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A design procedure for a single time-varying
functional observer

Frédéric Rotella, Irène Zambettakis

Abstract—The paper proposes an algorithm for the design of
a single functional observer for a linear time-varying system.
The proposed constructive procedure can be iterated to obtain
a minmal order for the observer where the existence conditions
are fufilled. As a specific feature, the proposed procedure does
not require the solution of a differential Sylvester equation.

Index Terms—Linear time-varying system, single functional ob-
server, Luenberger observer, design algorithm.

I. INTRODUCTION

Since Luenberger’s seminal work [11] a significant amount
of research is devoted to the problem of observing a linear
functional in a time-invariant setting, see for instance [14],
[26], [1], [24] and the references therein. Whereas, unlike the
time-invariant counterpart, since [27], there are few papers
dealing with the observer design for time-varying systems.
The main part of the proposed developments are limited to the
case of state observers design (see [18], [4], [17], [29], [23]
and the references therein). The interest to consider linear
time-varying systems is twofold [8], [6], [17] : on the one
hand as general models of linear behaviour for a plant, on the
other hand as linearized models of non linear systems about a
given trajectory. As an example, in [30] a full order observer
is used for the estimation of the imbalance in a speed-varying
rotating machine.

When the observation of the whole state is not needed and
in order to obtain reduced-order observers the observation of
a linear functional of the state. To obtain a minimum stable
observer is always an open problem even in the time-invariant
case [24]. To simplify, we consider here the problem of
observing a single linear functional

v(t) = l(t)x(t), (1)

where, for every time t in R
+, l(t) is a differentiable vector,

and x(t) is the n-dimensional state vector of the state space
system

ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = C(t)x(t),

(2)

where u(t) is the p-dimensional control, and y(t) is the m-
dimensional output. For every t in R

+, A(t), B(t), and
C(t) are known matrices of appropriate dimensions. To
avoid tedious counts and distracting lists of differentiability
requirements, we assume every time-varying matrices and
vectors are such that all derivatives that appear in the paper are
continuous for all t. Without loss of generality and in order
to avoid useless dynamic parts in the observer, we suppose

[
C(t)
l(t)

]
is a full row rank matrix for all t. Indeed if there

exists λ(t) such that l(t) = λ(t)C(t), then, w(t) = λ(t)C(t)
is an observer for v(t).

Let us define the observability matrix of (2) by

Γ(t) =




Γ0(t)
Γ1(t)

...
Γn−1(t)


 ,

where Γ0(t) = C(t), and Γj(t) = Γj−1(t)A(t) + Γ̇j−1(t)
for j = 1, 2, ...n − 1. System (2), or shortly (A(t), C(t)), is
completely observable if rank (Γ(t)) = n for some t in R

+.
It is uniformly observable if rank (Ω(t)) = n for every t in
R

+[21], [28].

Following [8], if r states of (2) are not observable there exists
a transformation which induces the following partitions for
A(t) and C(t)

A(t) =

[
A11(t) A12(t)
0(n−r)×r A22(t)

]
,

C(t) =
[
0m×r C2(t)

]
,

where (A22(t), C2(t)) is completely observable. Then the
system is detectable when A11(t) is a Hurwitz matrix. A
matrix F (t) is said to be a Hurwitz (convergent in [25]) matrix
if every solution x(t, t0, x0) of the differential system

ẋ(t) = F (t)x(t), x(t0) = x0,

is such that limt→∞ x(t, t0, x0) = 0 for every t0 and x0. For
example, in the case of a scalar system

ẋ(t) = f(t)x(t), x(t0) = x0,

where dimx(t) = 1, we know that

x(t) = exp

(
ˆ t

t0

f(τ)dτ

)
x0.

Thus the scalar function f(t) is Hurwitz if and only if
limt→∞

´ t

t0
f(τ)dτ = −∞.

Now, it is well known that the observation of v(t) can be
carried out with the design of the Luenberger observer

ż(t) = F (t)z(t) +G(t)u(t) +H(t)y(t),

w(t) = P (t)z(t) + V (t)y(t),
(3)

where z(t) is a q-dimensional state vector. The time-varying
matrices F (t), G(t), H(t), P (t) and V (t) must be determined



such that (3) is an asymptotic observer of (1) for the system
(2). Namely, they have to ensure

lim
t→∞

(v(t)− w(t)) = 0.

