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In this paper, we propose two viewpoints for estimating to what extent a new item,
described in terms of binary-valued features, fits with a set of existing items. They are
respectively based on an oddness index and an evenness index, which in spite of their
names, are not exactly the opposite of each other. Both indicators, which refer to one
feature, are built from heterogeneous logical proportions, and involve four items, the new
item and three others. Logical proportions are Boolean functions that relate four variables
through comparisons between pairs of them. Heterogeneous ones express that there is
an intruder among four truth values, which is forbidden to appear in a specific position.
Global oddness and evenness functions of an item with respect to a set are built from
the corresponding indexes by taking all features into account, and then by considering all
triples of items in the set. Moreover the oddness function naturally extends to numerical
features and to subsets of items of different sizes (pairs, triples, etc.). Simple classification
procedures can be based on these global functions: a new item is assigned to the class
that minimizes oddness or maximizes evenness. Experiments on classical benchmarks with
Boolean, or numerical data (for oddness) show that the results are competitive with other
classification methods.

1. Introduction

It has been acknowledged for a long time that proportions play an important role in our perception and understanding 
of reality. Indeed proportions are a matter of comparisons expressed by differences or ratios that are equated to other 
differences or ratios. Two centuries ago, Gergonne [10,11] was the first to explicitly relate numerical (geometric) proportions 
to the ideas of interpolation and regression.

It is only in the last decade that analogical proportions, i.e., statements of the form A is to B as C is to D , where each 
capital letter refers to a situation described by a vector of feature values, have been formalized first in terms of subsets 
of properties that hold true in a given situation [12,26], and then in a logical manner [16]. Quite early, it was shown 
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that a formal view of analogical proportions may be the basis of a new type of classifier that performs well on some 
difficult benchmarks [1,15]. This was confirmed by other implementations directly based on a logical view of analogical 
proportions [3].

Besides, it was shown that analogical proportions belong to a larger family of so-called logical proportions that relate 
a 4-tuple of Boolean variables [17], where the 8 code-independent logical proportions are of particular interest since their 
truth status remain unchanged if a property is encoded positively or negatively. These 8 logical proportions divide into 
4 homogeneous proportions, which include the analogical proportion and 3 related proportions, and 4 heterogeneous pro-
portions [20]. A heterogeneous proportion expresses the idea that there is an intruder among the 4 truth values, which 
is forbidden to appear in a specific position. Intuitively speaking, an item properly assigned to a class should not be (too 
much) an intruder in this class. It suggests that heterogeneous proportions may be also of interest as a basis for designing 
a new type of classifier. This is the topic of the paper.

It is a commonsense principle to consider that a class cannot be reasonably assigned to a new item if this item would 
appear to be at odds with respect to the known members of the class. On the contrary, the item should be even with 
respect to these class members for entering the class. The use of proportions leads to the idea of considering triples of 
elements in a class as a basis for estimating the evenness or the oddness of a new item with respect to the class. This 
departs from the usual view where the estimation of the (non) agreement of a new item with respect to a set of items 
amounts to compare the item, feature by feature, with a distribution of the feature values in the whole set.

An oddness index and an evenness index, which are not the exact opposite of each other, are proposed. In the evenness 
view, triples are the only subsets where when the new item conforms with the minority for a given Boolean feature, there 
is no longer any majority (with respect to this feature) in the triple augmented with the new item. Then one can estimate 
to what extent a new item fits with the majority of elements in any triple of members of a class on a set of features.

However, it is unclear how to extend the evenness-based approach to numerical data. A slightly different view, based 
on the direct estimation of oddness, which can still be related to heterogeneous logical proportions, can be also considered. 
This leads to an oddness measure that can be extended to numerical features in a straightforward manner, and that can be 
also generalized to subsets of any size and not only on triples. Thus in this paper, the evaluation of the evenness or of the 
oddness of an item with respect to a class relies on a local view, where the new item, should appear even/not appear at 
odds with a maximum number of (small) subsets of a considered class.

The paper is organized as follows. The next section provides the necessary background on Boolean logical proportions, 
introducing the two types of proportions: the homogeneous ones and the heterogeneous ones, by especially emphasizing a 
code independency property. Results are established that single out these proportions in terms of particular features that 
are meaningful when it comes to classification. Then, based on heterogeneous proportions, oddness and evenness indexes 
are introduced in Section 3, and their exact relationship established. The extension of oddness and evenness indexes to a 
numerical feature is discussed. Section 4 describes heterogeneous proportions-based classifiers. We show how the proposed 
oddness and evenness indexes can provide a basis for estimating the oddness or the evenness of an item with respect to 
a whole class. The related work Section 5 provides a brief overview of analogical proportions-based classifiers, which are 
based on a homogeneous logical proportion, but work quite differently from heterogeneous proportions-based classifiers. 
Section 6 is devoted to a set of experiments on standard benchmarks coming from the UCI repository. They are compared 
both with classical classifiers and with analogical proportions-based classifiers. Finally, we provide some hints for future 
works and concluding remarks in Section 7.

This paper gathers and substantially extends approaches and results partially reported in three conference papers [5–7].

2. Heterogeneous proportions vs. homogeneous proportions

Logical proportions are the basic ingredients of our approach. These proportions are Boolean formulas involving 4 vari-
ables. They have been deeply investigated in [19]. In the following section, we first recall how they are built, then we focus 
on the proportions that we will use in this paper.

As for notations, the paper uses the standard ones for Boolean connectives, namely ∨, ∧, ≡, → for disjunction, conjunc-
tion, equivalence and material implication respectively.

2.1. Background on logical proportions

A logical proportion states a relation between 4 items that is expressed in terms of comparisons between pairs of items, 
each item being represented as a set of Boolean features. Considering 2 Boolean variables a and b corresponding to the same 
feature attached to 2 items A and B , a ∧ b and a ∧ b indicate that A and B behave similarly w.r.t. the given feature (they 
are called “similarity” indicators), a ∧ b and a ∧ b the fact that A and B behave differently (they are called “dissimilarity” 
indicators). When we have 4 items A, B, C, D , for comparing their respective behavior in a pairwise manner, we are led to 
consider logical equivalences between similarity, or dissimilarity indicators, such as a ∧ b ≡ c ∧ d for instance. This enables 
us to define a logical proportion [19]:

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equivalences between indicators for (a, b) on one 
side and indicators for (c, d) on the other side.



For instance, ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) is a logical proportion. It has been established that there are 120 
syntactically and semantically distinct logical equivalences. There are two ways for distinguishing remarkable subsets among 
the 120 proportions: either by investigating their structure, or by investigating their semantics (i.e. their truth table). In this 
section, we shall see that both investigations lead to the same conclusion: there is a class of 8 proportions which stands 
out of the crowd. This class can be subdivided into 2 sub-groups of 4 proportions.

Indeed a property that appears to be paramount in many reasoning tasks is code independency: there should be no 
distinction when encoding information positively or negatively. In other words, encoding truth (resp. falsity) with 1 or 
with 0 (resp. with 0 and 1) is just a matter of convention, and should not impact the final result. When dealing with logical 
proportions, this property is called code independency and can be expressed as

T (a,b, c,d) → T (a,b, c,d)

From a structural viewpoint, remember that a proportion is built up with a pair of equivalences between indicators chosen 
among 16 equivalences. So, to ensure code independency, the only way to proceed is to first choose an equivalence then 
to pair it with its counterpart where every literal is negated: for instance a ∧ b ≡ c ∧ d should be paired with a ∧ b ≡ c ∧ d
in order to get a code independent proportion. This simple reasoning shows that we have only 16/2 = 8 code independent 
proportions whose logical expressions are given below.

A: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

R: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

P: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

I: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H1: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H2: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H3: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H4: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Only 4 among these proportions make use of similarity and dissimilarity indicators without mixing these types of indicators 
inside one equivalence: for this reason, these 4 proportions A, R, P , I are called homogeneous proportions. For instance, an 
informal reading of A would be: “a differs from b as c differs from d and vice versa.” This expresses the meaning of an 
analogical proportion, i.e., a statement of the form “a is to b as c is to d”. We can consider A as a Boolean counterpart 
to the idea of numerical proportion, either geometric, i.e., a

b = c
d , or arithmetic a − b = c − d. It may also be viewed as a 

qualitative form of comparison of differences, reminiscent to the concept of derivative where we study the ratio f (a)− f (b)
a−b

with f (a) = c and f (b) = d, which is close to numerical proportions.
The idea of a proportion suggests that some stability properties hold w.r.t. permutations. Indeed, we can permute vari-

ables and check, for instance, if a given proportion still holds when permuting the 2 first variables. We denote pij the 
permutation of variable in position i with variable in position j. For instance, p14 permutes the variables in extreme posi-
tions 1 and 4, while p23 permutes variables in mean positions. And p12(a) = b, p12(b) = a, p12(c) = c, p12(d) = d.

Definition 2. A proportion T is stable w.r.t. permutation pij iff

T (a,b, c,d) → T (pij(a), pij(b), pij(c), pij(d))

It can be checked that A is stable w.r.t. the extremes p14 or the means p23 permutations. P is stable for p12 and p34
permutations, while R is stable for p13 and p24. Moreover A, R, P , I are symmetrical (i.e. T (a, b, c, d) → T (c, d, a, b)). This 
is observable on their truth tables: See the top part of Table 1, where only the 6 patterns that make the logical proportions 
true appear). Besides, I is the only logical proportion that is stable w.r.t. any permutation of two of its variables. This 
noticeable result is proved in [18].

