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Abstract� The question is: Is the Laplace transform needed
in an Automatic Control course? The answer is : Obviously,
not! Based on an operational standpoint the �rst parts are
about guidelines for a primer in automatic control. Beyond
an undergraduate course, the two last parts, a little bit more
technical, are devoted on the one hand to get the model of a
computer controlled system and on the other hand to relate the
operational standpoint to usual tables used in some cases.

Résumé� Devant les inconvénients pédagogiques engendrés
par l'utilisation de la transformée de Laplace en automatique
le développement de méthodes basées sur une présentation
purement opérationnelle permet de focaliser les raisonnements
sur l'aspect pratique de cette discipline. À partir d'un point
de vue développé par Heaviside, nous passons en revue, dans les
premières parties, quelques résultats de base en automatique. Ces
résultats sont bien sûr obtenus à l'aide de la notion de transfert
ce qui nous permet d'en préciser l'interprétation et les différentes
acceptions. Les deux dernières parties, qui ne sont pas nécessaires
au premier abord sont consacrées d'une part à la construction
du modèle d'un système commandé par calculateur et d'autre
part à la liaison que l'on peut établir entre l'approche proposée
et l'utilisation des tables. Cet article n'a pas pour objectif de
changer l'automatique mais se propose de fournir les moyens
d'en changer la présentation actuelle.

Index Terms�Transfer operator, automatic control course, op-
erational calculus, Laplace transform, Carson transform, Heav-
iside, Mikusiński.

Mots-clés�Opérateur de transfert, cours d'automatique, cal-
cul opérationnel, transformée de Laplace, transformée de Carson,
Heaviside, Mikusiński.

I. INTRODUCTION

First level courses in automatic control or basic textbooks
of this topic contain �rst lessons of Laplace transforms.
The Laplace transform approach leads to de�ne the transfer
function of a system. It is used to get the corresponding

response signal of a system with respect to a given input
signal. The Laplace transform is also important for the analysis
and design of control systems [13]. This tool appears thus a
necessary and unavoidable burden for students participating in
automatic control courses. However, the transform has some
skeletons-in-the-closet [27], [34]. In this article, we discuss
an alternative approach to the use of Laplace transform in
automatic control courses.

Consider a signal x(t); de�ned for a positive time t and
satisfying some appropriate growth conditions. The Laplace
transform of x(t) is

X(s) = Lfx(t)g =

Z 1

0

x(t)e�stdt; (1)

where s is a complex variable. This de�nition can require
advanced mathematical machinery [34]. This machinery is
very demanding, and usually beyond the skills of most under-
graduate students. This generates dif�culties that lead deser-
tion of students from automatic control classes. Equation (1)
assumes that all considerations, diagrams and developments
are embedded in a space of transformed signals. Students
ask frequently two questions in regards to the usefulness of
equation (1). How can we experimentally exhibit or visualize
the transformed signals for example with an oscilloscope? Are
there some forbidden signals in automatic control methods?
For instance, exp(t2) has no Laplace transform [36].

Some fundamental theorems of Laplace transform have also
provided some misunderstandings about the actual meaning of
s. For instance, consider the Laplace transform of a derivative
function with the initial condition x(0). Namely, Lf _x(t)g =
sX(s) � x(0): When x(0) vanishes the complex variable s
is considered as a time derivative operator. However, this can
be considered in only the space of transformed signals. Still
about this fundamental theorem, the lower limit of integration
in equation (1) is often replaced by 0�, 0+, or �1 [13], [30],
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- -U(s) Y (s)F (s)

Fig. 1. Basic block diagram. The transformed output signal Y (s) is given
by F (s)U(s) where U(s) is the transformed input signal. As s is a complex
variable the time is a hidden variable while there is no difference in the
notation between signals and systems.

[39] to overcome problems encountered in some particular
applications. An attempt to solve this problem and to unify
the Laplace formalisms is proposed in [32]. Nevertheless the
use of this tool is still an unjusti�ed hypothesis. For the
1 case, we are faced with the bilateral Laplace transform,
which is questionable also [34]. The purpose of this article
is to show that the mathematical machinery required by
the Laplace transform [47] can be avoided. Moreover, the
pedagogic dif�culty can be cleared in a natural way.

When the transfer function of a linear system has to be
de�ned, Laplace transform is applicable. For a single-input
single-output system the transfer function is de�ned as the
quotient of the Laplace transform of the output y(t) to the
Laplace transform of the input u(t) with the assumption of
zero initial conditions. In other words, the transfer function is
de�ned by:

F (s) =
Lfy(t)g

Lfu(t)g
=
Y (s)

U(s)
:

Although the name transfer function as a mathematical tool
is adequate for s = j!; where j2 = �1 and ! is the
frequency [23], [3], this ad-hoc de�nition generates some
interesting questions. The Laplace transform of signals cannot
be obtained in practice, and sometimes we wonder how to
determine the transfer function of a system? For instance this
question is avoided in identi�cation procedures [31] where
ARMAX models involving recurrence relationships instead of
transfer functions are used. In several high quality textbooks
for discrete-time systems e.g. [2], the complex variable z of
the Z-transform [26] and the shift-forward operator q are both
used. However, the choice between z and q is not argued
in every case. These subtle differences, which are mysterious
for students, are useless and can be avoided. In view of our
personal experience in teaching automatic control, one desire
is to give an experimental meaning of the transfer of a system,
irrespective of previous formal de�nitions. Rarely, in real
occasions students may relate the transfer to the differential
operation induced by the system. Indeed the use of the Laplace
transform leads to the diagram depicted in Figure 1. This �gure
describes the relationship between the Laplace transforms of
external signals and the transfer of the system. So, the essential
meaning is lost. It can be noticed here that we do not use the
term transfer function, although we call it transfer as can be
seen in the sequel.

