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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

INFLUENCE OF PROCESS-INDUCED MICROSTRUCTURE AND 
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By 
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February 2015 
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Nanocrystalline permanent magnets offer original magnetic features as a result of 

surface or interface consequences which are different from properties of bulk or 

microcrystalline materials. The main reason for this is the grain size and the presence 

or absence of intergranular stages. Most of the NdFeB research literature has only very 

superficially dealt with the question of how to improve the magnetic properties of the 

NdFeB materials. The literature has covered in great detail the answers for the case of 

Rare Earth-Iron-Boron-based materials obtained from high amounts of rare earth 

material. Thus, this work was a fresh attempt to critically track the influence of 

process-induced microstructure, additives and annealing temperature on magnetic 

properties of (Nd, Pr)-(Fe, Ti, C, Co, Al)-B isotropic nanocomposite alloys with unique 

compositions, containing medium amounts of boron and lesser amounts of rare earth 

material.  

Various routes were used to organize them, such as direct quenching with different roll 

rates, devitrification of amorphous over-quenched ribbons by annealing at different 

temperature ranges and mechanical alloying technique. The results of a methodical 

analysis of the relationship between microstructure and magnetic properties in isotropic 

nanocrystalline (Nd,Pr)-(Fe,Ti,C,Co,Al)-B permanent magnets were provided in the 

present study. The first section explains how microstructure and magnetic properties of 

(Nd,Pr)-(Fe,Ti,C)-B Melt-spun ribbons are dependent on  the solidification rate 

(quenching wheel speed). Based on these results, the lower speeds were shown to 

increase the magnetic properties. Thus, we can develop a uniform Nd2Fe14B/Fe3B 

nanocomposite structure with fine soft grains at an optimum 5m/s quenching wheel 

speed. Moreover, it was shown that increasing quenching wheel speed results in 

reduced grain size and higher amount of amorphous phase.  

The second section, presents the impact of Titanium, Carbon, Cobalt and Aluminum 

additions on the crystallization behavior, microstructure and magnetic properties of 

(Nd,Pr)-Fe-B alloys with different compositions. It was shown that additions of Ti and 

C improved the glass forming ability and raised the temperature of crystallization. Ti 

addition led to considerable refinement of grain size as a result of the formation of 

amorphous grain boundaries enriched with Ti. Further C addition led to the 

enhancement of Ti enrichment in the grain boundary stage that increased coercivity and 

maximum energy product. The best magnetic properties were obtained from the 

samples which contain 3 atomic percentages of Titanium and Cobalt. In addition, it was 

shown that additions of Co increase the temperature of crystallization. Additionally, 
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substitution of Co enhances the generation of 2:14:1 phase that leads to a considerable 

increase in coercivity of the ribbons. The appropriate substitution of Co makes 

intergranular exchange coupling of the grains stronger and results in the improvement 

of the remanence and energy product for the (Nd,Pr)2(Fe,Ti,C)14B/Fe3B type ribbons. 

The best magnetic properties were achieved for ribbons with Co3. Nevertheless, small 

aluminum addition improves coercivity. The Al and Co combination leads to Nd3Co 

and Nd(Fe,Al)2 formation at the grain triple points after heating and results in better 

magnetic isolation of grains. Also, the uniform grain boundary distribution and 

increasing anisotropy field of the alloys improve alloy coercivity. The third section 

investigates the effects of different annealing temperatures on the magnetic properties 

and structure of Nd-Fe-B nanocomposite permanent magnetic alloys with different 

compositions. Generally, it has been shown that the amorphous alloys’ crystallization 

behavior is strongly dependent on the temperature of heat treatment and the size and 

volume fraction of 𝛼-Fe and Nd2Fe14B can be manipulated by subsequent thermal 

processing. Furthermore, magnetic properties are highly dependent on the grain size of 

the hard and soft magnetic phase. Hence, the increase and decrease of annealing 

temperature will increase and decrease the magnetic properties. Finally, the best 

magnetic properties in type (E) and type (F) were achieved at 720 
o
C and 700 

o
C 

annealing temperatures respectively, with the (BH)max=60.48 KJ/m
3 

in type (F) 

ribbons. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PENGARUH PROSES INDUKSI MIKROSTRUKTUR DAN PENAMBAH (Co, 

Al, Ti, C) KE ATAS SIFAT MAGNETIK Nd-Fe-B BERDASARKAN 

KEKERASAN ISOTROPIK MAGNET 

 

Oleh 

RAHIM SABBAGHIZADEH 

Februari 2015 

Pengerusi: Profesor Madya Mansor Hashim, PhD 

 

Fakulti: Institut Teknologi Maju 

Magnet kekal nanokristal menawarkan keaslian sifat magnet sebagai hasil dari kesan 

permukaan atau antara muka yang berbaza berlainan dari sifat bahan pukal atau 

mikrokristal. Faktor utama berlakunya sedemikian adalah wujudnya saiz butiran dan 

keujudan atau tidak peringkat ikatan antara butiran. Kebanyakan kaji selidik literatur 