Moreover, R and P are closely related to A via permutations. Namely we have

A(a,b, c,d) ≡ P (c,b,a,d) ≡ R(b,a, c,d)

In fact, when d is fixed, exchanging the variables a, b, c amounts to move from one homogeneous proportion to another, 
or to remain stable (A(a, b, c, d) = A(a, c, b, d); P (c, b, a, d) = P (b, c, a, d); R(b, a, c, d) = R(c, a, b, d)), with I remaining an 
exception. Thus A, R, P collectively maintain a form of exchangeability property with respect to a, b, c, while I ensures 
it by itself. These exchangeability properties are of particular interest when applying homogeneous logical proportions to 
classification.

The 4 remaining code independent logical proportions H1, H2, H3, H4 are called heterogeneous proportions: it is clear 
from their logical expression that they mix similarity and dissimilarity indicators inside each equivalence. Their truth tables 



Table 1
Homogeneous/heterogeneous proportions valid patterns.

A R P I
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

H1 H2 H3 H4
1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

are shown in the bottom part of Table 1, where only the 6 patterns that make them true appear. The index i in Hi refers to 
a position inside the formula Hi(a, b, c, d). Namely, as can be checked, in each of these 6 patterns there is a minority value 
(i.e., the value having the smallest number of occurrences in the pattern, then this value is like an intruder among the other 
values), and i is the only position where the minority value never appears among the 6 4-tuples of values that make Hi
true.

By examining the truth table of the heterogeneous proportions in Table 1, we get the following properties:

A(a,b, c,d) ∧ R(a,b, c,d) ∧ P (a,b, c,d) ∧ I(a,b, c,d) = ⊥
together with

(A(a,b, c,d) ∧ R(a,b, c,d) ∧ P (a,b, c,d)) ≡ Eq(a,b, c,d)

where Eq(a, b, c, d) = 1 if a = b = c = d and Eq(a, b, c, d) = 0 otherwise. Similarly, for heterogeneous proportions, we have

H1(a,b, c,d) ∧ H2(a,b, c,d) ∧ H3(a,b, c,d) ∧ H4(a,b, c,d) = ⊥
which implies:

(H1(a,b, c,d) ∧ H2(a,b, c,d) ∧ H3(a,b, c,d)) → ¬H4(a,b, c,d) (1)

Obviously, we have similar properties by permuting the indexes of the Hi ’s. The meaning of the conjunction 
H1(a, b, c, d) ∧ H2(a, b, c, d) ∧ H3(a, b, c, d) will be discussed in the following section, devoted to heterogeneous propor-
tions.

2.2. Specificity of heterogeneous proportions

In order to get a clear understanding of the heterogeneous proportions and to extract relevant properties, we now 
investigate their truth tables.

2.2.1. Heterogeneity and exchangeability
Still within Table 1, an obvious semantics appears: Hi holds when there are exactly 3 parameters with identical Boolean 

values (=1 for example) and the parameter in position i is one of these identical values.

Definition 3. Given 4 Boolean values a, b, c, d in this order such that 3 of them are identical and the remaining one is 
different, the position i ∈ [1, 4] of this remaining value is called the intruder position or the intruder for brevity.

Then, Hi holds iff there is an intruder among the 4 values a, b, c, d and the intruder position is not i. This suggests that 
Hi should be stable w.r.t. the permutations which do not affect position i. In fact a little bit more can be established:

Property 1. Apart from I , Hi are the only logical proportions stable w.r.t any permutation which does not affect position i.

The special case of I stable w.r.t. any permutation has been already proved in [19]. Table 1 allows to check that the Hi ’s 
are stable w.r.t. the permutations which do not affect position i. Showing that they are the only ones among the 120 logical 
properties stable w.r.t. these permutations requires a tedious checking procedure that cannot be summarized here.

Property 1 is quite satisfactory and confirms the informal semantics of Hi . This will be useful when using heterogeneous 
proportions to classification. More importantly, this gives a clear semantics to the conjunction H1(a, b, c, d) ∧ H2(a, b, c, d) ∧



H3(a, b, c, d) above: H1(a, b, c, d) ∧ H2(a, b, c, d) ∧ H3(a, b, c, d) holds iff among the 4 values a, b, c, d, there is an intruder 
and this intruder is d. This will be the basis of our oddness measure. In the next subsection, we establish some results about 
the parity of the number of 1 or 0 in truth tables for heterogeneous proportions, which are contrasted with homogeneous 
proportions. This leads to a model of oddness of a given value, among a multiset of 4 values.

2.2.2. Parity of the number of 1 or 0 in tables
Since logical proportions are Boolean formulas involving 4 variables, their truth tables have 16 rows, where only 6 lead 

to 1 (see [19] for a complete investigation). One could ask if any truth table having 6 lines leading to 1 and 10 lines leading 
to 0 corresponds to a logical proportion. A simple numbering argument shows that this is not the case. On top of that, we 
can build classes of patterns which cannot be valid for any proportion:

Property 2. There is no logical proportion that is true for the four elements of the set of valuations {0111, 1011, 1101, 1110}. The 
same holds for {1000, 0100, 0010, 0001}.

Proof. An equivalence between indicators is of the form l1 ∧ l2 ≡ l3 ∧ l4. If this equivalence is valid for {0111, 1011}, it means 
that its truth value does not change when we switch the truth value of the 2 first literals from 0 to 1: there are only 2 
indicators for a and b satisfying this requirement: a ∧ b and a ∧ b. If this equivalence is still valid for {1101, 1110}, its truth 
value does not change when we switch the truth value of the 2 last literals from 0 to 1: there are only 2 indicators for c and 
d satisfying this requirement: c∧d and c∧d. Then the equivalence l1 ∧l2 ≡ l3 ∧l4 is just a ∧b ≡ c∧d, a ∧b ≡ c∧d, a ∧b ≡ c∧d
or a ∧ b ≡ c ∧ d. None of these equivalences is true for the four elements of the set of valuations {0111, 1011, 1101, 1110}. 
The same reasoning is still applicable for the other class. �

Applying a similar reasoning, we can build other set of valuations which cannot make simultaneously true a logical 
proportion.

Property 3. A logical proportion cannot be made true by a set of 4 valuations including 3 valuations of one of the classes appearing in 
Property 2 and where the 4th valuation is just the negation componentwise of the remaining valuation of the class.

For instance, there is no logical proportion true for {0111, 1011, 1101, 0001} or for {0111, 0100, 1101, 1110}.
This remark helps establishing the following result:

Property 4. Heterogeneous proportions are the only proportions whose all valid patterns have an odd number of 1.

Proof. From the truth tables, we observe that only valid patterns for heterogeneous proportions have an odd number of 1. 
Let us now consider a proportion whose 6 valid patterns carry an odd number of 1. As there are exactly 8 patterns with 
an odd number of 1, and thanks to the previous property, this proportion includes necessarily 3 patterns from each of the 
previous classes. If the valid patterns in one class are obtained from the valid patterns from the other class just by negating 
all the variables, the proportion is code independent and then, it is a heterogeneous proportion. In the opposite case, it 
means that we have at least one pattern in the first class with no negated counterpart in the other class: for instance, 
1110, 1101, 1011 are valid but 0001 is not a valid pattern, leaving only 1000, 0100, 0010 to complete the truth table of a 
logical proportion. Then Property 3 tells that there is no proportion valid for 1110, 1101, 1011, 1000. �

A similar property holds for homogeneous proportions:

Property 5. Homogeneous proportions are the only proportions whose all valid patterns have an even number of 1.

We now show the specificity of heterogeneous (and homogeneous) proportions from a reasoning point of view.

2.2.3. Inference and univocal proportions
There is a way to infer unknown properties of a partially known object D starting from the knowledge we have about 

its other specified properties, and assuming that a logical proportion T holds componentwise with three other objects A, B , 
C , also represented in terms of the same n Boolean features. This can be done via an induction principle that can be stated 
as follows (where J is a subset of [1, n], and xi denotes the truth value of feature i for object X ∈ {A, B, C, D}):

∀i ∈ [1,n] \ J , T (ai,bi, ci,di)

∀i ∈ J , T (ai,bi, ci,di)

This can be seen as a continuity principle assuming that if it is known that a proportion holds for some attributes, this 
proportion should still hold for the other attributes. It generalizes the inference principle used with the analogical proportion 
[18,26] for prediction and classification purposes. From a strict logical viewpoint, this inference rule is unsound as there is 



no guarantee that the conclusion holds when the premisses hold. Nevertheless, specially when the ratio | J |
n is close to 1, 

which means that proportions hold on a large number of attributes, it is natural to consider that such a proportion may 
also hold on the small number of remaining attributes.

This principle requires the unicity of the solution of equation T (a, b, c, x) = 1 where x is unknown, when it exists. 
Namely, given 3 Boolean values a, b, c, we want to determine for what logical proportion T the equation T (a, b, c, x) = 1 is 
solvable, and in such a case, if the solution is unique.

Definition 4. If, when the equation T (a, b, c, x) = 1 is solvable, the solution is unique, then the proportion T is said to be 
4-univocal. In a similar manner, one may define proportions that are 1, 2, or 3-univocal. T is univocal when it is i-univocal
for every i ∈ [1, 4].

First of all, it is easy to see that there are always cases where the equation T (a, b, c, x) = 1 has no solution, whatever the 
proportion T . Indeed, the triple a, b, c may take 23 = 8 values, while any proportion T is true only for 6 distinct valuations, 
leaving at least 2 cases with no solution. For instance, when we deal with H4, the equations H4(0, 0, 0, x) and H4(1, 1, 1, x)
have no solution.