As a matter of fact, the use of Laplace transforms is one
method among many others [33], [29] to justify the Heaviside
operational calculus (Figure 2). Note that the operational
calculus is used to solve differential equations (in most cases
linear) rather than automatic control problems. From an histor-
ical perspective, the Laplace transform, which has been studied

extensively by Deakin [8], [9], was introduced �rst in the form
as equation (1) by Bateman in 1910 to solve the differential
equation _x(t) = ��x(t) where � is a nonzero real number.

In the following, we describe guidelines for starting an
automatic control course without using the Laplace transform.
The presentation is based on the use of a pure operational
point of view that provides an opportunity to link methods
developed in automatic control to laboratory applications. The
essential proofs based on Laplace transform theorems can be
read in standard textbooks of automatic control (e.g. [20],
[30], [22]). Concerning the notation, we consider signals as
elements belonging to the set C of integrable real valued
functions f = ff(t)g ; supposed to be m times continuously
differentiable on [0;1) except at isolated points where it is
assumed that both left limit and right limit exist. As ff(t)g
denotes the signal f while f(t) stands for its value at time t we
write for two signals a and b in C: for all t � 0; a(t) = b(t),
or fa(t)g = fb(t)g, or a = b: However, when no confusion
is possible the braces or �for all t � 0� may be dropped.
Nevertheless we do not deal with discrete-time systems except
to de�ne the transfer of a computer controlled system.

II. TRANSFER OPERATOR

We begin by considering a linearized system around an
equilibrium point. We suppose this system can be described
by the linear differential equation

y(n)(t) + an�1y
(n�1)(t) + an�2y

(n�2)(t) + � � �
+a1y

(1)(t) + a0y(t)
= bmu

(m)(t) + bm�1u
(m�1)(t) + � � �

+b1u
(1)(t) + b0u(t);

(2)

where y(t) and u(t) stand for the differences of output and
input signals with their setpoint values respectively and n
and m are two integers. In (2) the coef�cients ai and bj are
constant parameters.

A. Coding

The aim is to provide a tool with which it is easy to
manipulate mathematical expressions, which may be used
instead of linear differential equations, to separate input and
output variables from the system. Following Heaviside [24],
[40] or Carson [5], we introduce the derivative operator

p ,
d

dt
;

which upon acting on x(t) in C gives the codings

_x(t) = px(t); �x(t) = p2x(t); : : : ; x(n)(t) = pnx(t); : : : (3)

In view of these codings and using the distributivity property

for every real numbers � and �;

[�pn + �pm]x(t) = �x(n)(t) + �x(m)(t);

equation (2) becomes
�
pn + an�1p

n�1 + an�2p
n�2 + � � �+ a1p+ a0

�
y(t) =�

bmp
m + bm�1p

m�1 + � � �+ b1p+ b0
�
u(t):

(4)
e-STA copyright 2008 by SEE
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Leibniz (1695) Euler (1730)

Laplace (1812) Servois (1814)

Cauchy (1827)
Gregory (1846)

Boole (1859)

Kirchoff (1891)

Wagner (1915)

Bromwich (1916) Carson (1917-1922)

Jeffreys-March (1927)

Van der Pol (1929)

Doestch (1930)

Mikusiński (1950)

Dimovski (1982)

Schwartz (1945,1947)

Florin (1934)

Levy (1926) Dirac (1926)

Smith (1925)

Heaviside (1884-1895)

Fig. 2. Genealogy of operational calculus. This diagram is detailed in (Rotella, Zambettakis, 2006). Date indicates publication year of a major contribution
in operational calculus. Among engineers and mathematicians, Heaviside appears as the focal point. His ideas on the use of the differential operator and on
the de�nition of the transfer (resistance) operator are the basis of guidelines for an automatic control course without the Laplace transform.

- -u(t) y(t)F (p)

Fig. 3. Operational block diagram. The output signal y(t) is obtained by
F (p)u(t) where u(t) is the input signal. Notice that t denotes the time
variable and p the derivative operator. The difference between signals and
system is due to the use of these notations. The action performed by a system
on an input signal is retained. The essential meaning of the transfer F (p)
is the linear differential equation that links the output signal and the input
signal.

To separate input and output signals from the system we divide
equation (4) by the polynomial factor pn+ an�1p

n�1+ � � �
+a0; which yields to code the input-output relationship as
y(t) = F (p)u(t) with

F (p) =
bmp

m + bm�1p
m�1 + � � �+ b1p+ b0

pn + an�1pn�1 + an�2pn�2 + � � �+ a1p+ a0
: (5)

We must insist here that y(t) = F (p)u(t) cannot be consid-
ered as the solution of the differential equation (2). Indeed, the
initial conditions are not known. y(t) is determined with this
writing as with the writing (2). In equation (5), F (p) stands
for the transfer operator. In essence it is the transfer, which
represents the operation induced by the system to transform the
input signal into the output signal. The operational approach
provides an opportunity to relate the transfer operator (5) to
the differential equation (2). The diagram, depicted in Figure
3 corresponds to an experimental situation.

