional timing information provided by Audio and Stim 

enrichment can still be integrated, driving increased activity in M1 but particularly in S1.  

The SCI group displayed significantly increased activity in Overt movements compared 

to the AB group, as well as in a majority of Covert conditions. SCI-group activity during 

enriched Motor was stronger in dorsal aspects of M1/S1, indicating that post-injury 

reorganization may result in the expanded recruitment of disconnected cortical territory by 

partially preserved movements (K. J. Kokotilo et al., 2009; Urbin et al., 2019). In addition, the 

SCI displayed less Goal-related increases in activity but consistent increases in both M1 and S1 

during Audio and Stim conditions (most notably Stim), suggesting that the additional timing 

information conveyed by auditory and vibrotactile stimulation may aid in embodying attempted 

movements (Gentile et al., 2013; Ratcliffe & Newport, 2017). 

During enriched Sensory tasks, we found that S1 activity was significantly increased 

during Goal and Stim enrichment, especially during covert Finger stimulation. While M1 activity 

was either maintained or decreased, the increases in S1 during Goal enrichment demonstrates 

that purely visual information can be used to increase the strength of somatosensory 

representations, consistent with other recent results (Kuehn et al., 2018). 

Taken together, our results demonstrate that motor and somatosensory imagery tasks can 

be enriched with multisensory cues to increase the intensity of activity in sensorimotor cortex. 

Different combinations of enrichment elicited peak activation during different upper limb tasks, 

suggesting that while these cues can be integrated by the sensorimotor network, their effect can 

vary based on the behavioral context of the task. While enriched covert activity was frequently 

observed to spatially overlap with Overt activity, we also observed significant enrichment-related 

increases in more ventral and anterior areas. As these areas may be more likely to receive input 
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from premotor and parietal areas, this localized Covert activity may indicate cortical areas which 

are more strongly involved in integrating contextual multisensory information. Such areas may 

be potential targets for the future development of intracortical BCI, which could benefit from 

access to more context-sensitive neural activity (Downey et al., 2017). 

In order to ensure that this enrichment paradigm can be successfully used for mapping 

activity in individuals with SCI, we analyzed data from 8 participants with chronic SCI-induced 

tetraplegia. Subjects with SCI were instructed to attempt to perform covert movements in order 

to maximize the intensity of elicited cortical activity, while AB subjects were instructed to 

imagine performing covert movements in order to minimize actual somatosensory input. This 

difference makes it difficult to directly compare the distribution of activity and the effects of 

enrichment between groups. As subjects with SCI display different activity when instructed to 

attempt and imagine performing movements (Foldes et al., 2017), our data may suggest that 

future studies comparing activity between able-bodied subjects and subjects with tetraplegia 

could achieve better similarity by having both subject groups “attempt” to perform tasks rather 

than imagining.  

Our results demonstrate the potential effectiveness of using contextual multisensory cues 

to enrich behavioral tasks and increase the utility of sensorimotor mapping. However, our 

observations that enriched activity was often widely distributed throughout SMC, as well as 

frequently overlapping in specific areas, suggests that contextual sensory information may be 

preferentially processed by different areas of cortex. It may be possible to determine how 

sensorimotor task activity is represented in a given area by applying multivoxel analyses to 

quantify the representational similarity between conditional activity (Ejaz et al., 2015; 

Kriegeskorte, 2008). While such analyses require a large amount purpose-collected data, using 



 

50 
 

this kind of decoding-based approach could be used to identify cortical areas with maximally 

separable activity, which could be invaluable for pre-surgical planning of invasive recordings 

(Collinger et al., 2014; Yoo et al., 2018). 
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3.0 Somatotopic Biases in the Broad Tuning of M1 Neurons 

Figures and text in this chapter have been reproduced with permission from a paper 

submitted to the journal Neuron by: Dylan A. Royston, Brian M. Dekleva, Stephen T. Foldes, 

Elizabeth C. Tyler-Kabara, Michael L. Boninger, Timothy D. Verstynen, Robert A. Gaunt, Aaron 

P. Batista, and Jennifer L. Collinger.

Human primary motor cortex is grossly somatotopically organized, similar to the 

organization found in animal investigations of single-neurons. However, the human hand 

possesses a unique degree of individuated dexterity, and it is unclear how this control is reflected 

in the behavior of individual neurons. We recorded single-neuron activity from two 

microelectrode arrays placed centimeters apart within the M1 upper limb representation in two 

human participants with tetraplegia as they attempted arm and hand movements, many of which 

could not be performed overtly. We found that single neurons were broadly modulated by arm 

and hand movements, often displaying similar firing rate ranges during all tasks. However, 

neurons in more medial areas of M1 displayed more selective firing during arm movements but 

were also active during individual finger tasks. Neurons in lateral areas of M1 displayed broad 

tuning to both arm and finger movements. We conclude that macro-level somatotopy reflects 

local biases in the activity of broadly-tuned neurons, consistent with modern theories of 

population-level encoding models.  
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3.1 Introduction 

The relationship between the location of activity in primary motor cortex (M1) and 

corresponding movement production has been a subject of investigation and debate for over half 

a century. While it is clear that mesoscale somatotopy (causal correlation between localized 

activity and the production of specific movements) is present in humans,  there is ongoing debate 

regarding whether this organization is observed across spatial scales, and how broadly these 

movement representations are distributed across populations of individual neurons within M1. 

Early  cortical stimulation studies yielded an orderly “homunculus”, where evoked movements in 

different areas of the body were organized in a mediolateral gradient across M1 (W Penfield & 

Rasmussen, 1950; Wilder Penfield & Boldrey, 1937). This large-scale somatotopy has since 

been observed in human neuroimaging data (Alkadhi et al., 2002; Cunningham et al., 2013; Plow 

et al., 2010; Stippich, Ochmann, & Sartor, 2002), but such studies also reveal that rather than the 

clear separation portrayed by early “homunculus diagrams” (Wilder Penfield & Boldrey, 1937), 

cortical representations display substantial overlap (Ejaz et al., 2015; Hlustik, 2001; Sanes, 

Donoghue, Thangaraj, Edelman, & Warach, 1995). However, the signals measured by imaging 

and cortical surface recordings are generated by millions of neurons simultaneously (N K 

Logothetis et al., 2001), so it remains unclear how these mesoscale findings extend to the 

individual neurons responsible for controlling movement. This question is particularly relevant to 

the study of upper-limb sensorimotor control in humans, where a broad spectrum of dexterous 

hand and finger control is represented in a large area of cortex. 

It is well-established that the activity of M1 neurons is strongly involved in generating 

upper limb movements (Kakei et al., 1999). Spiking activity from cells throughout M1 have 
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demonstrated “tuning” to (activity correlated with) a variety of movement parameters 

(Georgopoulos et al., 1982, 2009), and many M1 neurons project to motor neurons in the spinal 

cord, allowing their activity to directly influence motor production (Griffin et al., 2015). 

Retrograde tracer studies have shown that these corticomotoneurons projecting to shoulder and 

finger muscles are spatially intermixed in non-human primates (J.-A. Rathelot & Strick, 2009), 

indicating a high degree of physical coordination and spatial overlap between the neural 

populations involved in controlling different muscle groups. In addition to this spatial 

intermixing of functionally-distinct descending neurons, electrophysiology studies in non-human 

primates (NHPs) have shown that individual neurons in the hand area of M1 display similar 

activity during individuated movement of each finger (Irwin et al., 2017; Kirsch, Rivlis, & 

Schieber, 2014; M. Schieber & Hibbard, 1993b). This suggests that the overlapping 

representations observed at a gross level are not only caused by spatially intermixed populations, 

but also broad functional tuning in individual neurons. Additionally, as NHPs do not naturally 

display individuated finger movements, most such studies have not examined the functional 

relationship between neural encoding of both arm movements and hand/finger control, which is a 

dominant behavioral trait in humans. 

Neuroimaging studies in humans have shown substantial overlap in the activity 

underlying different upper limb movements, particularly within areas related to individual finger 

movements (Beisteiner et al., 2001) but also between hand and arm representations (Meier, 

Aflalo, Kastner, & Graziano, 2008; Plow et al., 2010). These overlapping representations have 

frequently been interpreted in the framework of a “functional somatotopy” Cunningham et al., 

2013), wherein the neural circuits underlying motor production are shared between different 

movements in order to facilitate within-limb coordination. Such results suggest that a given 
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overlap area of cortex may contain individual neurons involved in producing different 

movements, and many overlap areas together may create a somatotopic gradient of neural 

populations with different tuning properties. Results from sequentially recorded single neurons in 

NHP hand areas revealed significant overlap and minimal separation between neurons modulated 

by individual finger movements (M. Schieber & Hibbard, 1993b), supporting the concept of 

neural circuits being involved in multiple movement representations.  

The fact that activity related to multiple movements is contained within a relatively small 

cortical volume raises the question of whether motor cortex contains multiple behaviorally-

independent, but spatially-intermixed, neural populations, or a single population capable of 

producing many behaviors through distinct patterns of activity. Since the local and long-range 

connectivity of M1 means neighboring neurons are unlikely to be functionally independent, we 

aimed to characterize the degree to which individual neurons selectively encode different types 

of movement, and whether neurons from spatially separate cortical areas display different 

“tuning” profiles. We recorded from microelectrode arrays chronically implanted in M1 of two 

human subjects (2 arrays in each subject) participating in an ongoing brain-computer interface 

(BCI) study. Simultaneous recordings were made from both arrays while participants attempted 

to perform arm(arm) and finger (finger) movements. Both participants have chronic tetraplegia 

as a prerequisite for participation in this study. While this limited their performance of most 

movements,  there is substantial evidence showing that the large-scale organization of upper limb 

representations is preserved even after chronic injury (Degenhart et al., 2017; Foldes et al., 2017; 

Kikkert et al., 2016; K. J. Kokotilo et al., 2009; Makin & Bensmaia, 2017; Urbin et al., 2019). 

By characterizing the behavior of individual neurons from separate areas during a range of 
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different movement types, we can determine how large-scale somatotopy is reflected in the 

activity of neural populations throughout M1. 

3.2 Materials and Methods 

3.2.1 Study participants and surgical procedures 

The studies allowing the collection of this data were approved by the institutional review 

boards at the University of Pittsburgh (Pittsburgh, PA, USA) and the Space and Naval Warfare 

Systems Center Pacific (San Diego, CA, USA). We obtained verbal informed consent from both 

participants before their enrollment in these studies, and consent was signed by their legal 

representatives. We collected and analyzed data from two individuals implanted with platinum-

coated silicon intracortical microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT, 

USA) in left primary motor cortex.  