We have the following result:

Property 6. The homogeneous and the heterogeneous proportions are the only proportions which are univocal.

Proof. From the truth tables, we see that the 2 types of proportions satisfy the property. Now, a proportion which is not 
i-univocal is necessarily valid both for a pattern with an odd number of 1, and for a pattern with an even number of 1.
Then, Properties 4 and 5 exclude homogeneous and heterogeneous proportions. �

At this step, we see that heterogeneous proportions allow to single out a particular position among an ordered list of 4 
values. This position targets the value which is definitely not an intruder among the multiset of 4 items. For instance, when 
Hi is valid, the value in position i is not an intruder. We shall see in the following section that this property can be used to 
check the oddness of a given item w.r.t. a multiset of elements.

3. Evaluating the presence or the absence of an intruder in a multiset

Based on heterogeneous proportions, we define an oddness index and then an evenness index, beginning in each case
with Boolean values, before investigating their extension to deal with graded truth values. We also lay bare the relation 
between evenness and oddness.

These oddness and evenness indexes pertain to a Boolean, or a numerical value (denoted x or d in the following) w.r.t. 
a multiset S of such values. For reasons explained in this section, it will appear desirable to keep this multiset small (i.e., 
|S| = 3, or maybe 2 in the oddness case). Moreover, in this section the values x or in S may be thought of as the values 
of the same feature for different items. In Section 4, we shall build oddness and evenness measures from these indexes by 
cumulating them over features, and by considering collections of multisets S within the examples describing the same class 
C in a training set.

3.1. Oddness index

The idea of oddness introduced below directly relies on the evaluation of the extent to which a new item to be added 
to a subset reinforces its heterogeneity and so appears as an intruder in it.

3.1.1. An oddness measure for Boolean data
In the following, we first define an index to evaluate the oddness of a newcomer w.r.t. a multiset of Boolean values via 

the heterogeneous proportions, where the multiset is a triple. Then, we extend this index to multi-valued logic in the next 
subsection, before generalizing the extended oddness index to multisets of any size.

Let us remember the meaning of Hi : Hi holds iff there is an intruder among a, b, c, d and the parameter in position 
i is not this intruder. As shown in Table 2, each proportion Hi provides a piece of knowledge on the intruder and when 
combined with other pieces, we can pick out which one is the intruder among a, b, c and d. For example H1(a, b, c, d) =
H2(a, b, c, d) = H3(a, b, c, d) = 1 means that there is an intruder which is out of the multiset {a, b, c}.

Then we define the oddness of d w.r.t. {a, b, c} by the following formula:

Odd({a,b, c},d) =def H1(a,b, c,d) ∧ H2(a,b, c,d) ∧ H3(a,b, c,d) (2)

As an immediate consequence of equation (1), we have:

Odd({a,b, c},d) → ¬H4(a,b, c,d)



Table 2
H1, H2, H3 and Odd truth values.

a b c d H1 H2 H3 Odd
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

Due to the permutation properties of the Hi ’s, the right hand side of this definition is stable w.r.t. any permutation of a, b, c, 
then the multiset notation on the left hand side is justified. The truth table of Odd is given in Table 2.

It is clear that Odd holds only when the value of d is seen as odd among the other values: d is the intruder. Moreover 
Odd does not hold in the opposite situation where there is a majority among values in a, b, c, d and d belongs to this 
majority (e.g. Odd({0, 1, 0}, 0) = 0), or there is no majority at all (e.g. Odd({0, 1, 1}, 0) = 0).

A simple observation of Table 2 shows that the oddness index can be rewritten as

Odd({a,b, c},d) ≡ ((a ∨ b ∨ c) 
≡ d) ∧ (a ∧ b ∧ c) 
≡ d)) (3)

Given a multiset a, b, c of 3 identical Boolean values, Odd({a, b, c}, d) can then act as a flag indicating if the 4th value d
is different from the common value of a, b, c. Then the value d is at odds w.r.t. the other values.

3.1.2. Extension to numerical data
It is possible to extend the previous oddness measure in order to handle variables with graded values (i.e. variables 

whose values belong to [0, 1], after a suitable normalization of numerical data). For now, this oddness is just 0 or 1 (i.e. the 
truth value of Odd({a, b, c}, d)), but we would like to consider tuples such as (0.1, 0.2, 0.1, 0.8) and still consider that the 
4th value is somewhat odd w.r.t. the 3 other ones.

A direct translation of formula (2), taking min for ∧, max for ∨, and 1 − | · − · | for ≡ as in Łukasiewicz logic [23], leads 
to:

Odd({a,b, c},d) =def min(|max(a,b, c) − d|, |min(a,b, c) − d|) (4)

First of all, it is an easy game to check that Odd remains code independent with graded values, i.e. changing values into 
their complement to 1.

Let us examine some examples to get a precise understanding of the formula for numerical data and to check if this 
oddness measure fits with the intuition.

• We see that Odd({u, u, u}, v) = |u − v|. Indeed, if u = v then obviously the 4th value is not an intruder. The larger
|u − v|, the more v is at odds w.r.t the 3 values equal to u.

• We see also that Odd({v, u, u}, v) = 0 which is consistent with the expected semantics of Odd.
• Generally, Odd({u, v, w}, max(u, v, w)) = Odd({u, v, w}, min(u, v, w)) = 0, and in any case, Odd({u, v, w}, u) ≤ 0.5.
• Let us now consider a numerical situation with 4 different numerical values, for instance: ({0, 0.1, 0.2}, 0.9). We feel

that d = 0.9 appears as an intruder in the multiset ({0, 0.1, 0.2}). This is consistent with the obtained truth value
Odd({0, 0.1, 0.2}, 0.9) = 0.7. Moreover, Odd({0, 0.1, 0.1}, 0.9) = 0.8 and Odd({0, 0.1, 0.3}, 0.9) = 0.6, which fits with the
intuition.

• Conversely, the pattern ({0.7, 1, 1}, 0.9) does not strongly suggest 0.9 as an intruder value. Indeed Odd({0.7, 1, 1}, 0.9) =
0.1. Odd({0.9, 1, 1}, 0.7) = 0.2 is a bit higher, as expected since we have moved towards more uniformity among a, b, c
and slightly increased the differences between d and the elements of {a, b, c}. Moreover, note that Odd({0.7, 1, 1}, 0.9) =
0.1, and Odd({0, 0, 1}, 0.9) = 0.1, since the two cases illustrate two different ways of not being really an intruder.
Indeed, although 0.9 is close to the majority value in {0.7, 1, 1} in the first case, and far from the majority value
in {0, 0, 1} in the second case, closeness to majority value in {a, b, c} is not at all what Odd estimates. Rather it is
expected to find similar estimates in the two above cases, since they are respectively close to Odd({1, 1, 1}, 1) = 0 and
to Odd({0, 0, 1}, 1) = 0 as shown in Table 2.

• Finally, Odd({a, b, c}, d) does not behave as |d − average({a, b, c})|: the cases {a, b, c} = {0.5, 0.5, 0.5}, d = 0.5, and
{a, b, c} = {0, 0.5, 1}, d = 0.5 cannot be distinguished by the second average-based expression, but, with our defini-



tion, Odd({0.5, 0.5, 0.5}, 0.5) = 0, while Odd({0, 0.5, 1}, 0.5) = 0.5. Thus Odd({a, b, c}, d) is a more accurate oddness 
measure than |d − average({a, b, c})| when the set {a, b, c} contains heterogeneous values.

From the previous examples, we understand that the proposed definition fits with the initial intuition and provides high 
truth values when d appears to be at odds w.r.t. the multiset {a, b, c} and low truth values in the opposite case where d
is not very different from the other values. On top of that, the expression of Odd given here is no longer the conjunction 
of the multiple-valued extensions of H1, H2, H3 as given in [20], which would lead to a less satisfactory measure of oddness. 
Indeed, we are here interested in the oddness of d w.r.t. a multiset {a, b, c}, and not in picking out an intruder in the 
multiset {a, b, c, d} as in [20].

3.1.3. Oddness with respect to multisets of various size
Since we are interested in checking if d seems an intruder in a given multiset, we may consider multisets of any size 

when defining the oddness index. Indeed, the previous oddness index is not limited to multisets {a, b, c} with 3 elements, 
and can be easily generalized to an index of oddness Odd(S, x) of an item x w.r.t. a multiset S of values in [0, 1] of any 
size, as follows:

Odd(S, x) =def min(|max(S) − x|, |min(S) − x|)
As can be seen, we only compare x to the upper and lower values in S , which may be really considered as a meaningful 
summary of S only if S is very small (when we have no additional information about the distribution of values in S), i.e. 
|S| = 1, 2, 3 or may be 4. Clearly, the computation of Odd(S, x) reflects the smallest distance of x to an element in S only 
for |S| = 1, 2. Indeed, this is not the case as soon as |S| ≥ 3 as can be seen on the following example: Odd({a, b, c}, x) =
Odd({0, 0.5, 1}, 0.5) = 0.5, while |b − x| = |0.5 − 0.5| = 0.

As it may be the case for real datasets, we may have missing values. Obviously, when there is a missing value in the 
multiset S of size n, then a simple option is to consider the multiset S ′ of size n − 1 and to consider Odd(S, x) = Odd(S ′, x)
where S ′ has no longer any missing value.