B. Operational calculus as polynomial calculus

Operational calculus is understood as algebraic methods
for solving differential or recurrence equations, speci�cally
in a linear time-invariant framework. In our point of view
solving a differential equation for a given input, is not the
aim of automatic control but is a mathematical exercise [34]. In
automatic control operational calculus means rules for transfer
connections or decompositions through polynomial calculus.
Thus the coding (4) is useless when we are not allowed to
associate transfer operators. From the operational standpoint
the connection rules can be demonstrated through the fol-
lowing steps. The transfers of the connected system provide
differential equations. The connections and the elimination of
intermediate signals lead to a differential equation between
the output and input signals. The encoding of this differential
equation with p ensures the results. Although we can use
this procedure in every case it is suf�cient to exemplify with
respect to series or parallel connections for two �rst-order
systems.

Let us consider two linear systems described by y1(t) =
F1(p)u1(t) and y2(t) = F2(p)u2(t) where u1(t) and u2(t) are
the input signals, F1(p) and F2(p) the transfers of the systems,
and y1(t) and y2(t) are the corresponding output signals. In
this regard we have

F1(p) =
b1p+ b0
a1p+ a0

and F2(p) =
�1p+ �0
�1p+ �0

;

where a0; a1; b0; b1; �0; �1; �0, and �1 are constant
parameters. The series connection is de�ned as u2(t) = y1(t);e-STA copyright 2008 by SEE
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u(t) = u1(t); and y(t) = y2(t): The application of the
procedure yields

y(t) =
�1b1p

2 + (�0b1 + �1b0)p+ �0b0
�1a1p2 + (�0a1 + �1a0)p+ �0a0

u(t);

where we recognize the product F1(p)F2(p): The parallel
connection is de�ned as u2(t) = u1(t) = u(t) and y(t) =
y1(t) + y2(t); which yields to

y(t) =

�
1

�1a1p2 + (�0a1 + �1a0)p+ �0a0
�

((a1�1 + �1b1)p
2 + (a1�0 + b1�0

+a0�1 + b0�1)p+ (a0�0 + b0�0))]u(t);

where we recognize the sum F1(p)+F2(p): These results can
be extended to any order by induction. It can be seen that the
transfer of the series connection of two systems is the product
of their transfer and the transfer of the parallel connection of
two systems is the sum.

The parallel and series rules give a meaning to the decompo-
sitions and the handling of transfer operators with polynomial
calculus. These operations on transfer operators are the basis
of operational calculus in automatic control. We can apply
usual techniques as Mason's rule associated to the signal-
�ow graph [35]. This operational calculus can be applied also
for multiple-input multiple-ouput systems with the difference
that commutativity does not occur anymore. Let us note that
the polynomial formalism is used in several textbooks on
multivariable systems [27], [28] with no need of the Laplace
transform.

C. The delay operator

A pure time delay of T between input and output signals
induces y(t) = u(t� T ): This particular linear system cannot
be associated to a differential equation as (2). A special
treatment must be used for delay equations. Following an idea
of Euler [14], the Taylor expansion of u(t� T ) yields

u(t�T ) = u(t)� _u(t)T+�u(t)
T 2

2
�� � �+u(n)(t)

(�T )n

n!
+� � � ;

which is encoded to give

y(t) = u(t)� pTu(t) + p2
T 2

2
u(t)� � � �+ pn

(�T )n

n!
u(t) + � � � ;

=

0

@
X

n�0

(�pT )n

n!

1

Au(t) = (exp(�pT ))u(t):

We obtained the transfer operator for the time delay T as
F (p) = e�pT :

III. SYSTEM RESPONSES

System analysis is often the study of some particular re-
sponses of the system. Of special interest are the step and
frequency responses.

A. Step response

Let us consider the Heaviside or step signal fH(t)g de�ned
by H(t) = 1 for t � 0 and 0 elsewhere. The step response
of a system is the solution of the differential equation of the
system to a step input signal with zero initial conditions. With
operational calculus, we can expand transfer operator as a
linear combination of simple transfers

an

(p+ a)n
or

1

pn
;

where a stands for a nonzero complex number and n for an
integer. The step response of a multiple integrator with the

transfer
1

pn
is
tn

n!
: Let us consider the step response sn(t) of

the Strejć system [41] with the transfer
an

(p+ a)n
: For n = 1

the associated differential equation to the transfer
a

p+ a
is

ay(t)+ _y(t) = au(t) and we obtain by usual methods [51] the
corresponding response to a given input u(t) with the initial
condition y(0)

y(t) = e�at
�
y(0) + a

Z t

0

ea�u(�)d�

�
:

For u(t) = 1 and zero initial conditions the step response
becomes

s1(t) = 1� e
�at:

For n = 2 we have s2(t) =
a

p+ a
s1(t) from which follows

s2(t) = ae
�at

Z t

0

(ea� � 1) d� = 1� e�at(1 + at): (6)

For the general case n � 1; let us suppose

sn(t) = 1� e
�at

 
n�1X

i=0

ci;nt
i

!

;

and

sn+1(t) = 1� e
�at

 
nX

i=0

ci;n+1t
i

!