Participant 1 was a 52-year old female at time of implant, with chronic tetraplegia due to 

spinocerebellar degeneration diagnosed 13 years before participating in this study. Due to the 

nature of this condition, the subject has complete loss of motor function below the neck while 

retaining intact somatosensation. Participant 1 was implanted with two 4mm x 4mm x 1.5mm, 

96-channel arrays in motor cortex. Participant 2 was a 28 at time of implant, with chronic

tetraplegia due to a C5-motor/C6-sensory ASIA-B spinal cord injury (due to automobile 

accident) approximately 10 years before implantation. Due to the level of injury, this participant 
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retains full use of his shoulder and elbow, partial use (extension) of his wrist, while his hand is 

completely paralyzed and desensate in the medial part of his hand innervated by the median 

nerve. Participant 2 was implanted with two 4mm x 4mm x 1.5mm, 88-channel arrays in motor 

cortex. He was also implanted with two 2.4mm x 4 mm x 1.5mm, 60-channel arrays in primary 

somatosensory cortex ((Flesher et al., 2016)), but data from these arrays were not included in this 

study. 

3.2.2 Presurgical neuroimaging 

MRI data were collected on a Siemens Technology (Munich, Germany) Trio 3T scanner. 

Participant 1 received a T1-weighted whole-brain anatomical scan (1x1x1.2 mm voxels, 160 

slices, 240x256 mm in-plane resolution). Functional scans were collected from dorsal 

sensorimotor cortex using T2*-weighted echo-planar imaging (EPI) sequence (TR = 2000 ms, 

voxel size = 2 mm3 isovoxel, 128x128 mm in-plane resolution, 27 mm field of view). Participant 

2 received a T1-weighted whole-brain anatomical scan (1 mm3
 isovoxel, 176 slices, 256x256 mm 

in-plane resolution). Functional scans were collected from dorsal sensorimotor cortex using T2*-

weighted echo-planar imaging (EPI) sequence (TR = 2000 ms, TE = 29 ms, voxel size = 2.156 x 

2.156 mm, slice thickness = 2 mm, 128x128 mm in-plane resolution, 26 mm field of view).  

Functional data were collected using a block design (Figure 12A), wherein a 20 second 

baseline period was followed by 4 alternating 20 second blocks of rest and movement condition. 

Each run consisted of 4 blocks of rest/move conditions. Rest periods were cued by a gray 

fixation cross, while movement conditions consisted of a green/red fixation cross changing color 
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at 0.5 Hz, cuing subjects to alternatively grasp and relax with their dominant hand, respectively. 

During the movement condition, the participant was instructed to “attempt” to physically execute 

each movement. fMRI data were pre-processed using SPM12 (Ashburner et al., 2013). fMRI 

images were spatially realigned using a rigid-body transformation, spatially smoothed (6 mm 

FWHM), and coregistered to the anatomical scan. BOLD responses were determined with a box-

car general linear model (GLM) convolved with a canonical hemodynamic response function. 

The resulting T-contrast images were then projected onto a cortical surface render (created using 

Freesurfer (Fischl, 2012)) for visualization(Collinger et al., 2014). 

3.2.3 Array placement based on presurgical neuroimaging 

In order to record the cortical activity most directly related to upper limb movements, 

fMRI was used to localize the cortical areas active while the subjects attempted to perform 

various upper limb movements. These functional images served to guide the placement of the 

microelectrode arrays implanted in each subject’s primary motor cortex (Figure 12B/C). Final 

positioning was determined intraoperatively based on the cortical surface topography and 

vasculature.  Array position was estimated using post-implantation high-resolution CT and co-

registered to the pre-surgical MRI.  For participant 1, one array was placed in a lateral area active 

during grasp and finger tapping tasks (“lateral motor array”), while the other was placed more 

medially in an area of grasp-related activity and adjacent to shoulder-related activity (“medial 

motor array”). For participant 2, one array was placed in a lateral area of finger- and grasp-

related activity, while the second array was placed in a more medial area thought to be more 

related to arm movement, although this was not mapped explicitly. 
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3.2.4 Behavioral task design 

We designed a rhythmic movement task to provide a behaviorally simple task for 

subjects to perform in order to generate clear movement-related neural activity. The participants 

were presented with videos of movements and instructed to attempt, as much as physically 

possible, to perform each movement in time with the videos. Although neither participant was 

able to overtly perform all movements, subjects were asked to attempt the movements in order to 

maximize the magnitude of movement-related neural activity (Szameitat, Shen, Conforto, & 

Sterr, 2012). 

Participant 1 performed 5 tasks: shoulder raise/lower, elbow flex/extend, wrist 

flex/extend, whole-hand grasp, and sequential thumb-finger tapping. Participant 2 performed 9 

tasks: shoulder raise/lower, elbow flex/extend, wrist flex/extend, whole-hand grasp, and 

flex/extend all 5 individual fingers. To facilitate our ability to quantify neural modulation during 

different movement types, we split these tasks into “gross” (shoulder/elbow/wrist/grasp) and 

“fine” (individual finger) movements for several analyses.  

These movements were paced at ~0.5Hz, such that one movement was performed every 2 

seconds. For participant 1, movements were presented in individual blocks of 4 trials, where a 

trial consisted of 20 seconds of movement separated by 10 seconds of rest cued with a fixation 

cross. For participant 2, movements were presented in individual blocks of 8 trials, where a trial 

consisted of 10 seconds of movement separated by 5 seconds of rest cued with a fixation cross. 

Each test session consisted of one set of each movement. For participant 1, one testing session 

was performed one month after implantation. For participant 2, 12 testing sessions were 
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performed approximately every 1-2 months, beginning one month after implantation, for 44 

months (Figure 13). 

3.2.5 Neural recording/electrophysiology 

Neural data were recorded from Utah microelectrode arrays implanted in the arm/hand 

area of M1. Raw voltage signals were sampled at 30KHz with a 250-4500 Hz bandpass filter. 

Spikes were defined as 48-sample (1.6ms) events where the voltage signal crossed a fixed 

threshold above the baseline root-mean-square (RMS) voltage for each channel (-5.25*baseline 

RMS for participant 1, -4.50*baseline RMS for participant 2). 

To examine the activity of individual neurons, we sorted spike snippets into ‘neurons’ 

using the principal component analysis (PCA)-based method described previously ((Downey, 

Schwed, Chase, Schwartz, & Collinger, 2018)). Briefly, we used PCA to visualize each 

channel’s snippets in the first two components based on waveform shape. Separable clusters 

were manually identified and used to initialize a Gaussian mixture model expectation-

maximization algorithm, which created the specified number of clusters and assigned each 

snippet to the most likely unit. 

To further isolate activity from individual neurons, neurons primarily containing noise 

events, i.e. snippets diverging from the stereotyped action potential waveform, were then 

manually identified and excluded from further analysis. Neurons that displayed any inter-spike 

intervals (ISI) less than 1ms were also excluded. We then calculated a consistency metric to 

identify neurons with consistent waveform shapes by taking the dot product of sequential 
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normalized snippets ((Fraser & Schwartz, 2012)). We fit the resulting “consistency” histogram 

with two normal distributions and identified the threshold separating neurons with low and high 

consistency, and only included those neurons with waveform consistency above this threshold. 

3.2.6 Quantifying neural modulation during single movement repetitions 

The behavioral task performed here was used in part to match the task used during 

presurgical neuroimaging. For this study, as we wanted to examine the neural activity underlying 

individual movement repetitions, we processed the raw timeseries activity to isolate each 

individual attempted movement. Using the stimulus videos provided to subjects, the start and end 

time of each single repetition was marked manually. As the stimulus videos were recorded 

continuously, each repetition had a slightly different duration, so we used the mean duration to 

define the length of each movement period. To make data between subjects as directly 

comparable as possible, we leveraged this repetition isolation to separate out individual finger 

movements from participant 1’s sequential finger task. To calculate a given unit’s activity during 

movement, we calculated a peristimulus time histogram (PSTH) of spike times during each 

movement repetition. We then smoothed this trial-averaged spike count with a Gaussian kernel 

(σ=50ms, width=300ms) to generate smooth instantaneous firing rates for each unit. In order to 

quantify the degree to which a given neuron was “tuned” to a specific movement, we extracted 

the firing rate activity from each neuron during these repetitions and calculated the modulation 

depth (MD) as the mean of the difference between maximum and minimum firing rate during the 

stacked repetitions. 
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3.2.7 Modulated neuron identification 

To identify neurons that displayed modulated activity during attempted movement, we 

compared each neurons’ firing rate distributions during movement and rest. To filter out spurious 

activity, only neurons with mean firing rates >1Hz during both movement and rest were 

analyzed. For each task, firing rate activity during rest (defined as the 2s prior to movement 

onset) and movement (defined as the 10s following movement onset) was concatenated across all 

trials and compared using a two-tailed Kolmogorov-Smirnov test (p<0.001). Any “valid” neuron 

that was significantly modulated during at least one task was included for further analysis.  

3.2.8 Neural selectivity index 

To examine how broadly a given neuron participated in encoding different movements, 

we calculated a “selectivity index” (SI) based on finger-movement individuation studies ((Lang 

& Schieber, 2003, 2004)). Selectivity (IIJ) was calculated as: 

𝐼𝐼𝐼𝐼𝑗𝑗 =  ���𝐹𝐹𝐹𝐹𝑖𝑖𝑗𝑗� − 1
𝑛𝑛

𝑖𝑖=1

�  � (𝑛𝑛 − 1) (3 − 1) 
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where FR is the modulation depth during each task (normalized for each neuron to its maximum 

task) and n is the number of tasks. By this metric, a neuron with an SI of 1 would be perfectly 

selective and only fire during one task, whereas a neuron with an SI of 0 would display the same 

activity during every task. 

3.2.9 Movement type selectivity interaction 

To account for potential type-wide differences in firing rate and determine whether 

neurons recorded from different areas were preferentially selective to one type of movement, we 

recalculated each neurons’ SI for arm and finger movement types separately, and split neurons 

by array. We then used each neurons’ SI to arm and finger movements to create a “bias distance” 

by plotting its selectivity to each movement type and calculating the Euclidean distance between 

that point and the midline (y=0, m=1), where neurons below this line displayed more selectivity 

to arm than finger movements and vice versa. We then calculated a “bias ratio” for each array by 

dividing the distribution of positive (below unity line) and negative (above unity line) distances.  

3.2.10 Electromyogram recording 

To evaluate participant 2’s ability to overtly perform the attempted upper limb 

movements, we recorded surface EMG activity using an Intan recording controller (Intan 

Technologies, Los Angeles, CA, USA) while he performed each movement task (simultaneous 

with neural data included here on day 12). Recordings were made using bipolar electrode pairs 
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placed serially along the belly of each muscle. To examine upper limb movement activity, we 

recorded from the following muscles: trapezoid, posterior deltoid, mid deltoid, anterior deltoid, 

bicep, tricep, wrist extensor, wrist flexor. Raw voltage signals were passed through a band-pass 

filter (20-1000 Hz), rectified, and passed through a smoothing low-pass filter (2nd-order 

Butterworth filter at 10 Hz), and de-noised to remove linear drift and outlier spikes. Activity 

during individual repetitions was reorganized in the same manner as the neural data described 

above. 

