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Distributed software systems change dynamically due to the evolution of their environment and/or
requirements, their internal designing policies, and/or their specification bugs which must be fixed. Hence,
checking system changes must be run continuously. Such systems are usually composed of distributed
software entities (called peers) interacting with each other through message exchanges, and this is to fulfil a
common goal. The goal is often specified by a conversation protocol (CP), i.e. sequences of sent messages.
If there exists a set of peers implementing CP, then CP is said to be realisable. In this paper, we propose a
stepwise approach for checking whether an evolution, i.e. adding and/or removing messages and/or peers,
can be applied to a CP that was realisable before updating it. We define a set of correct evolution patterns and
we suggest an algebra of CP evolution. Our approach ensures that CP evolution preserves the realisability
condition.

System Evolution, Realisability, Conversation Protocols, Formal Verification, Behavioural Systems

1. INTRODUCTION

Distributed software systems change dynamically
due to the evolution of their running environment
and/or requirements, their internal designing poli-
cies, and/or their possible specification bugs which
must be fixed. Such systems are usually composed
of distributed software entities (called peers) evolving
concurrently in a distributed setting and interacting
with each other throughout messages exchanges to
fulfil a common goal.

In a top-down design of distributed software, the
interaction among peers is usually modelled using
collaboration diagrams, Message Sequence Chains
(MSCs) or conversation protocols (CP) (Bultan
2006). Let us focus on CPs, these describe
interactions among peers by describing uniquely the
allowed sequences of sent messages. Here, it is
crucial to know if the set of interactions in a CP
can be implemented. In other word, considering a
CP, one must check whether there exists a set of
peers where their composition generates the same
sequences of send messages as specified by the CP.
This issue characterises the realisability problem.

In order to formally specify, verify, and fix issues
which violate realisability, CP can be modelled using
Labelled Transition Systems (LTSs) where commu-
nication follows either synchronous or asynchronous
semantics. Using this model enables automated

analysis of interaction properties, e.g., realisability
checking. Although it is obvious to check realisability
in the case of synchronous communication, this re-
alisability problem remains undecidable in the most
general setting (Brand and Zafiropulo 1983) due the
possibly ever-increasing queuing mechanism and
unbounded buffers in the case of asynchronous
communication.

The recent work of (Basu et al. 2012) proposed
a necessary and sufficient condition for verifying
if a CP can be implemented by a set of peers
communicating asynchronously throughout FIFO
buffers with no restriction on their buffer sizes. This
work solves the realisability issue for a subclass of
asynchronously communicating peers, namely, the
synchronisable systems, i.e., the system composed
of interacting peers behaves equally by applying
synchronous or asynchronous communication. A
CP is realisable if there exists a set of peers
implementing that CP, i.e., they send messages to
each other in the same order as CP, and such
that their composition is synchronisable. In (Basu
et al. 2012), the full checking of CP realisability
applies the following steps: i) peer projection from
CP; ii) checking synchronisability; and iii) checking
equivalence between CP and its distributed system.

Based on LTS model, we can verify CP realisability
using existing techniques such as model checking
for systems with reasonable sizes (Basu et al.



2012) (i.e., number of states, transitions and
communicating peers) or theorem proving for
scalable systems (Farah et al. 2016).

Considering realisable CPs, we are interested in
studying the evolution of those CPs. In fact,
these specify cross-organisational interactions with
no centralised control between peers which can
be administrated and executed by geographically
distributed and autonomous companies. In order
to cope with new environment changes and end-
user requirements, system interaction and the
corresponding CP need to evolve continuously over
time. However, changing CP might result in knock-
on effects on its realisability. Hence, verifying the
correctness of CP evolution to ensure realisability
preservation must also be run continuously.

Regarding the literature, existing work such
as (Rinderle et al. 2006b; Ryu et al. 2008; Roohi
and Salaün 2011) give some solutions for system
evolution. In (Rinderle et al. 2006b; Ryu et al.
2008) the authors propagate the choreography
updates into communicating peers. (Roohi and
Salaün 2011) focuses on system reconfiguration
meaning that for a CP which has been updated into
CP’, the authors check whether the traces that has
been executed in CP can be performed again in
CP’. This reconfiguration can be better applied for
run-time system to ensure execution consistency.
All these approaches do not consider realisability
preservation.

There exist other research approaches which can
be applied as a posteriori evolution checking.
The approaches suggest solutions every time the
realisability check fails. For example, existing work
on enforcing CP realisability such as the one given
in (Güdemann et al. 2012) and recently on CP
repairability (Basu and Bultan 2016) can be used to
ensure the realisability of an already updated CP.