NdFeB membincangkan secara ringkas mengenai persoalan bagaimana untuk 

meningkatkan sifat magnet bahan  NdFeB. Literatur terdahulu telah memberi banyak 

informasi dan jawapan bagi kes sifat bahan berasaskan nadir bumi-Ferum-Boron yang 

disediakan dengan jumlah terkini bahan nadir bumi yang tinggi. Oleh itu, kaji selidik 

ini adalah suatu usaha mengkaji lebih mendalam tentang mikrostruktur yang 

dipengaruhi oleh proses persediaan, penambahan, dan suhu sepuh lindapan pada sifat 

magnet nanokomposit aloi isotropic (Nd Pr)-(Fe, Ti, C, Co, Al)-B dengan komposisi 

unik, mengandungi jumlah boron yang sederhana dan sedikit nadir bumi. Pelbagai cara 

sudah digunakan contohnya, pelindapan pantas pada kadar guling yang berbeza, 

devitrifikasi reben amorfus lampau-lindap dengan suhu lindapan yang berbeza dan 

teknik pengaloian mekanik. Hasil dari kaedah analisis mengenai perhubungan antara 

mikrostruktur dan sifat magnet yang terdapat didalam nanokristal isotropik (Nd,Pr)-

(Fe,Ti,C,Co,Al)-B magnet kekal telah dibekalkan dalam kaji selidik ini. Bahagian 

pertama menerangkan bagaimana mikrostruktur dan sifat magnet reben lebur-putar 

(Nd,Pr)-(Fe,Ti,C)-B bergantung pada kadar pemejalan (kelajuan pemejalan). 

Berdasarkan keputusan, semakin perlahan kelajuan pemejalan, semakin meningkat sifat 

magnet. Oleh itu, struktur nanokomposit Nd2Fe14B/Fe3B yang seragam dengan butiran 

yang halus pada kadar kelajuan pemejalan yang optimum, 5 m/s dapat disediakan.  

Selain itu, kaji selidik ini telah menunjukkan peningkatan kelajuan kadar pemejalan 

menghasilkan pengurangan saiz butiran dan peningkatan jumlah fasa amorfus. 

Bahagian kedua, menunjukkan kesan penambahan Titanium, Karbon, Kobalt and 

Aluminium pada sifat pengkristalan, mikrostruktur dan sifat aloi (Nd,Pr)-Fe-B pada 

komposisi yang berbeza. Ini menunjukan pertambahan unsur Ti dan C telah 
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meningkatkan kebolehan pembentukan kaca dan  suhu pengkristalan. Pertambahan Ti 

memberi kesan kepada saiz butiran sebagai hasil dari pembentukan sempadan butiran 

amorfus yang kaya dengan Ti. Pertambahan C telah membawa kepada unsur Ti dalam 

pengkayaan sempadan butiran, yang meningkatkan koersiviti dan produk tenaga 

maksimum. Sifat magnet yang yang terbaik diperolehi dari sampel yang mempunyai 3 

peratus atom titanium dan kobalt. Sebagai tambahan, kajian menunjukan pertambahan 

Co telah meningkatkan suhu pengkristalan. Selain itu, penggantian unsur Co 

meningkatkan pembentukan fasa 2:14:1 yang membawa kepada peningkatan koersiviti 

reben. Penggantian Co yang sesuai telah memberi gandingan pertukaran ikatan antara 

butiran menjadi lebih kukuh dan penambahbaikan hasil remanen dan produk tenaga 

bagi reben (Nd,Pr)2(Fe,Ti,C)14B/Fe3B. Sifat magnet yang paling baik tercapai adalah 

bagi reben dengan Co3. Namum, sedikit pernambahan aluminium meningkatkan 

koersiviti. Kombinasi Al dan Co membawa kepada pembentukan  Nd3Co dan 

Nd(Fe,Al)2  pada suhu tiga titik butiran selepas dipanaskan dan menghasilkan 

pengasingan butiran magnet yang lebih baik. Disamping itu, pengagihan  sempadan 

butiran meningkatkan medan anisotropi dan meningkatkan koersiviti aloi. Bahagian 

ketiga menyiasat kesan suhu penyelindapan yang berbeza terhadap sifat magnet dan 

struktur aloi nanokomposit magnet kekal Nd-Fe-B dengan komposisi yang berbeza. 

Secara amnya, menunjukkan  sifat pengkristalan amorfus aloi bergantung pada suhu 

pemanasan dan saiz pecahan isipadu bagi  𝛼-Fe dan Nd2Fe14B yang boleh dimanipulasi 

dari proses haba. Sebagai tambahan, sifat magnet adalah  bergantung pada saiz butiran 

fasa magnet keras dan lembut. Oleh itu, peningkatan dan pegurangan suhu 

penyelindapan akan meningkatkan atau mengurangkan sifat magnet. Akhir kata, sifat 

terbaik magnet pada jenis (E) dan jenis (F) akan dicapai pada suhu penyelindapan 720 
o
C dan 700

 o
C masing-masing, dangan (BH)max=60 KJ/m

3
 dalam reben jenis (F). 

  



© C
OPYRIG

HT U
PM

v 

ACKNOWLEDGMENTS 

First of all, I will like to give praise to Almighty God for the wisdom and determination 

that he has bestowed upon me during this research project, and indeed, for keeping me 

healthy and safe throughout my life. 

Countless of people contribute to this thesis; mentors and /or supervisors, family, 

friends and even some strangers have set off trains of thought and spark ideas or 

understandings. This means that, by mentioning names, I would be omitting someone. 

Never the less, my unreserved appreciation goes to my able supervisor Associate 

Professor Dr. Mansor Hashim for his guidance and suggestions, without which, this 

work would not have been a success. This thesis is, but a fraction of evidence reflecting 

his vast insight into magnetism and magnetic materials. I am highly indebted and 

eternally grateful. To my co-supervisors, Dr. Khamirul Amin Matori and Assoc. Prof. 

Dr. Jumiah Hassan, I thank them for keeping me right on track. Their contributions 

would forever remain indelible in my memories. 