3.3 Results 

3.3.1 M1 neurons are broadly modulated during movement 

We aimed to determine whether single neurons recorded from spatially separate areas of 

human M1 display different patterns of activity during arm and hand movements. Participants 

performed an attempted movement task where they viewed videos of simple rhythmic arm/hand 

movements and were instructed to attempt to perform the same movements with their own limbs 

(Figure 12A). All instructed movements used the right arm, contralateral to the implanted 

microelectrode arrays. Participant 1 performed 5 tasks (shoulder, elbow, wrist, grasp, sequential 

finger-tapping), while participant 2 performed 9 tasks (shoulder, elbow, wrist, grasp, and 5 

individual finger movements). To determine the degree to which M1 activity displays 

somatotopic bias, we grouped these 9 movement tasks into “proximal” arm and hand movements 
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(shoulder, elbow, wrist, grasp) and “distal” individual finger movements (thumb, index, middle, 

ring, pinky for participant 2). For participant 1, sequential finger-tapping and grasp were 

classified as a “fine” movement due to the smaller range of movements performed. While the 

primary experiment was conducted with participant 2, we have included data from participant 1 

since a similar dataset was collected. 

Figure 12B/C shows the location of microelectrode arrays on the cortical surface. Array 

placement was in part guided by presurgical neuroimaging (see Methods); arrays for participant 

1 were located within medial and lateral areas of the anatomical “hand knob”, while participant 2 

had one array located in a lateral hand-related area and another in a more medial arm-related 

area.  

Figure 12: Behavioral task and electrode localization.  (A): Left, task structure. 10s of rhythmic movement videos separated 
by 10 second rest periods. Right, example movement stimuli at peak phases of each task. (B and C): Electrode array locations and 
fMRI activation maps for participant 1 (B) and participant 2 (C) overlaid on individual cortical surface renders. Scale bars 
determined from intraoperative markers. 

For participant 1, neural data were collected during one test session approximately 3 

months after implantation. We recorded from 62 well-isolated single neurons (18 from the 

medial array, 25 from the lateral array). For participant 2, neural data were collected during 12 

test sessions occurring every 1-2 months over the course of 23 months. We recorded from 708 
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well-isolated single neurons (432 medial, 276 lateral), with 88±21 neurons identified on a given 

day (Figure 13). As we have previously reported that individual neurons are unlikely to be 

recorded from after one month (Downey et al., 2018), we assume that data collected from each 

day represents a unique neural population. We also observed relatively little variability in the 

signal quality from individual neurons (evaluated as the mean peak-to-peak voltage of neuron 

spike waveforms; Figure 13B) and a gradual decrease in the number of neurons identified from 

day to day (Figure 13A), , consistent with previous observations from the same participants 

((Downey et al., 2018)).  

Figure 13: Recording stability from participant 2 over time. (A): number of well-isolated neurons recorded from both arrays 
during each testing session. (B): peak-peak voltage distribution of well-isolated units recorded from both arrays 
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Examining the activity of these isolated neurons revealed strong rhythmic activity 

matching the pacing of the attempted movements. Figure 14B-G illustrates the responses of six 

such neurons, with varied modulation observed during different movement tasks (which are 

represented by different colors, as shown in Figure 14A). In order to assess task-related 

modulation, we generated peristimulus time-histograms (PSTH) for each neuron by aligning 

each neuron’s spiking activity during movement performance. Since each task was performed as 

a continuous 10-second period of rhythmic movement, we aligned each neuron’s spiking activity 

to the onset of each individual movement repetition, thereby providing a readout of that neuron’s 

time-series activity during a single performance of each movement. Each panel (Figure 2 B-G) 

shows a single neuron’s PSTH spiking activity (top) and trial-averaged firing rate (bottom) 

during performance of each movement. By examining how a neuron’s spiking activity changes 

throughout the course of each movement, we aimed to characterize whether it was preferentially 

modulated (or “tuned”) during a certain type of movement, thereby defining a “tuning function” 

for each neuron (shown inset within bottom firing-rate plots). For example, we identified 

neurons which displayed more overall modulation during either arm(Figure 14B/C), or finger 

(Figure 14D/E) tasks, suggesting that some neurons participate in broadly encoding a general 

“type” of movement. We also observed neurons which displayed much more activity during a 

single movement compared to others, indicating the presence of a more “selective” population of 

neurons. 
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Figure 14: Neural responses during attempted movement.  (A) Diagram representing the colors associated with the 9 
attempted movement tasks. (B-G)  Responses of six example neurons (recorded from participant 2) during attempted movements. 
Left offset panels shows a density plot of all snippets recorded from each neuron (darker colors = more snippets crossing through 
a given time-voltage point). Main panels show single-neuron spike rasters across repetitions of each movement Movements are 
indicated by a number on the y-axis with spikes colored as in A., with averaged instantaneous firing rate below. Inset panels 
show each neuron’s modulation depth (MD) during each task. (B and C): Medial and lateral neurons responding preferentially to 
proximal movements. (D and E): Medial and lateral neurons responding preferentially to gross movements. (F and G): Medial 
and lateral neurons responding preferentially to a single movement. 
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3.3.2 Spatial differences in tuning of broadly-modulated neural populations 

We began quantifying these responses by first identifying neurons that displayed 

significantly different firing rates (FR) during movement compared to rest. When participants 

attempted to move in time with the stimulus videos, a substantial proportion of identified 

neurons (43/62 for participant 1, 582/708 for participant 2) displayed significant modulation (i.e. 

differences in movement-related FR compared to rest) during at least one movement (p<0.05, 

two-tailed Kilmogorov-Smirnoff test), and were thus included for subsequent analysis. Figure 

15C/D shows histograms representing the number of tasks during which a given neuron 

displayed significant movement-related modulation. We found that in both participants, neurons 

were more likely to be “broadly tuned” (significantly modulated during a majority of tasks) than 

“narrowly tuned” (significantly modulated during a small number of tasks). This effect was 

especially pronounced in participant 2, where most modulated neurons (300/582) were 

significantly modulated by all 9 tasks. 

Although we found that many neurons display modulation during different movements, 

we wanted to determine whether those neurons displaying non-global modulation were 

modulated by specific tasks. Figure 15A/B shows the number of neurons significantly 

modulated by each task. The horizontal line represents the number of globally-modulated 

neurons, illustrating the number of neurons that display some degree of preferential modulation 

to specific tasks. For participant 1 we found that each task involved similar numbers of 

modulated neurons, with a slight bias towards arm movements (particularly wrist on the lateral 

array). For participant 2, we found little difference in the number of neurons significantly 

modulated by different tasks, consistent with the dominance of globally-modulated neurons. 
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These results suggest that there is a large degree of overlap between the populations active in 

encoding different movements (as opposed to the notion that there would be a separate 

population of neurons active for different tasks).  

Since different movements appear to involve similar numbers of modulated neurons, we 

sought to determine the degree to which neurons from separate cortical areas participate in 

generating different movements. We compared the neural modulation depths (MD, see Methods) 

during each movement, both between arrays (to determine whether one array represents a 

movement more strongly than the other array) ) and within arrays (to determine whether one 

array represents a movement more strongly than another movement). Figure 15E/F shows the 

distributions of MDs recorded from neurons on each array during each movement.  

For participant 1, between-array comparisons revealed no significant differences for any 

movements, while within-array comparisons revealed slightly higher modulation depths during 

grasp compared to finger movement (p=0.0416, Wilcoxon rank-sum). This lack of differences 

suggests that neurons within the “hand” area of M1 display similar firing behavior during arm 

and finger movements. For participant 2, we again observed substantial modulation in both array 

populations across tasks but found several differences between tasks both within and between 

arrays. Comparing each task between arrays, we found that shoulder modulation was greater in 

medial array neurons, while modulation during several tasks (wrist, thumb, ring, and little-finger) 

was greater on the lateral array neurons (Wilcoxon rank-sum, p<0.001). Comparing within 

arrays, we found that the population recorded from the medial array displayed significantly 

higher modulation during all arm movements compared to nearly all finger movements, 

particularly for shoulder movement (Wilcoxon rank-sum, p<0.001). Conversely, the population 

recorded from the lateral array displayed similar modulation across all tasks, with only elbow 



70 

and wrist-related modulation higher than that observed during middle and little-finger 

movements.  

Taken together, these results suggest that medial array neurons are biased towards 

encoding arm movements more strongly than finger movements and modulate more strongly 

during shoulder movement than lateral array neurons. Lateral array neurons appear to modulate 

similarly during both arm and finger movements and display stronger modulation during many 

hand-related movements compared to the medial array neurons.  
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Figure 15: Neural modulation across tasks.  Size and magnitude of neural modulation in participant 1 (A,C,E) and participant 
2 (B,D,F). (A and B): Number of neurons displaying significant modulation during each movement. Horizontal line depicts 
number of neurons displaying modulation during all movements. (C and D): Histogram showing the number of tasks during 
which each neuron displayed significant modulation. (E and F): Distributions of single neuron modulation depths. Boxes depict 
median, interquartile range, and 5th and 95th percentiles, while crosses depict outlier units. Ticked lines show significant 
differences between task distributions within each array, while stars show significant differences between array distributions 
within each task (Wilcoxon rank-sum, p<0.05 for E, p<0.001 for F).  
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3.3.3 Arm selectivity is higher in medial neurons 

So far, our results have indicated that while neurons from different areas can display a 

bias towards preferentially encoding one movement type over another, neurons throughout M1 in 

both participants can be broadly modulated during both arm and finger movements. We then 

wanted to determine whether these trends are also observed in the tuning preferences of 

individual neurons. We took advantage of the wider range of movements performed by 

participant 2 to examine gross-fine preferences within individual neurons in more detail.  

To begin comparing the tuning of individual neurons to each movement type, we first 

grouped each neuron’s MD values into gross/fine movements and normalized those values 

within each group. Figure 16A/B shows a heatmap of each neuron’s MD during all tasks, with 

tuning to arm and finger movements normalized separately to that neuron’s peak task within a 

category. Each row represents a single neuron, with the color of each column showing that 

neuron’s modulation depth during each task. To account for differences in each neuron’s 

baseline firing rate, MD values are normalized for each unit to its maximum MD within each 

movement types separately. Medial array neurons display “darker” colors within arm movements 

and more uniform “hot” colors within light movements, suggesting that many medial neurons are 

more “selective” (narrowly tuned) to one arm movement than others. A similar but less 

pronounced trend is observable in lateral array neurons, suggesting that they may be less 

selective than medial neurons. 

We calculated a “selectivity index” (SI) for each neuron to quantify the degree to which it 

selectively modulated during one task compared to others ((Lang & Schieber, 2003); see 

Methods). Using this metric, a neuron’s selectivity can range from 0 to 1, where low values 
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indicate similar modulation during each task and high values indicate strong relative modulation 

during a single task. We reasoned that while neurons from both arrays appear to be broadly tuned 

to both movement types, examining the distribution of individual neuron selectivity to 

movements within each type may provide a more sensitive metric for identifying tuning bias.  In 

other words, to the degree that a neuron displays selective tuning, which movement type 

(between arm and fine) does that neuron prefer? To that end, each neuron’s selectivity was 

calculated for each movement type separately.  