Following [25], [16], the completely observable system (3) is
an asymptotic observer of linear functional (1) for system (2)
if and only if there exists a continuously differentiable solution
T (t) of equations

G(t) = T (t)B(t),

T (t)A(t)− F (t)T (t) + Ṫ (t) = H(t)C(t), (4)

l(t) = P (t)T (t) + V (t)C(t), (5)

and F (t) is a Hurwitz matrix.

From the Cumming-Gopinath well known design procedure
we can obtain a reduced-order state observer with q = n−m.
Our main motivation is to give a simple procedure to design
an asymptotic observer of the single linear functional with an
order q < n−m. Several designs have been proposed (see for
instance [19]) always to solve the fixed in the outset behaviour
of the observation error. In the opposite, our purpose is to
obtain a stable observer. Namely, we solve the stable observer
design for the single functional (1). This standpoint leads to
less order observers than those obtained to solve the fixed poles
in the outset observer problem. Obviously, the pole notion
must be understood here in the time-varying setting (see for
instance [13]).

Let us notice that the existence conditions of the asymptotic
observer require the solution T (t) of the differential Sylvester
equation (4) where F (t) is unknown as well as the initial
conditions for T (t). The second motivation of our paper is
to circumvent the determination of T (t) as solution of the
differential equation (4).

Related to our design problem we use the following derivative
operator D, for every time-varying matrix M(t) with n

columns

D(M(t)) = Ṁ(t) +M(t)A(t).

Recursively, we define D0(M(t)) = M(t) and, for i = 1, . . .

Di(M(t)) = D
(
Di−1(M(t))

)
,

= ˙Di−1(M(t))+Di−1(M(t))A(t).

We use also two matrices, for i = 1, . . .

Σi(t) =




D0(C(t))
D0(l(t))
D1(C(t))
D1(l(t))

...
Di(C(t))




, (6)

and,

Σi(t) =




D0(C(t))
D0(l(t))
D1(C(t))
D1(l(t))

...
Di(C(t))
Di(l(t))




. (7)

The relationship between these two matrix will be the key
point of the algorithm.

Due to tedious calculations the procedure will not be explained
in a general case. Consequently, the paper is organised as
follows. In the first section are detailled the procedure and
conditions to obtain firstly a one-order observer and, secondly,
a second-order observer. To generalize the previous steps, the
second section is devoted to a discussion on several points of
the procedure. In a final section an example is proposed on
a time-varying system described with a canonical observable
state space equation. Let us mention here that this example
is a generic one which is used to detail and illustrate some
points of the procedure in a rather general framework.

II. ITERATIVE OBSERVER DESIGN

In this section we detail only the first iterative steps of our
procedure. The existence of a second-order points out the
main features and the basic principles for the design of the
single functional observer.

A. Existence of a one-order observer

1) Design: Let us suppose that for every t we have
rank (Σ1(t)) = rank

(
Σ1(t)

)
. Thus, there exist mC,0(t),

ml,0(t), and mC,1(t) which have m, 1, and m columns
respectively,

D1(l(t)) =
[
mC,0(t) ml,0(t) mC,1(t)

]
Σ1(t). (8)

For simplicity sake we suppose that the derivative of mC,1(t)
exists.

Let us consider v(t) = l(t)x(t) = D0(l(t))x(t). When we
derivate this variable we get

v̇(t) = D1(l(t))x(t) +D0(l(t))B(t)u(t). (9)

The basic principle of our procedure is to detect in this
expression known variables and their derivatives. For this
purposeet us suppose we use the decomposition (8) which
leads to

v̇(t) = mC,0(t)D
0(C(t))x(t) +ml,0(t)D

0(l(t))x(t)

+mC,1(t)D
1(C(t))x(t) +D0(l(t))B(t)u(t).

We can include in this expression

y(t) = D0(C(t))x(t),

ẏ(t) = D1(C(t))x(t) +D0(C(t))B(t)u(t),



which lead to

v̇(t) = mC,0(t)y(t) +ml,0(t)v(t)

+mC,1(t)
(
ẏ(t)−D0(C(t))B(t)u(t)

)
.