;

where the coef�cients ci;n and ci;n+1 are constant parameters.
These signals are linked by the differential equation

_sn+1(t) + asn+1(t) = asn(t);

which to the the relationships

c0;n+1 = 1;

for i = 1 to n : ci;n+1 =
a

i
ci�1;n =

ai

i!
:

We deduce the well known result that, for the Strejć model

an

(p+ a)n
;

the step response sn(t) is

sn(t) = 1� e
�at

 
n�1X

i=0

aiti

i!

!

:

So the step response of a given system de�ned by a transfer
operator can be calculated using polynomial calculus.

e-STA copyright 2008 by SEE
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B. Stability

Due to the fact that stability analysis does not use the
Laplace transform there is no novelty in this paragraph.
However, we may insist again on the link between the transfer
operator, the differential equation and the transient behavior.

Let us consider the transfer operator
an

(p+ a)n
where a and n

have the same meaning as before. From the previous paragraph
we can see that the step response is composed of a constant
term and a time-dependent term. The �rst term is the forced
response and the second term is the transient behavior. The
transient behavior tends asymptotically to zero if and only if
the real part of a is strictly negative: More generally, consider
the n-th order transfer

F (p) =
bmp

m + � � �+ b1p+ b0
(p� p1)�1(p� p2)�2 � � � (p� pr)�r

;

where p1; p2; : : : ; pr are the r complex poles of F (p) and
�i are the respective multiplicities with n =

Pr
i=1 �i. For the

transient response the poles generate terms associated with the
signals ep1t; ep2t; : : : ; eprt weighted by time polynomials of
order �i�1 respectively. If all the poles have strictly negative
real part, the transient behavior tends asymptotically to zero.
Namely, the system is asymptotically stable.

C. Frequency response

For asymptotically stable systems the frequency response is
deduced from the steady-state output response corresponding
to a given sinusoidal input signal u(t) = ej!t where ! is
the frequency and j2 = �1. Consider a system de�ned by

the transfer operator F (p) =
B(p)

A(p)
where A(p) and B(p)

are two polynomials. From the operational approach we have
the encoded input-output differential equation as A(p)y(t) =
B(p)u(t). For the sinusoidal input u(t) = ej!t; we obtain

B(p)u(t) = jB(j!)j ej(!t+arg(B(j!)));

where jB(j!)j and arg(B(j!)) denote the module and the
argument of the complex number B(j!) respectively. The
output y(t) is the sum of a particular solution of the differential
equation and the general solution of the differential equation
without second member. The general solution characterizes
the transient response that vanishes in case of asymptotically
stable systems. For a particular solution, we look for the
steady-state behavior as the form y(t) = Y ej(!t+') where
Y and ' are constant parameters. Replacing this expression
for y(t) in the differential equation yields

Y =
jB(j!)j

jA(j!)j
= jF (j!)j ;

' = arg(B(j!))� arg(A(j!)) = arg(F (j!)):

The frequency response is de�ned by the evolution of
(jF (j!)j ; arg(F (j!))) as the frequency ! varies from 0 to
+1: We can notice that F (j!) is the transfer function of
the system such as Harris de�ned it [23]. In our standpoint,
this transfer function must not be confused with the transfer
operator F (p). Nevertheless, F (j!) such as a function of

the frequency is the only actual transfer function. Graphic
representations such as Bode, Black-Nichols, or Nyquist loci
may be used to analyze the frequency response [30]. For
unstable systems the loci are valid as calculated representations
only. But for stable systems, experiments cannot allow to
obtain the frequency response.

IV. ANALYSIS

A. Poles and zeros

The names of poles and zeros come from the interpretation
of a transfer operator F (p) as a function of a complex variable
p: This interpretation is a consequence of the formulation of
Laplace transform and it misunderstands the physical meaning
of these notions. The consideration of a transfer operator as
a coding of a differential equation provides an immediate
physical interpretation. Namely, let us consider the transfer
operator

F (p) =
p+ a

p+ b
; (7)

where a and b are constant parameters. In the operational
standpoint the transfer (7) corresponds to the input-output
differential equation _y(t)+by(t) = _u(t)+au(t) where y(t) and
u(t) are the output and input signals. First consider u(t) = 0
for t > 0 and a nonzero initial condition y(0) we obtain
y(t) = y(0)e�bt for t > 0: Second consider a zero initial
condition for the output and the input signal u(t) = e�at for
t > 0 we obtain _u(t) + au(t) = 0 so y(t) = 0 for t > 0:

In general poles correspond to signals generated by the
system with zero input. Zeros correspond to signals absorbed
or blocked by the system. Let us write the transfer operator
(5) as

F (p) = k
(p� z1)

�1(p� z2)
�2 � � � (p� zd)

�d

(p� p1)�1(p� p2)�2 � � � (p� pr)�r
;

where k = bm; zi; i = 1; : : : ; d and pi; i = 1; : : : ; r are
complex numbers, and �i; i = 1; : : : ; d and �i; i = 1; : : : ; r
are integers. For i = 1; : : : ; r, epit is solution of the coded
differential equation

(p� p1)
�1(p� p2)

�2 � � � (p� pr)
�ry(t) = 0;

and for i = 1; : : : ; d, ezit is solution of the coded differential
equation

(p� z1)
�1(p� z2)

�2 � � � (p� zd)
�du(t) = 0:

On the one hand we can use the correspondence between
epit and the transfer denominator roots pi that characterizes
the transient rate in the linear constant parameter framework
only. The same remark can be said about the correspondence
between ezit and the transfer numerator roots zi. On the other
hand this signal approach for the pole and zeros meaning can
be extended to time-varying or nonlinear multivariable systems
with an algebraic standpoint [15], [16].
In order to underline and to exemplify the important

problem of pole/zero cancellation let us consider the series
e-STA copyright 2008 by SEE
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connection with the systems :

y(t) =
1

p� 1
u(t);

z(t) =
p� 1

p+ 1
y(t):

The pole 1 induces, in the transient behavior or in the initial
conditions effect for the �rst system, an et signal. This signal
is blocked by the second system, which has 1 as zero. As
limt!1 e

t =1; this fact forbides such a connection. Indeed,
while the input and output signals are zero, there exists in the
system a non observed and non controlled unbounded signal.
The conclusion is different if we consider the series connection
with the systems :

y(t) =
1

p+ 1
u(t);

z(t) =
p+ 1

p� 1
y(t):

Due to the pole/zero cancellation at �1, y(t) has an e�t

component that vanishes at 1: Except during the transient
behavior, the pole/zero cancellation is acceptable for asymp-
totically stable cancelled zeros.

B. DC gain

Let us keep in mind that the transfer operator F (p) in
equation (5) is just a coding of the differential equation (2).
In the case of an asymptotically stable system, with the input
taking a constant value U; the step response analysis indicates
that the output tends to a constant value Y as t goes to +1

given by the relationship a0Y = b0U: The ratio
Y

U
de�nes the

DC gain of the system GDC : The stability condition implies
a0 6= 0; and from (5) we obtain GDC = F (0).

C. Steady-state error analysis

In all this part systems are supposed to be asymptotically
stable, namely the transient behavior vanishes and only the
permanent behavior remains. For the reference inputs ri(t)

de�ned as, for t > 0; ri(t) =
ti

i!
; and for t < 0; ri(t) = 0;

the corresponding outputs are yi(t) = F (p)ri(t): The input-
output error "i(t) = ri(t)� yi(t) is called the system error of
order i: Two notions can be pointed out here. First a norm of
the instantaneous system error "i(t) characterizes the system
performance. Second the value "i(1) = limt!1 "i(t) during
the permanent behavior characterizes the steady-state error. In
basic lecture of automatic control this last notion is usually
considered. We detail it according to our formulation, namely
without the use of the �nal value theorem.

A steady-state error of order N is ensured if "i(1) = 0; for
i = 0 to N; and "N+1(1) 6= 0: Consider the transfer operator
F (p) in equation (5) of an asymptotically stable system. The
corresponding permanent step response value is given by the

DC gain
b0

a0
: It can be seen that "0(1) = 0 if and only if

b0 = a0: We can conclude that a steady-state error of zero

order is ful�lled whether the DC gain is equal to 1. In other
words since the input-error transfer is 1� F (p); we obtain a
steady-state error of zero order when the input-error DC gain
is zero. This is a fundamental remark for the following.

If we notice that r1(t) is the integral of r0(t); namely

r1(t) =
1

p
r0(t); we have

"1(t) = r1(t)� y1(t);

=
1

p
r0(t)� F (p)

1

p
r0(t);

=
1� F (p)

p
r0(t):

Clearly, from the previous result for "0(1); "1(1) vanishes

if and only if the DC gain of the transfer operator
1� F (p)

p
is equal to zero. Since

1� F (p)

p
=
(a0 � b0) + (a1 � b1)p+ (a2 � b2)p

2 + � � �

p(a0 + a1p+ a2p2 + � � �+ anpn)

we obtain "1(1) = 0 if and only if a0 = b0 and a1 = b1: It
can be seen that

� when a0 6= b0; we have "0(1) 6= 0 and with "1(1) =

limp!0
a0 � b0
pa0

= �1;

� when a0 = b0; we obtain "0(1) = 0 and with "1(1) =
a1 � b1
a0

: Moreover "1(1) = 0 when a1 = b1.

In the same way we can show by recurrence that the system
can have a steady-state error of order N if and only if its
transfer F (p) in equation (5) is such that, for i = 0 to N;
ai = bi. In this case the steady-state error of order N + 1 is

"N+1(1) =
aN+1 � bN+1

a0
;

and the next ones have an in�nite module. The degree of the
steady-state error can be obtained by just a visual inspection
of the transfer operator of the system.

V. COMPUTER CONTROLLED SYSTEMS

The last question we wish to deal with concerns the con-
struction of the model of a linear system controlled by a
numerical algorithm (e.g. [2], [19]). The problem is to �nd the
discrete-time model corresponding to the structure presented
in Figure 4 where DAC denotes a digital-analog converter
and it is usually modelled as the series connection of an
ideal sampler and a zero-order hold. ADC denotes an analog-
digital converter usually modelled by an ideal sampler and
the discrete output signal of the ADC device is yk = y(kTs)
for k in N. Both are supposed to be synchronized with the
sampling period Ts: In this section we use the notations fxkg
for the discrete-time real valued signal de�ned for k in N
and q�1 for the delay operator q�1fxkg = fxk�1g. All the
considered discrete-time signals are supposed to be zero for
negative values of k: For the discrete input signal fukg the
output of the DAC device is

u(t) =
X

k�0

uk (H(t� kTs)�H(t� (k + 1)Ts) ; (8)
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DAC ADCF (p)- - - -uk yk
u(t) y(t)

