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Abstract 

Rachel Gottschalk, PhD 

 

Tissue Specific Cish Expression Supports Alveolar Macrophage Homeostatic Function 

 

Karsen E. Shoger, MS 

 

University of Pittsburgh, 2019 

 

 

Abstract 

 

Macrophages play critical roles in defense against microbes and clearance of dead cells, 

but also perform tissue specific functions in homeostasis. Distinct gene expression signatures in 

macrophages isolated from varying tissues are largely determined by environmental signals. 

Specifically, the lung is highly susceptible to environmental changes, such as O2 pressure and 

inhalation of particulate and microbes. Alveolar macrophages are shaped by the lung environment 

and have critical tissue-specific functions in initiating and resolving lung inflammation, and in 

maintaining lung structure via surfactant and lipid catabolism. While research speculates lung 

specific factors form alveolar macrophage phenotype and homeostatic function, the specific 

signals and regulators remain largely unknown. Therefore, we sought to explore lung specific 

cytokine signals and downstream signaling regulators that shape homeostatic functions of alveolar 

macrophages. 

We found Cytokine Inducible SH2 Containing Protein (Cish), a SOCS family member 

known to regulate the JAK-STAT5 pathway, is basally expressed in a tissue-specific manner in 

alveolar macrophages. Further, we found that the STAT5 activating cytokine GM-CSF regulates 

Cish expression in alveolar macrophages and observed reduced alveolar macrophage Cish 

expression with GM-CSF blockade in the lung. Cish knockout mice exhibit enlarged “foamy” 

alveolar macrophages, impaired surfactant metabolism, and dysregulated response to GM-CSF, 

all hallmarks of pulmonary alveolar proteinosis. Thus, we show alveolar macrophage Cish 
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expression is directly linked to lung specific factors, namely GM-CSF, and influences surfactant 

homeostasis in the lung, a critical homeostatic function of alveolar macrophages.  

The lung is an especially critical site of protection as it is a barrier site that is constantly 

exposed to inhaled particulate and microbes and possesses a fragile structure. Alveolar 

macrophages act as sentinels in the lung, protecting this sensitive tissue from challenge while 

maintaining proper homeostasis and structure. From a public health perspective, continuing to 

elucidate the specific mechanisms by which alveolar macrophages mediate lung homeostasis is 

essential to providing cutting edge health care and to continuing to develop therapeutic treatments 

that can provide cures instead of simply mitigating symptoms of pulmonary disease. Here, we 

highlight one of many yet to be uncovered regulators of lung homeostasis.  
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1.0 Introduction 

1.1 Macrophages in Health and Disease 

1.1.1 Macrophages in innate immunity 

Macrophages play critical roles as phagocytes in defense against microbes and clearance 

of dead cells. Elie Mechnikoff characterized macrophages in the early 1900s based on their unique 

phagocytic capabilities and proposed that macrophages actively surveilled and phagocytosed 

foreign material to protect their host1. Thus, the discovery of macrophages set the stage for innate 

immunology and early research focused heavily on the immune functions of macrophages. 

Macrophages are an essential part of the innate immune system. Constantly surveilling 

tissue, macrophages are one of the first immune cells to see and respond to antigens via expression 

of a wide variety of innate immune receptors (Figure 1), which can recognize both endogenous 

and exogenous danger signals. These danger signals are detected through pattern recognition 

receptors (PRRs), such as Toll-like receptors (TLRs), complement receptors, and other scavenger 

receptors. Upon ligation of these receptors, macrophages become activated and initiate a pro-

inflammatory response, typically through release of pro-inflammatory factors such as TNF, iNOS, 

IL-12, and various chemokines. This initial pro-inflammatory phenotype, typically described as 

“classically activated” or M1, results in recruitment of other effector immune cells and ultimately 

generates an adaptive immune response. These soluble factors also increase vascular permeability 

and enhance antimicrobial activity of macrophages and other effector cells. 
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Figure 1. The diverse array of innate immune receptors expressed by macrophages. 

Macrophages express a wide variety of receptors, many of which are PRRs, for sensing of microbial 

products or dead cells. Figure reproduced from BMC Biology2. 

 

While pro-inflammatory responses are critical for host defense, they can also result in 

tissue damage. After initial inflammation, macrophages adopt a tissue repair phenotype, typically 

described as M2. Classical wound healing macrophages are associated with responses to IL-4. 

Upon sensing IL-4, macrophages begin to upregulate anti-inflammatory factors as well as factors 

that promote tissue repair, such as arginase, which contributes to production of extracellular 

matrix. 

While the binary M1/M2 classification is prevalent in the literature, it fails to account for 

the diverse plasticity of macrophages. For example, macrophages can take on regulatory function 

without contributing to tissue repair. Such regulatory macrophages produce high levels of IL-10, 

but lack IL-12 and arginase secretion and do not express CD80, CD86, and MHCII, so therefore 

do not fit neatly into the predominant M1/M2 paradigm. Thus, the field is moving towards 



 3 

conceptualizing macrophage function as a spectrum between classically activated macrophages, 

wound-healing macrophages, and regulatory macrophages3. 

1.1.2 Tissue resident macrophages in health and disease 

Macrophages’ phenotypes are highly context dependent, with macrophages adopting 

functional states based on environmental signals. In addition to direct immune functions, 

macrophages are increasingly being recognized for their essential roles in tissue structure and 

homeostasis. In many tissues, macrophages do not only phagocytose foreign material, but also 

endogenous material4. As phagocytes, macrophages play a critical role in clearance of apoptotic 

cells and cellular debris from tissues. This tissue homeostasis is quiescent, either independent of 

immune receptors or regulated by inhibitory signals.   

In addition to phagocytosis, tissue resident macrophages often perform synergistic 

functions specific to their tissue of residence. For example, in adipose tissue, macrophages regulate 

insulin sensitivity and adaptive thermogenesis5. Bone marrow macrophages support erythropoiesis 

and maintain hematopoietic stem cells in stem cell niches, while microglia play an essential role 

in neuronal remodeling by promoting neuronal survival and removing dead neurons6, 7, 8. 

Dysregulation of homeostasis highlights the important role of macrophages in maintaining tissue 

health and integrity and macrophages are implicated as key players in a number of inflammatory 

and autoimmune diseases. In the case of multiple sclerosis, dysregulation of communication 

between astrocytes and microglia is a driver of axon demyelination and resultant disease9. 

Macrophage hyperresponsiveness to gut microbiota drives the chronic inflammation that leads to 

Crohn’s disease and inflammatory bowel disease10, 11. Inflammatory cytokine secretion by 

macrophages is often a major driver of disease progression, as evidenced in the case of macrophage 
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produced cytokines in the synovial fluid around joints that promotes rheumatoid arthritis12. These 

inflammatory diseases point to the importance of macrophages in tissue homeostasis, with specific 

emphasis on proper cross talk between macrophages and their tissue of residence.  

