SUPPLEMENTARY MATERIALS

Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals

Ernest Oppong-Danquah ¹, Paulina Budnicka ¹, Martina Blümel ¹ and Deniz Tasdemir ^{1, 2*}

- ¹ GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; eoppong-danquah@geomar.de (E.O.-D.); pbudnicka@gmail.com (P.B.); mbluemel@geomar.de (M.B.)
- ² Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- * Correspondence: dtasdemir@geomar.de; Tel.: +49-431-6004430, ORCID ID: 0000-0002-7841-6271

List of Tables

Page No.

Table S1. Identification of 8 sediment-derived fungal strains isolated from	
Windebyer Noor (Nov, 2015) according to the two new BLAST searches	4

Table S2. In vitro anti-phytopathogenic activity (IC50 values in μ g/mL) of the DCMsubextract (D) and fractions obtained therefrom (D1–D11) by elution on a C18 SPE cartridge6

List of Figures

Figure S1. Phylogenetic tree for taxonomic assignment of isolate S1DA-Helotiales sp.	
based on sequencing of the 115 1-5.85 rKNA gene-1152 fragment.	7
Figure S2. MN of mono-culture extracts of Helotiales sp. (red), P. influorescens sp.	
(green) and their co-culture (blue) with base peak chromatograms (BPC)	8
Figure S3 MN of mono-culture extracts of <i>P</i> nobilis sp. (red). Lentithecium sp.	
(green) and their co-culture (blue) with BPC.	9
Elever CA MNI of mono culture outre of D influence (and) Loutithesium on	
(green) and their co-culture (blue) with BPC.	10
Figure S5 . MN of mono-culture extracts of Helotiales sp. (red), <i>P. nobilis</i> .	11
(green) and their co-culture (blue) with BFC.	11
Figure S6. MN of mono-culture extracts of Helotiales sp. (red), Lentithecium sp.	
(green) and their co-culture (blue) with BPC.	12
Figure S7. ¹ H NMR spectrum of compound 1 (CDCl ₃ , 600 MHz).	13
Figure S8. ¹³ C NMR spectrum of compound 1 (CDCl ₃ , 150 MHz).	13

Figure S9. DEPT-135 spectrum of compound 1 (CDCl ₃ , 150 MHz).	14
Figure S10. HR-ESIMS spectrum of compound 1.	14
Figure S11. ¹ H NMR spectrum of compound 2 (CD ₃ OD, 600 MHz).	15
Figure S12. ¹³ C NMR spectrum of compound 2 (CD ₃ OD, 150 MHz).	15
Figure S13. COSY spectrum of compound 2 (CD ₃ OD, 600 MHz).	16
Figure S14. HSQC spectrum of compound 2 (CD ₃ OD, 600 MHz).	16
Figure S15. HMBC spectrum of compound 2 (CD ₃ OD, 600 MHz).	17
Figure S16. NOESY spectrum of compound 2, (CD3OD, 600 MHz).	17
Figure S17. ¹ H NMR spectrum of compound 2 (CDCl ₃ , 600 MHz).	18
Figure S18. HR-ESIMS spectrum of compound 2.	18
Figure S19. FT-IR spectrum of compound 2.	18
Figure S20. ¹ H NMR spectrum of compound 3 (CDCl ₃ , 600 MHz).	19
Figure S21. COSY spectrum of compound 3 (CDCl ₃ , 600 MHz).	19
Figure S22. HSQC spectrum of compound 3 (CDCl ₃ , 600 MHz).	20
Figure S23. HMBC spectrum of compound 3 (CDCl ₃ , 600 MHz).	20
Figure S24. NOESY spectrum of compound 3 (CDCl ₃ , 600 MHz).	21
Figure S25. HR-ESIMS spectrum of compound 3.	21
Figure S26. ¹ H NMR spectrum of compound 4 (CD ₃ OD, 600 MHz).	22
Figure S27. ¹³ C NMR spectrum of compound 4 (CD ₃ OD, 150 MHz).	22
Figure S28. COSY spectrum of compound 4 (CD ₃ OD, 600 MHz).	23
Figure S29. HSQC spectrum of compound 4 (CD ₃ OD, 600 MHz).	23
Figure S30. HMBC spectrum of compound 4 (CD ₃ OD, 600 MHz).	24
Figure S31. NOESY spectrum of compound 4 (CD3OD, 600 MHz).	24
Figure S32. ¹ H NMR spectrum of compound 4 (CDCl ₃ , 600 MHz).	25
Figure S33. HR-ESIMS spectrum of compound 4.	25
Figure S34. FT-IR spectrum of compound 4.	25

