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Abstract—An efficient way to design slotless permanent magnet
machines is to associate analytical models with deterministic
global optimization algorithms. In this paper, we propose to
extend these design approaches in order to take into account
the torque ripples. This involves the study of a semi-infinite opti-
mization problem. To solve it, a discretization method associated
with an exact Branch and Bound global optimization solver is
developed. This new approach is validated on some numerical
tests showing that efficient global optimal solutions with torque
ripples about 5% (instead of 30%) can be so-obtained.

Index Terms—Slotless permanent magnet machines, semi-
infinite programming, analytical model, deterministic global
optimization.

I. INTRODUCTION

In this work, we address the problem to design a slotless
permanent magnet machine (SPMM) when constraints on
the torque ripples are taken into account. Starting from an
analytical model provided in [1] and [2], an extension is
provided here to model the dynamic torque including the
torque ripples of such a machine with a three-phase sine wave
current supply. Thus, the torque will vary respect to an angle
which determines the rotor position. Considering a schedule
of conditions, this design problem is formulated as a semi-
infinite optimization program. Indeed, the constraints about the
torque ripple is said infinite; i.e., it will generate an infinity
of constraints depending continuously on the rotor position.

In this work, we will discuss a way to solve this kind
of semi-infinite problem by discretizing the angle of the
rotor position and by using COUENNE a deterministic global
optimization solver [3] via the AMPL modelling language [4].

In Section II, the analytical model of a SPMM will be pre-
sented including its formulation into a semi-infinite program.
In Section III, our optimization method is discussed and some
numerical results are provided showing that such a method
is efficient to design SPMM when constraints on the torque
ripples have to be taken into account.

II. MODEL AND FORMULATION INTO A SEMI-INFINITE
OPTIMIZATION PROBLEM

The model of a SPMM provided in [1] has already been
designed by deterministic global algorithm [2] and this was
improved in [5]. This analytical model only uses the average
torque. Herein, a new analytical model is developed to include
the torque ripples. The main difference is that harmonics, and
their interaction, of the spatio-temporal distributions of stator
sine wave currents and rotor square wave magnetic flux density
are considered. Some parameters which are now more realistic
have been changed from [1], [2] and [5]. This section aims to
present the geometry and assumptions leading to an enhanced
model taking the torque ripples into account.

A. Geometry and assumptions

The model developed herein concerns an inner-rotor
surface-mounted permanent magnet machine without slot.
Numerous publications deal with the modelling of such elec-
tromechanical converters and propose a simplified sizing ap-
proach by considering a few geometric parameters, a required
magnetic induction amplitude in the air gap and a net torque
to reach as proposed in [1], [2] and [6]. More complex models
have been also carried out to predict, for instance, the winding
inductances and the armature reaction field of slotless perma-
nent magnet brushless machines [7]. Some authors, like in
[8], beside expend great effort in generalizing the calculation
of the magnetic field distribution in slotless permanent magnet
machines to take into account, for example, eddy currents in
conductive regions whose effect is important for the design
of very high speed slotless permanent-magnet machines [9].
However, the model addressed herein does not propose to use
such general approach but rather a simplified modelling in
order to formulate a simple optimization problem.

Thus, the structure considered hereinafter is supposed to be
three-phase (m = 3) and multipolar (let p be the number of
pole pairs). The rotor is composed of 2p radially polarized
surface-mounted permanent magnets of an angular opening
θa = βaθp where βa ∈ ]0, 1] and θp = π/p are the magnet
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Fig. 2: Angular distribution on a pole pair determined at stator
bore of the radial component of the magnetic flux density
produced by rotor magnets

flowing in them. This distribution is defined by the sum on the
stator phases of products between the space-dependent con-
ductor distribution and the time-dependent current waveform
for each phase so much that:

kS(θ, t) =
m∑
ν= 1

cSν(θ)iSν(t) (2)

where cSν(θ) is the conductor distribution of the phase ν
whose a representation on a pole pair is pictured in Fig. 3
for all the phases of a three-phase multipolar machine. In
this figure, a full pitch single layer winding and conductors
of a same phase uniformly distributed on a winding angular
opening θc are assumed (CS is the amplitude expressed in
conductor/m). Furthermore, iSν(t) is the electric current of the
phase ν supposed to be sine wave, for the sake of simplicity,
so much that:

∀ ν ∈ {1, . . . ,m} , iSν(t) = ÎS cos

[
αS(t)− (ν− 1)

2π

m

]
(3)

with ÎS the current amplitude, αS(t) = ωSt + βS where ωS
and βS are the electric angular frequency and phase angle,
respectively.
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Fig. 3: Conductor distributions on a pole pair for each phase
of a three-phase multipolar synchronous machine

Consequently, by applying the Lorentz force on stator
conductors and owing to the Newton’s third law, the torque

exerted on the rotor is defined by the following angular integral
such as:

Γem(t) = −pD
2

2λ
(D + E)

θp∫
0

kS(θ, t)Ba(θ, t)dθ (4)

From the definition (2), the waveforms (3) and Fourier series
of both distributions drawn in Fig. 2 and Fig. 3, it is possible
to compute the previous integral. Hence, under both further
conditions of synchronism (ωS = pΩ) and maximal torque
(βS = π/2), the dynamic torque (4) is rewritten as follows:

Γmax(t) = 〈Γmax〉
[
1 + rΓ(t)

]
(5)

where the maximal net torque is:

〈Γmax〉 =
πD2

2λ
(D + E)

√
2krEEch sinc

(
βcπ

2m

)
· · ·

× βaBe(1− kf )sinc
(
βaπ

2

)
,

where sinc is the unnormalized sine function defined for
x 6= 0 by sinc(x) = sin(x)/x and kf is a semi-empiric
magnetic leakage coefficient. The latter can be expressed
only for slotless machines with rectangular waveform surface-
mounted permanent magnets by the following formula (see
[10], Chap. I, § I.2.2.2, p. 17):

kf =
3

2
pβa

e+ E

D
(6)

The normalized ripples rΓ(t) are also defined as follows:

rΓ(t) =

+∞∑
q= 1

(−1)mq

sinc
(
βcπ

2m

)
sinc

(
βaπ

2

) cos(2mqpΩt) · · ·

×

(
sinc

[
(2mq + 1)

βcπ

2m

]
sinc

[
(2mq + 1)

βaπ

2

]
· · ·

+ sinc
[
(2mq − 1)

βcπ

2m

]
sinc

[
(2mq − 1)

βaπ

2

])
.

C. Definition of the semi-infinite optimization problem

The eleven variables as well as their variation boundaries
of the semi-infinite optimization problem are those gathered
in Tab. I. Let denote ∆ = (D,λ, . . . , p) the vector of variables
and S∆ = [0.01 , 0.5]× [1 , 2.5]× . . .×{1, . . . , 10} the search
domain. The idea of this model is to include within a sizing
optimization problem based on the minimization of the magnet
volume, a continuous, i.e. infinite, constraint which considers
a limitation on the torque ripples yielding a semi-infinite
program. Here, for simplification purposes, the electric angle
αe = pΩt will be used amounting to define the torque ripples



through the new function rΓ(αe,∆) = rΓ( αe

pΩ ,∆). Thus, the
semi-infinite optimization problem (P) is:

(P)



min
∆∈S∆

Vm = πβa
D

λ
la(D − 2e− la)× 106

u.c.
〈Γmax〉(∆) = Γr

Ech = krEJ
2
Cu

Be =
2Jala

D ln

[
D + 2E

D − 2(la + e)

]
kf =

3

2
pβa

e+ E

D

C = βa
πD

4p

Be
BFe

rs + C + la + e ≤ D/2

|rΓ(αe,∆)| ≤ lr , ∀αe∈ [0 , 2π[

where lr ∈ [0 , 1] is a percentage to limit the torque ripples
and Vm is the magnet volume expressed in cm3. This problem
also contains an equality constraint on the thickness C of both
stator yoke and rotor core. It can be expressed from the iron
magnetic induction BFe by using Gauss’s law for magnetism
between the rotor core and a magnet. Note that p is an integer
variables and thus, problem (P) is a semi-infinite Mixed-
Integer Non-Linear Program (MINLP).