Macrophages are extremely plastic and adapt their function and phenotype based on 

presence or absence of specific stimuli. The combination of input signals from these stimuli shape 

macrophages into an diverse range of phenotypes and drive a multitude of functions, resulting in 

heterogeneity across tissue resident macrophages, with well described differences in gene 

expression and protein expression signatures across tissue resident subsets2, 13, 14, 15, 16.  The best 

described tissue specific transcription factor signatures include Gata6 expression in peritoneal 

macrophages17, 18, Smad3 expression in microglia19, Lxra expression in Kupffer cells20 and splenic 

macrophages21, and Pparg expression in alveolar macrophages22, 23.  

While tissue derived factors are thought to drive these distinct tissue resident macrophage 

signatures, only a few tissue specific factors have been well described as driving tissue specific 

signatures in macrophages. Retinoic acid present in the peritoneal omentum drives Gata6 

expression in peritoneal macrophages, which is essential for localization of peritoneal 

macrophages as well peritoneal macrophage regulation of gut IgA responses17. GM-CSF in the 

lung drives Pparg expression, which is critical for perinatal development of alveolar macrophages. 

GM-CSF deficiency results in “foamy” alveolar macrophages, which are unable to properly 

maintain surfactant homeostasis in the lung23. Splenic macrophages rely on oxysterol in the spleen, 

which drives expression of Lxra21. Lxra deficient splenic macrophages fail to fully mature, 

resulting in improper spleen structure and impaired pathogen clearance20. The strong TGF-β signal 

in the brain drives Smad3 expression essential for proper microglia phenotype and function24. Loss 

of TGF-β signal results in a hyperinflammatory microglia phenotype which causes unnecessary 
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tissue damage in the brain25, 26. While these examples strongly support the notion of tissue specific 

factors driving unique tissue resident macrophage signatures, they only account for a few of the 

many tissue specific factors that potentially impact tissue resident macrophage signatures. 

1.2 Alveolar Macrophages and Lung Homeostasis 

1.2.1 Alveolar macrophages immune function 

The lungs are a barrier site not only with a large surface area and fragile structure, but also 

undergo constant environmental changes, such as fluctuations in gas exchange, hypoxia, changes 

in the lung microflora, and inhalation of particulate and other substances27. Further, damage to the 

lungs leads to improper gas exchange, easy access of microbes to the bloodstream, or potential 

edema. Alveolar macrophages are one of the most abundant immune cells to occupy this unique 

tissue and must tolerate and adapt to these constant environmental changes, while conferring heavy 

protection with minimal tissue damage28. 

In homeostasis, alveolar macrophages clear dead cells, particulate, and microbes with 

minimal initiation of pro-inflammatory responses in order to prevent unnecessary damage to the 

alveolar epithelium. The lung environment is known to dampen alveolar macrophage pro-

inflammatory responses through both cell-to-cell contact and soluble factors. Alveolar 

macrophages remain closely adhered to alveolar epithelial cells (AECs) through surface receptors 

and form gap junction channels with AECs, which transduce Ca2+ signals and allow direct 

communication between the alveolar epithelium and alveolar macrophages to modulate immune 

responses29. Alveolar macrophages also communicate with AECs through a number of surface 
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receptors such as CD200R, MARCO, TREM2, TGF-βR, and SIRPa, which serve 

immunomodulatory roles in order to prevent unwarranted airway inflammation27.  

Alveolar macrophages also directly contribute to the immunosuppressive environment in 

the steady state lung. Alveolar macrophages have been reported to secrete SOCS1 and SOCS3 in 

exosomes to suppress inflammation in other cells in the lung30. Close contact of alveolar 

macrophages with AECs induces activation of TGF-β, a major regulator of immune function in 

the steady state lung31. This localized TGF-β signal is one of many immunomodulatory factors 

present in the lung that allow alveolar macrophages to silently surveil the lung. Alveolar 

macrophages also actively suppress adaptive immune responses, regulating both alveolar dendritic 

cell function and T cell activation32. Depletion of alveolar macrophages leads to inflammatory 

reactions to otherwise harmless challenges, demonstrating their critical role in lung homeostasis33.  

Upon invasive infection, alveolar macrophages serve as one of the lung’s first lines of 

defense. Alveolar macrophages must respond to invasive challenge in a way that eliminates 

challenges quickly and efficiently, while limiting inflammatory damage to the sensitive structure 

of the lung in order to maintain proper gas exchange in the tissue. Signals that override the 

homeostatic anti-inflammatory signals are required to initiate a pro-inflammatory response. Once 

an alveolar macrophage receives a large enough danger signal through PRR stimulation, alveolar 

macrophages rapidly lose contact with the alveolar epithelium, removing the brakes from a pro-

inflammatory response. Loss of contact with AECs shuts down active TGF-β signaling and induces 

fluxes in Ca2+ signaling29. Crosstalk between recruited lymphocytes and alveolar macrophages 

results in resolution of inflammation through restoration of contact of alveolar macrophages with 

the alveolar epithelium as well as active TGF-β production (Figure 2). Thus, alveolar macrophages 
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play an essential role in limiting tissue damage by maintaining and restoring proper structure of 

the lung.  

 
Figure 2. TGFb dependent contact of alveolar macrophages with alveolar epithelium. 

Contact of alveolar macrophages with the alveolar epithelium plays an important role in response to 

challenge. Figure reproduced with permission from Immunity34, copyright Elsevier Inc. 

1.2.2 Lung specific stimuli drive alveolar macrophage gene expression and homeostasis 

Alveolar macrophages are well known to be shaped by factors present in the lung 

environment. The best described lung specific signal essential for alveolar macrophage phenotype 

is GM-CSF. The alveolar epithelium is a major source of GM-CSF, which signals primarily 

through the STAT5 pathway35, 36. GM-CSF is been shown to be required for the differentiation of 

alveolar macrophages by driving expression of the transcription factor specific for alveolar 

macrophages, PPAR-γ, together with transcription factor PU.123. Alveolar macrophages that fail 

to get a proper GM-CSF signal remain stuck in a pre-alveolar macrophage state, failing to 
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upregulate CD11c, proliferate properly, and remaining functionally deficient compared to fully 

matured alveolar macrophages. 

Another tissue specific regulator of alveolar macrophage function is TGF-β. TGF-β is not 

only a potent anti-inflammatory signal maintained through communication between alveolar 

macrophages and the alveolar epithelium, but also critical for proper alveolar macrophage 

development. Similar to GM-CSF, TGF-β signal in the lung results in upregulates PPAR-γ, a 

transcription factor that is critical for alveolar macrophages. Alveolar macrophages that fail to 

receive a TGF-β signal exhibit reduced expression of PPAR-γ and remain stuck in an 

underdeveloped state, much like alveolar macrophages that fail to receive a proper GM-CSF 

signal37.  

GM-CSF and TGF-β are tissue specific factors that are critical for the unique phenotype of 

alveolar macrophages, but other lung specific factors are also likely involved. Culture of alveolar 

macrophage ex vivo results in “deprogramming” in which gene expression and regulatory signaling 

thresholds are altered due to loss of lung specific stimuli. Simply culturing “deprogrammed” 

macrophages in the presence of known tissue specific factors, such as tissue derived omentum,  is 

not sufficient to retain a “programmed” macrophage signature14.  