Figure 16C/D shows histograms of the distribution of selectivity on each array for both 

movement types. Comparing each array’s selectivity to the two movement types, we found that 

the medial population displayed much higher arm selectivity compared to finger (Figure 16C; 

p=1.3*10-20, Wilcoxon rank-sum), while the lateral population was only slightly more selective 

to arm than finger movements (Figure 16D; p=0.019). When we directly compared type 

selectivity between arrays, we found that the medial population displayed significantly higher 

arm selectivity than the lateral population (Figure 16E; p=0.009), while the lateral population 

displayed significantly higher finger selectivity than the medial population (Figure 16F; 

p=3.38*10-5). Together, these findings indicate that medial array neurons display highly selective 

tuning to individual arm movements (particularly shoulder, as indicated in Figure 15F), and that 

this preference is stronger in medial neurons than lateral neurons. Conversely, lateral array 

neurons are also slightly selective within arm movements, but to a much smaller degree than 

medial neurons, and additionally are more selective within finger movements than medial array 

neurons. In other words, we observed additional evidence of a medial-arm, lateral-fine spatial 

bias. 
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Figure 16: Neural selectivity across movement types in participant 2. Distributions of neural selectivity indexes, calculated 
from each array population across each movement type. (A and B) heat maps of medial and lateral neuron tuning (MD 
normalized within each task type) sorted in descending order by selectivity index. (C and D) histograms of medial (C) and lateral 
(D) neuron selectivity index during gross and fine movements. Vertical dashed lines represent distribution medians. Stars denote
significance between distributions (Wilcoxon rank-sum, *=p<0.05, **=p<0.01, ***=p<0.001). (E and F) histograms of gross (E)
and fine (F) neuron selectivity index from medial and lateral arrays. Vertical dashed lines represent distribution medians. Stars
denote significance between distributions (Wilcoxon rank-sum, *=p<0.05, **=p<0.01, ***=p<0.001)
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3.3.4 Individual neurons reflect spatial tuning biases 

While these SI values are calculated for each neuron separately, they are still aggregated 

over many neurons, and thus potentially overlook trends within individual neuron tuning. To 

further explore the relative representation of each movement type, we directly examined the per-

neuron relationship between arm and finger selectivity. Figure 17A/B shows each neuron plotted 

with respect to its arm (x-axis) and finger (y-axis) selectivity. In this space, neurons close to the 

unity line display equal selectivity to both movement types, while neurons farther off this 

diagonal are more selective to one type. For example, neurons that selectively fire during a single 

arm movement, but fire similarly during all finger movements, would be in the lower right 

quadrant. We quantified the degree to which each neuron displayed a type-selectivity bias by 

calculating its Euclidean distance from the unity line (Figure 17C). A very large proportion of 

medial array neurons lay below unity, indicating a strong bias towards selectively modulating 

during arm movements. Lateral array neurons were also slightly more likely to be located below 

unity, consistent with the slightly higher arm selectivity described above (Figure 17D), but were 

more evenly distributed around the diagonal, indicating more similar selectivity to both 

movement types. Directly comparing these “bias distances” between arrays revealed 

significantly more positive values (i.e. further below unity) on the medial array (p=9.98*10-7, 

Wilcoxon rank-sum), meaning that individual medial array neurons tend to be more selective to 

individual arm movements than to any finger movements. 
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Figure 17: Interaction between neuronal gross/fine selectivity.  Selectivity of neural modulation to gross/fine movements. (A 
and B) interaction between selectivity to gross/fine movements. Each point represents a single neuron. Edge histograms depict 
distribution of population gross (horizontal) and fine (vertical) selectivity. Green dashed lines represent unity (slope=1). Dashed 
lines represent distribution medians. (C) histogram of the distance between each neuron and the unity midline for both arrays. 
Vertical black line represents 0 distance from the midline for reference. Dashed lines represent distribution medians. Stars denote 
significance between array distributions (Wilcoxon rank-sum, p<0.001) 
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3.3.5 EMG activity shows no arm co-contraction during finger movements 

Due to the nature of their spinal cord injury, participant 2 retains some motor and 

somatosensory function in his upper limb, creating the possibility that neural activity observed 

during finger movements could relate to co-contraction of arm muscles. To determine whether 

this occurred, we recorded bipolar EMG activity from 8 upper limb muscles while the participant 

performed the attempted movement task (Figure 18). Movement-related activity was observed in 

several arm muscles during functionally preserved arm movements (shoulder, elbow, and wrist), 

but was absent during all finger movements, as well as grasp. These results suggest that while 

some atypical co-contraction may occur during arm movements, it is unlikely that finger 

movement activity relates to proximal muscle activation. This provides additional evidence that 

the neural modulation observed during attempted movements involving paralyzed muscles is 

related to preserved movement representations, rather than co-contraction of arm muscles. 
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Figure 18: EMG activity from participant 2 during attempted movements. EMG activity recorded from arm muscles during 
attempted movement tasks. Colored traces represent mean and standard deviation of muscle activity during each task. Vertical 
dashed line represents movement onset. Movement activity is averaged across individual repetitions throughout each trial (see 
Methods). 
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3.3.6 Trends in modulation depth and selectivity are consistent across time 

Our analysis was conducted using single unit recordings pooled across 44 months for 

participant 2. We wanted to determine whether the neural tuning properties of each day’s 

population remained stable  over the testing period. Figure 19 shows the distribution of 

modulation depths (A) and gross/fine selectivity (B) on each testing day. While there were 

significant differences between sessions, we did not observe any systematic trend over the testing 

period in either task-related modulation or movement type selectivity. Since each test session 

effectively samples a unique neural population, this consistency suggests that the spatial biases 

observed here are related to the organization of neural input-output circuits in each area which 

remain relatively stable over long periods of time. 
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Figure 19: Stability of neural tuning over time for participant 2.  (A): distributions of modulation depths from well-isolated 
neurons on both arrays during each task. Stars represent significant difference between days (Wilcoxon rank-sum, p<0.05). (B): 
distributions of selectivity index from neurons on both arrays across gross (blue) and fine (red) movements. Stars represent 
significant difference between days (Wilcoxon rank-sum, p<0.05). 
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3.4 Discussion 

By simultaneously recording the activity of single neurons from multiple areas of M1 in 

humans attempting to perform upper limb movements, we have provided evidence that weak 

somatotopic trends are reflected in the selective modulation of broadly tuned neurons. In both 

participants, neurons from separate areas were modulated by both arm and finger movements, 

suggesting that upper limb movements are encoded by a shared population of neurons. In 

participant 2, neurons recorded from the medial array displayed stronger and more selective 

modulation during arm movements compared to finger. This was not the case for cells recorded 

from the lateral array, which displayed similar magnitude and selectivity of activity during both 

arm and finger movements. These findings provide a basis for relating the large-scale 

organization observed in human neuroimaging to the behavior of individual neurons and extend 

results from non-human primates (NHPs) showing an absence of clear somatotopic separation. 

We found that neural populations from both lateral and medial areas display significant 

modulation during both arm and finger movements and observed relatively small differences in 

the magnitude of spiking activity therein. Our results thus suggest that different movements 

across the entire upper limb, ranging from shoulder to fingers, are controlled by a shared 

population of neurons. The fact that spatially separate neurons in M1 produce similar amounts of 

spiking activity during a given movement suggests that they are involved in a common 

interconnected neural circuit. This correlation could be the product of shared input from external 

cortical or subcortical areas, or from direct connections within M1. Anatomical tracer and 

microsimulation studies have shown that M1 neurons display rich internal connectivity, with 

connections allowing communication between functionally related somatotopic representations 
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(Huntley & Jones, 1991). There is also evidence from anatomical results that incoming and 

outgoing connections from M1 are not uniform but instead heterogeneous and “patchy”, 

providing a possible mechanism for spatially distant neurons to receive similar driving inputs 

(Dea et al., 2016; Hamadjida et al., 2016). Taken together with our results, these findings 

indicate that functional circuits underlying upper limb movement may be comprised of large 

areas of M1. 

Beyond the presence of this strong task-related modulation, we also observed that activity 

recorded from the medial array in participant 2 was significantly more selective within arm 

movements, meaning that individual neurons were more likely to respond strongly to one arm 

movement over others. One possible explanation for the lowered selectivity displayed by lateral 

array neurons could relate to the nature of participant 2’s spinal cord injury and the resulting 

behavioral relevance of the movements preserved above the injury. As participant 2 retains 

motor and somatosensory function in the muscles that move his shoulder, elbow, and wrist, it is 

possible that neurons previously involved in finger movement production have undergone 

plasticity-induced tuning changes to “remap” and better control preserved movements. However, 

there is substantial evidence suggesting that existing sensorimotor representations are largely 

preserved even after long periods post-injury ((Kikkert et al., 2016; Urbin et al., 2019; Wesselink 

et al., 2019)), indicating that the activity we observed during finger movements is evidence of 

preserved finger movement representation. Rather than the lateral population rewiring to encode 

arm movements, it is possible that the neurons recorded on the medial array have instead rewired 

to better encode the range of preserved after the participant’s injury. In other words, medial 

neurons may have become more selective post-injury. Recent models suggest that somatotopy is 

merely one of many motor parameters encoded in M1, alongside other principles such as 
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stereotyped actions and peripersonal coordinate space ((Graziano, 2016; Graziano & Aflalo, 

2007)). The increased arm selectivity observed in medial population neurons may reflect 

plasticity-related changes in tuning related to the increased behavioral relevance of arm 

movements. Future investigations should evaluate the tuning properties of neurons from 

participants with different sensorimotor impairments in order to determine whether such changes 

are consistently related to preserved functionality. 

If such functionally-relevant plasticity has taken place, it is possible that activity during 

multi-joint movements, or movements to a wider range of peripersonal space (e.g. object 

interaction), may reveal more complex changes in neural tuning throughout M1. Our task 

paradigm was intentionally limited to simple movements in order to restrict the dimensionality of 

the motor parameters being encoded, and did not represent the full range of neural variability 

demonstrated by the recorded populations. Future work should examine the magnitude and 

selectivity of neural activity during a wider range of behavior to determine whether more 

complex movements alter the spatial trends observed here. 

While this study focuses on the activity underlying attempted movements of the 

participants’ native limbs, we have also previously demonstrated that participants are able to use 

activity from the same electrode arrays to dexterously control robotic limbs and perform tasks of 

daily living ((Collinger et al., 2012; Wodlinger et al., 2014)). Since the experiments described 

here were often performed on the same day as these brain-computer interface (BCI) tasks, it is 

very likely that activity from these same neurons also modulate during BCI control. While 

directly comparing activity from these different task paradigms is beyond the scope of this study, 

future work should investigate whether the spatial biases described here are reflected in the 

decoder weights used to generate robotic limb movement. 
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In summary, we found that many neurons recorded from spatially separate areas of 

human M1 appear to participate similarly in encoding many different upper limb movements. 