Figure S35. ¹ H NMR spectrum of compound 5 (CDCl ₃ , 600 MHz).	26
Figure S36. ¹³ C NMR spectrum of compound 5 (CDCl ₃ , 150 MHz).	26
Figure S37. DEPT-135 spectrum of compound 5 (CDCl ₃ , 150 MHz).	27
Figure S38. HR-ESIMS spectrum of compound 5.	27

Table S1. Identification of 8 sediment-derived fungal strains isolated from Windebyer Noor (Nov., 2015) according to the two new BLAST searches (13-08-2019). Self-hits are excluded from the similarity table. BLAST-ALL: shows results from nucleotide BLAST against highly similar sequences. BLAST-TYPE: shows results from nucleotide BLAST against highly similar sequences only from type material. Acc. No. is accession number.

Acc. No. of		BLAST-ALL BLAST-TYPE				T		
strains used	Acc. No.	Name	% similarity	Acc. No.	Name	% similarity	assignment	
	JF740228.1	Plenodomus influorescens strain CBS 143.84	100	NR_111619.1	Plenodomus enteroleucus CBS 142.84 TYPE	96.23	- Diana damara	
MH791233	MK495988.1	Plenodomus lindquistii voucher MF-Ha16-005	97.74	NR_119957.1	Plenodomus visci TYPE	95.88		
	MK495987.1 Plenodomus lindquistii voucher MF-Ha16-004		97.74	MH858430.1	Disusdamus conceptus strain CPS 244.64 TVDE		Plenouomus	
			97.74 -	NR_111068.1	Plenouomus congestus strain CBS 244.64 TYPE	95.49	influorescens	
	MK495986.1	Plenouomus linuquistii Voucher MF-Ha16-001		NR_153896.1	Comoclathris spartii MFLUCC 13-0214 TYPE	95.09		
	MN105533.1	Penicillium sp. isolate SL71_37c_D	100	MH854996.1 NR_111323.1	Penicillium bialowiezense strain CBS 227.28 TYPE	100		
MH791253	MN105477.1	Penicillium sp. isolate SL16_77a_G2	100	KC411734.1	Penicillium brunneostoloniferum strain CBS 317.59	98.02	Penicillium	
	MN105342.1	Penicillium sp. isolate SL63_46_G	100	NR_121299.1	Penicillium brevicompactum NRRL 2011	98.02	bialowiezense	
	MN105326.1	Penicillium sp. isolate SL61_6	100	KF465776.1	Penicillium brevicompactum strain CBS 257.29	98.02		
	MK907754.1	907754.1 Sarocladium strictum isolate Z210A	99.33 -	GQ376096.2	·	99.33		
				NR_111145.1				
	LC433837.1	Sarocladium sp. MAFF307188	99.33 -	AY138845.1	Sarociaaium strictum isolate CBS 346.70 TYPE			
				AY566998.1			Sarocladium	
MH/91254	MK299148.1 Acremonium sp. (in: Hypocreales) isolate LWU_5	00.22	FN691453.1	Acremonium strictum nucleomorph CBS:346.70	99.33	strictum		
		Acremonium sp. (in: Hypocreales) isolate LVVU_50	99.33	MH859409.1	Concellation la concellation de la CPC 740-00	07.00		
	MUD(0001.1	Constal's star's ALIDON OD	99.33 -	NR_145044.1	Sarociaaium bactrocephaium strain CBS 749.69	97.99		
	MH266061.1	Surocluatum sp. struin AHB01_8B		NR_145046.1	Sarocladium pseudostrictum UTHSC 02-1892			
	MK796144.1	Neocucurbitaria cava isolate cp75.3	100	NR_160112.1				
	MK460389.1	Neocucurbitaria sp. strain EXF-12877	100	JF740260.1	Neocucuroitaria caoa CBS 257.68 TTPE	99.73	NT	
MH791292	MK460388.1	Neocucurbitaria sp. strain EXF-12880	100	NR_156358.1	Neocucurbitaria juglandicola CBS 142390 TYPE	99.73	Neocucurbitaria	
		Naccurrenthitaria an atrain EVE 19446	100 -	MF795773.1	Neocucurbitaria juglandicola strain BW6	99.73	sp.	
	MK460387.1	Neocucurbitaria sp. strain EXF-12446		NR_156359.1	Neocucurbitaria populi CBS 142393 TYPE		-	
	MH791174.1	Pyrenochaeta nobilis isolate SICB	100	NG_062727.1				
	NG_062727.1		98.38	MF795792.1	Pyrenochaeta nobilis CBS 407.76 TYPE	98.38	Demonselesete	
MH791174	MF795792.1	Pyrenochaeta nobilis CBS 407.76 TYPE		DQ898287.1			ryrenocnueta	
	DQ898287.1			MF795794.1	Seltsamia ulmi strain L150 98.24		11001115	
	EU710832.1	Pyrenochaeta sp. 14009	98.31	NG_062728.1	.1 Pseudopyrenochaeta lycopersici CBS 306.65 TYPE 98.11			