Further, differentiated tissue resident macrophages can be “reprogrammed” simply by 

relocation to a different tissue context16. Specifically, peritoneal macrophages transferred into the 

alveolar cavity for 15 days upregulated alveolar macrophage-specific genes, including the critical 

alveolar macrophage transcription factor, Pparg, while downregulating peritoneal macrophage-

specific genes, such as Gata6. In fact, approximately 70% of the highly differentially expressed 

genes in these transferred macrophages switched from a peritoneal macrophage expression 

signature to an alveolar macrophage expression signature. While transferred peritoneal 
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macrophages retained ~30% of their original tissue signature and failed to downregulate CD11b, 

PCA analysis confirmed these transferred macrophages more closely resembled alveolar 

macrophages than peritoneal macrophages, highlighting both the phenotypic plasticity of 

macrophages and the importance of tissue specific microenvironment in tuning specific 

macrophage signatures.  

1.2.3 Lung surfactant homeostasis and pulmonary alveolar proteinosis 

Alveolar macrophages are vital for surfactant homeostasis in the lung. Pulmonary 

surfactant is a mixture of phospholipids surfactant protein A, B, C, and D (SP-A, SP-B, SP-C, and 

SP-D) secreted by primarily by AECs38. Surfactant coats the alveoli, facilitating proper gas 

exchange by reducing surface tension and liquid interface to allow the lung tissue to expand and 

contract easily with breathing. Surfactant also plays a role in host defense through opsonization of 

microbes and particulate, as well as modulation of pulmonary immune cell function, causing 

upregulation of PRRs and regulating cytokine secretion39 40, 41. Further, surfactant has been shown 

to possess direct microbicidal activity against bacteria and fungi42. In healthy individuals, alveolar 

macrophages maintain proper surfactant levels through lipid catabolism. In cases where alveolar 

macrophage surfactant catabolism is dysregulated, individuals develop pulmonary alveolar 

proteinosis (PAP), in which surfactant builds up in the lung, causing difficulty breathing and 

pulmonary failure if left untreated43, 44. Alveolar macrophages mediate surfactant homeostasis in 

the lung and drive disease in a dysregulated state. 

Considering that GM-CSF is a critical lung-specific regulator of alveolar macrophage 

development and function, it is not surprising that alveolar macrophage-mediated surfactant 

homeostasis is dependent on GM-CSF43. Loss of GM-CSF results in dysregulated surfactant 
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maintenance and development of primary PAP. Although PAP is a disease of heterogenous origins, 

over 90% of clinical cases of primary PAP result due to disruption of GM-CSF signaling in the 

lung45. This disruption of GM-CSF signal is typically due to either autoimmune antibodies that 

neutralize GM-CSF or genetic mutations that impair the GM-CSF receptor. Disruption of the GM-

CSF signal results in dysregulation of surfactant metabolism in alveolar macrophages43. Alveolar 

macrophages develop a “foamy” phenotype in which deposits of surfactant accumulate 

intracellularly but fail to be properly catabolized (Figure 3). As PAP progresses, surfactant 

accumulates in the alveoli, continuing to be produced at the same levels by AECs, but failing to 

be properly cleared by alveolar macrophages44.  

 
 

Figure 3. GM-CSF signaling in alveolar macrophages mediates surfactant clearance. 

In a healthy lung, surfactant is taken up and degraded by alveolar macrophages, mediated by a GM-CSF 

signal. Loss of this GM-CSF signal results in reduced surfactant degradation by alveolar macrophages, and 

thus intracellular and extracellular accumulation of surfactant. Figure reproduced with permission from 

Annual Reviews of Physiology43, copyright Annual Reviews.  
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The discovery that GM-CSF deficient mice accurately recapitulate PAP pathology was a 

breakthrough that facilitated today’s understanding and treatment of PAP. Mice with deletions in 

either GM-CSF or the GM-CSF receptor both develop PAP, in which alveolar macrophages are 

severely impaired in their ability to mature and the few that do exhibit reduced functionality and a 

foamy phenotype46, 47. These GM-CSF deficient mice exhibit higher susceptibility to pulmonary 

infections as well as increased mortality from pulmonary infections, highlighting the importance 

of alveolar macrophage surfactant homeostasis in host defense48, 49. Simple replacement of GM-

CSF in GM-CSF deficient mice restores alveolar macrophage phenotype and function, surfactant 

homeostasis, and susceptibility to infection50. Therefore, GM-CSF is the major clinical target in 

PAP patients, with many primary PAP therapies involving restoration of proper GM-CSF signaling 

in the lung.  

GM-CSF serves as a prime example of a tissue specific factor exerting a critical on 

macrophage phenotype and function. Further, loss of this tissue specific factor results in impaired 

alveolar macrophage function, resulting in tissue dysregulation, and progressive pathology. Taken 

together, surfactant homeostasis mediated through alveolar macrophages via tissue-specific GM-

CSF emphasizes the importance of understanding how macrophages communicate with their tissue 

of residence in order to maintain tissue homeostasis, host protection, and overall health.  

1.2.4 Cish in regulation of signaling in alveolar macrophages 

Cytokine Inducible SH2 Containing Protein (CISH), the first described member of the 

Suppressor of Cytokine Signaling (SOCS) protein family, is induced by GM-CSF and other JAK-

STAT5 pathway activating cytokines51, 52, 53, 54. CISH binds to the phosphorylated tyrosine residues 

on cytokine receptors through its SH-2 domain, blocking sites for STAT5 to dock, and thus 
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inhibiting downstream cytokine signaling. In T cells, CISH also directly interacts with a principle 

TCR signaling component, PLCγ, targeting it for proteasomal degradation thus negatively 

regulating TCR signaling55, 56. PLCγ is directly involved in regulation of calcium flux after TCR 

stimulation, suggesting a potential role of Cish in calcium signaling. 

Although the exact molecular mechanisms of regulatory properties of Cish are unclear, 

Cish is directly implicated as important for immune responses in cancer and infections. Analysis 

of Cish polymorphisms revealed that specific variants of Cish are associated with increased 

susceptibility to infections such as malaria, tuberculosis, and bacteremia57.  Further, one specific 

SNP CISH variant is significantly associated with susceptibility to hepatitis B virus infection58. 

Although Cish is best described in T cells, emerging research shows Cish is an important regulator 

of immune responses in macrophages. Two recent publications show that Cish mediates immune 

response in bone marrow derived macrophages (BMDM) in M. tuberculosis infection in vitro. 

Studies found dysregulation of cytokine secretion and decreased bacterial burden in Cish-/- 

BMDM infected with M. tuberculosis, compared to WT BMDM. Macrophage expression of CISH 

was induced by STAT5 activation through the GM-CSF signaling in response to M. tuberculosis 

infection. Cish was shown to directly regulate endosome acidification, identifying a novel role of 

Cish in regulation of immune response59. Considering the previously unappreciated function of 

Cish in macrophages and its regulation by GM-CSF, additional research is needed to elucidate the 

tissue-specific function of Cish in alveolar macrophages. 
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2.0 Statement of the Project 

In this project, we seek to investigate tissue specific signals that drive specialized functions 

in tissue resident macrophages. Specifically, we will examine the influence of cytokines present 

in the lung microenvironment on alveolar macrophage gene expression and function. We will test 

the hypothesis that lung specific cytokines induce lung specific signaling genes that regulate 

specialized functions in alveolar macrophages. 