Fig. 4. Linear computer controlled system. Equipped with digital-analog
(DAC) and analog-digital (ADC) converters, a continuous-time model (F (p))
leads to a discrete-time model. The discrete-time model is a coding of the
recurrence equation between the discrete input signal uk and the sampled
output yk = y(tk) where tk are the sampling times. The puzzle is to obtain
this discrete-time model with the operational standpoint.

where H(t� kTs) stands for the delayed step signal :

The discrete-time transfer of the system (Fig. 4) is obtained
through the formula

F (q�1) = (1� q�1)Z

��
L�1

�
F (p)

p

���
; (9)

where L�1 stands for the inverse Laplace transform and Z f:g
stands for the Z-transform [26]. The expression in the square
bracket denotes the sampling of the signal with a period Ts.
Although the Z-transform doesn't suffer the same drawbacks
as the Laplace transform, for instance discrete impulse is really
a discrete signal, the Laplace transform appears once more
time here. To carry on we obtain the discrete-time transfer
operator F (q�1) in the operational framework.

Denoting by S(t) the step response of F (p); the response
of F (p) to uk(H(t� kTs) � H(t� (k + 1)Ts) is uk(S(t�
kTs)�S(t� (k+1)Ts): The sampling of this response at the
time period Ts leads to a value for t = lTs; l in N; given by
uk (Sl�k � Sl�k�1) where Sk stands for S(kTs): Denoting
l the independent integer variable the corresponding discrete
signal is fuk (Sl�k � Sl�k�1)g = (1 � q�1) fukSl�kg for
a given k: Because of linearity we deduce from (8) that the
sampled response corresponding to the input signal fukg is

fylg = (1� q
�1)

8
<

:

X

k�0

ukSl�k

9
=

;
:

Denoting
nP

k�0 ukSl�k

o
= fvlg ; fukg and fvkg are

linked by a discrete convolution operation. Consequently [30],
they are linked by a difference equation such as

vk + d1vk�1 + � � �+ dn0vk�n0 =
n0uk + n1uk�1 + � � �+ nm0uk�m0 ;

where the di and the ni are real numbers and n0 and m0 are
integers. In the same idea that for continuous systems, this
equation can be coded by means of the delay operator q�1

(1 + d1q
�1 + � � �+ dn0q

�n0) fvkg =

(n0 + n1q
�1 + � � �+ nm0q�m

0

) fukg ;

which leads to the discrete transfer operator

G(q�1) =
n0 + n1q

�1 + � � �+ nm0q�m
0

1 + d1q�1 + � � �+ dn0q�n
0
:

Let us denote the numerator and the denominator of G(q�1)
by N(q�1) and D(q�1) respectively. The division of N(q�1)
by D(q�1) leads to

G(q�1) =
X

l�0

glq
�l;

where gl; l � 0; are real numbers. With fvkg = G(q�1) fukg
we obtain

fvlg =

8
<

:

X

k�0

gkul�k

9
=

;
=

8
<

:

X

k�0

ukSl�k

9
=

;
:

Since for k < 0; uk = Sk = 0; we have for k � 0; gk = Sk:
So, G(q�1) is directly obtained from the sampling of the step
response of the continuous-time transfer operator. Finally, we
conclude that the discrete-time transfer operator is de�ned by

fykg = F (q
�1) fukg = (1� q

�1)G(q�1) fukg :

As an example let us consider the �rst order model

F (p) =
K

1 + �p
; (10)

where K and � are real numbers: The sampling, with period
Ts, of the step response of F (p) gives

gk = K(1�D
k);

where D = e
�
Ts

� : We deduce

G(q�1) = K
X

k�0

(1�Dk)q�k;

=
K(1�D)q�1

(1� q�1)(1�Dq�1)
;

so the discrete-time transfer of (10) is

F (q�1) = K
(1�D)q�1

(1�Dq�1)
:

VI. WHAT'S ABOUT TABLES?

The main reason of using the Laplace transform is the tables
we have at our disposal. First they contain information to
determine the response of a system with respect to a given
input signal. Second to obtain the discrete transfer operator of
a computer controlled system with the formula (9). Although
transforms are not used in our presentation, we show that
these tables can be used without any change. To do that, let
us introduce the notion of generator of a continuous signal,
which consists in writing the time expression of this signal by
means of the operator p.

The previous parts show that the transfer operator allows
to link input u(t) and output y(t) signals of a linear system
by a differential equation coded as y(t) = F (p)u(t): Until
now we obtained the step response by solving this differential
equation when initial conditions are all zero. In case of no
input and non zero initial conditions such a transfer operator
produces an output signal solution of the associated homo-
geneous differential equation. The coding of this differential
equation with the p operator de�nes then the generator of
this signal. Two ways can be considered to take into account
initial conditions in this coding. Namely, on the one hand the
Mikusiński operational calculus and on the other hand the
integral form of a differential equation.
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A. The Mikusiński operational calculus

All the previous developments can be rigorously proved
by means of operational calculus of Mikusiński [37], which
is based on convolution algebra of operators. Let us brie�y
describe this operational calculus whereas keeping in mind
that the considerations below are not needed in a �rst level
course. Convolution product is a fundamental tool in dynamic
systems �eld [45], [46], speci�cally in case of linear systems
[21], [10]. This tool is de�ned by

(f; g) 7! gf =

Z t

0

f(�)g(t� �)d�;

while the Heaviside function H = f1g is of great importance
due to the fact that we have for every f in the set of integrable
function C

Hf =

�Z t

0

f(x)dx

�
:

Consequently, H appears as the integration operator. The suc-
cessive powers of H with respect to the convolution product
are

for all n in N; n � 1; Hn =

�
tn�1

(n� 1)!