3.2. Evenness index

Adopting a dual viewpoint, we may want to know if adding a new element to a given subset of items keeps it as 
homogeneous as it is, i.e., the newcomer does not appear as an intruder in this subset, and rather agrees with its majority. 
Homogeneity can be considered as a kind of evenness of the newcomer w.r.t. the existing items of the subset. In this 
subsection, we advocate a way of judging evenness on the basis of the majority, if any, inside the triples. Contrary to the 
oddness definition, where all Hi, i = 1, 2, 3 are required to define the oddness index, only H4 is needed for defining an 
evenness index, thus denoted E ven4.

3.2.1. An evenness measure for Boolean data
Since the idea is to agree with a majority, we notice that the smallest multisets S of elements where majority makes 

sense are clearly triples. Let consider three Boolean values a, b, c in S . Then, in a Boolean world, there are two possibilities, 
either a = b = c, or two of the three are equal. In both cases, a strict majority takes place. Let m denote the majority value. 
Now consider the newcomer d, either d = m, and m remains the majority value in {a, b, c, d}, or d 
= m, and there is no 
longer any majority in {a, b, c, d} (two values are equal to 1 and two values to 0). Only with the first case, d conforms to the 
majority.

Note that if we consider larger subsets S , even with only 4 elements rather than 3, it becomes possible that the new-
comer increases an existing minority, without changing the majority. Indeed, the majority value that may be shared by 3 
elements in the 4-elements multiset will then remain unchanged in the 5-elements multiset resulting from the arrival of 
a fifth element whatever its value. A similar phenomenon takes place if we start with larger subsets S having 5 elements 
or more. So we are losing a distinctive property of 3-elements subsets which have a different majority behavior depending 
if d conforms or not to the majority in the 3-elements subset. This means that triples are the only subsets such that adding an 
item that conforms to the triple minority destroys the majority. Thus, 3-elements subsets are able to clearly discriminate, among 
different d those that conform to the majority of the triple.

The idea of majority just described helps us to define a new evenness measure via the heterogeneous proportions. Let us 
recall the semantics of Hi : Hi holds iff there is an intruder among a, b, c, d and the parameter in position i is not this in-
truder. As a consequence, Hi implies that there is a majority of values among (a, b, c, d) and the value in position i conforms 
to the majority of values appearing among the 3 other positions (i.e. the multiset of values {a, b, c, d} is more or less even). 
But the reverse implication does not hold since when the 4 parameters have identical value, ∀i ∈ [1, 4], Hi(a, b, c, d) = 0. 
Then, to have a concise Boolean definition for “there is a majority of values among the parameters a, b, c, d and the param-
eter in position i belongs to this majority of values”, we need to consider the case where all the values are identical by 
using the following formula:

E veni(a,b, c,d) =def Hi(a,b, c,d) ∨ Eq(a,b, c,d) (5)



Table 3
H4, Eq and E ven4 truth values.

H4 Eq Even4
0 0 0 0 0 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 1
0 0 1 1 0 0 0
0 1 0 0 1 0 1
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 0 1
1 0 0 0 1 0 1
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 1 0 1
1 1 0 0 0 0 0
1 1 0 1 1 0 1
1 1 1 0 0 0 0
1 1 1 1 0 1 1

where Eq(a, b, c, d) =def (a ≡ b) ∧ (b ≡ c) ∧ (c ≡ d). Thus, with E veni we take into account the special case where all the 
values are equal. The truth table of E ven4 is given in Table 3. It is clear that E ven4 holds only when the value of d belongs 
to a majority of the parameter’s values. And E ven4 does not hold in an opposite situation where there is no majority of 
values as it is the case for E ven4(0011) or E ven4(0110).

The situations where E ven4(a, b, c, d) = 1 exactly cover the two cases already mentioned where d is identical to the 
majority value in the triple {a, b, c} (is not the intruder), namely either a = b = c, or two of the three are equal to d. So 
the fact that d joins {a, b, c}, when E ven(a, b, c, d) = 1, leaves the resulting subset as even as it was, hence the name, and 
in fact the majority is reinforced by the arrival of d. Note also that E ven4(a, b, c, d) is left unchanged by any permutation 
of {a, b, c}. This means that the ordering inside triples does not matter. Besides, E ven4(a, b, c, d) = E ven4(a, b, c, d) where 
x = 1 if x = 0 and x = 0 if x = 1, expressing that E ven4(a, b, c, d) does not depend on the way the information is encoded. 
From now on, E ven4 will be denoted E ven as this is the only option we use with i = 4.

3.2.2. Relation between oddness and evenness in the Boolean case
The oddness and evenness Boolean functions have been built by truth tables inspection. However, these 2 functions 

exhibit noticeable links. Despite the fact that their name might suggest that oddness and evenness capture dual concepts, it 
is not the case that E ven(a, b, c, d) ≡ ¬Odd({a, b, c}, d). In fact, the relations between the 2 measures are as follows (where 
I denotes the inverse paralogy defined in section 2.1):

Property 7.

E ven(a,b, c,d) ≡ ¬Odd({a,b, c},d) ∧ ¬I(a,b, c,d)

Odd({a,b, c},d) ≡ ¬E ven(a,b, c,d) ∧ ¬I(a,b, c,d)

I(a,b, c,d) ≡ ¬E ven(a,b, c,d) ∧ ¬Odd({a,b, c},d)

This can be easily checked on the truth tables. This reflects the fact that Odd and E ven and I are mutually exclusive. 
Let us note that E ven(a, b, c, d) → ¬Odd({a, b, c}, d), that ¬E ven(a, b, c, d) → ¬H4(a, b, c, d) and that Odd({a, b, c}, d) →
¬H4(a, b, c, d) as well.

A more complete discussion of the relation between oddness and evenness can be found in [21].

3.2.3. Extension to numerical data
In order to deal with graded truth values, we need to extend the previous definition of Even given in formula (4) to the 

case where the truth values belong to [0, 1], as we have done for the oddness function.
A direct translation of formula (4), taking min for ∧, max for ∨, and 1 − | · − · | for ≡ as in Łukasiewics logic, leads to 

the following expression for E ven4:

max(min(1 − |min(a,b) − min(1 − c,d)|,1 − |min(1 − a,1 − b) − min(c,1 − d)|),
1 − |max(a,b, c,d) − min(a,b, c,d)|)

Let us examine the behavior of this definition. In order to get a clear picture, we consider the 2 following curves:

• f (x) = E ven(0, x, x, x): we would expect f to get the constant value 1, since, whatever its value, the last element x,
cannot be considered as an intruder in the multiset {0, x, x}.



Fig. 1. f and g functions with standard definition of E ven.

Fig. 2. f and g functions with the new definition of E ven.

• g(x) = E ven(0, x, x, 0): we expect a function decreasing from 1 to 0 when x goes from 0 to 1. Indeed, the smaller x,
the closer to 1 E ven(0, x, x, 0) should be, while the larger x the more 0 appears to be equal to the minority value in
the multiset {0, x, x}.

The corresponding curves are in Fig. 1. Black square dots are for function f , empty circles for function g (mind that an 
empty circle may partially hide a black square when f and g coincide). As can be seen, f is not a constant function and g
is not monotonically decreasing. This contrasts with Odd(0, x, x, x) = 0 and Odd(0, x, x, 0) = 0.

It appears that a direct translation of the Boolean definition (4) does not fit with the expected meaning of evenness 
in the case of graded truth values. But obviously, we could start from the property E ven ≡ ¬Odd ∧ ¬I to get another 
translation as:

E ven(a,b, c,d) = min(1 − Odd(a,b, c,d),1 − I(a,b, c,d))

This new definition leads via an easy computation to E ven(0, x, x, x) = 1 − x if x ≤ 0.5 and 1 − min(x, 2 − 2x) when x ≥ 0.5. 
With this new definition of E ven, the curves corresponding to f and g are given in Fig. 2 (we use black square dots for 
function f and empty circles for function g again).

Observe that the behavior of g(x) = E ven(0, x, x, 0) is satisfactory since we get the decreasing function 1 − x. However 
f (x) = E ven(0, x, x, x) may be far from 1 (in particular, E ven(0, 23 , 23 , 23 ) = 1

3 ). Such a behavior is not satisfactory at all. It is 
still an open question to find a better definition for E ven in the graded case, which would coincide with the Boolean case 
when a, b, c, d ∈ {0, 1}. For this reason, we shall not experiment the evenness function with numerical data.

3.2.4. Dealing with missing values
Missing information is quite common in real life datasets and a way to extend the semantics of analogical proportion to 

deal with this issue has been deeply investigated in [20] for instance. In fact, such an approach can be also applied here, as 
explained now.

Still keeping a logical approach and considering that ‘?’ denotes a missing value (i.e. an information is unknown), the 
idea is to extend the truth table of the E ven formula as follows: E ven(?, 0, 0, 0) = E ven(0, ?, 0, 0) = E ven(0, 0, ?, 0) = 1, 
E ven(?, 1, 1, 1) = E ven(1, ?, 1, 1) = E ven(1, 1, ?, 1) = 1, and E ven(x, y, z, t) = 0 for any other pattern including at least a 
missing value ‘?’. It is clear that, with the 6 first patterns, whatever the candidate value of the missing feature, the 4th 
argument belongs to the majority and cannot be an intruder. In all the remaining cases, where we have no certainty 
regarding the status of d, we adopt a cautious behavior by considering that E ven does not hold.



4. Heterogeneous proportions-based classifiers

In the previous section, we have defined two new indexes that evaluate the oddness or evenness of an item with respect 
to a multiset S of a fixed size (especially S is a triple in case of evenness). In the context of classification, our aim is to 
maintain homogeneity or evenness inside each class C and to avoid oddness when classifying a new item. For this purpose, 
we first extend Odd and E ven indexes to deal with vectors instead of simple Boolean or numerical values, and then, build 
up a global oddness/evenness measure of an item x w.r.t. a class C .