2.1 Aim 1: Investigate Tissue Specific Regulation of Cish in Alveolar Macrophages 

Tissue resident macrophages have distinct gene expression signatures corresponding to 

tissue specific functions. We describe high basal Cish expression specifically in alveolar 

macrophages, compared to other macrophage subsets, and elucidate lung specific factors that 

regulate alveolar macrophage Cish expression. 

2.2 Aim 2: Investigate Tissue Specific Function of Cish in Alveolar Macrophages 

Considering the high level of Cish expression in alveolar macrophages, we hypothesize 

that Cish plays role in lung homeostasis. We utilize a Cish deficient mouse model to examine Cish-

dependent changes in alveolar macrophage phenotype and function, and in overall lung 

homeostasis. 
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3.0 Materials and Methods 

3.1 Mice 

Wild type and Cish knockout mice, generously provided by Dr. Nicholas Restifo56,  were 

all from a wild-type C57BL/6J background (Jackson Laboratories). Mice were maintained in 

specific-pathogen-free conditions and all procedures were approved by the Institutional Animal 

Care Committee of the University of Pittsburgh (IACUC). 

3.2 Cells 

3.2.1 Mouse bone marrow derived macrophages (BMDM) 

Bone marrow progenitors isolated from mice were differentiated into BMDM during a 6 

day culture in complete Dulbecco’s modified Eagle’s medium (DMEM + 10% FBS, 100 U/ml 

penicillin, 100 U/ml streptomycin, 2 mM L-Glutamine, 20 mM HEPES) supplemented with 60 

ng/ml recombinant mouse M-CSF (R & D systems). One day prior to stimulation, cells were rinsed 

with cold PBS, then scraped from plates using a cell lifter. Cells were then plated in the appropriate 

tissue-culture-treated plate in complete DMEM and allowed to rest overnight at 37°C, 5% CO2, 

95% relative humidity prior to stimulation. 
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3.2.2 BMDM stimulation 

BMDM were plated at 1 x 104 cells/well on 96-well black imaging plates (Greiner Bio-

One) for immunofluorescent phagocytosis assays and 2 x 105 cells/well on 48-well plates (Greiner 

Bio-One) for GM-CSF stimulation. For immunofluorescent phagocytosis assays, BMDM were 

stimulated with (concentration) fluorescent S. aureus bioparticles (Invitrogen). Following 

stimulation, cells were fixed and stained for immunofluorescent imaging analysis. For GM-CSF 

stimulation, BMDM were stimulated with 20 ng/mL of GM-CSF (Biolegend). Following 

stimulation, cells were lysed in TRIzol Reagent (Ambion) and RNA was isolated for gene 

expression analysis.  

3.2.3 Alveolar macrophage harvest and sorting 

Lungs were harvested into gentleMACS C tubes (Miltenyi Biotec) containing lung 

digestion buffer (1X PBS, 0.5% FBS, 10µg/mL Liberase TM, and 10U/mL DNase I). Lungs were 

minced to 1mm3 size pieces and moved to a shaker for 30 minutes at 37° C. Lungs were then 

further dissociated using program “m_lung_02_01” on the gentleMACS Dissociator (Miltenyi 

Biotec). Lung cell homogenates were filtered through a 70 µm filter and red blood cells were lysed 

with ACK Lysing Buffer (Lonza). Cells were stained with CD11c-BV421 (Biolegend) and  Siglec-

F-PE (BD Biosciences). CD11c+, Siglec-F+ cells were sorted directly into TRIzol Reagent 

(Ambion) using the BD FACSAria II (BD Biosciences).  
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3.2.4 BAL alveolar macrophage stimulation 

Alveolar macrophages were harvested by bronchoalveolar lavage (BAL). Red blood cells 

were lysed using ACK Lysing Buffer (Lonza) and cells were resuspended in complete DMEM and 

plated at approximately 1 x 104 cells per well (200 µL/well) in a 96 well plate. After resting cells 

for 30 minutes, cells were stimulated with 20 ng/mL of recombinant mouse GM-CSF (Biolegend).  

3.3 Broncholaveolar Lavage 

3.3.1 Bronchoalveolar lavage harvest 

Lungs were lavaged with 1 mL phosphate buffered saline (PBS) containing 5% FBS 

(Corning) and 100uM EDTA (Teknova). BAL cells were then spun down, supernatant was saved, 

and BAL cells were used for further experimentation.  

3.3.2 SP-D ELISA 

BAL supernatant SP-D concentration was assessed using the Mouse SP-D ELISA Kit 

(Abcam), according to manufacturer’s directions. Plates were read using the Epoch Microplate 

Spectrophotometer (BioTek Instruments). 
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3.4 Gene Expression 

3.4.1 qPCR 

Samples were lysed in TRIzol Reagent (Ambion). RNA was isolated used Directzol RNA 

MicroPrep kit (Zymo Research), according to manufacturer’s directions. RNA was quantified 

using a Nanodrop. RNA was reverse transcribed to using cDNA was generated using qScript 

cDNA SuperaMix (Quantabio). qPCR was performed using TaqMan probes (Thermo Scientific) 

on the CFX96 Real-Time System (BioRad). Analyses were performed using the ∆∆Ct method 

comparing genes of interest to a Gapdh control. 

3.4.2 RNAseq 

Alignment and raw read counts were generated using Rsubread and then normalized using 

DESeq2. DESeq2 was then used to calculate the log fold changes between sample groups. Low 

expression genes were removed along with genes that were not differentially expressed (adjusted 

p-value ≤ 0.05) in at least one group. Remaining DESeq2 normalized reads were then z-score 

normalized. Genes were then hierarchically clustered, using complete linkage and correlation as a 

distance metric. Pathway specific heat maps were generated using gene sets from PathCards 

(Weizmann Institute of Science).  
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3.5 Imaging 

3.5.1 Immunofluorescent staining and imaging 

After stimulation, cells were fixed with 4% PFA for 10-15 minutes. Cells were then 

blocked with Blocking Buffer (1X PBS with 5%goat serum, 0.3% TritonTM X-100). After 

blocking, cells were stained with primary antibody diluted in antibody dilution buffer (1X PBS, 

1% BSA, 0.3% Triton X-100) overnight at 4° C. BMDM were stained with the primary antibodies 

CD11b, followed by secondary antibodies: alveolar macrophages were stained with the following 

primary antibodies: hamster anti-mouse CD11c (1:200, Biolegend) and rabbit anti-mouse pSTAT5 

(1:200, Cell Signaling Technology), followed by secondary antibodies: anti-hamster Cy3 (1:500, 

Jackson ImmunoResearch) and anti-rabbit AlexFluor 488 (1:500, Invitrogen). All cells were 

stained with Hoescht 3342 (ThermoFisher Scientific). After staining cells were washed extensively 

with PBS and imaged using the Cellnsight CX5 High Content Screening Platform (ThermoFisher 

Scientific).  