�
:

To distinguish a constant signal f�g with the operator
de�ned by the constant gain � we denote it by [�] : For all f
in C

f�g f =

�
�

Z t

0

f(�)d�

�
and [�] f = f�f(t)g :

[1] is the unit element for the convolution and we can give a
meaning to H0 as H0 = [1] . We de�ne the derivative operator
as the solution of the convolutional equation pH = [1] ; and
then we write p = H�1:With the understanding p0 = H�0 =
[1], we have pn = H�n for n in N:

Mikusiński [37] has proved the two results below, which
are essential for our purpose.
Theorem 1 For every continuous function f in C,�
f (1)(t)

	
= pf � [f(0)] : More generally, for every integer

k
n
f (k)(t)

o
= pkf �

k�1X

i=0

h
f (i)(0)

i
pk�i�1: (11)

Theorem 2 For every f in C such that
R1
0
e�tpf(t)dt exists

f =

Z 1

0

e�tpf(t)dt:

The �rst theorem allows to write the generator of a signal
ff(t)g when is known the differential equation whose this
signal is solution. Indeed, let us suppose that this differential
equation can be written

nX

i=0

�if
(i)(t) = 0; (12)

with initial conditions f(0) = f0; _f(0) = f1; : : : ; f (n�1)(0) =
fn�1; where n is an integer and the �i are real numbers. With
(11) the coding of (12) leads to

"
nX

i=0

�ip
i

#

f(t)� PIC(p; f0; : : : ; fn�1) = 0;

where PIC(p; f0; : : : ; fn�1) is a polynomial in p that depends
on the initial conditions and the coef�cients �i: We obtain
then the generator of ff(t)g

ff(t)g =
PIC(p; f0; : : : ; fn�1)

[
Pn

i=0 �ip
i]

: (13)

The second theorem indicates that when the one-sided Laplace
transform of a signal exists, its expression is identical to the
generator of the signal, the complex variable s of Laplace
transform being changed into the derivative operator p (to
avoid any confusion). A major consequence is that the tables
[12], [48], can be used. Since H = p�1 we remark that the
generator can be written indifferently with the operators H or
p.

For example when we look for a generator, say for sin(!t);
we observe that sin(!t) is the solution of the differential
equation

�x(t) + !2x(t) = 0; x(0) = 0; _x(0) = 1: (14)

Using (11) the coded form is obtained as

p2x(t)� 1 + !2x(t) = 0;

which leads to the generator of sin(!t)

fsin(!t)g =
M

1

p2 + !2
;

where the symbol �M� denotes �in the Mikusiński sense�.
Indeed, we see in the next section an alternative to the
Mikusiński approach. The Mikusiński operational calculus has
been extended recently by the convolutional calculus [11].

B. The integral form

A second point of view can be used to introduce initial con-
ditions in differential equations. In particular, let us consider
the result below [44]

f _x(t) = f(t); x(0) = x0g
if and only if

x(t) = x0 +
R t
0
f(�)d�:

(15)

Denoting the integral operator by H , the derivative operator
by p; and using the fact that for zero initial conditions, pH =
Hp = I where I stands for the identity operator, we can
code the differential equation (15) by x(t) � x0 = Hf(t) or
px(t)�px(0) = f(t) = _x(t): In general, from the differential
equation

x(n)(t) = f(t);

with the initial conditions x(0) = x0; _x(0) = x1; : : : ;

x(n�1)(0) = xn�1; we obtain

x(t) =
n�1X

k=0

xk
tk

k!
+

Z
� � �

Z t

0| {z }
n times

f(�)d�: (16)
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In particular for ff(t)g = 0 and the initial conditions x0 =
x1 = � � � = xk�1 = xk+1 = � � �xn�1 = 0 and xk = 1

we obtain x(t) =

�
tk

k!

�
: As the corresponding differential

equation can be coded pkx(t) = 1 we get

for every integer k;

�
tk

k!

�
=
1

pk
:

Moreover for zero initial conditions and for all integer k we
have pkHk = Hkpk = I: These remarks induce for (16) the
coding

x(n)(t) = pnx(t)�
n�1X

k=0

xkp
n�k: (17)

The generator of a signal ff(t)g can be obtained in this
framework by coding with (17) the differential equation (12)
whose this signal is solution. We obtain the coding

"
nX

i=0

�ip
i

#

f(t)� P �IC(p; f0; : : : ; fn�1) = 0;

where P �IC(p; f0; : : : ; fn�1) is a polynomial in p that depends
on only the initial conditions and the coef�cients �i: We get
the generator of ff(t)g as

ff(t)g =
P �IC(p; f0; : : : ; fn�1)

[
Pn

i=0 �ip
i]

: (18)

However, if for a given function ff(t)g we compare the
generators (13) and (18) it can be seen that P �IC(p; f0; : : : ;
fn�1) = pPIC(p; f0; : : : ; fn�1). We have the following
relationship between the generators : the second one is the �rst
one multiplied by p: The generator (18) is the generator of f(t)
in the Carson sense. The Carson transform was introduced in
1926 [6] and it differs from the Laplace transform by a factor
p: The Carson tables can be used in this framework.