	11/2/191 1	Cumulitaria hadanidia	08.21	DQ898289.1				
			98.31	NG_063079.1	Septoriella leuchtmannii CBS 459.84 TYPE	98.04	-	
	KT923227.1	Europel on strain OTLE2	99.79	MH862690.1	- Unlight day draw wigness around strain CPS 100140 TVPE	01 50		
		Fungai sp. strain 01055		NR_137974.1	- Helicouenaron microsporum strain CBS 100149 1 11 E	91.30	_	
	JX507714.1	Heletisles on 202 OA 2012	98.90	MH862609.1	Helicodendron websteri strain CBS 745.96	91.50		
MH791258		Heloliales sp. 205 OA-2015		MH857844.1		91.24		
*	JX507688.1	Heletisles on 104 OA 2012	98.89	NR_153969.1	Dimorphospora foliicola strain CBS 221.59 TYPE		Tielotiales sp.	
		Tielottales sp. 104 OA-2015		DQ202518.1			_	
	JX507683.1	Helptiples on 96 OA 2012	98.89	NR_160181.1	- Hudrocina chastocladia CBS 240.00	87.41		
		Theothales Sp. 90 OA-2013		MH862207.1	11yurocinu chuetociuutu CB3 249.90			
MH791244 **	MH791287.1	Phoma sp. isolate 41RWS2	99.71	NR_154108.1	Lentithecium pseudoclioninum HHUF 29055 TYPE	93.64	.64	
	MH791275.1	Phoma sp. isolate 8ES2	99.71	AB809633.1	Lentithecium pseudoclioninum strain: KT 1113	93.64	Lentithecium	
	MH791270.1	Phoma sp. isolate 26XWS2	99.71	NR_154137.1	Lentithecium clioninum HHUF 28199	93.35	93.35 sp.**	
	MH791242.1	Phoma sp. isolate 27XWS2	99.71	LC014566.1	Lentithecium clioninum KT1149A	93.35		
MH791275 **	MH791287.1	Phoma sp. isolate 41RWS2	100	NR_158534.1	Lentithecium carbonneanum CBS 144076 TYPE	95.21		
	MH791273.1	H791273.1 Phoma sp. isolate 27XWS2		MH062991.1	Lentithecium carbonneanum	95.21	95.21 Lentithecium	
	MH791270.1	Phoma sp. isolate 26XWS2	99.57	NR_154108.1	Lentithecium pseudoclioninum HHUF 29055 TYPE	92.75 sp.**		
	KU179250.1Fungal endophyte isolate 1597.01		AB809633.1	Lentithecium pseudoclioninum KT 1113	92.75			