3.5.2 Oil Red O staining and imaging 

BAL alveolar macrophages were plated on a 96 well black imaging plate and fixed with 

10% Formalin for 1 hour. After fixation cells were washed with 60% isopropanol and allowed to 

dry completely. Cells were then stained with Oil Red O for 10 minutes and washed extensively 

with H2O. Images were acquired using the IX83 Inverted Microscope (Olympus).  
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3.6 Western Blot Analysis 

Lung tissue was lysed on ice (10 mM TrisHCl, 140 mM NaCl, 2 nM EDTA, 1% NP40 

lysis buffer containing Roche PhosSTOP and cOmplete ULTRA phosphatase and protease 

inhibitors). Protein concentration was determined using Pierce BCA Protein Assay Kit 

(ThermoFisher Scientific). Samples were diluted using 4X Laemeli Sample buffer and heated to 

99°C for 10 minutes. Equal amounts of protein were then loaded into a pre-cast 4-20% TGX gel 

(BioRad). Protein was transferred to a nitrocellulose membrane (BioRad) and then blocked in 5% 

milk for 1 hour and probed with p-STAT3 (1:1000, Cell Signaling Technology), p-STAT5 

(1:1000, Cell Signaling Technology), followed by anti-rabbit HRP-conjugated secondary antibody 

(1:3000, Cell Signaling Technology). Blots were developed with FluorChem M (ProteinSimple). 



 20 

4.0 Results 

4.1 Aim 1: Investigate Tissue Specific Regulation of Cish in Alveolar Macrophages 

4.1.1 Cish expression is tissue specific 

Using the Immgen RNAseq Gene Skyline to compare Cish expression across various tissue 

resident macrophages, we found high Cish expression is unique to alveolar macrophages (Figure 

1A). We next sought to determine if Cish expression in alveolar macrophages is dependent on 

factors present in the lung. We analyzed Cish expression in alveolar macrophages freshly 

harvested versus cultured ex vivo in media and found dramatic reduction of Cish in alveolar 

macrophages after removal from the lung (Figure 1B). This is consistent with the hypothesis that 

alveolar macrophage Cish expression is dependent on factors present in the lung environment. We 

also investigated tissue specific expression of Cish using publish RNAseq data16. Peritoneal 

macrophages transferred into the lung for 15 days increased expression of Cish to expression levels 

comparable to alveolar macrophages (Figure 1C), further suggesting Cish expression is dependent 

on lung specific factors. 
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Figure 4. Cish expression in macrophages is lung specific. 

(A) Expression of Cish across subsets of tissue resident macrophages (Immgen). (B) Cish expression in 

BAL macrophage either fresh from the lung, or cultured in media for 2 or 48 hours quantified by pPCR. 

(C) Expression of Cish in alveolar macrophages, peritoneal macrophages, or peritoneal macrophages 

transferred into the lung after 15 days.   

 

4.1.2 GM-CSF regulates Cish expression 

Cish is well described to regulate and be regulted by STAT553, 54, leading us to investigate 

STAT5 inducing cytokines present in the lung. GM-CSF not only signals through the STAT5 

pathway36, but is also highly expressed in the lung and known to shape alveolar macrophage 

development and phenotype23. We first tested the ability of GM-CSF to induce Cish expression in 

bone marrow derived macrophages (BMDM) and found GM-CSF stimulation resulted in strong 

induction of Cish (Figure 5A).  

To better understand the relationship between GM-CSF and Cish expression in vivo, we 

compared whole lung Csf2 expression to alveolar macrophage Cish expression across individual 

WT mice, and found a significant correlation (R2= 0.828, p=0.0017) between the two (Figure 5B). 

This suggested to us that GM-CSF in the lung plays a role in alveolar macrophage Cish expression 

in vivo. We next tested the effect of blocking GM-CSF in the lung by administering either anti-
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GM-CSF or isotype control antibodies intranasally over the course of three days. We found that 

GM-CSF blockade in the lung resulted in significant (p=0.0327) reduction of Cish expression in 

alveolar macrophages (Figure 5B). To assess the efficacy of our blockade, we also measured 

expression of Mrc1 and Pparg, both described to be regulated GM-CSF in alveolar macrophages23, 

60. We found a modest, bu significant reduction of Mrc1, but non-significant reduction of Pparg, 

suggesting only partial GM-CSF blockade in the lung (Figures 5D & 5E).  

 

Figure 5. GM-CSF regulates Cish expression. 

(A) Cish expression in BMDM after stimulation with GM-CSF (20 ng/mL) quantified by qPCR. (B) Whole 

lung Csf2 expression versus BAL alveolar macrophage Cish expression in WT BL6 mice quantified by 

qPCR. Expression of (C) Cish, (D) Mrc1, and (E) Pparg  in alveolar macrophages (CD11c+, Siglec-F+) 

sorted from WT BL6 mice after three day intranasal administration of anti-GM-CSF (red) or isotype control 

(black) antibodies.  
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4.2 Aim 2: Investigate Tissue Specific Function of Cish in Alveolar Macrophages 

4.2.1 Dysregultion of lung homeostasis in Cish KO mice 

A previous study reported that Cish KO mice develop spontaneous lung disease, noting 

consolidation of airways due to deposit of proteinaceous material and mononuclear infiltrates, with 

disease worsening with age61. This study focused on the role of Cish in T cells using a model of 

induced lung inflammation, failing to further characterize the spontaneous disease or to assess 

potential contribution of alveolar macrophages, which express high levels of Cish. Therefore, we 

sought to investigate Cish KO lung disease, with specific focus on Cish in alveolar macrophages. 

We compared lung samples from 4 month old (young) and 12 month old (old) Cish KO mice to 

age matched WT controls. To assess cytokine signaling on the protein level, we examined whole 

lung lysates by Western blot and we found increased STAT3 and STAT5 activation in Cish KO 

mice compared to WT controls (Figure 6A). This suggested dysregulation of cytokine signaling in 

lungs of Cish KO mice. To better assess cytokine regulation at a gene expression level, we assessed 

whole lungs by qPCR analysis. We found a trend of increased expression of proinflammatory 

chemokines and cytokines, Cxcl1, Ccl2, Ccl3, Il6, and Csf2 in the lungs of old Cish KO mice 

(Figure 6B-F). In addition, we observed a trend of decreased expression of Stat5a in the lungs of 

Cish KO mice compared to WT mice in both the young and the old groups (Figure 6G), further 

evidence suggesting dysregulation of the STAT5 network Cish KO lungs.  
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Figure 6. Cish KO mice exhibit cytokine dysregulation in the whole lung. 

(A) Western blot analysis of the whole lung in young (4 month) and old (1 year) WT and Cish KO mice. 

RhoGDI was used as a loading control. (B-G) qPCR analysis of the whole lung in young (4 month) and old 

(1 year) WT and Cish KO mice. 

