
Official URL
DOI : https://doi.org/10.1007/978-3-030-02852-7_15

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24851

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Benyagoub, Sarah and Ait Ameur, Yamine

and Ouederni, Meriem and Mashkoor, Atif Handling Reparation in

Incremental Construction of Realizable Conversation Protocols.

(2018) In: 8th International Conference On Model and Data

Engineering (MEDI 2018), 24 October 2018 - 26 October 2018

(Marrakech, Morocco).

Handling Reparation in Incremental

Construction of Realizable Conversation

Protocols⋆

Sarah Benyagoub1,2, Yamine Aı̈t-Ameur2, Meriem Ouederni2, and Atif
Mashkoor3,4

1 University of Mostaganem, Algeria
2 IRIT-INP of Toulouse, France

3 Software Competence Center Hagenberg GmbH
4 Johannes Kepler University Linz, Austria

{sarah.benyagoub, meriem.ouederni, yamine}@enseeiht.fr,
atif.mashkoor@{scch|jku}.at

A main concern, already addressed by the research community, relates to
the verification of Conversation Protocol (CP) realizability, which means the
existence of a set of peers whose communication behavior is equivalent to a given
conversation protocol. In this paper, we consider the incremental repairability
of CPs identified as un-realizable using the set of composition operators, defined
in [2] that satisfy sufficient conditions for realizability preservation. Reparation
consists in identifying a set of changes completing intermediate un-realizable CPs
so that the resulting CP becomes realizable. Our proposal is validated through a
successful application of the presented approach on un-realizable CPs borrowed
from the literature.

1 Introduction

In a previous work [2], we presented a correct-by-construction approach of dis-
tributed systems. There, the interaction between systems is described as a con-
versation protocol (CP). A set of operators allow a developer to incrementally
build the distributed systems while preserving (by construction) their realizabil-
ity at each application of these operators.

1.1 Basic definitions

In the following, we summarize our correct-by-construction approach for realiz-
able choreographies. We recall the main definitions for CP realizability as well
as the set of composition operators together with their corresponding sufficient
conditions.

⋆ The research reported in this paper has been partly supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.

Definition 1 (CP). A conversation protocol CP (Figure 1) associated with a
set of peers {P1, . . . ,Pn} (Figure 2) is a LTS CP = (SCP , s

0
CP , LCP , TCP) where

SCP is a finite set of states and s0CP ∈ SCP is the initial state; LCP is a set of
labels and TCP is the finite set of transitions.

Definition 2 (CPb). A basic CPb is a CP with a single transition defined as

CPb =< SCPb
, s0CPb

, LCPb
, TCPb

> and TCPb
= {s0CPb

m
Pi→Pj

−−−−−→ s′CPb
} with

s0CPb
6= s′CPb

.

Definition 3 (Peer). A peer is a LTS P = (S, s0, Σ, T) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S ×Σ × S is a transition relation.

Fig. 1: Un-realizable CP.

Fig. 2: Projected peers.

Definition 4 (Projection). Let the projection function ↓ CP which returns
the set of peers LTSs Pi =< Si, s

0
i , Σi, Ti >. The set is obtained by replacing in

CP =< SCP , s
0
CP , LCP , TCP > each label (Pj ,m,Pk) ∈ LCP with m! if j = i

with m? if k = i and with τ (internal action). And finally removing the τ -
transitions by applying standard minimization algorithms [5].

Figures 1 and 2 show an example of a CP and its projection respectively.

Definition 5 (Realizability). The definition of Realizability we use in this
paper is borrowed from [1]. It is decomposed as the conjunction of three properties
as Realizability = Equivalence ∧ Synchronizability ∧ Well-formedness.

– Equivalence (≡). CP ≡ Syssync(↓ CP) iff CP and Syssync(↓ CP) have
equal message exchanges sequences, i.e., trace equivalence.

– Synchronizability. The synchronous system Syssync(↓ CP) and the asyn-
chronous system Sysasync(↓ CP) are synchronizable iff the system behavior
is still the same in both synchronous and asynchronous communications.

– Well-Formedness (WF). Sysasync(↓ CP) is well formed, i.e., Sysasync(↓
CP) ∈ WF iff all the queues of the asynchronous system become empty at
the end of system composition.

A correctness proof of global system realizability using Event-B is available
in [3]. This approach is a posteriori, it is based on the whole CP and is not
incremental.