+D0(l(t))B(t)u(t).

To eliminate the derivative of y(t), we define z(t) = v(t) −
mC,1(t)y(t), or

v(t) = z(t) +mC,1(t)y(t). (10)

Thus, we obtain

ż(t) = ml,0(t)z(t) +

(mC,0(t)− ṁC,1(t) +mL,0(t)mC,1(t))y(t)(11)

+(D0(l(t))−mC,1(t)D
0(C(t)))B(t)u(t).

When ml,0(t) is a Hurwitz matrix we have designed a one-
order asymptotic observer for l(t) given by (11) and the output
(10).

2) Determination of T (t): When we identify (11) and (3) we
get

F (t) = ml,0(t),

G(t) = (D0(l(t))−mC,1(t)D
0(C(t)))B(t),

H(t) = mC,0(t)− ṁC,1(t) +mL,0(t)mC,1(t),

P (t) = 1,

V (t) = mC,1(t).

It is obvious that if we let

T (t) = D0(l(t))−mC,1(t)D
0(C(t)),

this matrix fulfils the differential equation (4). This points
ends the proofs of the design of the one-order observer.

B. Existence of a second-order observer

When the conditions ml,0(t) is a Hurwitz matrix or
rank (Σ1(t)) = rank

(
Σ1(t)

)
are not fulfilled we can look

for a second-order asymptotic observer. In order to design
this observer we can derivate (9) which leads to

v̈(t) = D2(l(t))x(t)+
(
D1(l(t))B(t)u(t) + ˙D0(l(t))B(t)u(t)

)
.

Let us suppose that rank (Σ2(t)) = rank
(
Σ2(t)

)
. Thus, there

exist mC,0(t), ml,0(t), mC,1(t), ml,1(t) and mC,2(t) which
have m, 1, m, 1 and m columns respectively, such that

D2(l(t))

=
[
mC,0(t) ml,0(t) mC,1(t) ml,1(t) mC,2(t)

]
Σ2(t).

Thus v̈(t) can be written as

v̈(t) = mC,0(t)D
0(C(t))x(t) +ml,0(t)D

0(l(t))x(t)

+mC,1(t)D
1(C(t))x(t) +ml,1(t)D

1(l(t))x(t)

+mC,2(t)D
2(C(t))x(t) +(

D1(l(t))B(t)u(t) + ˙D0(l(t))B(t)u(t)
)
.

To design the observer there are two steps :

1) to recognize known variables and their derivatives.
Namely, y(t), ẏ(t), ÿ(t), v(t) and v̇(t).

2) to realize the obtained differential input-output relation-
ship.

1) Use of known variables: For the first step we use

y(t) = D0(C(t))x(t),

ẏ(t) = D1(C(t))x(t) +D0(C(t))B(t)u(t),

ÿ(t) = D2(C(t))x(t) +(
D1(C(t))B(t)u(t) + ˙D0(C(t))B(t)u(t)

)
,

and

v(t) = D0(l(t))x(t),

v̇(t) = D1(l(t))x(t) +D0(l(t))B(t)u(t),

which leads to

v̈(t) = mC,0(t)y(t) +ml,0(t)v(t)

+mC,1(t)
(
ẏ(t)−D0(C(t))B(t)u(t)

)

+ml,1(t)
(
v̇(t)−D0(l(t))B(t)u(t)

)

+mC,2(t)×(
ÿ(t)−D1(C(t))B(t)u(t)− ˙D0(C(t))B(t)u(t)

)
(12)

+
(
D1(l(t))B(t)u(t) + ˙D0(l(t))B(t)u(t)

)
. (13)

2) Realization: To realize the previous input-output relation-
ship we write v̈(t) as

v̈(t) = µC,0(t)y(t) + µl,0(t)v(t) + β0(t)u(t)

+p [µC,1(t)y(t) + µl,1(t)v(t) + β1(t)u(t)]

+p2 [µC,2(t)y(t)] ,

where the functions µC,0(t), µl,0(t), β0(t), µC,1(t), µl,1(t),
β1(t) and µC,2(t) are defined by identification with (13) and
p is the derivative operator with respect to time. For instance,
we have

µC,0(t) = mC,0(t)− ˙mC,1(t)− ¨mC,2(t),

µC,1(t) = mC,1(t)− ˙mC,2(t),

µC,2(t) = mC,2(t),

and,

µl,0(t) = ml,0(t)− ˙ml,1(t),

µl,1(t) = ml,1(t).