 

Based on our finding that GM-CSF regulates Cish expression in alveolar macrophages 

(Figure 5) and observation of whole lung dysregulation of GM-CSF/STAT5 signaling in Cish KO 

mice exacerbated by age (Figure 6), we sought to further investigate Cish in the context of GM-

CSF/STAT5 related alveolar macrophage dysfunction. Aberrant GM-CSF signaling in alveolar 
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macrophages results in pulmonary alveolar proteinosis (PAP), in which alveolar macrophages fail 

to adequately degrade surfactant in the absence of a proper GM-CSF signal43, 44, 47, 50. When we 

assessed levels of surfactant in the BAL, we found elevated levels of surfactant protein D (SP-D) 

in the Cish KO mice (Figure 7A). Further, we noticed increased granularity (SSC-A) in alveolar 

macrophages from old Cish KO mice, as well as a trend of increased size (FSC-A) in alveolar 

macrophages from the old and young Cish KO mice, compared to WT controls (Figure 7B), 

consistent with the foamy alveolar macrophage phenotype seen with dysregulation of surfactant 

homeostasis62.  

To better assess whether this increased size and granularity was due to intracellular 

accumulation of surfactant in alveolar macrophages, we performed an Oil Red O stain, which 

stains neutral lipids. BAL macrophages from Cish KO mice exhibited notably increased staining 

with Oil Red O compared to WT controls (Figure 7C), further suggestive of a foamy alveolar 

macrophage phenotype, consistent with PAP63, 64. We then looked specifically at expression of 

gene related to surfactant metabolism (PathCards, Weizmann Institute of Science) in alveolar 

macrophages sorted from young and old Cish KO and WT mice. We noted dysregulation of 

surfactant metabolism gene expression in the Cish KO alveolar macrophages, compared to WT 

mice, exacerbated with age (Figure 7D). Taken together, these results are highly suggestive of a 

PAP like pathology developing in Cish KO mice. Cish KO mice exhibit the hallmarks of PAP, in 

which improper surfactant homeostasis results in accumulation of surfactant in the BAL and foamy 

alveolar macrophages with increase in size and granularity due to improper intracellular surfactant 

metabolism43, 44, 47, 50, 63, 64, 65. 
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Figure 7. Cish KO mice develop PAP-like phenotype. 

(A) Levels of SP-D in BAL supernatant from 4 month old mice quantified by ELISA, with individual 

experiments internally normalized to WT controls. An age matched Cs2f-/- mouse was included as a PAP 

control (B) Mean SSC-A (top panel) and mean FSC-A (bottom panel) in alveolar macrophages flow sorted 

on Siglec-F+, CD11c+ cells from lungs of young (4 month) and old (1 year) Cish KO and WT mice. (C) 

Representative Oil Red O stain from 4 month old Cish KO and WT mice. (D) RNAseq heat map for 

surfactant metabolism from sorted alveolar macrophages (same as B).  

 

4.2.2 Cell intrinsic implications of Cish deficiency in alveolar macrophages 

We sought to explore the mechanism by which this PAP-like phenotype develops in Cish 

KO mice. Due to numerous studies reporting that PAP is driven by loss of a proper GM-CSF signal 

to alveolar macrophages43, 47, 50, we investigated the response of Cish KO alveolar macrophages to 

GM-CSF stimulation. We harvested alveolar macrophages from Cish KO and WT mice by BAL, 

stimulated them ex vivo with GM-CSF, and quantified pSTAT5 by immunofluorescence. We first 

noted that unstimulated Cish KO alveolar macrophages displayed significantly reduced average 

pSTAT5 intensity compared to WT (Figure 8A), consistent with dysregulated STAT5 signaling in 

vivo. When stimulated with GM-CSF, we noticed that average pSTAT5 signal remained markedly 
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reduced in Cish KO alveolar macrophages compared to WT alveolar macrophages (Figure 8B). 

However, when plotted as a fold change, we noticed that the average pSTAT5 signal appeared 

more sustained at later timepoints in Cish KO alveolar macrophages compared to WT alveolar 

macrophages (Figure 8C). Though preliminary, these data suggest a failure to properly turn off the 

STAT5 signal, consistent with loss of Cish, a negative regulator of STAT5 signaling.  

To gain insight into the impact of Cish deficiency in regulation of GM-CSF signaling in 

alveolar macrophages in vivo, we plotted a gene expression for a GM-CSF signaling gene set 

(PathCards, Weizmann Institute of Science) across sorted young and old Cish KO and WT alveolar 

macrophages (Figure 8E). In this heat map, we noticed distinct gene expression patterns across 

Cish KO and WT alveolar macrophages, with the most robust differences in the old Cish KO 

alveolar macrophages. This is consistent with aberrant GM-CSF mediated STAT5 signaling in 

Cish KO alveolar macrophages.  
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Figure 8. Cish KO alveolar macrophages exhibit dysregulated response to GM-CSF. 

Immunofluorescent imaging analysis of Cish KO and WT alveolar macrophages from 4 month old 

mice with (A) quantified pSTAT5 average intensity unstimulated and ex vivo GM-CSF (20 ng/mL) 

stimulation over time quantified by (B) average pSTAT5 intensity and (C) pSTAT5 average 

intensity fold change. (D) Representative immunofluorescent images. (E) RNAseq heatmap of 

GM-CSF signaling pathway of sorted alveolar macrophages (CD11c+, Siglec-F+) sorted from 

young (4 month) and old (1 year) Cish KO and WT mice. 

 

We next sought to further explore cell intrinsic functions of Cish in relation to macrophage 

function. Considering that Cish KO alveolar macrophages already exhibited impaired clearance of 

surfactant, we decided to test if Cish plays a role in phagocytosis of microbes, a critical function 

of all macrophages, especially at barrier sites such as the lung. We first quantified Cish KO and 
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WT BMDM internalization of fluorescent S. aureus bioparticles via immunofluorescent imaging. 

We found that Cish KO BMDM exhibited impaired phagocytosis of S. aureus bioparticles at later 

timepoints compared to WT BMDM (Figure 9A). This must be tested in alveolar macrophages to 

draw meaningful conclusions about Cish function in the context of the macrophages in the lung.  

Although Cish is best described as a regulator of JAK/STAT5 signaling, Cish has also been 

described to regulate calcium signaling in T cells55. Phagocytosis in macrophages is mediated by 

a calcium signal66, 67, 68, 69, and thus dysregulated phagocytosis in Cish KO BMDM could be related 

to improper regulation of calcium signaling. We speculated that Cish KO alveolar macrophages 

could also have dysregulated calcium signaling, in addition to impaired STAT5 regulation. When 

we plotted calcium signaling gene expression across alveolar macrophages sorted from young and 

old Cish KO and WT mice, we indeed found different gene expression patterns in Cish KO alveolar 

macrophages compared to WT macrophages, with the most robust difference appearing the old 

Cish KO alveolar macrophages (Figure 9C). This is consistent with our hypothesis that Cish plays 

a role in alveolar macrophage calcium signaling, but requires further investigation.  
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Figure 9. Cish KO macrophages exhibit potential calcium dysregulation. 