Our statement is different than existing work and
it is as follows: an evolution is allowed if it
does not violate the CP realisability. By doing so,
we suggest a priori verification approach of CP
evolution. Instead of running the full realisability
checking as described previously and detailed in
Section 2, our proposal consists in performing partial
verification uniquely at the CP level in order to
answer the question if there still exist a set of
peers implementing the updated CP. In this work,
we consider the evolution at the CP level and
we study its realisability effect on the distributed
peers. The main issue is considering that system
specifications may change over time (e.g., service
upgrade or degrade by adding and/or removing
either messages exchanges or interacting peers),

how can we ensure realisability preservation? to
answer these questions, we proceed as follows:

• We first describe CP using LTS

• We rely on the realisability condition given
in (Basu et al. 2012)

• We identify the set of behavioural properties
which can hold by CP evolution yet they violate
the realisability condition

• We suggest a set of evolution patterns and we
show how the application of such patterns do
not violate CP realisability

• We propose a language for correct CP
evolution

The remainder of this paper is structured as follows:
Section 2 introduces the formal definitions and the
background on which our proposal relies. Section 3
presents the behavioural properties to be checked
before application of CP evolution. In Section 4,
we suggest an algebra for CP evolution with no
violation of realisability. We present in Section 5
a case study to illustrate our approach. Section 6
overviews related work. Lastly, we conclude our work
and present some perspectives in Section 7.

2. DEFINITIONS

In this section, we present our behavioural model
for peers and CP. We, then, define how distributed
peers can be obtained by projection from a given
CP. Lastly, we define synchronisable systems,
and we present realisability condition considering
asynchronous communication.

2.1. Peer Model

We use Labeled Transition Systems (LTSs) for
modelling the CP and the peers included in that
specification. This behavioural model defines the
order of sent messages in CP. At the peers level, the
LTS can be computed by projection from CP and they
describe the order in which those peers execute their
send and receive actions.

Definition 1 (Peer) A peer is an LTS P =
(S, s0,Σ, T ) where S is a finite set of states, s0 ∈ S is
the initial state, Σ = Σ! ∪Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive
messages, and the internal action, and T ⊆ S×Σ×S
is a transition relation.

We write m! for a send message m ∈ Σ! and m? for
a receive message m ∈ Σ?. We use the symbol τ
(tau in figures) for representing internal activities. A
transition is represented as s l→ s′ where l ∈ Σ.





(internal) s τ→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si
τ→

s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} : Q′k = Qk,
and (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

We use LTSka to define the bounded asynchronous
composition, where each message buffer is bounded
to size k. The definition of LTSka can be obtained
from Def. 5 such that the maximum number of send
messages that can be stored in the buffers is limited
to k. A system is synchronizable (Basu et al. 2012)
when its behavior remains the same under both
synchronous and asynchronous communication
semantics. This is checked by bounding buffers to
k = 1 and comparing interactions in the synchronous
system with send messages in the asynchronous
system.

Definition 6 (Synchronizability) Given a set of
peers {P1, . . . ,Pn}, the synchronous system (P1 |
. . . | Pn) = (Ss, s

0
s, Ls, Ts), and the 1-bounded

asynchronous system ((P1, Q
1
1) || . . . || (Pn, Q1

n)) =
(Sa, s

0
a, La, Ta), two states r ∈ Ss and s ∈ Sa are

synchronizable if there exists a relation Sync such
that Sync(r, s) and:

• for each r
m−→ r′ ∈ Ts, there exists s m!−−→ s′ ∈

Ta, such that Sync(r′, s′);

• for each s
m!−−→ s′ ∈ Ta, there exists r m−→ r′ ∈

Ts, such that Sync(r′, s′);

• for each s m?−−→ s′ ∈ Ta, Sync(r, s′).

The set of peers is synchronizable if Sync(s0s, s0a).

Example 4 The system described in Figure 1 is not
synchronisable because peer 1 can send “a” and “c”
in sequence in the asynchronous system, whereas
“b” occurs before “c” in the synchronous system as
specified in the CP.

In order to check CP realisability, there is a need
to check well-formedness. Well-formedness states
that whenever the i-th peer buffer Qi is non-
empty, the system can eventually move to a state
where Qi is empty. For every synchronizable set of
peers, if the peers are deterministic, i.e., for every
state, the possible send messages are unique, well-
formedness is implied.

The approach presented in Basu et al. (2012)
proposes a sufficient and necessary condition
showing that the realizability of conversation
protocols is decidable.