The usual method for realization consists in writing the
previous relationship as

v(t) =
1

p

[
1

p
[µC,0(t)y(t) + µl,0(t)v(t) + β0(t)u(t)]

+ [µC,1(t)y(t) + µl,1(t)v(t) + β1(t)u(t)]]

+ [µC,2(t)y(t)] ,



and define the following state variables :

z1(t) =
1

p
[µC,0(t)y(t) + µl,0(t)v(t) + β0(t)u(t)] ,

z2(t) =
1

p
[z1 + µC,1(t)y(t) + µl,1(t)v(t) + β1(t)u(t)] .

With v(t) = z2(t) + µC,2(t)y(t), and,

z(t) =

[
z1(t)
z2(t)

]

we get the following second-order observable realization :

ż(t) =

[
0 µl,0(t)
1 µl,1(t)

]
z(t) +

[
β0(t)
β1(t)

]
u(t)

+

[
µC,0(t) + µl,0(t)µC,2(t)
µC,1(t) + µl,1(t)µC,2(t)

]
y(t), (14)

v(t) =
[
0 1

]
z(t) + µC,2(t)y(t).

When the matrix

F (t) =

[
0 µl,0(t)
1 µl,1(t)

]

is a Hurwitz matrix we have designed a second-order asymp-
totic observer for l(t).

Let us remark that this procedure does not need the deter-
mination of the matrix T (t). But, if are interested in we can,
through some calculations, obtain it. As an example this point
is detailled in the appendix.

III. DISCUSSION

For shortness sake, in order to cope with the design of high-
order asymptotic single functional observers we will not detail
the calculations but only discuss some points.

A. The general case

First of all the conditions for the existence of a q-order
Luenberger observer are obtained through the calculus of the
q-th derivative of v(t) and the two steps :

1) Recognize known variables and their derivatives.
Namely, y(t), . . ., y(q−1)(t), y(q)(t), v(t),. . ., v(q−2)(t),
and, v(q−1)(t).

2) Realize the obtained differential input-output relation-
ship.

Namely, the procedure we adopted for the second-order can be
generalized and the conditions to design a q-order Luenberger
observer are :

1) rank (Σq(t)) = rank
(
Σq(t)

)
. Namely, there ex-

ist mC,0(t), ml,0(t), . . ., mC,q−1(t), ml,q−1(t) and
mC,q(t) where the mC,i(t) have m columns and ml,i(t)
are scalar such that

Dq(l(t)) =
[
mC,0(t) ml,0(t) · · · ml,q−1(t)

ml,q−1(t) mC,q(t)
]
Σq(t). (15)

2) Due to the realization step, from the scalar functions
ml,0(t), . . ., ml,q−1(t) we deduce scalar functions

µl,0(t), . . ., µl,q−1(t). To have an asymptotic observer
the matrix

F (t) =




µl,0(t)
1 µl,1(t)

. . .
...

1 µl,q−1(t)




must be an Hurwitz matrix.

When rank (Σq(t)) < rank
(
Σq(t)

)
or F (t) is not an Hurwitz

matrix we must iterate again by another derivation of v(t),
namely, v(q+1)(t). Obviously, q is upper bounded with n−m.

B. The decomposition of Dq(l(t)).

The design procedure lays on the solution of the linear
equation (15) which can be solved by means of time-varying
generalized inverses [2], [9], [10]. A generalized inverse
Σ

{1}
q (t) for the linear transform Σq(t) is a matrix defined [3]

by, for every t,

Σq(t)Σ
{1}
q (t)Σq(t) = Σq(t)

For example, a generalized inverse, Σ{1}
q (t), for Σq(t) can be

obtained from the time-varying singular value factorization of
Σ(t) or from its QR factorization [7], [5]. The solution set of
(15) can then be expressed a

Mq(t) =
[
mC,0(t) ml,0(t) · · · mC,q−1(t)

ml,q−1(t) mC,q(t)
]
,

= Dq(l(t))Σ{1}
q (t)

+W (t)(In − Σq(t)Σ
{1}
q (t)),

where W (t) is an arbitrary matrix of adapted dimensions.