Appreciation is also given to my good friends; Shamsul, Ghazaleh, Arshin, Parisa, 

Amirhossein and Nooshin for their help and encouragement which keep me going and 

wishes you all the best in your life. 

  



© C
OPYRIG

HT U
PM

vi 

APPROVAL 

I certify that a Thesis Examination Committee has met on 24/2/2015 to conduct the 

final examination of Rahim Sabbaghizadeh on his thesis entitled “INFLUENCE OF 

PROCESS-INDUCED MICROSTRUCTURE AND ADDITIVES (Co, Al, Ti, C) ON 

MAGNETIC PROPERTIES OF Nd-Fe-B BASED ISOTROPIC HARD MAGNETIC 

MATERIALS”, in accordance with the University and University Colleges Act 1971 

and the Constitution of the University Putra Malaysia [P. U. (A) 106] 15 March 1998. 

The committee recommends that the student be awarded the Doctor of Philosophy. 

Members of the Thesis Examination Committee were as follows:  

 

Mohd. Nizar Hamidon, PhD 

Associate Professor 

Faculty of Engineering 

Universiti Putra Malaysia 

(Chairman) 

 

Abdul Halim b Shaari, PhD 

Professor 

Faculty of science 

Universiti Putra Malaysia 

(Internal Examiner) 

 

Halimah Mohamed Kamari, PhD 

Associate Professor 

Faculty of science 

Universiti Putra Malaysia 

(Internal Examiner) 

 

Ramaswamy Murugan, PhD 

Professor 

Department of Physics 

Pondicherry University 

(External Examiner) 

 

 

 

 

 
Zulkarnain Zainal, PhD 

Professor and Deputy Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

 

Date: 15 April 2015 
 



© C
OPYRIG

HT U
PM

vii 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The 

members of the Supervisory Committee were as follows: 

 

Mansor Hashim, PhD 

Associate Professor 

Institute of Advanced Technology 

Universiti Putra Malaysia 

(Chairman)  

 

Khamirul Amin Matori, PhD 

Associate Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 

Jumiah Hassan, PhD 

Associate Professor 

Faculty of Science 

Universiti Putra Malaysia 

(Member) 

 

BUJANG BIN KIM HUAT, PhD 

Professor and Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

 

Date: 
 

  



© C
OPYRIG

HT U
PM

viii 

Declaration by the student  

I hereby confirm that:  

 This thesis is my original work  

 quotations, illustrations and citations have been duly referenced  

 the thesis has not been submitted previously or comcurrently for any other degree 

at any institutions 

 intellectual property from the thesis and copyright of thesis are fully-owned by 

Universiti Putra Malaysia, as according to the  Universiti Putra Malaysia 

(Research) Rules 2012; 

 written permission must be owned from supervisor and deputy vice –chancellor 

(Research and innovation) before thesis is published (in the form of written, 

printed or in electronic form) including books, journals, modules, proceedings, 

popular writings, seminar papers, manuscripts, posters, reports, lecture notes, 

learning modules or any other materials as stated in the Universiti Putra Malaysia 

(Research) Rules 2012;  

 There is no plagiarism or data falsification/fabrication in the thesis, and scholarly 

integrity is upheld as according to the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia 

(Research) Rules 2012. The thesis has undergone plagiarism detection software  

 

 

 

Signature:_______________________      Date: _______________ 

 

 

Name and Matric No: Rahim Sabbaghizadeh, (GS31046) 

 

 



© C
OPYRIG

HT U
PM

ix 

Declaration by Members of Supervisory Committee  

This is to confirm that: 

 the  research conducted and the writing of this thesis was under our supervision; 

 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) are adhered to. 

 

 

 

 

 

 

 

Signature:   

Name of Chairman of 

Supervisory 

Committee: 

 

 

Mansor Hashim, PhD 

 

 

 

 

 

 

Signature: 

  

Name of Member of 

Supervisory 

Committee: 

 

Jumiah Hassan, PhD 

 

 

 

 

 

 

Signature: 

  

Name of Member of 

Supervisory 

Committee: 

 

Khamirul Amin Matori, PhD 

 

 

  



© C
OPYRIG

HT U
PM

x 

TABLE OF CONTENTS 

ABSTRACT      i 

ABSTRAK       iii 

ACKNOWLEDGMENTS    v 
APPROVAL      vi 
LIST OF TABLES     xiii 
LIST OF FIGURES     xiv 
LIST OF ABREVIATIONS  xviii 

CHAPTER 

1   INTRODUCTION   
   1.1 Background of the Study 1 
   1.2 Nd-Fe-B permanent magnets 2 
   1.3 Nd-Fe-B permanent magnets Applications 3 
     1.3.1   Automobile and electric appliances 3 
     1.3.2   Magnetic Recording Media 4 
     1.3.3   Biomedical Applications 4 
   1.4 Problem Statement 4 
   1.5 Objectives 4 
   1.6 Thesis Outline 5 

2   LITERATURE REVIEW   
   2.1 Introduction 7 
   2.2 Single Phase Nanocrystalline REFeB 

Permanent Magnets 7 
     2.2.1   Introduction 7 
     2.2.2   Remanence Enhancement 7 
   2.3 Nanocomposite REFeB Based Alloys 8 
     2.3.1   Introduction 8 
     2.3.2   Exchange Coupling 8 
   2.4 Magnetic Properties Enhancement of 

Nanocomposite REFeB Alloys 9 
     2.4.1   Remanence Enhancement 11 
     2.4.2   Coercivity Enhancement 11 
   2.5 Grain Size Refinement 12 
   2.6 Development of Nanocomposite REFeB 