III. NUMERICAL RESULTS OF DESIGN

In this approach, to tackle the semi-infinite problem (P),
the angle αe is discretized into n values. This provides 2n

inequality constraints, which means that α[j]
e = 2π(j−1)

n with
j ∈ {1, . . . , n}. It is a simple efficient way to convert the
semi-infinite problem (P) into a MINLP one. Of course, this
MINLP is not equivalent to problem (P), it will just numeri-
cally approximate it depending on n (the number of discretiza-
tion steps). Let denote by (P̃n) this discretization problem
deriving from the semi-infinite problem (P)In problem (P̃n),
the semi-infinite constraint |rΓ(αe,∆)|≤ lr,∀αe ∈ [0 , 2π[ is
replaced by the 2n inequality constraints −lr ≤ rΓ(α

[j]
e ,∆) ≤

lr,∀ j∈{1, . . . , n}. Remark that increasing n will generate
thinner approximations of problem (P). Meanwhile, it will
also provide a huge number of inequality constraints which
could be difficult to manage by optimization softwares.

In this paper, COUENNE, which is a branch-and-bound based
deterministic global optimization MINLP software, is used
[3]. COUENNE is carried out via the AMPL environment [4]
to describe the discretized problem (P̃n). In the following,
the listings are provided and they present the entire AMPL
code; note that these codes are really easy to read and to
develop. Indeed, these AMPL codes are quite directly derived
from problem (P̃n); the most difficult parts are the definitions
of the constraints about the torque ripples. They are detailed
at the end of Listing 1 in the constraints denoted by C_O1
and C_O2 which depends on the set v= {1, · · · , n}.

Listing 1: AMPL model of problem (P̃n): Full Model.mod
# D e f i n i t i o n s o f t h e machine p a r a m e t e r s
param k r : = 0 . 5 ;
param B Fe : = 1 . 5 ;
param E ch :=1 e11 ;
param C em : = 1 0 ;
param J a : = 0 . 9 ;
param p i : = 3 . 1 4 1 5 9 2 6 ;
param b e t a c := 0 . 9 ;
param r s min := 0 . 0 1 ;

# V a r i a b l e s : bounds and a s t a r t i n g p o i n t ( f o r l o c a l methods )
var D >=0.01 <=0.5 : = 0 . 0 1 ;
var lambda >=1 <=2.5 : = 1 ;
var l a >=0.003 <=0.05 : = 0 . 0 0 3 ;
var E >=0.001 <=0.05 : = 0 . 0 0 1 ;
var C >=0.001 <=0.05 : = 0 . 0 0 1 ;
var b e t a a >=0.1 <=1 : = 0 . 8 ;
var B e >=0.1 <=1 : = 0 . 1 ;
var J Cu >=1e5 <=1e7 :=1 e5 ;
var k f >=0.01 <=0.3 : = 0 . 0 1 ;
var e >=0.001 <=0.005 : = 0 . 0 0 1 ;
var p >= 1 <=10 :=5 i n t e g e r ;

# f u n c t i o n t o m i n i m i z e
minimize Va : p i * b e t a a * l a * (D/ lambda ) * (D 2 * e l a ) * 1 0 ˆ 6 ;

# c o n s t r a i n t s
s u b j e c t to C1 : C em = (6* s q r t ( 2 ) / ( p i * lambda * b e t a c ) ) *Dˆ2

*B e * ( 1 k f ) * (D+E)* s q r t ( k r *E*E ch )
* s i n ( b e t a a * p i / 2 ) * s i n ( b e t a c * p i / 6 ) ;

s u b j e c t to C2 : B e = 2* l a * J a / ( D
* l o g ( (D+2*E ) / ( D 2 * l a 2 * e ) ) ) ;

s u b j e c t to C3 : C = b e t a a *B e* p i *D/ ( 4 * B Fe*p ) ;
s u b j e c t to C5 : C + l a + e + r s min <= (D / 2 ) ;
s u b j e c t to C6 : k f = ( 3 / 2 ) * p* b e t a a * ( e+E ) / D;
s u b j e c t to C7 : E ch = k r *E*J Cu ˆ 2 ;
# c o n s t r a i n t s on t h e t o r q u e r i p p l e s
param N h =5;
s e t s = 1 . . N h ;
param n =10;
param l r = 0 . 0 5 ;
s e t v = 1 . . n ;
s u b j e c t to C O1{ j in v} :