When, for every t, rank (Σq(t)) = rank
(
Σq(t)

)
=

(m+ 1) q + m, the solution set is reduced to the unique
element Dq(l(t))Σ

{1}
q (t). Let us notice that this element is

nondependent on the choice of Σ{1}
q (t). Otherwise, when

rank (Σq(t)) = rank
(
Σq(t)

)
< (m+ 1) q +m

then the dimension of the spanned space vector by is

r = (m+ 1) q +m− rank (Σq(t)) .

In this last case there are r vectors, ω1(t), . . ., ωr(t),

span {ω1(t), . . . , ωr(t)} = I
{
W (t)(In − Σq(t)Σ

{1}
q (t))

}
,

which can be used to stabilize the designed q-order observer.
Namely, to obtain a matrix F (t) which is an Hurwitz matrix.

This step is a very important one but, for shortness sake,
cannot be expressed here in a general way. Only, we use the
example in the next section to give a flavour of the procedure.
The possibility for getting an Hurwitz matrix lays on detecting
an uniformly observable and using eigenvalues assignement
techniques ([20], [12], [4]), we can yield uniform exponential



stability at any desired rate[6], [17] for the observation error
system η̇(t) = F (t)η(t).

This procedure is an extension of the procedure we proposed in
[16] to get a minimum functional observer for a time-varying
linear system.

IV. EXAMPLE

Let us consider the observable single-output system (2) with

A(t) =




0 0 0 −a1(t)
1 0 0 −a2(t)
0 1 0 −a3(t)
0 0 1 −a4(t)


 , B(t) =




b1(t)
b2(t)
b3(t)
b4(t)


 ,

C(t) = C =
[
0 0 0 1

]
,

where n > 2. Let us consider three cases for the single linear
functional (1) :

• case 1 :
l(t) =

[
0 0 l(t) 0

]
; (16)

• case 2 :
l(t) =

[
0 l(t) 0 0

]
; (17)

• case 3 :
l(t) =

[
l(t) 0 0 0

]
, (18)

where in every case l(t) is a given differentiable function. Our
purpose is to find conditions for the existence of asymptotic
observers of v(t) = l(t)x(t) by applying, in every case, the
proposed observer design detailed in the previous parts.

A. Case 1

We have

D1(C(t)) =
[
0 0 1 −a4(t)

]
,

thus

Σ1(t) =




0 0 0 1
0 0 l(t) 0
0 0 1 −a4(t)




and
D1(l(t)) =

[
0 l(t) l̇(t) −a3(t)l(t)

]
.

It is obvious that except at time where l(t) = 0, rankΣ1(t) <
rankΣ1(t). Consequently, a one-order observer cannot exist.

To look for a second-order let us calculate :

D2(C(t)) =
[
0 1 −a4(t) a24(t)− a3(t)− ˙a4(t)

]

which leads to :

Σ2(t) =




0 0 0 1
0 0 l(t) 0
0 0 1 −a4(t)

0 l(t) l̇(t) −a3(t)l(t)

0 1 −a4(t) a24(t)− a3(t)− ˙a4(t)



.

As the first component of D2(l(t)) is l(t), it is obvious that,
as we have not get a one-order observer, we cannot obtain a
second-order single functional observer for this system.

The only solution is to design a time-varying Cumming-
Gopinath reduced third-order observer. This design is always
possible due to observability hypothsesis.

B. Case 2

As the rows Di(C(t)) are independent of the observed single
functional we have

Σ1(t) =




0 0 0 1
0 l(t) 0 0
0 0 1 −a4(t)




and
D1(l(t)) =

[
l(t) l̇(t) 0 −a2(t)l(t)

]
.

Obviously, rankΣ1(t) < rankΣ1(t) and a one-order observer
cannot be designed.

We calculate

Σ2(t) =




0 0 0 1
0 l(t) 0 0
0 0 1 −a4(t)

l(t) l̇(t) 0 −a2(t)l(t)

0 1 −a4(t) a24(t)− a3(t)− ˙a4(t)



,

and

D2(l(t)) =
[
2l̇(t) l̈(t) −a2(t)l(t) −α2,0(t)l(t)− α2,1(t)l̇(t)

]

where :

α2,0(t) = a1(t) + a2(t)a4(t) + ȧ2(t),

α2,1(t) = 2a2(t).