*: Taxonomic assignment was not possible to a higher rank than order level. Phylogenetic tree calculation (Fig. S27) suggests that this isolate may belong to a yet undescribed family within the order Helotiales

**: Re-sequencing the 28S rRNA gene of these isolates (9ES2- MH791244, 8ES2- MH791275) allowed classification as Lentithecium sp.

Table S2. In vitro antiphytopathogenic activity (IC₅₀ values in µg/mL) of the DCM subextract (D) and fractions obtained therefrom (D1–D11) by elution on a C18 SPE cartridge. Test phytopathogens include Pss, *P. syringae*; Xc, X. *campestris*, Ea, *E. amylovora*; Rs, *R. solanacearum*; Pi, *P. infestans*; Mo. *M. oryzae*. 0.5% DMSO was used as a solvent control. Positive controls for Xc, Ea and Pss: chloramphenicol, for Rs: tetracycline, for Mo: nystatin and for Pi: cycloheximide.

Sample	Pss	Xc	Ea	Rs	Pi	Мо
D	> 100	0.9	> 100	> 100	2.3	> 100
D1/2	> 100	34.1	> 100	> 100	> 100	> 100
D 3	> 100	> 100	> 100	> 100	> 100	> 100
D 4/5	> 100	56.1	> 100	> 100	> 100	> 100
D 6	83.8	8.5	> 100	> 100	15.6	> 100
D 7	18.8	3.1	> 100	> 100	4.3	> 100
D 8	17.2	2.1	> 100	> 100	3,1	> 100
D 9	32.0	3.9	> 100	> 100	3,1	> 100
D 10	> 100	7.1	> 100	> 100	> 100	> 100
D 11	> 100	13.3	> 100	> 100	> 100	> 100
Positive control	0.7	0.5	0.7	1.0	0.3	0.4

Figure S1. Phylogenetic tree for taxonomic assignment of isolate S1DA-Helotiales sp. based on sequencing of the ITS 1-5.8S rRNA gene-ITS2 fragment. Taxonomic affiliation is only possible to order level due to the low similarity (91.5%, Table S1) to related type strains. Closest relatives (98.8-99.8% similarity) of our isolate S1DA are other isolates only identified to order level.

0.050

Figure S2. (A) MN of mono-culture extracts of Helotiales sp. (red), *P. influorescens* sp. (green) and their co-culture (blue). Nodes were annotated putatively as: **1**- phomactin B2, **2**- dehydroxybisdethiobis(methylthio)gliotoxin, **3**- (5E)-4-hydroxy-12-methyl-1-oxacyclododec-5-ene-2,8-dione, **4**- cephalochromin, **5**monodictysin B. (**B**) Base peak chromatograms of Helotiales sp. mono-culture (i), *P. influorescens* sp. mono-culture (ii), their co-culture (iii), blank PDA medium (iv).

Figure S3. (**A**) MN of mono-culture extracts of *P. nobilis* sp. (red), *Lentithecium* sp. (green) and their co-culture (blue). Nodes were annotated putatively as: **1**- 3- acetyl-5-isopropyl-pyrrolidine-2,4-dione, **2**- spiciferinone, **3**- truncatone. (**B**) Base peak chromatograms of *P. nobilis* mono-culture (i), *Lentithecium* sp. mono-culture (ii), their co-culture (ii), blank PDA medium (iv).