While we did observe significant biases in the degree to which neurons from medial and lateral 

areas preferentially fire during arm and finger movements, the recorded populations overall 

displayed remarkably broad tuning to all attempted movements. These results suggest that rather 

than maintaining separate representations of different muscles or movements, neurons 

throughout M1 operate as a unified system to produce different activity patterns. This view is 

consistent with recent experimental results (Kaufman, Churchland, Ryu, & Shenoy, 2014; Russo 

et al., 2018; Sadtler et al., 2014) and theoretical models (Michaels, Dann, & Scherberger, 2016; 

Shenoy et al., 2013) which interpret M1 as a dynamical system, where each individual neuron 

contributes to generating high-dimensionality patterns to control ongoing movement. In this 

framework, our results suggest that this dynamical system consists of neurons throughout M1, 

with neurons in different areas contributing information depending on their location within the 

large-scale circuits of input-output connections. 
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4.0 Movement Representations Across Sensory Context 

4.1 Introduction 

Classical theories of motor cortex organization describe a large-scale somatotopic 

organization, where neurons in different areas of M1 selectively modulate their activity to 

encode the muscle and movement parameters of different movements. Several studies have 

shown that while such gradients exist, they are broadly distributed and intermixed, resulting in a 

complex spatial organization (Graziano, 2016; Kakei et al., 1999; M. Schieber & Hibbard, 

1993b). These overlapping patterns suggest that the activity of neurons in separate areas may be 

driven by both shared and private inputs (Dea et al., 2016), allowing them to contribute novel 

information to the overall pattern of activity projected downstream to generate movement. 

In Chapter 2, we demonstrated that the organization of large-scale activity throughout M1 

can be affected by multisensory enrichment, suggesting that spatially separate neural populations 

may receive different information about context-related sensory cues. Additionally, we have 

shown that neurons recorded from “arm” and “hand” areas of M1 are broadly modulated by both 

types of movement (Chapter 3). Recent computational theories suggest that this broad 

modulation and flexible tuning may be evidence of information encoding by a population-level 

pattern of activity. We sought to determine whether neural population activity recorded from 

different areas of M1 respond to the multisensory context of attempted movement tasks. We 

hypothesized that single-neuron and population-level activity recorded from the Lateral array, 
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located in an area identified as active during hand movements by neuroimaging, would be more 

strongly affected by multisensory enrichment than Medial array activity.  

4.2 Methods 

4.2.1 Study participants and surgical procedures 

The studies allowing the collection of this data were approved by the institutional review 

boards at the University of Pittsburgh (Pittsburgh, PA, USA), the Space and Naval Warfare 

Systems Center Pacific (San Diego, CA, USA), and the Food and Drug Administration 

(Washington, D.C., USA) under an Investigational Device Exemption. We obtained verbal and 

written informed consent from the participant before his enrollment in these studies.  

Participant 2 was 28 at time of implant, with chronic tetraplegia due to a C5-motor/C6-

sensory ASIA-B spinal cord injury (due to automobile accident) approximately 10 years before 

implantation. Due to the level of injury, this participant retains full use of his shoulder and 

elbow, partial use (extension) of his wrist, while his hand is completely paralyzed and desensate 

in the medial part of his hand innervated by the median nerve (see EMG analysis, Chapter 3). 

Participant 1 was implanted with two 4mm x 4mm x 1.5mm, 88-channel platinum-coated silicon 

intracortical microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT, USA) in left 

primary motor cortex.  He was also implanted with two 2.4mm x 4 mm x 1.5mm, 60-channel 
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arrays in primary somatosensory cortex (Flesher et al., 2016), but data from these arrays were not 

included in this study. 

4.2.2 Presurgical neuroimaging 

MRI data were collected on a Siemens Technology (Munich, Germany) Trio 3T scanner. 

The participant received a T1-weighted whole-brain anatomical scan (1 mm3
 isovoxel, 176 

slices, 256x256 mm in-plane resolution). Functional scans were collected from dorsal 

sensorimotor cortex using T2*-weighted echo-planar imaging (EPI) sequence (TR = 2000 ms, 

TE = 29 ms, voxel size = 2.156 x 2.156 mm, slice thickness = 2 mm, 128x128 mm in-plane 

resolution, 26 mm field of view).  

Functional data were collected while the participant attempted to move his shoulder, 

elbow, wrist, hand (grasp), and fingers (sequential tapping). This task data was collected using a 

block design, wherein a 20 second baseline period was followed by 4 alternating 20 second 

blocks of rest and movement condition. Each run consisted of 4 blocks of rest/move conditions. 

Rest periods were cued by a gray fixation cross, while movement conditions consisted of a 

green/red fixation cross changing color at 0.5 Hz, cuing subjects to alternatively grasp and relax 

with their dominant hand, respectively. During the movement condition, the participant was 

instructed to “attempt” to physically execute each movement. fMRI data were pre-processed 

using SPM12 (Ashburner et al., 2013). fMRI images were spatially realigned using a rigid-body 

transformation, spatially smoothed (6 mm FWHM), and coregistered to the anatomical scan. 

BOLD responses were determined with a general linear model (GLM) convolved with a 
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canonical hemodynamic response function. The resulting T-contrast images were then projected 

onto a cortical surface render (created using Freesurfer (Fischl, 2012)) for visualization(Collinger 

et al., 2014). 

4.2.3 Array placement based on presurgical mapping 

In order to record the cortical activity most directly related to upper limb movements, 

fMRI was used to localize the cortical areas active while the subject attempted to perform 

various upper limb movements. These functional images served to guide the placement of the 

microelectrode arrays implanted in the primary motor cortex (see Chapter 3, Figure 12B/C). 

Final positioning was determined intraoperatively based on the cortical surface topography and 

vasculature.  Array position was estimated using post-implantation high-resolution CT and co-

registered to the pre-surgical MRI.  One array was placed in a lateral area of finger- and grasp-

related activity, while the second array was placed in a more medial area thought to be more 

related to arm movement, although this was not mapped explicitly. 

4.2.4 Behavioral task design 

The goal of this experiment was to determine how varying levels of multimodal sensory 

information alter the sensorimotor activity generated during attempted hand movements. To that 

end, we collected intracortical neural data while the participant performed the covert enrichment 

task described in Chapter 2. Briefly, this paradigm consisted of 1 Overt attempted movement 
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task and 3 motor imagery tasks (wrist flex/extend, hand grasp, sequential finger taps), with 4 

levels of context-related multisensory enrichment (Simple, Goal, Audio, Stim).  Since the 

participant was generally unable to detect somatosensory stimuli on the hand, we placed these 

stimulators on the clavicle (where sensation was generally preserved) in order to ensure the 

detection of timing-related tactile information. Each movement task was presented as a separate 

block design; a 10-second initial rest period, followed by 4 blocks of movement conditions, 

followed by a 10-second final rest period. Conditions within each block were intermixed and 

separated by 8 seconds of rest (cued by fixation cross) and 2 seconds of text cuing the next 

movement to be performed. Intracortical data were collected while the viewed these stimulus 

videos of rhythmic movements being performed and was instructed to attempt to perform the 

movements in time with the videos.  

 

4.2.5 Neural recording 

 

Neural data were recorded from Utah microelectrode arrays implanted in the arm/hand 

area of M1. Raw voltage signals were sampled at 30KHz with a 250-4500 Hz bandpass filter. 

Spike snippets were defined as 48-sample (1.6ms) events where the voltage signal crossed a 

fixed threshold (-4.5*baseline root-mean-square (RMS)) voltage for each channel. 

To examine the activity of individual neurons, we sorted spike snippets into ‘neurons’ 

using the principal component analysis (PCA)-based method described previously ((Downey et 

al., 2018)). Briefly, we used PCA to visualize each channel’s snippets in the first two 

components based on waveform shape. Separable clusters were manually identified and used to 
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initialize a Gaussian mixture model expectation-maximization algorithm, which created the 

specified number of clusters and assigned each snippet to the most likely unit. 

To further isolate activity from individual neurons, neurons primarily containing noise 

events, i.e. snippets diverging from the stereotyped action potential waveform, were then 

manually identified and excluded from further analysis. Neurons that displayed any inter-spike 

intervals (ISI) less than 1ms were also excluded. We then calculated a consistency metric to 

identify neurons with consistent waveform shapes by taking the dot product of sequential 

normalized snippets ((Fraser & Schwartz, 2012)). We fit the resulting “consistency” histogram 

with two normal distributions and identified the threshold separating neurons with low and high 

consistency, and only included those neurons with waveform consistency above this threshold. 

We collected this behavioral neural data on 5 separate days during testing sessions for the 

BCI study. Due to experimental time constraints during testing sessions, a different combination 

of the 4 movement tasks were collected on each day. To increase the statistical power of our 

analysis and to provide a better overall sample of the neural activity observed in each cortical 

location, we combined neural recordings across days by treating each isolated neuron as an 

independent observation.   

4.2.6 Quantifying neural modulation during single movement repetitions 

For this study, as we wanted to examine the neural activity underlying individual 

movement repetitions, we processed the raw timeseries activity to isolate each individual 

attempted movement. Stimulus videos were created by filming and looping footage of a single 2-
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second repetition to create a continuous 10-second movement period. Neural activity was 

recorded during this continuous task, then extracted and organized around stimulus onset for 

each condition. As each task contained 4 “blocks” consisting of 5 repeated 2-second looped 

individual movement repetitions, this process yielded 2000ms of spike counts (binned at 1ms) 

for 20 repetitions of each task condition. To calculate a given unit’s activity during movement, 

we calculated a peristimulus time histogram (PSTH) of spike times during all movement 

repetitions. We then smoothed this trial-averaged spike count with a Gaussian kernel (σ=50ms, 

width=300ms) to generate smooth instantaneous firing rates for each unit. In order to quantify 

the degree to which a given neuron was “tuned” to a specific movement, we extracted the firing 

rate activity from each neuron during these repetitions and calculated the modulation depth (MD) 

as the mean of the difference between maximum and minimum of the trial-averaged firing rate. 

To further determine how neural activity was affected by multisensory enrichment, we 

wished to identify which condition elicited peak modulation in individual neurons. We compared 

each neuron’s modulation during each condition within each task  and quantified the proportion 

of neurons which displayed peak modulation in a given condition, yielding a “%peak neurons” 

summary statistic. 

4.2.7 Modulated neuron identification 

To identify neurons that displayed modulated activity during attempted movement, we 

compared each neurons’ firing rate distributions during movement and rest. To filter out spurious 

activity, only neurons with mean firing rates >1Hz during both movement and rest were 

analyzed. For each task, firing rate activity during rest (defined as the 2s prior to movement 
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onset) and movement (defined as the 2s following movement onset) was concatenated across all 

trials and compared using a two-tailed Kolmogorov-Smirnov test (p<0.001). Any “valid” neuron 

that was significantly modulated during at least one condition of any task was included for 

further analysis.  