1.2 Correct-by-construction realizable CP’s operators

To avoid a posteriori global verification of realizablity, we have set up an incre-
mental verification of realizability using a correct-by-construction approach to
build CPs. This approach is based on the application of composition operators
on basic realizable CPs. All these operators satisfy sufficient conditions which
guarantee realizability. These operators are briefly described below.
Definition 6. (Sequential Composition ⊗(≫,s

f

CP
)). Given a CP, a state

sCP ∈ S
f
CP , and a CPb where TCPb

= {sCPb

lCPb−−−→ s′CPb
}, the sequential compo-

sition CP≫ = ⊗(≫,sCP)(CP ,CPb) means that CPb must be executed after CP
starting from sCP , and:

– SCP≫ = SCP ∪ {s′CPb
|

sCPb

lCPb−−−→ s′CPb
∈ TCPb

}
– LCP≫ = LCP ∪ {lCPb

}

– TCP≫ = TCP ∪ {sCP

lCPb−−−→ s′CPb
}

– Sf
CP≫

= (Sf
CP \ {sCP}) ∪ {s′CPb

}

Definition 7. (Choice Composition ⊗(+,s
f

CP
)). Given a CP, a state sCP ∈

S
f
CP , a set {CPbi | i = [1..n], n ∈ N} such that ∀ TCPbi

, TCPbi
= {sCPbi

lCPbi−−−→
s′CPbi

}, the branching composition CP+ = ⊗(+,sCP)(CP , {CPbi}) means that CP
must be executed before {CPbi} and there is a choice between all {CPbi} at sCP ,
and

– SCP+
= SCP ∪ {s′CPb1

, . . . , sCP′
bn
|

sCPbi

lCPbi−−−−→ s′CPbi
∈ TCPbi

}

– LCP+
= LCP ∪ {lCPbi

, . . . , lCPbn
}

– TCP+
= TCP ∪ {sCP

lCPb1−−−→

s′CPb1
, . . . , sCP

lCPbn−−−−→ s′CPbn
}

– Sf
CP+

= (Sf
CP \

{sCP}) ∪ {s′CPb1
, . . . , s′CPbn

}

Definition 8. (Loop Composition ⊗(�,s
f

CP
)). Given a CP, a state sCP ∈

S
f
CP and a basic CP noted CPb , with TCPb

= {sCPb

lCPb−−→ s′CPb
} and s′CPb

∈ SCP ,
then the loop composition CP� = ⊗(�,sCP)(CP ,CPb) is defined as follows.

– SCP�
= SCP

– LCP�
= LCP ∪ {lCPb

}

– TCP�
= TCP ∪ {sCP

lCPb−−−→ s′CPb
}

– Sf
CP�

= Sf
CP

The condition s′CPb
∈ SCP means that the target state of CPb is a state of CP. It

defines a cycle in the built CP�, thus a loop and an iteration. The final states remain

unchanged.

According to [2], we have identified a set of sufficient conditions which entail
realizability when the CPs are built using the previously defined operators. Let
us first formally define these conditions.

Condition 1 (Deterministic Choice (DC)) Given a CP, deterministic choice

property, denoted DC(CP), holds iff ∀sCP ∈ SCP , ∄{sCP
m

Pi,Pj

−−−−→ s′CP , sCP
m

Pi,Pj

−−−−→
s′′CP } ⊆ TCP , such that s′CP 6= s′′CP

Condition 2 (Parallel-Choice Freeness (PCF)) Let PCF be the set of CPs.
The parallel choice freeness property (PCF), denoted as CP ∈ PCF, holds iff

∀sCP ∈ SCP , ∄{sCP
m

Pi,Pj

−−−−→ s′CP , sCP
m′Pk,Pq

−−−−−→ s′′CP } ⊆ TCP such that Pi 6= Pk

and s′CP 6= s′′CP .

Condition 3 (Independent Sequences Freeness (ISeqF)) Let ISeqF be the
set of CPs free of independent sequences. The independent sequence freeness

property, denoted as CP ∈ ISeqF holds iff ∀sCP ∈ SCP , ∄{sCP
m

Pi,Pj

−−−−→ s′CP ,

s′CP

m′Pk,Pq

−−−−−→ s′′CP } ⊆ TCP such that Pi 6= Pk and Pj 6= Pk.

The sufficient conditions associated with each composition operators can be
defined. Table 1 recalls all the theorems that ensure the realizability of a CP
built incrementally using each composition operator. Each theorem relies on the
previously introduced sufficient conditions. More details on the definitions and
proofs of these theorems are available in [2].