Alloys with Substituted Elements 14 
     2.6.1   Praseodymium 14 
     2.6.2   Cobalt 15 
     2.6.3   Aluminium 15 
     2.6.4   Titanium and Carbon 15 
   2.7 Development of Nanocomposite REFeB 

alloys with Production Techniques 16 
     2.7.1   NdFeB Melt Spinning Processing 

Route 16 
     2.7.2   Mechanical Alloying (MA) 18 

 



© C
OPYRIG

HT U
PM

xi 

3   THEORY     
   3.1 Introduction 21 
   3.2 Magnetism 21 
     3.2.1   Origin of Magnetic Field 21 
     3.2.2   Units of Magnetism 22 
     3.2.3   Magnetic Quantities 22 
     3.2.4   Magnetic Domains 23 
     3.2.5   Domain Wall 24 
     3.2.6   Magnetic Anisotropy 25 
     3.2.7   Magnetic Response of Solids 27 
     3.2.8   Coercivity of Magnetic Materials 28 
     3.2.9   Types of Magnetism 30 
   3.3 Nd-Fe-B Alloys 34 
     3.3.1   Phase Diagram 34 
     3.3.2   Nd2Fe14B Phase 37 
     3.3.3   Nd1+εFe4B4 38 
     3.3.4   Nd-rich Phase 38 
     3.3.5   Other Phases 39 
   3.4 Sintering 40 
     3.4.1   Types of Sintering 40 
     3.4.2    Driving Forces of Solid-state Sintering 40 
     3.4.3   Stages of Sintering 41 
     3.4.4   Mechanisms of Sintering 41 
     3.4.5   Grain Growth and Coarsening 41 
     3.4.6   The Effect of Sintering of NdFeB 

Magnets 44 
   3.5 Mechanism of Melt Spinning 45 
   3.6 Mechanism of Mechanical Alloying 47 

4   MATERIALS AND METHODS  
   4.1 Introduction 51 
   4.2 Systems under Investigation 51 
   4.3 Material Fabrication 51 
     4.3.1   Melt Spinning Method 51 
     4.3.2   Mechanical Alloying Method Type 

(D) 59 
   4.4 Materials Characteristics Measurements 61 
     4.4.1   Physical, Chemical and Structural 

Measurement 61 
     4.4.2   Atomic Force microscopy (AFM) 65 
     4.4.3   Magnetic Properties Measurement 65 
   4.5 Error Estimate 66 

5   RESULTS AND DISCUSSION  
   5.1 Introduction 67 
   5.2 Purity Study via EDX Spectra of NdFeB 

Bulks and Powders with Different 

Compositions 67 
   5.3 Optimization of Alloying Process 70 



© C
OPYRIG

HT U
PM

xii 

     5.3.1   Dependence of Microstructure and 

Magnetic Properties of (Type A) 

Nd6Pr1Fe76B12Ti4C1 Melt-spun 

Ribbons on Quenching Wheel Speed 70 
   5.4 Optimization of Composition 74 

     5.4.1    Effects of Ti and C Additions on the 

Microstructures and Magnetic 

Properties of (Type B) 

Nd9.4Pr0.6Fe77.5-xCo6B6Ga0.5 Melt-spun 

Ribbons 75 
     5.4.2   Effects of Co Additions on 

Nanostructure and Magnetic 

Properties of Nd6Pr1Fe76-

xB12Ti4C1Cox (x=0, 3, 6, 9) Melt-spun 

(Type C) Ribbons 82 
     5.4.3   Effects of a Partial Substitution of Fe 

by Al on Nanostructure and Magnetic 

Properties of Nd8Pr2Fe79-

xCo5B6Alx(X=0, 1, 2, 3) Alloys 

Prepared by Mechanical Alloying 

(Type D) 88 
   5.5 Optimization through Annealing Temperature 92 
     5.5.1   Effects of Heat Treatment on the 

Magnetic Properties of Melt-Spun 

Nd6Pr1Fe73B12Ti4C1Co3 

Nanocomposite Ribbons (Type E) 92 
     5.5.2   Effects of Annealing Temperature on 

the Microstructure and Magnetic 

Properties of 

Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 

Nanocomposite Ribbons (Type F) 97 

6   SUMMARY, CONCLUSION AND RECOMMENDATIONS  
   6.1 Introduction 103 
   6.2 Main Summary of Results and Conclusion 103 
   6.3 General Conclusion 104 
   6.4 Recommendations for Future Work 105 

REFERENCES     107 
BIODATA OF STUDENT    123 
LIST OF PUBLICATIONS  124 
 

  



© C
OPYRIG

HT U
PM

xiii 

LIST OF TABLES 

Table Page 

‎2.1  Typical magnetic properties of isotropic nanocomposite permanent 

magnets 9 

‎2.2  Data for the domain wall thickness, δw, exchange length, lex, and 

radius of single domain, Rsd  14 

‎3.1  Magnetic terms with their symbols and units in C.G.S. and S.I. 