In the following, we propose a family of classifiers based on these global evenness/oddness measures and indexed by the 
size of the subsets (used in the comparison process for the oddness-based classifiers). But we first recall the Bayesian view 
of the conformity of an item w.r.t. a class, which contrasts with the views proposed in the rest of this section.

4.1. The Bayesian viewpoint

In a classical Bayesian view, we have Prob(C|�x) = 1
Z · Prob(C) · ∏n

i=1 Prob(xi |C) assuming that the n features are inde-
pendent. The evidence Z depends only on �x, Prob(C) reflects some characteristics of C such as its size, and 

∏n
i=1 Prob(xi |C)

evaluates the conformity of �x = (x1, · · · , xn) with C . Under some conditional independence assumptions, this probability can 
be rewritten as a weighted product of Prob(xi |C), i.e. the conditional probability to get value xi for feature i in the class C . 
Usually, Prob(xi |C) is estimated as the frequency of elements having value xi for feature i in the whole class C . Thus, the 
expression of Prob(C|�x) involves the product of Prob(C) with a kind of conjunctive combination expressed as the product 
of the proportion of elements of C identical to �x for each feature i. A counterpart of this evaluation exists in the setting of 
possibility theory [2]. In the case of Boolean features, let p(C, i) be the proportion of the majority value for feature i in C . 
Then, an elementary estimation of Prob(C|�x) is:

1
Z · Prob(C) · ∏i∈M p(C, i) · ∏ j∈M(1 − p(C, j))

where M ⊆ {1, · · ·, n} is the subset of features where �x is conform to the majority in C , and M is the complementary subset 
where �x is not conform to the majority. The idea of conformity in this approach is thus related to the notion of majority 
w.r.t. the whole set C itself. In the following, we investigate the idea of judging conformity w.r.t. a collection of smaller subsets
S ⊂ C , and then to cumulate the results of the comparison of �x with the different subsets S .

4.2. Classification indexes

When it comes to real life application, it is not enough to represent individuals with a single Boolean or real value. 
Generally, individuals are encoded by a set of features. Based on the previously defined oddness and evenness measures, we 
have to define new measures suitable for vectors.

4.2.1. Oddness and evenness measures for vectors
When dealing with vectors →x ∈ [0, 1]n , Boolean vectors are also covered as a particular case. The Odd and E ven mea-

sures, defined respectively by (1) and (4), are used to estimate to what extent a value x can be considered as odd or even
among a multiset S of values. Thanks to the two latter formulas, assuming the independence of features, it is natural to 
compute the oddness or evenness of a vector →x as the sum of the oddness or evenness for each feature xi ∈ →x , as follows:

Odd(S,
→x ) =def �n

i=1 Odd(Si, xi) ∈ [0,n]
E ven(S,

→x ) =def �n
i=1 E ven(Si, xi) ∈ [0,n]

where xi is the i-th component of →x , Si is the multiset gathering the i-th components of the vectors in S . Note that in the
case of E ven, the set S has exactly 3 elements, but we keep the set notation for sake of notation uniformity.

If our aim is to measure oddness, high values of Odd(S, →x ) (close to n) means that, for many features, →x appears as
an intruder and may reduce the homogeneity when going from S to the multiset S ∪ {→x }. If Odd(S, →x ) = 0, no feature
indicates that →x behaves as an intruder and there is no obstacle for →x to join the multiset S .1

On the opposite, if our aim is to compute evenness of the subset S when →x is being added, the bigger E ven(S, →x ),
the larger the number of features for which →x conforms to the majority in S , the better →x conforms to vectors in S . If
E ven(S, →x ) = n, there does not exist a feature where →x behaves as an intruder. Then, it is acceptable for →x to join the
set S .

1 It is clear that when dealing with classification task, S is just a set of examples, without any repetition, but obviously, its projections componentwise,
the Si ’s are multisets of Boolean or real values.



4.2.2. Global oddness and evenness measures
Given a set C of vectors belonging to the same class and a non-null integer m, we can compute Odd(S, →x ) for each

distinct subset S ⊆ C of cardinality m and E ven(S, →x ) for each distinct subset S ⊆ C of cardinality 3. The evenness or
oddness measures of the vector →x in the class C could simply be the sum of all these elementary values. For instance as
follows:

�S⊆Cs.t.|S|=m Odd(S,
→x ) for Oddness

and

�S⊆Cs.t.|S|=3 E ven(S,
→x ) for Evenness

Obviously it is fair to take into account the relative size of the different classes C and, as a consequence, to introduce a 
normalization factor.

a. Oddness measure
Clearly, the number 

(|C|
m

)
of subsets S ⊂ C of size m is an increasing function of |C|. When C is large, this number is

not far from |C|m . It is then relevant to consider the following definition:

O D Dm(C,
→x ) =def

1

|C|m �S⊆Cs.t.|S|=m Odd(S,
→x )

When m = 2, we deal with pairs, when m = 3, we deal with triples, etc. In case of singletons (m = 1), S = {→y }, and

O D D1({→y },→x ) = �n
i=1 Odd(yi, xi) = �n

i=1|yi − xi|,
which is just the Hamming distance between →y and →x . As a consequence, O D D1(C, →x ) is the average distance
between →x and the elements in C .

b. Evenness measure
A reasoning similar to the previous one leads to a definition of evenness as follows (since we use only subsets of
cardinality 3):

E V E N(C,
→x ) =def

1

|C|3 �S⊆Cs.t.|S|=3 E ven(S,
→x ).

4.2.3. Optimization
It is clear that the calculation process of O D Dm may be time consuming for large values of m (m ≥ 3). To reduce this 

complexity, we have chosen to take one element as a k nearest neighbor of the new item →x . Let us denote {→y j | j ∈ [1, k]}
the k nearest neighbors of →x in C . So the oddness measure that will be used in practice is:

k-O D Dm(C,
→x ) =def

1

|C|m−1
�k

j=1(�S⊆C\{→y j}s.t.|S|=m−1 Odd(S ∪ {→y j },→x ))

The oddness of an element is now the sum of k numbers, k being the number of nearest neighbors that we consider. 
Exactly the same approach applies for E V E N measure leading to:

k-E V E N(C,
→x ) =def

1

|C|2 �k
j=1(�S⊆C\{→y j}s.t.|S|=2 E ven(S ∪ {→y j },→x ))

4.3. Algorithm

Let T S be a training set composed of instances (→z , cl(→z )), where →z ∈ B
n or Rn , cl(→z ) is the label of →z . Given

a new instance →x /∈ T S without label, we have to allocate a label to →x by looking for the class that better maintains its
homogeneity when →x is added to it. More formally, given the set C of instances in T S having the same label c, we estimate
to what extent C ∪ {→x } is odd or even. Based on the oddness and evenness measures defined before, the idea is then to 
assign to →x the label corresponding to the class minimizing the oddness or maximizing the evenness when →x is added.

Our implementations fit with the following simple procedure.

1. Choose a number k of nearest neighbors to be considered
2. For each class (or label) C , compute k-O D Dm(C, →x )/k-E V E N(C, →x ).
3. Allocate to →x the label argminC k-O D Dm(C, →x )/argmaxC k-E V E N(C, →x )

The previous procedure can be described with the pseudo-code of Algorithm 1. Algorithm 1 can deal with missing values
thanks to the remark at the end of section 3.1.3 in case of oddness, and the extension presented in section 3.2.4 in case of 
evenness.



Algorithm 1 Oddness/Evenness-based algorithm.

Input: a training set T S of examples (→z , cl(→z ))

a non-null integer m
an integer k ≥ 1
a new item →x ,

Partition T S into sets C of examples having the same label c.
for each C do

Compute k-O D Dm(C, →x )/k-E V E N(C, →x )

end for
cl(→x ) = argminC k-O D Dm(C, →x )/argmaxC k-E V E N(C, →x )

return cl(→x )

Our approach might appear somehow similar to k-nearest neighbors (k-nn) methods. However, the proposed method 
relies on the comparison of a newcomer with respect to subsets S involving m = 2, 3, or more elements, which are not 
singletons, while k-nn methods compare the newcomer with examples taken one by one. Obviously, this has a greater 
computational cost, since in the basic method, we have to consider all the subsets of size m in the training set.

Before reporting results of experiments with oddness or evenness-based classifiers, we briefly present analogical 
proportions-based classifiers, with which they will be compared, as well as with standard classifiers.

5. Related work. Analogical proportions-based classifiers

In the last decade, diverse classification approaches have been developed based on analogical proportion. We first review 
the Boolean case, before considering the numerical case.

5.1. Boolean and discrete cases

In [1], the authors use a measure of analogical dissimilarity between 4 objects. It estimates how far 4 objects are from 
building a perfect analogical proportion. Roughly speaking, the analogical dissimilarity ad between 4 Boolean values is the 
minimum number of bits that have to be switched to get a proper analogy. Thus we have:

ad(1,0,1,0) = 0,ad(1,0,1,1) = 1 and ad(1,0,0,1) = 2

It means, a : b :: c : d holds if and only if ad(a, b, c, d) = 0. Moreover ad differentiates two cases where analogy does 
not hold, namely the 8 cases with an odd number of 0 and an odd number of 1 among the 4 Boolean values, such as 
ad(0, 0, 0, 1) = 1 or ad(0, 1, 1, 1) = 1, and the two cases ad(0, 1, 1, 0) = ad(1, 0, 0, 1) = 2. When we deal with 4 Boolean 
vectors in Bn , adding the ad evaluations componentwise generalizes the analogical dissimilarity to Boolean vectors, and 
leads to an integer belonging to the interval [0, 2n]. It is used in [1] in the implementation of a classification algorithm 
where the input parameters are a set T S of classified items, an integer k, and a new item 

→
d to be classified. It proceeds as 

follows:

Step 1: Compute the analogical dissimilarity ad between 
→
d and all the triples in T S3 that produce a solution for the 

class of 
→
d .