Theorem 1 CPb ∈ R

Theorem 2 CP ∈ R ∧ CPb ∈ R ∧ CP≫ = ⊗
(≫,s

f
CP

)
(CP ,CPb) ∈ ISeqF ⇒ CP≫ ∈ R

Theorem 3 CP ∈ R ∧ {CPbi} ⊆ R ∧ CP+ = ⊗
(+,s

f
CP

)
(CP , {CPbi}) ∈ DC

∧ CP+ ∈ ISeqF ∧ CP+ ∈ PCF ⇒ CP+ ∈ R

Theorem 4 CP ∈ R ∧ CPb ∈ R ∧ CP� = ⊗
(�,s

f
CP

)
(CP ,CPb) ∈ ISeqF ⇒ CP� ∈ R

Table 1: Theorems for realizable by construction CPs

1.3 Related work

The choreography repair technique presented in [?] depends on examining and analyz-
ing the cause of violation of the realizablity condition [1]. In other words, the approach
propose a realizability verification and reparation on the whole CP, to check the equiv-
alence, the synchronizability and the well-formedness properties. Both verification and
reparation techniques require building of synchronous and asynchronous traces that
increase the complexity of verification and reparation.
The verification and reparation approach of [4] proposes an automated and non-
intrusive solution for enforcing realizability when a choreography is not realizable. Their
idea is to generate distributed controllers that are in charge of correcting ordering issues
to make the corresponding distributed peers respect the choreography requirements.
To do this, both synchronous and asynchronous communications are needed to check
the realizability condition given in [1]. Notice that, the reparation proposed in [4] is
not a generic repair method. Such that, a choreography is not repairable when at some
point in its behavior there is a choice between interactions involving different sending
peers. In that case, realizability cannot be enforced.
To avoid the aforementioned situations, the idea is, instead of checking and repairing
the realizability on the whole system, we propose to check and repair the CP incremen-
tally starting from an empty CP. To achieve this objective, our reparation strategy is
based on the sufficient conditions satisfied by the set of composition operators [2]. Each

operator can build a realizable CP from another realizable CP and a basic one without
needing the projected peers or the synchronous and asynchronous traces. Notice that,
there is no general repair method for un-realizable CP. Each violated sufficient condition
gives rules for reparation, by adding a synchronization transition which reestablishes
the sufficient conditions that restore the CP realizability.

1.4 Case study

In order to illustrate our approach, we use a case study borrowed from [?]. The
choreography describes a simple file transfer protocol where P1 is a client ask-
ing for the file transfer, P2 is a file server and P3 initializes the communication
between a client and a server. This CP is depicted in Figure 1. First, the client
sends a message (init) to the server to request the server to start the transfer
(ms). When the transfer is finished, the server sends the “Transfer Finished”
(mf) message and the protocol terminates. However, the client may decide to
cancel the transfer before hearing back from the server by sending a “Cancel Fin-
ished” message (mc) in which case the server responds with “Transfer Finished”
(mf) message, which, again, terminates the protocol.

In order to check the realizability condition given in Definition 5, we rely on a
stepwise correct-by-construction approach to build incrementally a realizable CP.
The approach consists in applying the different operators on a set of basic CPs
by checking the sufficient conditions associated with each composition operator.
A sequence of steps is set up to build the conversation protocol of Figure 1 as
follows.

1. Identification of the set of basic CPs involved in the CP of Figure 1.

– CP = ∅

– CPb0 = s0
InitP3→P2

−−−−−−−→ s1

– CPb1 = s1
msP1→P2

−−−−−−−→ s2

– CPb2 = s2
mcP1→P2

−−−−−−−→ s3

– CPb3 = s3
mfP2→P1

−−−−−−−→ s4

– CPb4 = s2
mfP2→P1

−−−−−−−→ s5

2. Application of the composition operators.
(a) CP1 = ⊗(≫,s1

CP
)(CP, cpb0),X CP1 ∈ ISeqF

(b) CP2 = ⊗(≫,s1
CP

)(CP1, cpb1),× CP2 /∈ ISeqF

The sequence of composition starts from an empty CP. The sufficient condition
ISeqF holds for the first composition CP1. So, by Theorem 1 of Table 1, CP1

(a) is realizable. However, realizability does not hold for CP2 (b) where the
ISeqF property is violated.