Definition 7 (Realizability) A conversation protocol
CP is realizable if and only if (i) the peers computed
by projection from this protocol are synchronizable,
(ii) the 1-bounded system resulting from the peer

composition is well-formed, and (iii) the synchronous
version of the distributed system {P1, . . . ,Pn} is
equivalent to CP .

In the remainder of this paper, we refer to a realisable
CP as R(CP).

Both synchronizability and realizability properties
can be checked automatically using equivalence
checking as done in Basu et al. (2012). This check
requires the modification of the asynchronous sys-
tem for hiding receptions (m?  τ ), renaming emis-
sions into interactions (m!  m), and removing τ -
transitions using standard minimization techniques.
The correctness of that approach is given in (Farah
et al. 2016).

3. BEHAVIOURAL PROPERTIES

In order to check the realisability of a CP that has
been updated, we must ensure that the resulting
LTS does not hold some branching and/or sequential
structures which violate realisability condition. We
define in the following some properties which enable
us to check such structures.

3.1. Branches related Properties

Property 1 (Non-Deterministic Choice (NDC))
Given a conversation protocol CP =<
SCP , s

0
CP , LCP , TCP >, a state sCP ∈ SCP is

called non-deterministic branching state if :

• ∃{sCP
mPi,Pj

−−−−−→ s′CP , sCP
mPi,Pj

−−−−−→ s′′CP} ⊆ TCP ,
and

• s′CP 6= s′′CP

This choice is referred to as non-deterministic
choice.

We define in the following divergent choice (this
is also called non-local branching choice in
the literature) and it is different than process
divergence (Ben-Abdallah and Leue 1997).

Property 2 (Divergent-Choice) Given a conversa-
tion protocol CP =< SCP , s

0
CP , LCP , TCP >, a state

sCP ∈ SCP is divergent branching state if :

• ∃{s mPi,Pj

−−−−−→ s′CP , sCP
m′Pj ,Pi

−−−−−→ s′′CP} ⊆ TCP ,
and

• s′CP 6= s′′CP , and

• m 6= m′

This choice is referred to as divergent choice.



3.2. Sequences related Properties

Given a CP, there is at least two partitions of
peers where there exist no interaction between both
partitions.

Property 3 (Independent Sequences (ISeq))
Given a conversation protocol CP =<
SCP , s

0
CP , LCP , TCP >, a transition sequence

sCP
mPi,Pj

−−−−−→ . . . s′CP
m′Pk,Pq

−−−−−→ s′′CP , where all
transitions are in TCP , is called independent
sequence if:

• {Pi, Pj} ∩ {Pk, Pq} = ∅

The following property enables us to detect
sequences in CP which lead to non-local emission
choices made by two different peers in the distributed
system. To avoid that situation, every peer that
join the conversation at an intermediate state (i.e.,
different than the initial state) must be receiver the
first time it shows up. Otherwise, if a peer would
like to send a message m at an intermediate state,
then this must be receiver in its last interaction before
sending m.

Property 4 (Divergent Sequences (DSeq))
Given a CP, there exists a transition sequence

s0CP
mPi,Pj

−−−−−→ . . . s′CP
m′Pk,Pq

−−−−−→ s′′CP where all
transitions are in TCP :

• for every sender peer Pt appearing before state
s′CP , t 6= k, or

• there is at least a transition sCP
mPk,Pt

−−−−−→ s′′′CP ∈
TCP such that:

– s′CP is reachable from sCP , and

– there is no transition in sCP
mPk,Pt

−−−−−→
s′′′CP . . . s

′ m′Pk,Pq

−−−−−→ s′′CP where Pk is
receiver.

4. COMPOSITIONAL REALISABILITY

CP evolution stands for two possible tasks,
namely, adding and/or removing either messages
and/or interacting peers. We define here how CP
realisability can be preserved by applying some
evolution patterns presented in the following.

4.1. Evolution Patterns

We introduce in this paper two composition opera-
tors denoted as ⊗(+,sCP ) for branching composition
and ⊗(�,sCP ) for sequential composition. We also
assume other operators not presented here for lack
of space, namely, ⊗(‖,sCP ) for parallel composition,
and ⊗(�,sCP ) for looping composition. The operator

⊗(‖,sCP ) generates at a state sCP all the interleaved
behaviour of a set of transitions such that every
generated branch must satisfy sequence related
properties. The operator ⊗(�,sCP ) enables us to add

self-loop of the form s
mPi,Pj

−−−−−→ s where i 6= j
and such that sequence related properties must be
preserved.