sum{q in s } ( 1 ) ˆ ( 3 * q ) * ( s i n ( ( 6 * q +1)* b e t a a * p i / 2 )
* s i n ( ( 6 * q +1)* b e t a c * p i / 6 ) / ( ( 6 * q +1) ˆ2* s i n ( b e t a a * p i / 2 )
* s i n ( b e t a c * p i / 6 ) ) + s i n ( ( 6 * q 1 ) * b e t a a * p i / 2 )
* s i n ( ( 6 * q 1 ) * b e t a c * p i / 6 ) / ( ( 6 * q 1 ) ˆ 2 * s i n ( b e t a a * p i / 2 )
* s i n ( b e t a c * p i / 6 ) ) )* cos (6* q *(2* p i * ( j 1 ) / n ) ) <=l r ;

s u b j e c t to C O2{ j in v} :
sum{q in s } ( 1 ) ˆ ( 3 * q ) * ( s i n ( ( 6 * q +1)* b e t a * p i / 2 )

. . . >= l r ;

Listing 2: AMPL script for solving problem (P̃n).
r e s e t ;
# ############ Load t h e model ###############
model Ful l Mode l . mod ;

# ############ Choice o f t h e s o l v e r ########
o p t i o n s o l v e r couenne ;
s o l v e ; # s o l v e t h e problem

In Tab. III, some results solving problem (P) by approx-
imating it by problem (P̃n) are presented. In the first row
of Tab. III, ”w/” or ”w/o” denote the fact that torque ripples
(”TR”) contraints are taken into account or not. For this study,
lr is fixed to 5 % and the infinite sum to compute rΓ is
limited to the first five harmonics or the first ten harmonics
as mentioned by the value Nh in the second row of Tab. III.
The remaining rows in this table are respectively the minimal
magnet volume in cm3, the maximal absolute value of the
ripples computed using n = 360 discretization steps (1 step
by degree) and Nh = 100 harmonics (i.e., 100 terms of the
sum), the variables corresponding to the optimal solution and



the CPU-time in seconds. Moreover, all the computations are
carried out on a MacBook Pro LapTop with a 2.8 GHz Intel
Core i7 processor and 16 GB of memory.

TABLE III: Results from the sizing of a slotless permanent
magnet machine based on the minimization of magnet volume
including a limitation of torque ripples

TR w/o w/ w/ w/ w/ w/

(n,Nh) × (10, 5) (18, 5) (50, 5) (100, 5) (100, 10)

Vm 30.996 51.434 51.649 49.086 49.200 49.460
[cm3]

|rΓ|max 0.3314 0.0574 0.0729 0.0574 0.0576 0.0528

D [mm] 290.38 196.35 201.69 191.90 191.58 190.87

E [mm] 4.2048 4.8584 3.2508 4.5678 4.5673 4.5661

e [mm] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

la [mm] 3.0000 3.0007 3.0000 3.0000 3.0000 3.0000

C [mm] 1.2514 2.2839 1.5027 11.521 11.569 11.676

λ [−] 2.5000 2.4999 2.5000 2.5000 2.5000 2.5000

βa [%] 10.000 36.303 34.534 36.303 36.510 36.980

Be [T] 0.3292 0.3060 0.3708 0.3159 0.3159 0.3159

JCu 6.8967 6.4160 7.8437 6.6170 6.6173 6.6182
[A/mm

2]

kf [%] 1.0754 8.1238 9.8255 1.5800 1.5914 1.6176

p [−] 4 5 9 1 1 1

Time [s] 366 1232 184 164 358 2663

First, in Tab. III, it can be noticed that if the magnet volume
is minimized without taking care about the torque ripples, the
optimal design yields a very low magnet volume but with
about 33 % of torque ripples. Still according to this table,
the branch-and-bound based discretization method addressed
herein can find the global optimal design taking into account a
limitation on the torque ripples (note that the magnet volume
significantly increases ). Let remark that when n increases
up to 100 (yielding 200 inequality constraints), the CPU-time
increases as expected but not so much. Thus, the difficulty
to solve the problem (P̃n) by COUENNE appears to be not
so linked to n and it seems to be possible for a branch-
and-bound code like COUENNE to manage a great number
of constraints (n sufficiently big). Nevertheless, increasing n
does not diminish the accuracy on the torque ripples which
are about 5.7 % for n = 10, 50 and 100. Furthermore, note
that when n is a multiple of 2m = 6 here (stemming from
the cosinus in the expression of rΓ), i.e. n = 18 in Tab. III,
errors are made on the torque ripples (about 7 %)as proposed
in Fig. 5.