As, rankΣ2(t) = 4 we conclude that a second-order observer
may exist. Let us suppose that, for every t, l(t) does not
vanish. In this case, we can see that

Σ2(t) =

[
Π2(t)
∆2(t)

]

where ∆2(t) is the last row of Σ2(t) and rank(Π2(t)) = 4.
Due to full row rank of Π2(t), on the one hand, there exists
a unic vector Λ2(t) such that ∆2(t) = Λ2(t)Π2(t). Thus, we
have

Λ2(t) = ∆2(t)Π
{1}
2 (t),

where Π
{1}
2 (t) is a generalized inverse of Π2(t). We can

remark that Π2(t) is nonsingular thus, we have

Π
{1}
2 (t) = Π−1

2 (t).

Moreover,
Π2(t) = P2Π̃2(t)

where P2 is the permutation matrix

P2 =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 ,



and,

Π̃2(t) =




l(t) l̇(t) 0 −a2(t)l(t)
0 l(t) 0 0
0 0 1 −a4(t)
0 0 0 1


 .

Thus,

Π̃−1
2 (t) =




1

l(t)
−

l̇(t)

l(t)2
0 a2(t)

0 l(t) 0 0
0 0 1 a4(t)
0 0 0 1




and we obtain

Π−1
2 (t) = Π̃−1

2 (t)P2 =




a2(t) −
l̇(t)

l(t)2
0

1

l(t)
0 l(t) 0 0

a4(t) 0 1 0
1 0 0 0



.

On the other hand, there exists a unic vector Φ2(t) such that
D2(l(t)) = Φ2(t)Π2(t). Thus, we have

Φ2(t) = D2(l(t))Π
{1}
2 (t).

In order to solve the linear equation D2(l(t)) = M2(t)Σ2(t),
we get

Φ2(t)Π2(t) = M1
2 (t)Π2(t) +mC,2(t)Λ2(t)Π2(t)

where M1
2 (t) =

[
mC,0(t) ml,0(t) mC,1(t) ml,1(t)

]
.

We deduce

M1
2 (t) = Φ2(t)−mC,2(t)Λ2(t)

and, mC,2(t) appears as a free scalar function which
parametrizes the solution M2(t) as

M2(t) =
[
Φ2(t) 0

]
−mC,2(t)

[
Λ2(t) −1

]
.

Following the definition of F (t) in (14), namely,

F (t) =

[
0 µl,0(t)
1 µl,1(t)

]

with

µl,0(t) = ml,0(t)− ˙ml,1(t),

= Φ2,2(t)−mC,2(t)Λ2,2(t)

− ˙Φ2,4(t) + ˙mC,2(t)Λ2,4(t) +mC,2(t) ˙Λ2,4(t),

µl,1(t) = Φ2,4(t) +mC,2(t)Λ2,4(t).

The purpose is now to find a scalar function mC,2(t) such that
F (t) is a Hurwitz matrix. Let us suppose that Λ2,4(t) does
not vanish then we get from the second relationship

mC,2(t) =
µl,1(t)− Φ2,4(t)

Λ2,4(t)

and, the first equation indicates the constraint to ensure the
solvability with respect to mC,2(t). Namely, when µl,0(t) and

µl,1(t) are chosen to ensure that F (t) is an Hurwitz matrix,
they are to fulfill the differential equation

µl,0(t) = Φ2,2(t)−
µl,1(t)− Φ2,4(t)

Λ2,4(t)
Λ2,2(t)− ˙2Φ2,4(t)+ ˙µl,1(t).

As we only solve the stable observer problem, depending of
the known functions Φ2,j(t) and Λ2,j(t), most of the time
we can adapt the scalar functions µl,0(t) and µl,1(t) to obtain
mC,2(t) to yield uniform exponential stability at any desired
rate for the observation error system.