Step 2: Sort these n triples by the increasing value of ad w.r.t. with 
→
d .

Step 3: Let p be the value of ad for the k-th triple, then find k′ as being the greatest integer such that the k′-th triple 
has the value p.

Step 4: Solve the k′ analogical equations on the label of the class. Take the winner of the k′ votes and allocate this 
winner as the class of 

→
d .

This approach provides remarkable results and, in several cases, outperforms the best known algorithms [15].
In the algorithm proposed in [17], there is no use of a dissimilarity measure but a straightforward implementation of 

the continuity principle, keeping flexibility by allowing to have some components where analogy does not hold. Triples of 
Boolean vectors (→a , 

→
b , →c ) are considered such that the class equation cl(→a ) : cl(

→
b ) :: cl(→c ) : x is solvable and such that 

the number of componentwise analogies card({i ∈ {1, n}| ai : bi :: ci : di holds} is maximal. Then the label solution of the 
corresponding class equation is allocated to 

→
d , implementing a majority vote in case of multiple candidate triples.

Although the work of [26] does not deal with Boolean vectors strictly speaking, they are the first authors to suggest the 
proportional continuity principle as an underlying mechanism for building analogical learners. Their algebraic framework 
for defining analogical proportions allows to consider “viewing : reviewer :: searching : researcher” as a valid proportion, 
generalizing the work of [13]. Their approach provide satisfactory results in the field of natural language processing [25].

We note that all the previous works are focused on discrete data and none of them tackles the issue of dealing with 
numerical values.



Table 4
Description of datasets.

Datasets Instances Nominal att. Binary att. Numerical att. Classes

Balance 625 4 20 – 3
Car 743 7 21 – 4
Spect 267 – 22 – 2
Voting 435 – 16 – 2
Monk1 432 6 15 – 2
Monk2 432 6 15 – 2
Monk3 432 6 15 – 2

Diabetes 768 – – 8 2
W. B. Cancer 699 – – 9 2
Heart 270 – – 13 2
Iris 150 – – 4 3
Wine 178 – – 13 3
Satellite Image 346 – – 36 6
Glass 214 – – 9 7
Ecoli 336 – – 7 8

5.2. Numerical case

As far as we know, there are only few works that apply logical proportion for classification of numerical data. The work 
presented in [22] is the first one to deal with such type of data. Starting from datasets coming from UCI repository [14], 
the data are normalized in order to get values in [0, 1] considered as truth degrees which allows the application of the 
graded semantics previously described in this paper. Given a new data 

→
d to be classified, the main idea is to consider all

the triples (→a , 
→
b , →c ) such that the corresponding class equation is solvable. Actually, these triples are the only ones able 

to provide a prediction for the unknown label of 
→
d . We compute for each of these triples the vector of truth values

(a1 : b1 : c1 : d1, . . . ,ai : bi :: ci : di, . . . ,an : bn :: cn : dn)

Then we order these vectors of truth values using the leximin2 as a total order. The best triple, i.e. the one maximizing 
(a1 : b1 : c1 : d1, . . . , ai : bi :: ci : di, . . . , an : bn :: cn : dn) is chosen to allocate a label to the new item 

→
d . As highlighted 

in [22], the accuracy results of the corresponding classifier are quite good, and in some cases, outperform well-known 
algorithms.

6. Experimentations and discussion

In this section, we provide experimental results for the heterogeneous proportion-based classifiers presented above and 
we run our tests for different values for each parameter.

6.1. Datasets, protocols and other classifiers for comparison

The experimental study is based on several datasets taken from the U.C.I. machine learning repository [14]. A brief 
description of these data sets is given in Table 4. Since oddness-based classifier is able to deal with both Boolean and 
numerical features, Table 4 includes 7 datasets with Boolean attribute values (in the first part of this Table) and 8 datasets 
with only numerical features (in the second part). In terms of classes, we deal with a maximum number of 8 classes. In 
order to apply our Boolean and multiple-valued semantics framework, all discrete attributes are binarized and all numerical 
attributes are normalized. More precisely:

• For all categorical (non-binary) attributes where the range of attribute values is finite and strictly greater than 2, we
apply the following procedure to convert them into Boolean attributes. Considering an attribute domain v1, ..., vm , we
binarize it by means of m properties “having or not value vi ”. For instance, a tri-valued attribute having candidate
values v1, v2, v3, can respectively be encoded as 100, 010, 001. It means, in that case, that, e.g., 110 does not represent
a value and will never appear in the dataset.

• Regarding the numerical attributes, we just replace the value r with r−rmin
rmax−rmin

, where rmin and rmax respectively represent
the minimal and the maximal values for this attribute on this dataset. A real value is thus changed into a number that
may be understood as a truth value.

2 (u1, . . . , ui , . . . , un) >leximin (v1, . . . , vi, . . . , vn), once the components of each vector have been increasingly ordered, iff ∃ j < n ∀i = 1, j ui = vi and u j+1 >

v j+1.



Table 5
Results of other classifiers on the benchmarks (Left part: classical ones, right part: analogical ones).

Datasets C4.5 SVM JRip IBK
(k = 1, k = 10)

Analogy1 [3] Analogy2 [4]
(Algo2:A, k = 11)

WAPC

Poly-kernel PUK-kernel

Balance 78 90 89 76 83, 83 87 – 86
Car 95 91 87 91 92, 92 94 – n/a
Voting 96 96 96 95 92, 93 78 – n/a
Spect 81 81 83 81 75, 81 41 – 79
Monk1 99 75 100 98 100, 100 99 – 98
Monk2 95 67 67 73 44, 64 99 – 100
Monk3 100 100 100 100 100, 99 99 – 96

Diabetes 74 77 77 76 70, 71 – 73 –
Cancer 96 97 96 96 96, 97 – 97 –
Heart 77 84 81 81 75, 81 – 82 –
Iris 96 96 96 95 95, 96 – 97 –
Wine 94 98 99 93 95, 95 – 98 –
Sat. Image 94 94 95 93 95, 94 – 94 –
Glass 66 58 71 69 70, 64 – 72 –

In terms of protocol, we apply a standard 10 fold cross-validation technique to build the training and testing sets.
For nominal datasets:
– Balance and Car are multiple classes databases.
– Voting, Spect, Monk1, Monk2, Monk3 data sets are binary class problems.
Monk3 has noise added (in the training set only).
– Voting and Spect data sets contain only binary attributes. Voting dataset has missing attribute values.
For numerical datasets:
– Iris, Wine, Sat.Image, Glass and Ecoli data sets are multiple class problems.
– Diabetes, Cancer and Heart are binary class databases.
This experimental study is divided into two parts. In the first subsection, we evaluate the Oddness-based classifier in the

case of Boolean and numerical data and we run our tests on 4 different sizes of subsets: subsets of one, two, tree or four 
items to compute the oddness measure, leading to algorithms Odd1, Odd2, Odd3, Odd4. These classifiers are also tested for 
diverse values of k.

In the second subsection, we test the efficiency of Evenness-based classifier to deal with Boolean datasets.
In order to evaluate the efficiency of Oddness/Evenness classifiers, we compare their accuracy to existing classification 

approaches. Table 5 includes classification results of some machine learning algorithms:

• C4.5: generating a pruned or unpruned C4.5 decision tree.
• SVM: a sequential minimal optimization algorithm for training a support vector classifier. We use two types of ker-

nels: the Polynomial kernel and the Pearson VII function-based universal kernel denoted respectively Poly-Kernel and
PUK-Kernel.

• JRip: propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), optimized version
of IREP.

• IBk: a k-Nearest-neighbor classifier with normalized Euclidean distance with k = 1, k = 10.

Accuracy results for C4.5, SVMs, JRip and IBk given in Table 5 are obtained by using the free implementation of Weka
software to the datasets described in Table 4.

The columns Analogy1, Analogy2 and WAPC in Table 5 refer to the results obtained respectively with analogy-based 
classifiers, reviewed in the previous Section 5, in the case of Boolean data [3], in the case of numerical data [4], and with 
the weighted analogical classifier (using analogical dissimilarity) presented in [15].

The comparative studies with existing classifiers of the oddness classifiers and the evenness classifiers, given in the 
following two subsections, are carried out through Signed-Ranks Test as proposed by Demsar [9]. They are parametric tests 
that check if the difference between the results of two classifiers over various datasets is significant enough [9].

6.2. Results for oddness-based classifiers

In Tables 6 and 7, we provide mean accuracies and standard deviations obtained with the three first implemented options 
using Odd1, Odd2 and Odd3. For Odd2 and Odd3 alternatives, we also test different values of k (k being the number of 
nearest neighbors used). Let us note that when we have less than k elements in a given class, we do not check the version 
of our algorithm for the value k: this is the case for Glass and k = 11.

Table 8 shows classification results obtained with Odd4. Since this is a time consuming option, we restrict our tests to 
datasets to small size.



Table 6
Classification accuracies given as mean and standard deviation with Odd1 and Odd2.