In the following section, we show how such un-realizable CPs can be repaired.

2 Incremental Reparation

2.1 General Idea

The sufficient conditions are not satisfied by the CP in Figure 1. In this example,
both sequences and branches violate the associated sufficient conditions.

Therefore, the CP must be transformed in order to restore ISeqF and PCF prop-
erties while preserving the initial communication purpose. To address this issue,
we propose to introduce synchronization transitions with synchronization mes-
sages. These messages are not relevant for the communication purpose, but they
are added for synchronization and realizability purposes.

Two reparation cases can be distinguished for both sequence and branch
operators as follows.

– Sequence property repair. Following the ISeqF definition, the reparation of
the sequence transitions (ISeqF violation) requires the introduction of a novel
transition with message Sync0 (bold-dotted in Figures 3 and 4) between
the two independent sequences. This transition exchanges a synchronization
message between the sender or the receiver peers of the first transition and
the sender of the second transition.

Fig. 3: ISeqF repair proposition 1. Fig. 4: ISeqF repair proposition 2.

– Branch properties repair. Following the PCF definition, the reparation of
the branch transitions, (PCF violation) requires the introduction of a novel
transition with message Sync1 (bold-dotted in Figures 5 and 6) before one of
the branches transitions. This transition exchanges a synchronization mes-
sage between the same sender peer as the other branches and the receiver
one.

Fig. 5: PCF repair proposition 1. Fig. 6: PCF repair proposition 2.

2.2 Application to the case study

According to the previous reparation possibilities, four reparation scenarios are
possible. One of the possible CP reparation is obtained by combination one
reparation from the two sequence reparations and one from the two branches
reparations. The CP of Figure 1 is depicted in Figure 7. The realizable projection
is presented in Figure 8.

Fig. 7: Un-realizable CP repair.

Fig. 8: Projected peers repair.
In the sequel, we show that there exists a sequence of compositions of operators
that lead the CP depicted in Figure 7. This sequence is defined as follows.

– Identification of the set of basic CPs and initialization of CP

• CP = ∅

• CPb0 = s0
InitP3→P2

−−−−−−−→ s1

• CPb1 = s1
Sync0P3→P1

−−−−−−−−−→ s(0)

• CPb2 = s(0)
msP1→P2

−−−−−−−→ s2

• CPb3 = s2
mcP1→P2

−−−−−−−→ s3

• CPb4 = s3
mfP2→P1

−−−−−−−→ s4

• CPb5 = s2
Sync1P1→P2

−−−−−−−−−→ s(1)

• CPb6 = s(1)
mfP2→P1

−−−−−−−→ s5

– Application of the composition operators.
1. CP1 = ⊗(≫,s1

CP
)(CP,CPb0),X CP1 ∈ ISeqF

2. CP2 = ⊗(≫,s(0)CP)(CP1, CPb1),X CP2 ∈ ISeqF
3. CP3 = ⊗(+,s2

CP
)(CP1, {CPb3, CPb5}),X CP3 ∈ ISeqF ∧ CP3 ∈ DC

∧CP3 ∈ PCF
4. CP4 = ⊗(≫,s3

CP
)(CP3, CPb4),X CP2 ∈ ISeqF

5. CP5 = ⊗(≫,s(1)CP)(CP4, CPb6),X CP5 ∈ ISeqF

The previous composition operators are successfully applied. So, the obtained
CP is realizable.

3 Conclusion

In this paper, we present a top down approach to repair an un-realizable dis-
tributed systems. The proposal is based on the application of composition oper-
ators to check the realizability of systems. In case where the sufficient conditions
associated with each operator are not satisfied, intermediate CPs, behaving as
synchronization transitions, are introduced for adaptation purposes. In the fu-
ture, we aim at implementing the reparation strategy we have introduced in this
paper using the correct-by-construction Event-B method. The idea consists in in-
troducing reparation events corresponding to the different situations of sufficient
conditions violations.

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding Choreography Realizability. In: Proc.
of POPL’12. pp. 191–202. ACM (2012)

2. Basu, S., Bultan, T.: Automatic choreography repair. Theor. Comput. Sci. (2015)
3. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A Correct-by-Construction Model

for Asynchronously Communicating Systems. International Journal STTT pp. 1–21
(2016)

4. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: Verchor: a framework for the design
and verification of choreographies. IEEE Transactions on Services Computing 9(4),
647–660 (2016)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley (1979)