(A) Immunofluorescent imaging analysis of Cish KO and WT BMDM (CD11b+ cells, green) phagocytosis 

of fluorescent S. aureus bioparticles (light blue) quantified by mean fluorescent intensity of S. aureus 

bioparticles within BMDM. (B) Representative images of immunofluorescent phagocytosis assay at the 5 

hour time point. (C) RNAseq heatmap of calcium signaling pathway of sorted alveolar macrophages 

(CD11c+, Siglec-F+) sorted from young (4 month) and old (1 year) Cish KO and WT mice. 
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5.0 Discussion 

Macrophages reside in nearly every organ of the body, where they perform a variety of 

functions that extend beyond simple immune surveillance of their host. These various functions 

typically coincide with their tissue of residence, where they crosstalk with other cells present in 

the tissue to maintain overall tissue homeostasis. For example, microglia work to remodel neurons, 

by eliminating dead neurons and stimulating growth of new ones8, 24. Bone marrow macrophages 

play a pivotal role in generation of new red blood cells6 and red pulp macrophages remove old red 

blood cells from circulation21. Increasingly, tissue resident macrophages are being appreciated for 

their communication with their tissue of residence and their role in tissue homeostasis.  

In addition to possessing distinct roles across different tissues, tissue resident macrophages 

have also been shown to have distinct gene expression patterns16, 17, 18. Many speculate that tissue 

specific factors are responsible for these driving distinct gene expression signatures, and in turn 

phenotypes and tissue specific functions. While there is emerging evidence to support this idea, 

the tissue specific signals responsible for informing these unique signatures remain poorly defined. 

In addition, the link between tissue specific gene expression and tissue specific function remains 

relatively vague, with few concrete examples. Therefore, in this project we sought to uncover lung 

specific drivers of alveolar macrophage gene expression and in turn lung specific function, with 

specific emphasis on cytokine signals present in the steady state lung microenvironment. 

We indeed found that expression of Cish, a SOCS regulator of STAT5 signaling53, is 

specific to alveolar macrophages and is dependent on factors present in the homeostatic lung 

microenvironment (Figure 4). Further, we found that regulation of Cish in alveolar macrophages 

is dependent on GM-CSF (Figure 5), which is well described to signal through the STAT5 pathway 
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and highly expressed in the steady state lung environment35, 36. However, while GM-CSF blockade 

in the lung was sufficient to significantly decrease Cish expression in alveolar macrophages, we 

speculate there are likely additional signals present within the lung microenvironment that drive 

expression of Cish in alveolar macrophages. 

In addition to addressing the regulation of this alveolar macrophage specific gene, Cish, 

we also sought to investigate the function of Cish in alveolar macrophages by studying the effect 

of Cish deficiency in a mouse model. Based on previous reports of Cish KO mice developing 

spontaneous pulmonary disease with age61, we posited that Cish deficiency results in dysregulated 

lung homeostasis which worsens with age and is mediated by alveolar macrophages, an abundant 

immune cell in the lung expressing high levels of Cish. Therefore, we aged Cish KO mice and WT 

controls to better define the pulmonary disease and specifically examine the contribution of Cish 

deficiency within alveolar macrophages to disease development. We recapitulated the previous 

finding of Cish KO mice developing lung disease which worsened with age. Elaborating on this 

study, we found that this lung disease closely resembled pulmonary alveolar proteinosis, with 

alveolar macrophages as major drivers of this disease phenotype.  

Because our primary focus was on steady state cytokine signals in the lung, we first 

examined the impact of loss of a tissue specific cytokine regulator, Cish, on lung cytokine 

homeostasis. As mice aged, we found that Cish KO mice exhibited dysregulated cytokine balance 

in the whole lung, specifically with increased activation of STAT3 and STAT5, as well as trends 

towards increased production of pro-inflammatory chemokines and cytokines. We also noticed 

trends towards increased Csf2 expression and decreased Stat5a expression in the lungs of Cish KO 

mice (Figure 6). Taken together, these results pointed to aberrant GM-CSF/STAT5 signaling in 
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the lung in Cish KO, which was not surprising considering previous reports describing Cish as a 

STAT5 regulator36.  

We sought to more closely examine the implications of this aberrant GM-CSF/STAT5 

signaling on overall lung homeostasis mediated by alveolar macrophages. Literature review 

revealed that GM-CSF signaling is not only critical for alveolar macrophage development23, but 

also for alveolar macrophage mediated pulmonary surfactant homeostasis43. In people, loss of a 

GM-CSF signal to alveolar macrophages in the lung, most typically through autoimmune 

antibodies against GM-CSF, results in pulmonary alveolar proteinosis, in which alveolar 

macrophages fail to properly degrade surfactant, leading to accumulation of surfactant in the 

lung45. Due to our initial finding of improper GM-CSF/STAT5 signaling in the whole lung in Cish 

KO mice in addition to the previous finding of Cish KO developing spontaneous lung disease in 

which filling of the alveoli with proteinaceous material was observed, we sought to examine the 

possibility that Cish KO mice develop PAP, mediated by improper GM-CSF/STAT5 signaling in 

alveolar macrophages.  

When we examined the broncheoavleolar lavage fluid we noticed elevated levels of 

surfactant protein in Cish KO mice. Additionally, we noted “foamy” alveolar macrophages in Cish 

KO mice, with increased size and granularity, consistent with the phenotypic hallmark of PAP, as 

alveolar macrophages in PAP increase in size and granularity as surfactant accumulates 

intracellularly, failing to be properly metabolized62. We stained for intracellular lipid 

accumulation, and also saw increased intracellular lipid deposition in Cish KO alveolar 

macrophages, another hallmark of PAP63, 64. Further, when we looked at a gene set for surfactant 

metabolism, we noticed differences in gene expression in Cish KO alveolar macrophages 
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compared to WT macrophages, supporting the notion that alveolar macrophages Cish deficiency 

results in improper pulmonary surfactant homeostasis (Figure 7).  

To further address the cell intrinsic mechanisms by which Cish deficiency results in 

dysregulated alveolar macrophage mediated surfactant homeostasis, we tested alveolar 

macrophage GM-CSF mediated STAT5 signaling ex vivo. Although preliminary results, we 

noticed that alveolar macrophages from Cish KO mice contained lower basal levels of pSTAT5 

compared to WT alveolar macrophages, suggesting lack of responsiveness to GM-CSF in Cish 

KO alveolar macrophages. When stimulated with GM-CSF ex vivo, Cish KO alveolar 

macrophages activated STAT5 at levels consistently less than WT alveolar macrophages. In 

addition, pSTAT5 signaling remained at more sustained levels at later timepoints in Cish KO 

alveolar macrophages compared to WT alveolar macrophages, consistent with loss of a negative 

regulator of STAT5 signaling (Figure 8). Additional experimentation is required to further explore 

these differences. 

We next sought to explore immune implications of Cish deficiency in macrophages, 

specifically in relation to response of microbes. We tested the ability of Cish KO macrophages to 

phagocytose microbes, as alveolar macrophages from other PAP models have been reported to 

exhibit defects in phagocytosis47, 65. Although our results are preliminary and only tested so far in 

BMDM, we noticed significant impairment of phagocytosis of S. aureus bioparticles in Cish KO 

BMDM (Figure 9A). We suspect that this impaired phagocytosis is due to improper regulation of 

a calcium signal mediated by Cish, as Cish has been implicated in regulation of calcium 

signaling55. Although this requires further examination in alveolar macrophages, this inspired us 

to look specifically at expression of genes in calcium signaling pathways in our sorted alveolar 

macrophage RNAseq dataset. We found that Cish KO alveolar macrophages exhibited notably 
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different gene expression patterns compared to WT alveolar macrophages, especially in the old 

Cish KO alveolar macrophages (Figure 9C), further suggesting a potential role for Cish in calcium 

signaling in alveolar macrophages, independent of STAT5 signaling. 