systems 22 

‎3.2  Summary of different types of magnetic behaviors 31 

‎3.3  invariant and monovariant reactions in the NdFeB phase diagram 35 

‎4.1  Error estimate for the Samples Characteristics Measurements 66 

‎5.1  The SEM-EDX and ICP Results of Type (A), (B) and (E) samples 67 

‎5.2  The SEM-EDX and ICP results of Type (C) and (F) samples 68 

‎5.3  The SEM-EDX and ICP results of Type (D) samples 68 

‎5.4  Magnetic properties of as-spun ribbons at different quenching wheel 

speeds 74 

‎5.5  Magnetic properties of Nd9.4Pr0.6Fe77.5-xCo6B6Ga0.5TixCx (x=0, 3, 6) 

annealed ribbons at 700˚C annealing temperature for 10 minutes 82 

‎5.6  Magnetic properties of Nd6Pr1Fe76-xB12Ti4C1Cox (x=0, 3, 6, 9) 

annealed ribbons at 640˚C annealing temperature for 10 minutes 87 

‎5.7  Magnetic properties of Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) annealed 

powders at 750˚C annealing temperature for 30 minutes 91 

‎5.8  Magnetic properties of annealed ribbon at different annealing 

temperatures for 10 minutes 95 

‎5.9  Magnetic properties of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 annealed 

ribbon at different annealing temperatures for 10 minutes 101 

 

  



© C
OPYRIG

HT U
PM

xiv 

LIST OF FIGURES 

Figure  Page 

‎1.1  Variation of (BH)max with time via various types of magnetic material 1 

‎1.2  Application share of NdFeB sintered magnets 3 

‎2.1  Hysteresis loops of soft, hard, and nanocomposite magnets 8 

‎2.2  Magnetic properties of nanocrystalline melt spun Fe-Nd-B ternary alloys 

versus Nd content in the range of 8-12 at% 10 

‎2.3  Effect of Pr content between 6 and 20 at% on the magnetic properties of 

nanophase melt-spun PrFeB alloys 11 

‎2.4  Dependence of coercivity and remanence with various grain sizes 13 

‎2.5  Depicts a schematic representation of the melt-spinning process and MQ 

magnet production 16 

‎2.6  Details and properties of MQP powders produced by Magnequench 

accompanied 18 

‎3.1  Origin of magnetism: (a) orbital magnetic moment (b) spin magnetic 

moment (c) The orbit of a spinning electron about the nucleus of an atom 21 

‎3.2  Schematic illustration of the break up of magnetisation into domains 24 

‎3.3  Schematic structure of a 180 degree domain wall 25 

‎3.4  Magnetisation curve for single crystal of iron 26 

‎3.5  Influence of an external magnetic field on domain structure 27 

‎3.6  Schematic representation of the hysteresis loop for hard magnetic 

materials 28 

‎3.7  The magnetisation curves for the nucleation and pinning types of 

coercivity 30 

‎3.8  A periodic table showing the type of magnetic behavior of each element at 

room temperature 30 

‎3.9  Behavior of Superparamagnetic Particles with and without the presence of 

an applied external Magnetic Field 33 

‎3.10  Liquid phase projection of the NdFeB ternary system 34 



© C
OPYRIG

HT U
PM

xv 

‎3.11 Vertical section of the NdFeB phase diagram along the tie-line between 

Fe and T1 36 

‎3.12  BSE image from as-cast NdFeB alloy 36 

‎3.13  The Unit Cell of Nd2Fe14B 38 

‎3.14  Schematic representation of the sintering mechanisms for a system of two 

particles 42 

‎3.15  Hexagons superimposed on a group of tri-connected polygons 43 

‎3.16  Abnormal grain growth in a hot-pressed sample 44 

‎3.17  Ball–Powder–Ball Collision of Powder Mixture during MA 48 

‎3.18  General Behavior of Powder Particles A, B and Formation of a New 

Phase C 49 

‎4.1  Vacuum arc remelting (VAR) machine 53 

‎4.2  The ingots which were produced via VAR machine 53 

‎4.3  Photo of melt spun machine used in the project 54 

‎4.4  The output of the melt-spun machine (ribbons) 54 

‎4.5  The sealed-off ribbons 55 

‎4.6  Flowchart for the preparation and characterization of the type A 

Composition 56 

‎4.7  Flowchart for the preparation and characterization of the type (B) and type 

(C) 57 

‎4.8  Flowchart for the preparation and characterization of the type (E) and type 

(F) 58 

‎4.9  The SPEX8000D High Energy Ball Mill 60 

‎4.10  Heating and Cooling Rate during the Sintering 60 

‎4.11  Flowchart for preparation and characterization of the type-D Composition 61 