An idea to improve the accuracy of such a method is to
increase the number of harmonics (Nh = 10) taken in sum
(see last column in Tab. III). Thus, the maximal torque ripple
is now about 5.3 % instead of 5.8 % but this needs a strong
computational effort. Moreover, the solution is globally the
same; note that the MINLP problem is much more difficult to
solve for COUENNE involving the sum of sinus and cosinus
and therefore the CPU-time is 7.5 time greater. The differences
between the torque ripples are plotted in Fig. 7 and Fig. 8 and
it can be seen that the maximum value of the torque ripples
is not obtained with 5 harmonics. It is almost reached with

10 harmonics and that makes the differences obtained on the
global optimal solutions (see the two last columns of Tab. III).
Note finally that using 5 harmonics and n = 10 appears to be
sufficient to obtain a quite good solutionowing to a point of
discretization closely matching a minimal torque value despite
an unsatisfactory approximation of torque ripples. Therefore,
it appears in Fig. 4 up to Fig. 8 that it is interesting to solve
problem (P̃n) with n sufficiently big (n = 100 for example)
because, even for n = 50, it remains some significant errors
(see Fig. 6).

Fig. 4: Torque ripples with n = 10 and Nh = 5

Fig. 5: Torque ripples with n = 18 and Nh = 5

IV. CONCLUSION & DISCUSSIONS

In this paper, a new optimization method is proposed to
design SPMM taking into account limitations on the torque
ripples. The design method addressed herein is based on
the combination of a semi-infinite formulation which uses
a SPMM analytical model and a deterministic global opti-
mization MINLP code. The numerical results showed that
significant torque ripples can occur in global optimal design
solutions (about 33 %) when the torque ripples contraints are
not taken into account. Thus, by considering constraints on the
torque ripples, this yields global optimal solutions where the
torque ripples are strongly reduced (less than 6 %) by using



Fig. 6: Torque ripples with n = 50 and Nh = 5

Fig. 7: Torque ripples with n = 100 and Nh = 5

Fig. 8: Torque ripples with n = 100 and Nh = 10

our discretization method based on AMPL and the deterministic
MINLP global optimization COUENNE solver. This method
appears to be particularly efficient in solving those kind of
difficult semi-infinite MINLP design problems.

In Listing 2, the COUENNE solver is chosen, it could

be replaced by another one as IPOPT or SNOPT which
are local solvers. However, these two local solvers cannot
take into account the fact that p is an integer variable and
they will consider it as a continuous code. In Listing 2, by
replacing couenne by ipopt similar results were obtained
mainly with p = 1, and by replacing couenne by snopt
no solution is found. Of course these two solvers mainly
depends on the starting points provided by the user; see
Listing 1. In this study, the optimization routine fmincon of
MatLab was also tested using a multistart based algorithm
(with 1000 starting points randomly generated). It appears
that only the optimization algorithm based on the interior-
point method provides similar results than those presented in
Tab. III. Note that the other algorithms sqp, active-set,
reflective-trust-region have difficulties to con-
verge. This is mainly due to the fact that using the discretiza-
tion step to take into account semi-infinite constraints gener-
ates a great number of non-linear and non-convex inequality
constraints which are difficult to be be considered by sqp
or active-set based optimization algorithms (that is also
why SNOPT did not work using AMPL). It can be noted that
the local optimization algorithms based on an interior-point
method present some effectiveness in solving those kind of
semi-infinite problems using a discretization step. In MatLab,
it exists a routine fseminf which can solve semi-infinite
problems such as problem (P). fseminf routine works by in-
terpolating (in the iterations of a local optimization solver) the
semi-infinite constraints without needing to entirely discretize
it. That is an interesting way to solve efficiently semi-infinite
NLP by satisfying precisely the semi-infinite constraints (note
that in Tab. III, the semi-infinite constraint is always a little
bit violated). However, fseminf routine is based on a sqp
based algorithm which appears to never converge to solve
problem (P̃n) and thus, unfortunately fseminf routine never
converges to a solution.
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