4.2.8 Per-neuron enrichment 

To further examine how individual neurons were affected by multisensory enrichment, 

we sought to determine per-neuron changes in modulation across conditions (similar to the 

“enrichment effect” discussed in Chapter 2). We defined this “per-neuron enrichment” by 

calculating the difference between each neuron’s modulation depth between each pair of 

enrichment conditions in a given movement task. These differences were calculated additively, 

such that positive ∆MD indicates increased activity with increased enrichment (i.e. Goal – 

Simple, Audio – Goal, etc).  

4.2.9 Dynamical state-space analysis 

In addition to quantifying the activity of individual neurons, we also wished to examine 

the structure of shared population activity, i.e. the overall pattern of activity distributed across 

multiple neurons. We defined a “neural state space” from population-wide activity using 

principal component analysis (PCA), a dimensionality-reduction technique which isolates the 

temporal patterns of activity (i.e. principal components, PCs) which explain the most variance 
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across N-dimensional neural populations. We generated a separate neural space using the activity 

from all neurons across days. Since a different subset of task data was collected on each day, 

each of the 4 tasks is generated using a different subset of neural data.  

In order to determine how different neural populations respond to multisensory 

enrichment during covert movement, we generated a neural state space for each movement task 

using all motor neuron activity (i.e. neurons from both arrays), as well as for each motor array 

separately. To generate neural state spaces based on “raw” neural activity, we used each neuron’s 

per-repetition spiking data to calculate an instantaneous firing rate for every repetition of each 

condition and concatenated them into a (time X neurons) matrix, which was used to perform 

PCA. We then calculated the across-repetition mean of each condition’s trajectories and 

projected these condition-mean trajectories onto the space defined by the first 3 principal 

components for visualization (i.e. the “neural state space”). To preserve and examine the 

information of this population activity, we defined the dimensionality of neural trajectory 

behavior as the number of PCs required to explain 75% of the total variance. To quantify the 

separability of each condition in this space, we then trained a Naïve Bayes classifier on these N-

dimensional neural trajectories. We then wished to examine the spatiotemporal structure of these 

neural trajectories in more detail. We defined each condition’s state-wide temporal activity as the 

Euclidean distance between the space origin and each timepoint in the trajectories, providing a 

summary statistic (“trajectory distance”) to quantify the overall amount of variance displayed by 

each condition.  
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4.3 Results 

4.3.1 M1 neurons modulate during enriched covert movements 

Across all days, we recorded 281 motor neurons (200 from the medial array, 81 from the 

lateral array) and identified 256 neurons which displayed significant modulation during at least 

one movement condition (189 medial, 67 lateral). Figure 20 shows the spiking activity of an 

example neuron (recorded from the lateral array) during each condition of the 4 movement tasks. 

Figure 20: Enriched neural activity.  Single-neuron activity recorded from the lateral array during overt and enriched covert 
movements. Top panels show per-repetition spike times (rows = repetitions). Bottom panels show smoothed trial-averaged firing 
rates. Inset black lines show relative modulation depth between task conditions. 
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4.3.2 Broad modulation in M1 neurons during overt movements 

In order to determine how the neural population activity underlying different movements 

is affected by contextual multisensory enrichment, we first wished to determine how those 

movements are encoded in the absence of said enrichment. Thus we examined the activity of 

single neurons in M1 during an overt movement task wherein the participant attempted to 

physically perform the Simple condition of each movement (wrist/hand/fingers), as well as ankle 

flex/extend and lip purse. Figure 21A depicts heatmaps the modulation depth of each neuron 

during different movements. Each row represents a single neuron, with the color of each column 

representing that neuron’s modulation depth during each movement. Neurons were generally 

broadly responsive (i.e. displaying significant modulation during multiple movements), 

consistent with previous results from this participant (see Chapter 3).  

We show these neurons grouped vertically by peak condition, illustrating the proportion 

of neurons from each array which are maximally tuned to each movement. This quantity is 

shown in Figure 21B, revealing that neurons from both arrays displayed preferential tuning (i.e. 

higher modulation depth) to Wrist movement relative to other movements. However, each 

movement condition elicited peak modulation from at least 10% of neurons from both arrays, 

illustrating that neurons throughout M1 participate broadly in encoding different types of 

movement. 

We then compared the modulation depths of neurons from each array during different 

movement conditions (Figure 21C). Lateral array neurons displayed lower modulation in each 

condition, with significant differences observed between arrays in lip (p=0.014), hand (p=0.096), 

and finger (p=0.012) movements (Wilcoxon rank-sum). Comparing distributions within arrays 
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revealed that only Wrist modulation was significantly greater than other movements on both 

medial and lateral arrays (Medial: Wrist > Lip, p=0.009; Wrist > Fingers, p=0.022. Lateral: Wrist 

> Lip, p=0.045; Wrist > Ankle, p=0.022, two-tailed t-test).

Figure 21: M1 single-neuron modulation during overt movement.  (A) Heatmaps showing modulation depth of individual 
neurons recorded from medial (left) and lateral (right) motor arrays. Neurons are grouped vertically (rows) according to their 
peak task. (B) Percent of neurons from each array (left = medial, right = lateral) displaying peak modulation during each task. (C) 
Boxplot showing median, inter-quartile range, and 5/95% of neural modulation depths from each array (left = medial, right = 
lateral) during each task. *** = significance between arrays in each task (p<0.05, Wilcoxon rank-sum). * = significance between 
conditions in each array (p<0.05, two-tailed t-test).
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4.3.3 Spatial differences in population encoding of overt movements 

Examining single-neuron activity during overt movement demonstrated that individual 

neurons were broadly tuned, with neurons from both arrays displaying significant modulation 

during multiple movements. As the overall magnitude of single-neuron activity appears to be 

similar during different movements, we theorized that enrichment may be more easily observed 

in the patterns of variance shared between neurons. We then sought to determine whether 

analyzing the recorded neural activity at the population level could reveal additional insights.   

Figure 22A shows the trial-averaged neural trajectories in PC3 space generated from all 

neurons (n=256) during each movement. Since this projection of the population-wide neural data 

onto each PC defines the magnitude of a specific aspect of neural variance observed at each 

time-point, we can interpret the distance traversed by each condition-trajectory as an estimate of 

the amount of information encoded by the population. In this PC3 space (which accounts for 

46% of overall neural variance), we observed that activity during Wrist movement (shown in 

purple) is highly defined and separable from other condition-trajectories. Lip and Ankle 

trajectories (orange and red) are more compact and closer to the origin, indicating less overall 

variance and greater similarity in the population activity during those tasks. The Finger trajectory 

(blue) is also highly separable, while the Hand trajectory (green) traverses a unique volume of 

state space but partially overlaps with the Lip and Ankle volumes. 

To quantify the separability of these trajectories, we trained a Naïve Bayes classifier 

using this PC3 activity. Figure 22B shows the resulting confusion matrix, revealing that Wrist 

and Finger trajectories are highly separable (100% accuracy). Hand activity (46%) was partially 
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mis-classified as Lip (14.5%) or Ankle (37.9%) movement, consistent with their trajectories’ 

proximity in PC3 space. 

We then aimed to examine the spatiotemporal structure of these neural trajectories in 

more detail. We quantified the time-course of each trajectory, defined as its distance from the 

space origin ([0,0,0]). As the space origin represents the mean population activity, we can 

interpret a trajectory’s distance from this location as the variance (information) encoded at each 

timepoint. Figure 22C shows the origin-distance of each trajectory during the 2000ms 

movement period. We observed that the three hand-related movements (wrist, grasp, fingers) 

display a peak distance at ~1500ms, where the Lip and Ankle trajectories deflect towards the 

origin, supporting the separability between hand and non-hand movements. We also observed a 

similar outward deflection in Wrist and Finger trajectories at ~500ms which the other trajectories 

(including Hand) lack, supporting the increased separability of these movements. The overall 

distributions of trajectory distance were significantly different between all conditions and was 

generally greater in conditions with higher separability, supporting the relationship between 

trajectory distance and activity-pattern separability (Figure 22D). 
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Figure 22: Neural trajectories during overt movement.  Neural state spaces were calculated separately using neurons from 
both arrays (A-D), the medial motor array (E-H), and the lateral motor array (I-J). (A,E,I): Neural trajectories during each task 
projected into first 3 principal components. Colored points represent trajectory centroid as defined by the Naïve Bayes classifier. 
(B,F,J): Naïve Bayes classification accuracy based on PC3 neural trajectories.  (C,G,K): Time course of neural trajectories 
(measured as distance from state-space origin during each task. (D,H,L): Distributions (median, inter-quartile range, 5/95%) of 
origin-trajectory distance during each task. 
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These results illustrate that population-level analyses reveal informative structure in the 

shared activity of motor neurons during overt movement. We then examined how spatially 

separate neural populations contribute to encoding a given movement by generating a separate 

neural space using activity from each array.  

Figure 22 E-H shows the state-space trajectories from the Medial array (n=189 

variance). Each movement trajectory is highly separable, occupying a nearly unique volume of 

space (E) and displaying very high classification accuracy (F). However, the time-course of each 

trajectory appears less distinct, lacking the divergent peaks seen in the whole-population space 

(G) and displaying similar ranges of origin-distance (H).

Conversely, the trajectories generated from Lateral array activity (Figure 22 I-L; n=67) 

appear to more closely resemble those seen in the whole-population space (I). Each movement is 

less separable compared to the Medial trajectories (J), but display separable time-course peaks 

(K) and distance distributions (L) similar to the whole-population activity.

Taken together, these results suggest that neural populations throughout M1 modulate to 

encode overt movements. In this task, the Medial array trajectories displayed very high 

separability between different movement conditions but did not reflect the specific temporal 

structure of each movement, while the Lateral array trajectories appeared to define the temporal 

structure of each movement state at the cost of some separability. Therefore, while neural 

populations from both areas contribute to the overall pattern of descending motor activity 

generated to drive each movement, they may preferentially encode different types of 

information. 
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4.3.4 Population-level contributions are consistent across enrichment tasks 

We then examined single-neuron modulation and population dynamics during enriched 

Wrist movement. Figure 23A shows tuning of single neurons from both arrays during each 

enrichment condition. The Medial array had similar proportions of peak-tuned neurons during 

each condition, while the Lateral array displayed a higher number of neurons with peak 

modulation during the Audio condition (Figure 23B). The Lateral array also displayed a higher 

incidence of strongly modulated neurons compared to the Medial array, these differences were 

not significant (Figure 23C). To further determine how different enrichment condition affected 

the modulation of individual neurons (rather than the overall array distributions), we calculated 

the per-neuron difference in modulation depth between each pair of additive conditions (Figure 

23D). This analysis revealed that while most enrichment conditions did not elicit consistent 

changes in per-neuron modulation, Lateral array neurons did display significantly greater 

modulation in the Audio-Simple (p=0.001) and Audio-Goal (p=0.009, Wilcoxon rank-sum) 

conditions compared to Medial array neurons.  
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Figure 23: M1 single-neuron modulation during covert wrist movement. (A) Heatmaps showing modulation depth of 
individual neurons recorded from medial (left) and lateral (right) motor arrays. Neurons are grouped vertically (rows) according 
to their peak enrichment condition. (B) Percent of neurons from each array (left = medial, right = lateral) displaying peak 
modulation during each task. (C) Distributions (median, inter-quartile range, and 5/95%) of neural modulation depths from each 
array (left = medial, right = lateral) during each enrichment condition. (D) Distributions (median, inter-quartile range, and 5/95%) 
of per-neuron differences in between-condition modulation depth. * = significance between arrays in each task (p<0.01, 
Wilcoxon rank-sum). 
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We then analyzed the time-varying state trajectories generated from all motor neurons 

and each motor array separately (Figure 24). Examining the whole-population activity (A-D; 

n=208) revealed similar trajectories during each condition (A), consistent with the shared 

kinematics of each enrichment condition. Enrichment condition trajectories appeared to traverse 

a shared volume of space, with different enrichments inducing greater origin-distance at different 

time-points (C) which generally increased with enrichment (D). Trajectories during Simple and 

Stim conditions displayed the highest separability, although overall accuracy was low, with Goal 

and Audio trajectories often mis-classified as either Simple or Stim (B).  