Figure S4. (**A**) MN of mono-culture extracts of *P. influorescens* (red), *Lentithecium* sp. (green) and their co-culture (blue). Nodes were annotated putatively as: **1**-phomactin B2, **2**- (5E)-4-hydroxy-12-methyl-1-oxacyclododec-5-ene-2,8-dione, **3**- cephalochromin, **4**- fumonisin B4. (**B**) Base peak chromatograms of *P. influorescens* mono-culture (i), *Lentithecium* sp. mono-culture (ii), their co-culture (iii), blank PDA medium (iv).

Figure S5. (**A**) MN of mono-culture extracts of Helotiales sp. (red), *P. nobilis*. (green) and their co-culture (blue). Nodes were annotated putatively as: **1**-spiciferinone, **2**- monodictysin B. (**B**) Base peak chromatograms of Helotiales sp. mono-culture (i), *P. nobilis* mono-culture (ii), their co-culture (iii), blank PDA medium (iv).

Figure S6. (**A**) MN of mono-culture extracts of Helotiales sp. (red), *Lentithecium* sp. (green) and their co-culture (blue). Nodes were annotated putatively as: **1**-truncatone, **2**- 3-acetyl-5-isopropyl-pyrrolidine-2,4-dione. (**B**) Base peak chromatograms of Helotiales sp. mono-culture (i), *Lentithecium* sp. mono-culture (ii), their co-culture (iii), blank PDA medium (iv).

Figure S7. ¹H NMR spectrum of compound 1 (CDCl₃, 600 MHz).

Figure S8. ¹³C NMR spectrum of compound 1 (CDCl₃, 150 MHz).

Figure S9. DEPT-135 spectrum of compound 1 (CDCl₃, 150 MHz).

Figure S10. HR-ESIMS spectrum of compound 1.

Figure S11. ¹H NMR spectrum of compound 2 (CD₃OD, 600 MHz).

Figure S12. ¹³C NMR spectrum of compound 2 (CD₃OD, 150 MHz).

Figure S13. COSY spectrum of compound 2 (CD₃OD, 600 MHz).

Figure S14. HSQC spectrum of compound 2 (CD₃OD, 600 MHz).

Figure S16. NOESY spectrum of compound 2, (CD₃OD, 600 MHz).

Figure S18. HR-ESIMS spectrum of compound 2.

Figure S19. FT-IR spectrum of compound 2.

Figure S20. ¹H NMR spectrum of compound 3 (CDCl₃, 600 MHz).

Figure S21. COSY spectrum of compound 3 (CDCl₃, 600 MHz).

Figure S23. HMBC spectrum of compound 3 (CDCl₃, 600 MHz).

Figure S24. NOESY spectrum of compound 3 (CDCl₃, 600 MHz).

Figure S25. HR-ESIMS spectrum of compound 3.

Figure S26. ¹H NMR spectrum of compound 4 (CD₃OD, 600 MHz).

Figure S27. ¹³C NMR spectrum of compound 4 (CD₃OD, 150 MHz).

Figure S29. HSQC spectrum of compound 4 (CD₃OD, 600 MHz).

Figure S30. HMBC spectrum of compound 4 (CD₃OD, 600 MHz).

Figure S31. NOESY spectrum of compound 4 (CD₃OD, 600 MHz).

Figure S33. HR-ESIMS spectrum of compound 4.

Figure S34. FT-IR spectrum of compound 4.

Figure S35. ¹H NMR spectrum of compound 5 (CDCl₃, 600 MHz).

Figure S36. ¹³C NMR spectrum of compound 5 (CDCl₃, 150 MHz).

Figure S37. DEPT-135 spectrum of compound 5 (CDCl₃, 150 MHz).

Figure S38. HR-ESIMS spectrum of compound 5.