In this study, we show that Cish is expressed in a lung specific manner in alveolar 

macrophages and that Cish expression is regulated by GM-CSF present in the lung. Further, Cish 

expression in alveolar macrophages is important for their homeostatic role in the lung, namely 

surfactant homeostasis. While previous studies have hinted at tissue specific regulators being 

expressed in a tissue specific manner and informing tissue specific functions of macrophages, this 

study provides concrete evidence to support this idea. 
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6.0 Future Directions 

These results highlight the tissue specific function of Cish in alveolar macrophages, in 

which Cish deficiency results in apparent dysregulation of lung homeostasis, namely through 

improper cytokine balance and improper surfactant clearance. While we present a strong case for 

Cish deficiency leading to PAP, as evidenced foamy alveolar macrophages and increased levels of 

pulmonary surfactant in Cish deficient mice, this study could be strengthened by lung histology 

showing PAP as well. Architectural issues with initial histology prevented us from showing these 

results with confidence, but our initial histological results were supportive of development of PAP 

in Cish KO mice (data not shown). We are undergoing further optimization of lung histology in 

order to definitively address this. 

Additionally, while we show imbalance of cytokines present in the lungs of Cish KO mice, 

future studies addressing the mechanisms with which this occurs over time would provide more 

insight into how alveolar macrophage Cish expression tunes proper cytokine signaling in the lung. 

To address this, we would need to carefully examine the balance of cytokine expression and 

secretion in the lungs of Cish KO mice as they age. Better understanding the dynamics by which 

cytokines are dysregulated in the lungs of Cish KO mice would provide insight into the complex 

crosstalk of cells in the lungs as well as inform further experimentation into additional implications 

of improper cytokine homeostasis in the lung.  

While we are beginning to further explore cell intrinsic effects of Cish deficiency in 

alveolar macrophages, such as response to GM-CSF and calcium signaling, additional research is 

required to explore the mechanisms by which Cish regulates these cell intrinsic functions within 

alveolar macrophages. Our preliminary results suggest that Cish KO alveolar macrophages have 
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impaired responses to GM-CSF/STAT5 signaling, but the mechanism with which Cish regulates 

this signal in alveolar macrophages needs to be further addressed. Based on our initial findings, 

we speculate that Cish deficiency results in a prolonged STAT5 signal, failing to properly shut off 

due to lack of Cish.  

Based on preliminary findings, we also speculate that Cish likely plays a role in regulating 

calcium signals in alveolar macrophages. While we focused on phagocytosis in this study, calcium 

signaling is also important for a number of cellular functions, such as cell adhesion, cytokine 

production, and response to oxygen70, 71, 72. Thus improper regulation of calcium signaling could 

have a wide range of effects for alveolar macrophage mediated lung homeostasis and protection. 

We are beginning to investigate calcium signaling in response to various stimuli in Cish KO and 

WT alveolar macrophages to address whether Cish regulates calcium signals in alveolar 

macrophages. 

Further, we wish to understand the impacts of these cell intrinsic functions of Cish for 

overall lung homeostasis and protection. Based on preliminary data, we suspect that alveolar 

macrophage Cish deficiency results in worsened outcome upon bacterial challenge in the lung, 

with decreased survival and increased weight loss in Cish KO mice (data not shown). These results 

would be consistent an SNP analysis showing that specific Cish variants have increased 

susceptibility to pulmonary infections, suggesting proper regulation of immune response mediated 

by Cish plays an important role in protection of the lung57, 58. These results would also be consistent 

with other PAP models, in which alveolar macrophages in PAP have been shown to exhibit 

impaired immune responses to various microbes47, 65. 

We predict that alveolar macrophage Cish deficiency would lead to defective immune 

responses to pulmonary pathogens, namely through dysregulated cytokine responses, leading to 
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overall worsened outcome in pulmonary infections. We also speculate that calcium signaling, 

shown to be important in communication between alveolar macrophages especially in the context 

of infection, could be dysregulated in a Cish KO model. Mechanisms by which Cish regulates 

responses to microbes in alveolar macrophages and implications for outcome of lung infection 

need to be addressed experimentally. 

In addition to worsened outcome in instances of pulmonary infection, we also predict that 

Cish deficient alveolar macrophages have irregular responses to microbes present in the lung in 

the steady state. The lung has been shown to harbor its own unique microflora and alveolar 

macrophages typically detect these microbes quiescently, without generating pro-inflammatory 

responses73. We speculate that Cish KO alveolar macrophages would be either hyper or hypo-

responsive to microbes in the steady state lung environment, either causing unnecessary lung 

damage or allowing opportunistic infections respectively.  

One major shortcoming of this project is use of a global Cish KO mouse model. Although 

this model is sufficient for showing tissue specific regulation and function of Cish in alveolar 

macrophages, a handful of other immune cells including as CD8+ T cells can express Cish. To 

address this shortcoming, moving forward the ideal model to use would be a conditional Cish KO, 

likely under transcriptional control of Cx3cl1, which is uniquely highly expressed by alveolar 

macrophages. This conditional Cish KO model would be able to address whether Cish deficiency 

in other cell types in the lung further contribute to the phenotype we describe in this study, as well 

as in future experimentation. 
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7.0 Public Health Significance 

Our study specifically found a spontaneous PAP like phenotype driven by Cish deficiency, 

highlighting the importance of tissue specific regulatory signaling in maintenance of tissue 

homeostasis. This loss of proper lung homeostasis has numerous implications for the host, from 

proper protection of the lung to simple ability to breathe in severe cases of disease, a critical barrier 

site. From a public health perspective, continuing to elucidate the specific mechanisms by which 

alveolar macrophages mediate lung homeostasis is essential to providing cutting edge health care 

and to continuing to develop therapeutic treatments that can provide cures instead of simply 

mitigating symptoms of pulmonary disease. 

From a human health standpoint, SNP analysis across Cish variants found that specific 

variants of Cish are more highly susceptible to various infections, such as malaria, tuberculosis,  

bacteremia, and hepatitis B, further emphasizing the importance of signaling regulators, 

specifically Cish in this case, in host protection57, 58. Further, although PAP is a relatively rare 

disease, individuals with PAP are more susceptible to various pulmonary and systemic infections, 

such as tuberculosis45. In addition to being the major drivers of PAP, alveolar macrophages in PAP 

have also been shown to exhibit dysregulated immune responses, such as defects in expression of 

PRRs, secretion of cytokines, phagocytosis, and microbial killing47, 65.  

This study emphasizes that alveolar macrophage function has implications not only for 

overall lung structure and function, but also that impaired lung homeostasis can lead to impaired 

tissue protection. Elucidating the signals that are responsible for proper lung homeostasis is vital 

to better understand the complex crosstalk between cells in the lung and to understand how these 

signals get dysregulated in order to create better targets in treatment of various pulmonary diseases. 
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Therefore, better understanding the mechanisms with which alveolar macrophage mediate lung 

homeostasis is critical for continuing to provide the best health care and treatments to individuals 

with pulmonary disease or infection. 
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