Datasets Odd1 Odd2

Value of k 1 3 5 11

Balance 83,67 ± 3,82 49,81 ± 6,39 76,93 ± 5,02 87,34 ± 3,17 86,29 ± 3,45
Car 57,89 ± 7,73 83,99 ± 4,10 87,34 ± 3,25 91,72 ± 2,81 91,04 ± 2,91
Spect 44,02 ± 6,63 78,68 ± 6,96 83,72 ± 6,17 83,11 ± 6,06 83,19 ± 5,27
Voting 89.13 ± 5.34 90.26 ± 3.59 92.68 ± 3.11 93.75 ± 3.14 94.74 ± 2.97
Monk1 75,01 ± 6,53 99,12 ± 1,49 99,77 ± 0,51 99,86 ± 0,33 99,68 ± 1,29
Monk2 50,74 ± 9,11 34,52 ± 6,70 36,57 ± 6,21 43,37 ± 4,70 58,98 ± 4,13
Monk3 97,23 ± 1,78 99,96 ± 0,13 100 100 100
Diabetes 74,85 ± 4,39 69,95 ± 4,16 73,81 ± 4,42 74,28 ± 4,70 75,73 ± 3,77
W. B. Cancer 94,23 ± 2,58 96,80 ± 1,69 97,2 ± 1,66 97,43 ± 1,76 97,31 ± 1,71
Heart 83,18 ± 7,74 78,89 ± 7,63 81,70 ± 6,87 82,22 ± 6,53 81,85 ± 6,81
Iris 94,53 ± 6,15 93,87 ± 5,41 94,67 ± 4,96 94,80 ± 4,81 95,06 ± 4,55
Wine 93,25 ± 5,59 97,97 ± 3,44 97,98 ± 2,87 98,34 ± 2,53 97,52 ± 3,21
Sat. Image 87,15 ± 2,95 95,17 ± 1,77 95,06 ± 2,16 95,04 ± 1,97 94,33 ± 2,12
Glass 35,93 ± 9,51 75,15 ± 8,00 76,53 ± 7,71 74,77 ± 7,62 –

Table 7
Classification accuracies given as mean and standard deviation with Odd3.

Datasets Odd3

Value of k 1 3 5 11

Balance 52,05 ± 6,98 74,99 ± 3,59 87,16 ± 2,71 86,63 ± 2,90
Car 83,96 ± 3,67 86,90 ± 3,64 91,12 ± 3,26 89,57 ± 3,07
Spect 80,97 ± 6,80 84,13 ± 4,99 84,30 ± 4,34 84,30 ± 4,35
Voting 88.68 ± 6.25 91.55 ± 3.72 92.18 ± 5.65 94.24 ± 5.02
Monk1 99,63 ± 0,71 97,15 ± 3,46 98 ± 2,46 91,99 ± 6,40
Monk2 34.28 ± 7.29 37.05 ± 6.44 41.91 ± 7.57 55.32 ± 7.21
Monk3 100 100 99.77 ± 0.68 99.32 ± 2.05
Diabetes 70,31 ± 4,06 74,03 ± 3,75 74,55 ± 4,25 76,41 ± 4,32
W. B. Cancer 96,10 ± 2,35 97,03 ± 1,94 97,08 ± 1,87 97,03 ± 1,85
Heart 77,63 ± 7 81,26 ± 5,63 82 ± 6,75 82,44 ± 6,28
Iris 94,93 ± 5,22 94,79 ± 4,81 94,66 ± 4,76 95,73 ± 5,07
Wine 95,77 ± 4,35 97,4 ± 3,56 96,58 ± 3,92 96,48 ± 4,25
Sat. Image 94,12 ± 1,90 94,18 ± 2,08 94,18 ± 2,30 93,51 ± 2,36
Glass 70,12 ± 6,06 74,26 ± 6,42 72,44 ± 7,23 –

Table 8
Classification accuracies given as mean and standard deviation obtained with Odd4.

Datasets Odd4

Value of k 1 3 5 11
Spect 81.28 ± 5.2 84.2 ± 5.11 84.2 ± 3.89 84.2 ± 3.89
Monk1 99.55 ± 0.91 96.28 ± 4.31 90.07 ± 4.37 –
Heart 71.48 ± 7.95 78.89 ± 4.7 79.26 ± 5.79 80.37 ± 5.25
Iris 95 ± 5,68 95,67 ± 5,01 95,50 ± 4,98 96,34 ± 4,84
Wine 92,89 ± 6,15 94,58 ± 5,75 94,20 ± 5,52 94,83 ± 4,75

6.2.1. Behavior of the different oddness classifiers and comparison with classical ones
In Tables 6, 7 and 8, we notice that:

• Odd1 seems to be significantly less efficient than all other subset sizes for most data-sets. The worst accuracy for this
option is noted for datasets: Car, Spect, Sat.Image, Wine and Glass having large number of attributes and/or classes. In
fact, this option remains close to the basis of k-nn algorithm since both compute the distance to the training examples
in an independent way without any further investigation on the relationship between these training data. Moreover,
since this option computes the mean oddness measure to elements of classes, this makes it less informative than other
options.

• For most datasets, best results are obtained with large values of k (k = 5 or 11) for the three alternatives using Odd2,
Odd3 or Odd4, except in the case of Monk1 where small values of k provide better accuracy for Odd3 and Odd4. Since
subsets of pairs are generally less informative than subsets of triples or quadruples, it is better to consider, for this
option, large values of k to take advantage of a larger variety of data. It remains to investigate what is the suitable k for
a target dataset.

• If we compare Odd2 to the other Oddi ’s for k = 5, we note that this option provides the best accuracy for all datasets
except for Spect., where it performs slightly worse than Odd3 and Odd4.



Table 9
Results for the Wilcoxon Matched-Pairs Signed-Ranks Test, the * means that the classifier in the 
row in statistically better than the classifier on the column.

Odd1 Odd3 (k = 5) IB1 IB10

Odd1 Without Monk2 – – 0.049 0.022
With Monk2 – – 0.1 0.013

Odd2 (k = 5) Without Monk2 0.0076* 0,061 0.026* 0.0229*
With Monk2 0.023* 0,034* 0.034* 0.1158

Odd3 (k = 5) Without Monk2 0.0076* – 0.091 0.1823
With Monk2 0.027* – 0.136 0.463

• Odd4 performs generally worse than Odd2 and Odd3 for all datasets expect for the Iris where it is slightly better.
Especially for datasets Heart and Wine, the accuracy strongly decreases with Odd4. This may reinforce the intuition
that pairs and triples are appropriate to evaluate oddness.

• It is quite clear that the proposed classifier, especially Odd2, is able to classify numerical as well as Boolean data sets
almost in the same way. These results highlight that the proposed multi-valued oddness measure correctly extends the
Boolean case.

• The comparison with Table 5 highlights the fact that oddness-based classifiers perform more or less in the same way
as the best known algorithms. Especially, Odd2 performs similarly well as other classifiers for data sets Monk1, Cancer,
Sat. Image and Glass, has performances similar to SVM for datasets Car and Spect. For Monks3, Odd2 behaves as most
of ML classifiers.

• Odd2 shows high efficiency to classify datasets Balance, Car, Sat.Image and Glass (which have multiple classes) which
demonstrates its ability to deal with multiple class data sets.

• The oddness-based classifier seems to be also efficient when classifying data sets with a large number of instances and
attributes as in the case of Car and Sat.Image for instance.

Results concerning optimized variants of Odd2 classifier can be found in [8].

6.2.2. Comparison with analogical classifiers
We also note that:

• If we compare the best results obtained with Odd2 in Table 6 with those obtained with the analogy-based classifier for
numerical data [4], we can notice that the two classifiers perform similarly for most datasets, with maybe the exception
of Iris. In that latter case, the analogy is significantly better, while for Diabetes the converse is observed.

• We notice that both oddness-based and analogy-based classifiers Analogy1 [3] in the case of Boolean datasets, exhibit
good results for Balance, Car, Monk1 and Monk3, comparable to those obtained by classifiers like IBK or SVM. The
results of oddness-based classifier Odd2 are also comparable to those of the evenness-based classifier [6]; see also next
subsection 6.3.

• Regarding Monk2, where analogical proportion-based classifiers perform very well, it is known that the underlying
function (“having exactly two attributes with value 1”) is more complicated than the functions underlying Monk1 and
Monk3, and involves all the attributes (while in the two other functions only 3 attributes among 6 are involved in the
discrete coding). We suspect that the existence of a large discontinuity in the classification of data (a nearest neighbor
y of x will not generally be labeled with the same class cl(→x )) may be too difficult to apprehend using oddness
(or heterogeneous proportions Evenness in Table 5). Moreover, for this dataset, we expect that the classifier needs to
consider more neighbors k to get better results. Thus, we also tested the approach using pairs with bigger values of k
for Monk2 data set, we get an accuracy equal to 64.83 ± 2.06 for k = 17.

6.2.3. Comparison with nearest neighbors classifiers
Lastly, on Table 5, we also observe that Odd2 with k = 5 significantly outperforms IBK on datasets Balance, Spect., 

Diabetes, Heart, Wine, Sat. Image and Glass and has similar results for Monk1, Monk3. This is confirmed by the Wilcoxon 
Matched-Pairs Signed-Ranks Test [9]. This test is a non-parametric alternative to the paired t-test enabling to compare two 
classifiers over multiple data sets. In our case, the null hypothesis states that the two compared algorithms performs in 
the same way. Table 9 summarizes the results of the computed p-values for each pair of compared classifiers. The null 
hypothesis has to be rejected when the p-value is less than the threshold 0.05. These values are highlighted in bold in 
Table 9. We add a * to each significant p-value (<0.05) if the classifier given in the row significantly outperforms the 
classifier given in the column. There is no * for any significant p-value if the classifier given in the column is rather 
statistically better than the classifier given in the row. From the computed p-values, we can draw the following conclusions:

• As expected, Odd1 is statistically less efficient than IBK, Odd2 and Odd3.
• If we compare with Odd3, the p-value confirms that Odd2 is more efficient than Odd3.