Examining the state-space activity of each array separately revealed substantial 

differences between arrays. Medial trajectories (E-H; n=153) occupied a smaller state volume 

(E) and were less separable (F), with each condition trajectory displaying lower and less variable

time-courses (G/H). Lateral trajectories (I-L; n=55) displayed very similar spatial structure (A) 

and time-course (C) compared to the whole-population space. Additionally, Lateral trajectory 

time-courses appeared to increase linearly with additional enrichment (D), with each condition 

following the same temporal pattern while distance increased with enrichment. 

Together, these results suggest that while neurons from both Medial and Lateral arrays 

encode task-related information, the Lateral population is more strongly affected by multisensory 

enrichment. Since the general spatiotemporal structure of the population activity was preserved 

across conditions, the increased origin-distance elicited by increased enrichment may illustrate 

increased robustness in the Lateral population’s ability to encode the task. 



104 

Figure 24: Neural state trajectories during covert wrist movement.  Neural state spaces were calculated separately using 
neurons from both arrays (A-D), the medial motor array (E-H), and the lateral motor array (I-J). (A,E,I): Neural trajectories 
during each task projected into first 3 principal components. (B,F,J): Naïve Bayes classification accuracy based on PC3 neural 
trajectories. (C,G,K): Time course of neural trajectories (measured as distance from state-space origin during each task. (D,H,L): 
Distributions (median, inter-quartile range, 5/95%) of origin-trajectory distance during each task. 



105 

We next examined neural activity during enriched covert Hand movement. Analyzing 

single-neuron modulation (Figure 25A) again revealed subpopulations of neurons from both 

arrays which displayed peak modulation during each enrichment condition. We found that a 

majority of Medial neurons peaked in the Simple condition, while a majority of Lateral neurons 

peaked in the Stim condition (B). The Medial population also displayed significantly higher 

firing rates (p<0.05, Wilcoxon rank-sum) in each condition compared to the Lateral population 

(C), consistent with the difference observed in the Overt movement case. We did not observe 

any significant differences between condition MD distributions on either array. Directly 

calculating per-neuron enrichment revealed no significant differences between arrays or between 

conditions within each array, as well as a general lack of systematic changes between conditions 

(D). These results indicate that while single neurons from both arrays modulate during enriched 

hand movement, that enrichment does not appear to significantly affect the activity of individual 

neurons. 
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Figure 25: M1 single-neuron modulation during covert hand movement. (A) Heatmaps showing modulation depth of 
individual neurons recorded from medial (left) and lateral (right) motor arrays. Neurons are grouped vertically (rows) according 
to their peak enrichment condition. (B) Percent of neurons from each array (left = medial, right = lateral) displaying peak 
modulation during each task. (C) Distributions (median, inter-quartile range, and 5/95%) of neural modulation depths from each 
array (left = medial, right = lateral) during each enrichment condition. * = significance between arrays in each task (p<0.05, 
Wilcoxon rank-sum). (D) Distributions (median, inter-quartile range, and 5/95%) of per-neuron differences in between-condition 
modulation depth.  
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Conversely, examining population-level activity (Figure 26) revealed significant 

enrichment effects. Whole-population trajectories (n=188) (A) behaved similarly to those 

observed during Wrist movement, with each trajectory traversing a similar path through state 

space with enrichment-related variance along that path. Audio and Stim trajectories were more 

separable compared to Simple and Goal (B), displayed transient deflections from Simple/Goal 

trajectories at multiple time-points (most notable at the peak at ~1500ms) (C), and displayed the 

lowest and highest origin-distance time-course distributions respectively (C/D).  

In the Medial population space (n=137) we again observed more spatially-compact 

trajectories (E), with the Simple condition displaying the greatest separability (F), consistent 

with the higher proportion of Simple-peak single neurons. Medial trajectory time-courses 

displayed little variance across the movement period (G), with similar distance distributions in 

Simple/Stim conditions and minimal distance in the Audio condition (H).  

Lateral population trajectories (n=51) again displayed large spatial structures (I), as well 

as increased separability in the Audio and Stim conditions relative to Simple and Goal (B).  Lateral 

trajectory time-courses were notably similar to those of the whole population (K), and reflect the 

reduction in Goal/Audio distance and increase in Stim distance (L).  

These results suggest that during covert Hand movement, Goal and Audio enrichment 

may decrease the strength of the population-level representation, while Stim enrichment appears 

to increase it, particularly in the Lateral array population.  
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Figure 26: Neural state trajectories during covert hand movement.  Neural state spaces were calculated separately using 
neurons from both arrays (A-D), the medial motor array (E-H), and the lateral motor array (I-J). (A,E,I): Neural trajectories 
during each task projected into first 3 principal components. (B,F,J): Naïve Bayes classification accuracy based on PC3 neural 
trajectories. (C,G,K): Time course of neural trajectories (measured as distance from state-space origin during each task. (D,H,L): 
Distributions (median, inter-quartile range, 5/95%) of origin-trajectory distance during each task. 
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Finally, we examined neural activity during enriched Finger movement. Analyzing 

single-neuron modulation (Figure 27A) revealed that the Medial population was most likely to 

show peak modulation during the Stim condition than others, while the Lateral population 

displayed many more neurons with peak modulation during the Simple condition than others (B). 

However, when we compared the arrays’ modulation during each task, we did not observe any 

significant differences either within or between arrays (C), suggesting that single-neuron activity 

during Finger movement is not significantly altered by multisensory enrichment. Per-neuron 

modulation differences between pairwise conditions also displayed no significant differences 

between arrays or conditions within each array, further supporting the lack of interaction 

between single-neuron activity and multisensory enrichment. 
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Figure 27: M1 single-neuron modulation during covert finger movement. (A) Heatmaps showing modulation depth of 
individual neurons recorded from medial (left) and lateral (right) motor arrays. Neurons are grouped vertically (rows) according 
to their peak enrichment condition. (B) Percent of neurons from each array (left = medial, right = lateral) displaying peak 
modulation during each task. (C) Distributions (median, inter-quartile range, and 5/95%) of neural modulation depths from each 
array (left = medial, right = lateral) during each enrichment condition. * = significance between arrays in each task (p<0.05, 
Wilcoxon rank-sum). (D) Distributions (median, inter-quartile range, and 5/95%) of per-neuron differences in between-condition 
modulation depth. 
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When we analyzed the neural trajectories generated from the whole population (Figure 

28A; n=153) we observed dramatic differences in the spatial structure of each condition 

trajectory. The Simple trajectory was highly separable from all other conditions (B), and while 

the other 3 conditions traversed similar volumes of state space, they appeared to vary more than 

those observed in the other Covert movement tasks. Additionally, the time-course of the Simple 

trajectory diverged substantially from those of the other 3 conditions (C), each of which 

displayed greater overall origin-distance (D). These findings suggest that the Goal enrichment (a 

change in the task’s visual context, which is shared across the Audio and Stim conditions) had a 

significant effect on the population-level activity in motor cortex. 

Examining trajectories generated from the Medial population (n=112) revealed 

dramatically different trajectories (E), which were highly separable and whose overall spatial 

structure more closely resembled those generated during the Overt movement task than those 

observed in the other Covert tasks. The Simple trajectory was highly separable, traversing a 

small volume of space shared with the Goal and Audio trajectories, which varied around a 

common plane. The Stim trajectory was completely separate from the other conditions (F), and 

traversed a different time-course (G) through a more distant volume of state space (H). These 

findings indicate that the Medial population is significantly affected by enrichment during Finger 

movement, especially in the Stim condition.  

The Lateral population space (n=41) also displayed substantial enrichment effects. Rather 

than the dramatic spatial separation between conditions observed in the Medial population space, 

the Lateral trajectories (I) appeared to spread out from a common plane, displaying more 

separability (J) than observed in other Covert tasks. The trajectory time-courses (K) revealed a 

stark difference between the Simple condition and the other 3 conditions, which all displayed 
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similar temporal pattern with distance increasing with enrichment (L). These results indicate that 

the Lateral population, as well as the Medial population, was significantly affected by Goal 

enrichment and the subsequent additive enrichment conditions. 
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Figure 28: Neural state trajectories during covert finger movement.  Neural state spaces were calculated separately using 
neurons from both arrays (A-D), the medial motor array (E-H), and the lateral motor array (I-J). (A,E,I): Neural trajectories 
during each task projected into first 3 principal components. (B,F,J): Naïve Bayes classification accuracy based on PC3 neural 
trajectories. (C,G,K): Time course of neural trajectories (measured as distance from state-space origin during each task. (D,H,L): 
Distributions (median, inter-quartile range, 5/95%) of origin-trajectory distance during each task. 
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4.4 Discussion 

By simultaneously recording activity from spatially separate neural populations in human 

M1 during enriched covert movement, we have provided evidence that neural populations in 

different areas of  M1 may receive and process contextual sensory information differently, 

allowing them each to contribute novel information to a larger population-level activity pattern.  

We found that individual neurons from different areas of the upper limb representation 

were broadly modulated during all movement tasks, consistent with our previous findings of 

weak single-neuron somatotopy (see Chapter 3). Within each Covert enrichment task, we found 

only minor differences in neural modulation depth across enrichment conditions, indicating that 

the overall level of population firing activity remains relatively stable during sensory-variants of 

a motor task with fixed kinematics. However, when we analyzed the same activity from a 

population-level perspective, we observed minor changes in the spatiotemporal structure of 

neural state dynamics during each task’s enrichment conditions. Population-level activity from 

each array contributed different information to the activity of the combined motor population. 

Whole-population trajectories primarily reflected the temporal structure of Lateral neurons, but 

traversed greater volumes/distances with more separability in neural state space when combined 

with Medial neurons. 

Examining these population structures during the enriched Covert conditions revealed 

minor differences in the activity of both populations. In each Covert task, multisensory 

enrichment increased the distance traversed by the neural state trajectories relative to the 

unenriched Simple condition. As “distance” in this neural state space corresponds to the degree 
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of shared variance in population-wide activity, we propose that these enrichment-related 

increases in trajectory distance relate to increased robustness in the encoding of each movement, 

possibly due to the additional engagement of premotor and parietal input to integrate the object-

related multisensory information (Schaffelhofer & Scherberger, 2016). 