In order to illustrate this later point let us consider now l(t) ≡
1. In this case we obtain

Π−1
2 (t) = Π̃−1

2 (t)P2 =




a2(t) 0 0 1
0 1 0 0

a4(t) 0 1 0
1 0 0 0




thus, with σ(t) = a24(t)− a3(t)− ˙a4(t),

Λ2(t) =
[
0 1 −a4(t) σ(t)

]
Π−1

2 (t),

=
[
−a3(t)− ˙a4(t) 1 −a4(t) 0

]

which leads to Λ2,2(t) = 1 and, Λ2,4(t) = 0. Consequently,
the definitions for µl,0(t) and µl,1(t) are reduced to

µl,0(t) = Φ2,2(t)−mC,2(t)− ˙Φ2,4(t),

µl,1(t) = Φ2,4(t).

Let us calculate now Φ2,2(t) and Φ2,4(t). We get

D2(l(t)) =
[
0 0 −a2(t) −α2,0(t)

]

with α2,0(t) = a1(t) + a2(t)a4(t) + ȧ2(t). Thus,

Φ2(t) =
[
−α2,0(t)− a2(t)a4(t) 0 −a2(t) 0

]

from which we deduce Φ2,2(t) = Φ2,4(t) = 0. Thus

F (t) =

[
0 −mC,2(t)
1 0

]

which leads to the scalar observation error ë(t) =
−mC,2(t)e(t). Let us chose 2 scalar functions λ(t) and ϕ(t)
such that e(t) = ϕ(t) exp (−λ(t)) and, limt→∞ e(t) = 0.
Then we must choose

mC,2(t) = −
1

ϕ(t)

(
ϕ̈(t)− 2λ̇(t)ϕ̇(t)

−λ̈(t)ϕ(t) + λ̇2(t)ϕ(t)
)

to obtain a second-order asymptotic observer for v(t) = x1(t)
with an uniform exponential stability at any desired rate. The
precise design of this observer is let to the reader as an
exercise.



V. CONCLUSION

In the time-varying case, we have proposed a procedure to
design a single functional linear observer. Some specific
features of our algorithm can be underlined : the first step
uses derivatives of the single functional to be observed; the
second step uses realization of an input-output differential
relationship; for stabilization it uses two unique matrix fac-
torizations based on linearly independent rows of a time-
varying matrix; the proceduredo not require the determination
of T (t). This last point overcomes the determination of the
solution of a Sylvester differential equation. With respect
to other procedures [18] our design method is carried out
without needing to solve a differential Sylvester equation.
Moreover, the proposed algorithm points out whether we can
fix at any desired rate the convergence of the observation error.
In addition, if there exists a Lyapunov transform P (t) [6]
such that F (t) = P (t)ΦP (t)−1 + Ṗ (t)P (t)−1 where Φ is
a constant Hurwitz matrix, this can be performed by means
of eigenvalues of Φ. This standpoint has already been used
in [15] to design a minimal order single functional stable
observer for linear time-invariant systems and the proposed
design can be considered as a nontrivial extension of this result
to the time-varying case. Our next development will consider
the unknown input single functional observer design.

VI. APPENDIX

Let us see how T (t) can be determined for the second-order
single functional observer (14). In this case, on the one hand
we have with respect to the Luenberger observer (3)

G(t) =

[
β0(t)
β1(t)

]

with

β0(t) =
(
−mC,1(t)D

0(C(t))−ml,1(t)D
0(l(t))

−mC,2(t)D
1(C(t)) + ˙mC,2(t)D

0(C(t)) +D1(l(t))
)

×B(t),

β1(t) =
(
−mC,2(t)D

0(C(t)) +D0(l(t))
)
B(t).

On the other hand G(t) = T (t)B(t). Thus we can propose
that

T (t) =

[
γ0(t)
γ1(t)

]
(19)

with

γ0(t) = −mC,1(t)D
0(C(t))−ml,1(t)D

0(l(t))

−mC,2(t)D
1(C(t)) + ˙mC,2(t)D

0(C(t)) +D1(l(t)),

γ1(t) = −mC,2(t)D
0(C(t)) +D0(l(t)).

The last step consists in verifying that this expression verifies
the differential Sylvester equation (4). After some calculations
it is done and it can be concluded that (19) is the searched
matrix. Let us remind that T (t) gives the relation ship between
z(t) and x(t) with

z(t) = T (t)x(t).
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