‎4.12  Schematic Diagram of the XRD 62 

‎4.13  An idealized DSC curve showing the shapes associated with particular 

phase transitions 63 

‎4.14  Field Emission Scanning Electron Microscope (FESEM) 64 



© C
OPYRIG

HT U
PM

xvi 

‎5.1  EDX spectra of Type A, B, C, E and F bulks and Type D powder with 

different compositions 69 

‎5.2  DSC scans of Nd6Pr1Fe76B12Ti4C1 as-spun ribbons at (5, 7.5, 10 and 15 

m/s) quenching wheel speeds 71 

‎5.3  XRD patterns of Nd6Pr1Fe76B12Ti4C1 as-spun ribbons at different 

quenching wheel speeds 72 

‎5.4  Grain sizes of Nd6Pr1Fe76B12Ti4C1 as-spun ribbons at different quenching 

wheel speeds 73 

‎5.5  Hysteresis loops of Nd6Pr1Fe76B12Ti4C1 as-spun ribbons at (a) 5m/s, 7.5 

m/s (b) 10m/s, 15 m/s quenching wheel speeds 73 

‎5.6  Magnetic properties of as-spun ribbons: (a) Coercivity change of 

Nd6Pr1Fe76B12Ti4C1 Ribbons and (b) (BH)max change of 

Nd6Pr1Fe76B12Ti4C1 Ribbons as a function of wheel speeds 74 

‎5.7  X-ray diffraction patterns of as-spun type (B) ribbons for different 

compositions 75 

‎5.8  DSC scans of Nd9.4Pr0.6Fe77.5-xCo6B6Ga0.5TixCx (x=0, 3, 6) 76 

‎5.9  XRD patterns of type (B) ribbons after thermal treatment at 700˚C for 10 

minutes 77 

‎5.10  Grain sizes of Nd9.4Pr0.6Fe77.5-xCo6B6Ga0.5TixCx (x=0, 3, 6) annealed 

ribbons at 700˚C (for 10minutes) annealing temperature 78 

‎5.11 Atomic force microscope (AFM) topography and grain size distribution of 

(a) x=0, (b) x=3, (c) x=6 Annealed ribbons at 700˚C for 10 minutes 80 

‎5.12  Hysteresis loops of Nd9.4Pr0.6Fe77.5-xCo6B6Ga0.5TixCx (x=0, 3, 6) at 700˚C 

annealing temperature for 10 minutes 81 

‎5.13  X-ray diffraction patterns of as-spun type C ribbons for different 

compositions 83 

‎5.14  DSC scans of Nd6Pr1Fe76-xB12Ti4C1Cox (x=0, 3, 6, 9) 83 

‎5.15  XRD patterns of type C ribbons after thermal treatment at 640˚C for 10 

minutes 84 

‎5.16  FESEM morphologies of Nd6Pr1Fe76-xB12Ti4C1Cox (a) x=0, (b) x=3, (c) 

x=6, (d) x=9 Annealed ribbons at 640˚C for 10 minutes 85 

‎5.17  Grain sizes of Nd6Pr1Fe76-xB12Ti4C1Cox (x=0, 3, 6, 9) annealed ribbons at 

640˚C (for 10minutes) annealing temperature 86 



© C
OPYRIG

HT U
PM

xvii 

‎5.18  Hysteresis loops of Nd6Pr1Fe76-xB12Ti4C1Cox (x=0, 3, 6, 9) annealed 

ribbons at 640˚C annealing temperature for 10 minutes 87 

‎5.19  XRD patterns of powders before and after thermal treatment at 750˚C for 

30 minutes 88 

‎5.20  FESEM morphologies of Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) annealed 

samples at 750˚C for 30 minutes 89 

‎5.21  Grain sizes of Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) powders, annealed at 

750˚C for 30 minutes 90 

‎5.22  Hysteresis loops of Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) powders, annealed 

at 750˚C for 30 minutes 91 

‎5.23  DSC scans of Nd6Pr1Fe73B12Ti4C1Co3 92 

‎5.24  X-ray diffraction pattern of Nd6Pr1Fe73B12Ti4C1Co3 as-spun ribbon 93 

‎5.25  XRD patterns of Nd6Pr1Fe73B12Ti4C1Co3 ribbon after thermal treatment at 

different temperatures for 10 minutes 94 

‎5.26  Grain sizes of Nd6Pr1Fe73B12Ti4C1Co3 annealed ribbon at different 

annealing temperatures for 10 minutes 95 

‎5.27  Magnetic properties of annealed ribbon at different annealing temperature 

for 10 minutes with Nd2Fe14B grain size 96 

‎5.28  Hysteresis loops of Nd6Pr1Fe73B12Ti4C1Co3 annealed ribbon at different 

annealing temperatures for 10 minutes 96 

‎5.29  DSC scans of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 97 

‎5.30  X-ray diffraction pattern of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 as-spun 

ribbon 97 

‎5.31  XRD patterns of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 ribbon after thermal 

treatment at different temperatures for 10 minutes 98 

‎5.32  FESEM morphologies of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 at (a) 600
o
C, 

(b) 650
o
C, (c) 700

o
C and (d) 750

o
C Annealed ribbons for 10 minutes 99 

‎5.33  Grain sizes of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 annealed ribbon at 

different annealing temperatures For 10 minutes 99 

‎5.34  Hysteresis loops of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 annealed ribbon at 

different annealing temperatures for 10 minutes 101 

  



© C
OPYRIG

HT U
PM

xviii 

LIST OF ABREVIATIONS 

2θ  2 theta degree 

dm  mean grain diameter 

σR  Specific remanent magnetization  

σS  Specific saturation magnetization  

θC  Curie temperature  

θN  Néel temperature 

γ magnetic domain wall energy proportional 

a.u  Arbitrary unit 

AFM  Atomic force microscopy 

BPR  Ball-to-powder weight ratio 

(BH)max Maximum Energy Product 

EDX  Energy Dispersive X-ray 

FESEM  Field Emission Scanning Electron Microscopy 

H  Magnetic field strength  

HC  Coercivity  

hkl  Miller indices 

M   Mass magnetization  

MA  Mechanical alloying 

MR  Remanent magnetization  

MS  Saturation magnetization  

Msm  magnetization per unit mass 

Msv  magnetization per unit volume 

MUT  Material under test 

NdFeB   Neodymium- Iron – Boron 

VCM  Voice Coil Motor 



© C
OPYRIG

HT U
PM

xix 

SEM   Scanning Electron Microscopy 

TEM  Transmission electron microscopy 

VSM  Vibrating sample magnetometer 

wt %   Weight percent 

χ  Magnetic susceptibility  

XRD   x-ray diffraction 



© C
OPYRIG

HT U
PM

1 

1 CHAPTER 1 

1. INTRODUCTION 

1.1 Background of the Study 

A permanent magnet refers to a ferromagnetic material, produced in a metastable 

condition in which it retains some net magnetisation. Thus, a magnet could be as an 

energy-storage material that supplies a magnetic field in a specific space volume. The 