We also observed dramatic differences in the structure of neural state trajectories between 

arrays. The medial array population appeared to encode separation between conditions (i.e. 

trajectories could be “centered” around distant points rather than space-origin), while the lateral 

array population appeared to primarily encode the temporal structure of conditions (centered 

around space-origin, separability by orthogonal rotation). This difference could indicate that the 

lateral array, which is located in a cortical area shown to be “hand-related’ by large-scale 

neuroimaging, samples a neural population that has access to a greater proportion of hand-related 

sensory input from higher-order cortical areas, and therefore corresponds closely to the temporal 

profile of the movement task. Conversely, as the medial array is located outside of this “hand-

related” area, it samples neurons which participate less directly in generating the exact temporal 

pattern of activity, but which are involved broadly in coordinating ongoing movement.  

We also observed that neural state trajectories during many tasks/conditions tended to 

display circular structure and dynamics. These rotational dynamics can be partly explained by 

the nature of PCA, which is to define space that maximally separates the data (i.e. identify 

patterns of greatest variance between conditions), and are also consistent with current models of 

population activity (Russo et al., 2018). 

Ideally, to determine whether multisensory enrichment increases the “effective 

somatotopy” (i.e. increases the separability of neural activity representing different 
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movements/conditions), we would compare the population activity of different movements 

(Wrist/Hand/Fingers) during each enrichment condition. Due to limitations on experimental 

testing time, we were only able to collect partial data sets on each testing session. While we were 

able to collect Overt task data each day, incomplete data sets collected for Covert tasks means 

that we are analyzing a slightly different (partially overlapping) neural population. Future 

experiments should utilize intermixed designs in order to generate continuous activity from a 

common population. 

In summary, our work demonstrates that activity from throughout M1 coordinates to 

represent not only the detailed kinematics of ongoing movement, but also to a lesser degree the 

multisensory context in which it is performed. These results provide insight into the nature of 

neural computation and multisensory integration, and can be used to inform the development of 

intracortical neuroprosthetics. 
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5.0 Conclusions 

One of the core challenges in neuroscience is the hierarchical nature of neural 

computation. Individual neurons connect together to create neural circuits, which convey 

information within and between brain areas, as well as to and from the spinal cord and the rest of 

the body. As a result of this organization, neural activity can be interpreted and studied across 

spatial scales, ranging from the activity of individual neurons to the aggregate signals of millions 

of neurons together. Extensive research has been done to identify relationships between neural 

activity measured at different spatial scales, but such links remain elusive. In recent years, the 

development of intracortical brain-computer interfaces has offered a unique opportunity to 

investigate the activity of human neural populations in sensorimotor cortex. We sought to 

determine how the organization of large-scale activity in M1 was reflected in the activity of 

spatially separate individual neurons, and how activity at both of these spatial scales is affected 

by task context. While this work has implications for a wide range of neuroscientific studies, it 

was performed specifically in the context of intracortical BCIs for the purpose of controlling 

prosthetic arms and hands. In this context, our work focused on evaluating the validity and ideal 

strategy for using neuroimaging for presurgical planning of intracortical microelectrode arrays.  

Typically, implant location is planned based on identifying the generally somatotopic 

location of fMRI activity during a specific movement task (Collinger et al., 2014, 2012). We 

have shown that the spatial distribution of the large-scale activity in M1 representing different 

hand movements is widely distributed and overlapping (Chapter 2). We observed peaks of 

activity during each overt movement in a spatially consistent area (the “hand knob”), indicating 

that some cortical areas are more likely to be involved in processing activity directly related to 
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overtly performed hand movements. However, we also found that this activity is also present 

throughout M1, suggesting that this common “core” area is merely the peak of a widespread 

representation involving neurons from many different areas. This finding is supported by our 

analysis of single neurons recorded from multiple sites in M1 (Chapter 3). The fMRI activity 

collected for presurgical planning in this subject suggested that the lateral array would sample 

neurons more likely to be modulated by hand and finger movements. Based on conventional 

large-scale somatotopy, the medial array was predicted to sample neurons more likely to be 

modulated by arm movements. We observed that neurons from both medial and lateral areas of 

this “hand knob” were broadly modulated by both arm and hand movements, although medial 

array neurons displayed stronger and more selective modulation during arm movements 

compared to finger movements. Together with the large-scale overt activity described in Chapter 

2, these results support the idea that upper limb movements are controlled by widespread 

populations of neurons in M1, where the location of peak large-scale activity may reveal neurons 

that are preferentially driven by different types of movement. 

However, the distribution of this large-scale activity during movements under different 

multisensory contexts reveals that these representations are even more complex. We found that 

the activity underlying various hand movements was significantly affected by the presence of 

multisensory enrichment, even when the basic kinematics of each movement was unchanged 

(Chapter 2). Although this enriched activity partially overlapped with the areas seen to be active 

during unenriched movements, goal-directed enrichments elicited activity in more ventral areas 

of M1 compared to simple movement. This increased spatial variance suggests that goal-directed 

movements, which may require additional processing of hand-posture shaping and anticipated 

sensory consequences, may recruit additional areas of M1 beyond those involved in simple 
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movement production. Additionally, the distribution and magnitude of this enrichment effect 

varied between different movements, suggesting that the sensorimotor system may integrate such 

multisensory cues differently based on the type of movement and the behavioral relevance or 

congruence of the sensory information. When we examined intracortical activity from separate 

areas of M1 during the same behavioral task (Chapter 4), we found that single neurons in the 

“hand knob” were generally unaffected by this multisensory enrichment. This finding is in line 

with our results from Chapter 2, where enrichment-related activity was often seen in more 

ventral areas relative to these array locations. Together, these results suggest that this 

multisensory enrichment can be used to increase the amplitude and volume of large-scale activity 

elicited by covert movement tasks, improving the utility of presurgical neuroimaging. However, 

they also reveal that such representations are even more complex and widespread than previously 

thought. 

While the majority of our intracortical analysis was focused on the activity of individual 

neurons, we also explored whether population-level analysis approaches could reveal additional 

insights. When we examined the structure of population-level neural activity during different 

movements and conditions (Chapter 4), we found that activity from the medial and lateral arrays 

contributed very different information to the overall pattern of activity generated from both 

arrays combined. Lateral array activity consistently appeared to preferentially represent the 

temporal structure of different movements, while medial array activity appeared to preferentially 

separate different movements and multisensory conditions from one another. These findings are 

in line with the large-scale organization observed in the presurgical neuroimaging, which 

suggested that the lateral array sampled neurons which receive more hand-related activity. This 

increased input may drive these neurons to participate in defining the temporal structure of hand-
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related movements, while neurons recorded from the medial array, which is removed from this 

peak input area, may encode more general information related to which movement is being 

performed. Combined with the widespread representations observed at both meso- and micro-

scales (Chapters 2 and 3 respectively), these results suggest that neural populations in different 

areas of M1 may contribute different types of information to the overall descending motor 

command based on their location in this large-scale organization.  

To broadly summarize, our results demonstrate that the large-scale organization of 

cortical activity can be used to broadly predict the behavior of neurons in different areas of M1. 

We have shown that populations of neurons throughout M1 participate in encoding a wide range 

of intended movements, and that the overall “preferences” of those neurons aligns with their 

location relative to large-scale patterns of activity. However, the broad participation of these 

populations, and the widespread changes resulting from contextual sensory information, 

demonstrate that these representations reflect the high-dimensional nature of the various 

movement parameters which may be encoded. Rather than an orderly modular structure where 

different movements are represented by activity in different areas, the organization of activity in 

M1 may instead be a necessary by-product of the brain’s computational requirement to represent 

multiple dimensions of movement-related information in the low-dimensional space of the 

neurons within the cortical sheet (Aflalo & Graziano, 2006; Graziano & Aflalo, 2007). Such 

organization would suggest that different types of information may be encoded in the activity of 

different cortical areas based on their anatomical inputs and outputs as well as local connectivity 

(Dea et al., 2016; Hamadjida et al., 2016). Moreover, this organization would suggest that the 

relative similarity between patterns of activity underlying different movements would reflect the 

similarity between those movements. This idea is supported by recent studies showing that M1 
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activity during individual finger movements reflects the natural statistics of finger use (Ejaz et 

al., 2015; Kikkert et al., 2016). Our results suggest that this type of high-dimensional encoding is 

also implemented in the activity of neural populations, consistent with other studies showing that 

neural activity from multiple areas of the brain reflect the complex movement and sensory-

related information of object interaction tasks (Menz et al., 2015; Schaffelhofer et al., 2015; 

Schaffelhofer & Scherberger, 2016).  

Taken together, this work demonstrates that although neuroimaging can be used to 

predict the behavior of neural populations in M1 and thus to inform the location of implanted 

microelectrode arrays, it will be important to incorporate more complex representational models 

into these efforts. Rather than targeting areas which display stronger activity during a desired 

task, it may be more advantageous to employ multivariate decoding strategies to identify areas 

which provide the greatest separation and temporal definition between different tasks. For 

example, based on the distribution of both meso- and micro-scale activity in the BCI participant 

described here, we can hypothesize that another array placed more ventrally may sample neurons 

which are more involved in processing contextual sensory information, allowing us to account 

for goal-related information. This approach can be applied to multiple different movement 

parameters (i.e. arm vs hand, object context, movements towards different regions of space) to 

identify cortical areas which provide the most separation between different conditions, thus 

allowing us to record from neurons encoding a wider array of complex information and 

improving our ability to decode different movements with high precision across contexts.  

This work focused primarily on examining spiking activity, which relates to motor output 

and is thus thought to be more directly related to intended movement production. However, 

fMRI activity relates more closely to LFPs than to spikes (N K Logothetis et al., 2001; Nikos K. 
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Logothetis & Wandell, 2004), and spikes and LFPs in motor cortex may encode partially distinct 

information (Perel et al., 2015). Analyzing LFPs may provide an additional mechanism for 

defining relationships between representations at different spatial scales. Additionally, fMRI 

activity appears to closely resemble cortical surface activity measured with ECoG (Siero et al., 

2014), which corresponds closely to LFP signals (Buzsáki, Anastassiou, & Koch, 2012).  

Concurrent with the intracortical data presented here, the intracortical participant was 

enrolled in an ongoing BCI trial, where he was able to use neural activity recorded from the same 

arrays to control a wide range of neuroprosthetic effectors, including robotic arms. It is currently 

not known how the somatotopic organization we observed (i.e., arm-related activity predominant 

on the medial array, hand-related activity predominant on the lateral array) relates to the 

structure of decoders built to enable neuroprosthetic arm control. If the spatial trends in neural 

population activity observed here are consistent when  that activity is applied to BCI control, 

further investigations could leverage such differences to inform the design of BCI decoders to 

preferentially drive specific movements, potentially improving their performance.  
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