Table 10
Classification accuracies given as mean and standard deviation obtained with E ven.

Datasets E ven

Value of k 1 3 5 11

Balance l = n 67.29 ± 5.2 71.48 ± 6.49 76.43 ± 4.85 78.23 ± 4.57
l = n − 1 78.04 ± 4.91 83.28 ± 3.44 87.08 ± 3.22 86.48 ± 3.45

Car l = n 92.6 ± 2.87 92.84 ± 2.82 93.05 ± 2.83 93.27 ± 2.7
l = n − 1 89.63 ± 3.43 90.35 ± 3.0 91.58 ± 2.52 91.75 ± 2.42

Spect l = n 81.53 ± 6.67 81.86 ± 7.93 82.61 ± 8.16 ± 82.32 ± 8.54
l = n − 1 81.21 ± 6.52 81.14 ± 6.83 81.37 ± 6.82 81.74 ± 7.1

Voting l = n 94.29 ± 3.67 94.99 ± 3.96 94.94 ± 3.96 95.12 ± 3.71
l = n − 1 94.25 ± 3.94 94.95 ± 4.24 94.9 ± 4.24 94.99 ± 3.93

Monk1 l = n 100 100 100 100
l = n − 1 100 99.95 ± 0.05 99.91 ± 0.64 99.95 ± 0.05

Monk2 l = n 38.31 ± 4.09 41.37 ± 4.66 45.54 ± 5.04 50.68 ± 4.3
l = n − 1 30.87 ± 5.85 34.14 ± 4.46 37.46 ± 4.91 42.61 ± 5.23

Monk3 l = n 100 100 100 100
l = n − 1 99.77 ± 0.71 99.22 ± 1.94 98.76 ± 2.42 98.49 ± 2.76

• Odd2 is also significantly better than IB1. Our proposed algorithm statistically outperforms IB10 only if we remove
Monk2 from the list of compared datasets for the Wilcoxon Ranks test (note that Odd2 performs as IB10 for k = 17).

6.3. Results for evenness-based classifiers

In order to better control the meaning of E V E N(C, →x ), we may focus on triples for which →x is an intruder for at most
n − l features, where l = 0, 1, · · · . Instead of keeping all the triples, we can just choose a threshold l ∈ [0, n], then consider 
E ven(

→a , 
→
b , →c , →x ) only for the triples (→a , 

→
b , →c ) in C3 such that

E ven(
→a ,

→
b ,

→c ,
→x ) ≥ l,

i.e. we want E ven to hold over at least l features. We denote E V E Nl(C, →x ) this measure where we just reduce the number
of candidate triples by filtering over l. As a consequence, the evenness-based algorithms have 2 parameters: k the number 
of considered nearest neighbors and l the minimum number of features where the E ven proportion should hold.

Table 10 provides accuracies results for the evenness-based classifier obtained with a 10-fold cross validation and for 
two values of k and l (k being the number of nearest neighbors of →x , l refers to the number of attributes j of d such that
x j belongs to a majority). The best results are in bold.

6.3.1. Behavior of the different evenness classifiers and comparison with classical ones
When we analyze results in Table 10, we can see that:

• In general, the best classification rates are obtained for l = n. This means that the classifier is likely to be more accurate
when the classification is made on the basis of triples w.r.t. which →x is not an intruder for any attributes. However, for
some datasets such as Balance and Monk2, the classifier needs to consider more levels l when it is difficult to satisfy the 
constraint E ven(

→a , 
→
b , →c , →x ) ≥ l for l = n or even l = n − 1. Thus, we also tested smaller levels of l and for “Balance” data 

set, we get an accuracy equal to 89.25 ± 2.4 for l = n − 3.
• The classifier shows good classification results for data sets “Balance”, and “Car” (which have multiple classes). This shows
that evenness-based classifiers are able to deal with multiple class data sets.
• If we compare results of the evenness-based classifier with machine learning algorithms in Table 5, we note that the
proposed classifier is as good as the best known algorithms. Especially, the basic classifier, with large k works as well as any
other classifiers for data sets “Balance” (for l = n − 3), “Spect.”, “Monk1” and “Monk3” (for l = n). Moreover, evenness-based
classifier outperforms IBK for all data sets except Monk2.

6.3.2. Comparison with analogical classifiers
• Both evenness-based classifiers and the analogy-based classifier [3], exhibit very good results for data sets “Balance”, “Car”,
“Monk1” and “Monk3”.
• However, as in the case of oddness-based classifiers, the evenness-based classifier is also less efficient when classifying
“Monk2” data set. As said before for this dataset, we expect that the classifier needs to consider more neighbors k to achieve
better accuracy.
• On the contrary, it is clear that evenness-based classifier outperforms the analogy-based classifier [3] for data sets “Spect”
and “Voting” (see Table 5). From experiments, we notice that bad results for analogy-based classifier with “Spect” and

“Voting” datasets seem to be due to the number of voters (→a , 
→
b ) which is equal to 0 for many examples to be classified.



Regarding the analogy-based classifiers, when considering a particular item →x , and a neighbor →c ∈ BH (
→x , r) (where

BH (
→x , r) denotes the Hamming ball with center →x and radius r) the number of voters (→a , 

→
b ) is only a small subset

of the set of pairs differing on r attributes. Due to the fact that two constraints have to be satisfied in the analogical 
proportion-based approach: the pairs (→a , 

→
b ) and (→c , →x ) differ on the same attribute(s) and the associated class equation

should be solvable, if only one attribute in the pair (→a , 
→
b ) is not satisfied, this pair will be discarded.

In order to reduce the effect of the first constraint in the analogy-based classifier [3], we reimplemented the analogy-
based classifier for numerical data described in [4] on the datasets “Spect” and “Voting” (this algorithm seeks for only triples 
which form with →x an analogy on a maximum number of attributes, and not necessarily on all attributes as the algorithm
used in [3]). We obtained an accuracy respectively equal to 73.38 ±4.68 and 95.85 ±3.09 (using the function: A and k = 11). 
This accuracy improvement shows that, for some datasets whose attributes are highly dissimilar (the case of “Spect” for ex-

ample), it is faithful to relax the constraint “the pairs (→a , 
→
b ) and (→c , 

→
d ) differ on the same attribute(s)” by satisfying the

analogical proportion only on a maximum (as it is the case in [4] and in evenness-based classifiers) instead of all attributes.

6.3.3. Comparison between oddness- and evenness-based classifiers
Although oddness and evenness indexes are not the exact opposite of each other, the results obtained by minimization 

in oddness-based classifiers and by maximization in evenness-based classifiers are quite close, as can be seen by comparing 
Tables 6 and 7 with Table 10, for Boolean features. However, the evenness index and measure have not been defined in the 
case of numerical features.

7. Conclusion

Many successful approaches have been proposed for classification purposes for a long time. Quite surprisingly, it has been
recently shown that it was also possible to build another kind of classifiers based on analogical proportions. The fact that 
analogical proportions belong to a larger class of formulas, namely logical proportions, including heterogeneous proportions, 
led us to wonder if this latter kind of proportions might also be used with success to build classifiers. We have investigated 
this option in our paper.

We have first contrasted the two types of proportion in a formal way: homogeneous proportions, including analogical 
proportion, on the one hand, and heterogeneous proportions on the other hand. Then, starting from heterogeneous pro-
portions, we have established a way to define an oddness measure and an evenness measure in order to estimate to what 
extent a new item does not conform, or conforms, to a candidate class. Then, testing on classical benchmarks coming from 
UCI repository, we have compared an oddness-based classifier and an evenness-based classifier with standards methods 
in classification, as well as with analogical proportion-based classifiers. Our experiments empirically highlight the good 
behavior of heterogeneous logical proportion-based classifiers.

As this paper is essentially devoted to classification, once we have explained where the oddness and the evenness 
evaluations come from, we have mainly focused on empirical results. We have discussed elementary properties of the 
building blocks of these measures, in order to make sure that they carry suitable semantics for a classification purpose. 
Nevertheless, we have seen that, regarding oddness measure, Odd2 classifier (based on O D D2 measure) stands out of the 
crowd. In fact, if we are back to the basic brick Odd2 of O D D2 measure, it is clear that, when |S| = 2, Odd(S, x) = 0 as soon 
as x ∈ S . This is not generally the case as soon as |S| > 2. This suggests that O D D2, built up on the sum of atomic Odd(S, x)
with |S| = 2, may be a better marker of the oddness of a given element x inside a class C than any other measure O D Di
with i > 2. Still the global oddness and evenness measures have no obvious remarkable properties. This question may be 
addressed in future works.

Apart from a formal investigation of the properties of oddness and evenness measures, their merits would need to be 
studied in greater detail in order, for instance, to more precisely assessed the expected accuracy of oddness or evenness-
based classifiers. Then, one might think to use them in conformal predictors [24,27,28], as first experimented in [6] with an 
evenness-based classifier. Indeed the oddness measure may be considered as a non-conformity measure, while the evenness 
measure would be a conformity measure.
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