Definition 8 ⊗(�,sCP ) Given a CP =<
SCP , s

0
CP , LCP , TCP >, a CP ′ =<

SCP ′ , s0CP ′ , LCP ′ , TCP ′ > and a state sCP ∈ SCP , the
sequential composition ⊗(�,sCP )(CP,CP

′) means
that CP must be executed before CP ′ such that
Properties 3 and 4 do not hold.

Definition 9 ⊗(+,sCP ) Given a CP =<
SCP , s

0
CP , LCP , TCP >, a set {CP ′i}, i = 1..n

such that CP ′i =< SCP ′
i
, s0CP ′

i
, LCP ′

i
, TCP ′

i
> and

a state sCP ∈ SCP , the branching composition
⊗(+,sCP )(CP, {CP ′1, . . . , CP ′n}) means that there is a
choice at sCP between the remaining behaviour of
CP (i.e., starting from sCP ) and all CP ′i such that:

• Properties 1 and 2 do not hold at the state sCP ,
and

• ∀CP ′i , ⊗(�,sCP )(CP,CP
′
i ) holds

Remark 1 The application of an operator
⊗(op,sCP )(CP ,CP

′) assumes that the initial state of
CP ′ is fused with the state sCP .

4.2. Algebra for CP Evolution: syntax and
language

We introduce in Listing 1 a CP algebra which we
use for defining the evolution such that realisability
is preserved. We refer to a state sf as final if there
is no outgoing transition at that state. We denote by
ECP a CP that evolutes over time while preserving
realisability. The expression ECP+ stands for one or
more ECP .

ECP ::= ECPb | ECP op ECPb
+

ECPb ::= s
(Pi,m,Pj)−−−−−−→ s′ | ∅

op ::= ⊗(+,sf ) | ⊗(�,sf ) | ⊗(‖,sf ) | ⊗(�,sf )

Listing 1: CP Evolution Grammar

4.3. Realisable CP Evolution

Conjecture 1 ECPb is realisable.

Proof 1 This is obvious by default.

Conjecture 2 Given an ECP =<
SECP , s

0
ECP , LECP , TECP > and a ECPb such

that R(ECP) and R(ECPb), sf ∈ SECP , then







requires to check its effect on other partner peers.
This approach is implemented into DYCHOR.

In (Preda et al. 2015; Fdhila et al. 2015), both
approaches study the evolution that might arise
at the peers side. The authors propagate the
change from one peer to other partners. The
work proposed in (Fdhila et al. 2015) applies to
Business Process Management (BPM) domain and
Service Oriented Architecture (SOA). It describes
service choreographies using tree-based model. The
authors consider some changes such as “replace,
delete, update, and insert” of behavioural fragments.

(Preda et al. 2015) define a new language
referred to as DIOC for programming distributed
applications that are free from deadlocks and races
by construction. The semantics of DIOC language
relies on labelled transition systems. The approach
given in (Preda et al. 2015) enables to update
fragment of codes of distributed peers. This can be
specified at the choreography level where blocks
of code that can be updated dynamically must be
tagged using “scope”. These “scope” blocks have to
be known a priori when describing the choreography.
The solutions given in (Preda et al. 2015; Roohi and
Salaün 2011; Jureta et al. 2007) deal with run-time
evolution.

To the best of our knowledge, we are the first who
verify the evolution at the CP level such that its
realisability must be preserved. Furthermore, we
have no restriction on the application domain, yet
we use a formal model which can be applied for
design, verification, and implementation of different
distributed systems, e.g. Web services, concurrent
systems, Cyber Physical Systems, etc. Our result
applies also for asynchronously communicating
systems as far as these are synchronisable with no
restriction on the buffer size.

7. CONCLUSION AND PERSPECTIVES

In this paper, we presented a preliminary solution
for correct evolution of distributed system for which
their interaction is described with a conversation
protocol. We proposed a language which enables
one to incrementally design distributed system that
can be updated over time such that their realisability
is preserved while applying and composing evolution
operators.

In the near future we aim at formalising all properties
and composition operators used in this paper. We
intend to prove that our evolution operators and their
properties preserve CP realisability. Our conjectures
have also to be formally proved. We aim also
at defining looping and parallel operators as well

as extending our language with new operators for
messages broadcast and multicast. Lastly, we are
using theorem proving techniques in order to prove
the correctness of CP evolution. Based on proof-
based techniques, we aim at handling any number of
peers and exchanged messages such that scalability
is ensured.
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