For example when we evaluate this generator for sin(!t);
we obtain from the differential equation (14) the coding

p2x(t)� p+ !2x(t) = 0;

which leads to the generator of sin(!t)

sin(!t) =
C

p

p2 + !2
;

where the symbol �C� denotes �in the Carson sense�. It is
obvious that the integral form approach appears more intuitive
than the Mikusiński approach but the results are quite similar.

C. Consequences

The generator of a signal allows to perform both of the
two points below. First, for a system de�ned by the transfer
operator F (p) we can calculate the response y(t) to an input
u(t) by using Carson or Laplace transform tables. Indeed when
U(p) is a generator of u(t) we obtain the generator of the
output

y(t) = F (p)E(p):

We must remark here that the generators can be obtained in
any sense as de�ned above (Mikusiński or Carson). However,

we must keep the coherence in using tables. For instance, when
we want to know the beginning of the response we can develop
y(t) in power of p�1. This procedure was used by Heaviside
[24]. However, different functions may be associated to p�k

according to the adopted generator sense. Second, we can ob-
tain the discrete-time model of a computer controlled system.
Since we see it above, this model uses the step response S(t)
of a system de�ned by the transfer operator F (p): Incidentally,
we can remark that the step generator in the Mikusiński sense

for S(t) is
F (p)

p
. In this framework we obtain the formula

(9) for the discrete-time model. Whatever the used generator
sense the tables can be used also.
Moreover, in order to see the importance of the generator

for operational calculus, let us consider the following example
where two signals y1 and y2 are de�ned by the differential
equations :

(p� 1)y1(t) = u(t); (19)

(p� 1)y2(t) = u(t); (20)

and the initial conditions y01 and y
0
2 respectively. If we consider

the operational calculus, the parallel connection y(t) = y1(t)�
y2(t) yields to :

y(t) =
1

p� 1
u(t)�

1

p� 1
u(t) = 0:

This conclusion is obviously wrong. Indeed our setting and the
suggested proof of the operational calculus indicate that we
consider formal differential equations, namely without initial
conditions. When we write :

y(t) =
1

p� 1
u(t);

it is just a coding of the differential equations (19) and (20)
only. The initial conditions can be taken into account by
mean of the generator notion. We can write (19) and (20)
as, respectively :

y1(t) =
M

1

p� 1
u(t) +

y01
p� 1

;

y2(t) =
M

1

p� 1
u(t) +

y02
p� 1

;

in the Mikusiński's generator sense. It yields for y(t) =
y1(t)� y2(t) the generator :

y(t) =
M

y01 � y
0
2

p� 1
:

This point indicates that y(t) is solution of the differential
equation :

(p� 1)y(t) = 0; y(0) = y01 � y
0
2 ;

or, equivalently, y(t) = (y01 � y
0
2)e

t:

This standpoint can also be explained in a more algebraic
framework as the Fliess'module-theoretic approach [17]. Nev-
ertheless, let us remind a sentence of a recent paper [18]
where is used this point of view for the design of a new
identi�cation procedure : �Let us add we tried to write the
examples in such a way that they might be grasped without the
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necessity of reading the sections on the algebraic background.
Our standpoint on parametric identi�cation should therefore
be accessible to most engineers."

VII. CONCLUSION

We show in this short survey that from the use of the
differential operator we obtain all the usual results derived by
means of the Laplace formulations. To teach a basic lecture
in automatic control using the operational method offers some
advantages. The integral or derivative operators allow to link
every notion to its physical meaning. We keep in mind that
a transfer operator is always related to only a differential
equation or a difference equation. Mathematical background
is minimized, however, when a rigorous justi�cation is needed
the Mikusiński operational calculus may be used. This opera-
tional calculus is based on the convolution operator, which is
a natural tool for linear equations.

Moreover, we meet here through a pedagogical step the
operational standpoints adopted directly in some advanced
textbooks to modelize the input-output relationship induced by
a linear system. For instance, the discrete-time autoregressive
moving-average model A(q�1)yk = B(q�1)uk + C(q

�1)�k
where A(q�1); B(q�1); and C(q�1) are polynomials in the
delay operator and f�kg a noise signal is used in [7], [1]
for identi�cation purposes to describe the difference equation
between the input uk and the output signals yk of a given
system. For multivariable continuous-time linear systems [42],
[50], [49] introduce the model

P (p)�(t) = Q(p)u(t);

y(t) = R(p)�(t) +W (p)u(t);

where P (p); Q(p); R(p); and W (p) are matric polynomials
in the differential operator and �(t) is a vector-valued function
of time called the partial state. More recently, [4] de�ne
the generator of a multivariable system as the polynomial
matrix M(p) in the derivative operator; which allows to
write the relationship between input and output signals as

M(p)

�
y(t)
u(t)

�
= 0. The generator in the sense de�ned in [4]

must not be confused with signal generators. The interested
reader can see the quoted literature.

However, the operational pedagogic point of view has one
drawback. When one of our students meets an automatic
control engineer or reads an automatic control textbook, the
student must be warned that he or she might �nd some not
up-to-date operational thoughts using the Laplace transform.
But, this gap will be �lled in the future.
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[36] J. Mikusiński, Sur les fondements du calcul opératoire, Studia Mathe-
matica, vol. 11, pp. 41�70, 1950.
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