history of permanent magnets comes from a naturally occurring stone, lodestone. This 

unique stone was discovered mostly in the State of Magnesia in Macedonia, from 

where the phrase “magnetism” was derived. The primary record of magnetic materials 

and also the first application as a compass had been in China about 200 B. C. (Muth 

and Parker, 1990). The initial scientific experimental exploration of magnetism had 

been by Gilbert in 1600 on lodestone (Fe3O4). He analysed terrestrial magnetism and 

magnetic induction and discovered that magnets lose their own magnetism when 

heated. In 1825, Sturgeon developed the electromagnet and observed the magnetic 

field, which is produced by an electric current via coils. In 1880, Warburg 

demonstrated the primary hysteresis loop intended for iron. Additionally developments 

related to magnetic phenomena have occurred since the 19th centuries: the connection 

among an internal and external magnetic field in ferromagnetic materials was 

discovered by Weiss, magnetostriction by Joule, the Curie law by Curie and hysteresis 

by Ewing. In the 20th century, scientists developed the physical concept of magnetism; 

involving quantum mechanics with theories of electron spin in addition to exchange 

forces, to describe the phenomena of magnetism. During this time period, Néel 

discovered ferrimagnetism. Wonderful advances in permanent magnet technology took 

place at the start of the 20th century. Several new magnetic materials were identified 

and the maximum energy product (BH)max enhanced noticeably with the development 

of each material. The sequential development of the different magnetic materials is 

connected with their energy product, (BH)max. 

 
Figure ‎1.1 Variation of (BH)max with time via various types of magnetic material 

(Magnet Energy Corp, 2014). 
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The primary magnet found out with a valuable energy product in the last section of the 

20th centuries was carbon steel. An important development of this magnet showed in 

1917, while Honda and Shimizu (1903) replaced 35% of cobalt into tungsten steel 

magnets. These types of cobalt steel magnets enhanced the (BH)max to ~8kJm
-3 

(Honda and Shimizu, 1903). The subsequent major progress was the improvement of 

Alnico magnets. Alnico magnets were produced through cobalt magnets in 1932 by 

Mishima (Livingston, 1990). Alnico alloys consist largely of aluminum, nickel in 

addition to cobalt (hence the term al-ni-co) with the addition of iron, copper and, 

occasionally, titanium. They could be magnetized to generate permanent magnetic 

fields. Alnico alloys have Curie points about 800°C (Chikazumi, 1982). From the 

beginning 1950s, Ba-ferrite having a hexagonal magnetoplumbite type composition 

was observed.  

The initial Ba-ferrite presented an increased energy product of 32 kJ/m
3
. These kinds of 

ferrites were the 1st main illustration of material that used magnetocrystalline 

anisotropy for the reason as the basis for their coercivity. This simplicity of processing, 

without necessity for a protective coating, and also the low cost of the raw materials 

create this ferrite magnets cost effective to make (Stijntjes and Van Loon, 2008). 

Within the next ten years, materials with intrinsically higher anisotropy were being 

produced by hexagonal structured rare earth (RE)-transition metal alloys. Within 1967, 

Karl Strnat generated the 1st commercial practical RE-based hard magnetic material, 

SmCo5, which has a maximum energy product of 160 kJm
-3 

(Vieira-Nunes, 1999). Thus 

far, SmCo5 contains the greatest uniaxial magnetocrystalline anisotropy, accomplished 

by very careful control of the microstructure as well as additions including iron, copper 

along with zirconium. Throughout 1970s, as a result of several political as well as 

prices problems concerning cobalt, scientists started to take into consideration some 

other raw materials to dropcobalt from the manufacturing of the magnets. Within the 

late 1970s, a study into boron stabilized Nd-Fe chemical substances by a Ruskies team 

started the development of the NdFeB ternary compound. 

1.2 Nd-Fe-B permanent magnets 

Within 1983, Sumitomo Special Metals of Japan and, individually, General Motors of 

the USA acknowledged the important compound as Nd2F14B and designed 

appropriate processing tracks to create permanent magnets (Robinson, 1987). Both the 

various routes for making the particular Nd-Fe-B alloy were the powder metallurgy 

route manufactured by Sumitomo, along with a nano-crystalline melt spinning method 

acquired by General Motors. Sagawa claimed a maximum energy product of 290 kJm-3 

for sintered magnets (Sagawa, et al., 1984). The properties of Nd-Fe-B based magnets 

were being enhanced more via optimizing processing variables as well as small alloy 

additions to the starting material. Following several enhancements in both the heat 

treatment and also control of Nd-Fe-B based alloys, permanent magnets which has a 

report maximum energy product of 474 kJm-3 (Br=1. 555T, HcJ=653kA/m) were 

developed (Xie, et al., 2006). The modern Nd-Fe-B permanent magnets have magnetic 

properties more advanced than various other magnetic materials at room temperature. It 

has made them favorite for several purposes, gradually exchanging ferrite- and Sm-

type magnets. Nevertheless, the effective use of Nd-Fe-B permanent magnets is 

restricted to low operating temperatures and non-humid surroundings due to its low 

Curie temperature (312°C), weak corrosion resistance and poor temperature 

coefficients of coercivity and remanence. 
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1.3 Nd-Fe-B permanent magnets Applications 

Following NdFeB magnet after it was developed, several new applications including 

voice coil motors (VCM) for hard disc drives (HDD) and magnetic resonance imaging 

(MRI) equipment appeared, with a large market developed during the past twenty 

years. Several new applications which use the NdFeB sintered magnets appear in cars, 

commercial motors and electrical appliances today. Figure 1.2 demonstrates application 

of NdFeB magnets in 1999 and 2004. The share of using these kinds of magnets 

considerably changed between 1999 and 2004. NdFeB magnets for VCM motors had 

the highest application share and their share in the market was 50% in 1999. On the 

other hand, the marketplace share of magnets for motors increased to 35% in 2004, 

compared to that of the VCM magnets which was 32%. 

 

Figure ‎1.2 Application share of NdFeB sintered magnets (Matsuura, 2006). 

1.3.1 Automobile and electric appliances 

Nowadays, NdFeB magnets are used on the magnetic motors of automobiles including 

traction motors in hybrid electric automobiles and electric power steering motors 

(Gieras, 2002). Magnets are employed at high temperatures and in huge reverse 

magnetic fields that originate in the stator coils in most of the mentioned applications. 

These kinds of applications need coercive force magnets and greater magnetic flux 

compared to standard, traditional, applications. Saving energy and performance are 

regarded as serious problems for cars and electric devices. NdFeB high-performance 

sintered magnets can certainly have an extremely critical role in these types of 

applications. There are several instances of the latest motor applications; compressor 

motor of air conditioner uses NdFeB magnets. Introduced permanent magnet rotor is 

utilized due to greater performance compared to a surface mounted rotor in a 

compressor motor. Hybrid electric vehicle motors and electric power steering motors 

(EPS) added to the latest extension of motor marketplace. 



© C
OPYRIG

HT U
PM

4 

1.3.2 Magnetic Recording Media 

Functionality and assemblage of magnetic nanoparticles have attracted wonderful 

consideration because of the prospective application in ultrahigh-density magnetic 

recording (Poudyal, et al., 2007). Continued enhancement within the areal density of 

hard disk drive is going to be restricted to thin film media where each bit of data is 

saved over numerous grains. Self-assembled nanoparticle media and patterned media, 

in which info are stored in a range of single-domain magnetic particle have been 

recommended as methods to defeat this restriction and to make it possible for recording 

density approximately 1 Tbit inch-2 (Ross, 2001). In such ultrahigh-density media, as a 

consequence of high recording density, a smaller material grain and thin size 

submission are required. To acquire both high signal-to-noise and thermal stability of 

the media, isolated, non-interacting or very regular interacting nanoparticles with quite 

high magnetic anisotropy energy Ku are essential (Li, 2007). 

1.3.3 Biomedical Applications 

Magnetic nanoparticles have been offered for biomedical applications for many years 

(Pankhurst, et al., 2003). Nowadays, nanotechnology has developed to a level that 

enables us to generate, characterize and specifically target the functional properties of 

nanoparticles for applications. This is considerably promising for biomedical and 

diagnostic field applications such as hyperthermic treatment for malignant cells, 

targeted drug delivery, and magnetic resonance imaging (MRI) (Willard, et al., 2004). 

1.4 Problem Statement 

In research on Nd-Fe-B permanent magnets, researchers have neglected a fundamental 

line of investigation over the past three decades: What are the relationships between 

composition and microstructure at varying intermediate sintering conditions as the 

morphology and the properties of material evolve parallel to each other? Do the 

changes of microstructure affect the magnetic properties of the materials? How do 

magnetic properties evolve with changes of the microstructure? How do manufacturing 

techniques affect the magnetic properties in Neodymium Iron Boron magnets? How 

does wheel speed affect the microstructure and magnetic properties in the melt-

spinning method? Thus a line of inquiry has been designed to begin answering these 

questions using focused objectives as following section. 

1.5 Objectives 

The main purpose of this study is an investigation on the effect of the manufacturing 

technique employed, alloy composition and sintering temperature on the magnetic 

properties and microstructure of isotropic nanocrystalline (Nd,Pr)-Fe-B permanent 

magnets. Consequently, one important move is to synthesize the NdFeB Permanent 

Magnets using melt-spinning and mechanical alloying method as well as tracking the 

evolution of magnetic properties parallel to the microstructural changes. Another 

investigation is meant to reveal how addition of a small amount of Cobalt, Titanium, 

Carbon and Aluminium would refine the microstructure, which should result in 

realization of high magnetic properties.Thus, This research work embarks on the 

following objectives: 
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1) To prepare different Nd-Fe-B permanent magnets compositions using melt-

spinning and mechanically alloying methods. 

2) To determine the optimum composition and processing condition for 

obtaining the best combinations of magnetic properties by direct quenching. 

3) To identify new nanocomposites processed by over quenching and 

annealing that show good combinations of iHc and (BH)max. 

4) To study the effect of the (Co, Ti, C, Al) additives and annealing 

temperature on the microstructure and magnetic properties of Nd-Fe-B 

permanent magnets 

 

1.6 Thesis Outline 

The thesis consists of 6 chapters which contain introduction, literature review, theory, 

experimental methods, results and discussion, and then conclusion. Chapter 1 presents 

some briefing about the research background, motivation and objectives. Chapter 2 

describes the development of permanent magnets from early history until the discovery 

of novel nanocomposite permanent magnetic alloys. The subsequent chapter specifies 

some of the significant principles in magnetism and magnetic materials which are 

connected directly to the current studies. Chapter 4 refers to materials fabrication and 

characterisation techniques. The discussion of the acquired results and the 

microstructure-magnetic properties relationship forms chapter five. Chapter six 

summarizes and concludes the research information, together with several suggested 

recommendations. The list of the author’s publications is attached right at the end of 

the thesis, preceded by the references and author’s biography and appendices 

respectively. 
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