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Abstract Image analysis: filtering and segmentation Silt content and porosity analysis for Site C0002 Flow path visualization
Primary objective: To better understand seal capacity in mudrocks and to : : L : . . . : . .
determine the conditions under which a mudrocpk seyal fails by allowing a ° Alltheimages were processed to identify individual pores and silt grains * Siltcontent from SEM images matches the trend from grain size analysis For dominant clay grain fractions (Figure 11 A), percolation path of non-wetting
- - R R  The visible porosity for depths of SEM images was calculated fluid is highly tortuous (T =1.43), while for higher silt fractions (Figure 11 B), the
non-wetting fluid to percolate. CIEA A T : _
_ ) B path is shorter (T = 1.12).
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large pore-throat system. . Irerrsion
Procedure: We used SEM images of uncemented muds obtained at various .
depths (< 1.1 km burial) in the Kumano Basin offshore Japan for the study. L Uil 22 %08 o3 %05
Image mosaics were filtered and segmented using conventional and . 9 (Quaternary)
machine-learning techniques to identify the pore space, silt, and clay grains. o a0, .2
We applied a 3D stochastic technique for pore space reconstruction from the 200 401 51.7 5.6 46.1
SEM images and simulated capillary drainage in the resulting 3D volumes by
the lattice Boltzmann method (LBM) using Stampede 2. § 200 % 500 °
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Conclusion: Results showed that porosity and permeability decreased with TR | Preservedlarge 2 600 - i . -
depth, and capillary threshold pressure values increased. However, > | pores and throats =
Increasing silt content at a particular depth counteracted this behavior, due o | | silt grains 700
to better preservation of larger pores and throats. ooor 8
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» Failure modes of a seal: RORE G Sy g Tl S 70 o S o g | Figure 11 — Flow visualization of the non-wetting fluid in the grain packs at 401 mbsf:
a) Darcy flow b) Flow through faults/fractures c) Diffusion S 0 200 400 600 800 1000 1200 1400 1600 1800 2000 UnitIV: A) Minimum silt content (23.7 %), B) Maximum silt content (57.1 %). The flow paths are
C) After Segmentation D) Final Image 10 et Sooane) in black, with first path (percolation path) across the grain pack shown in red
. Washburn Equation: P, = 20 cos® Figure 4 — Stages of filtering and segmentation. A) Original image, B) Image after 1100 e
_ _ o _ _ _ median and top hat and bottom hat filtering, C) After binary segmentation, D) Final O Grain size analysis @ SEM images e — ‘ —— _
where P is capillary pressure, o is interfacial tension, 0 is contact angle and image with pores (yellow), silt size grains (cyan) and clay size grains (blue). == Sitycay SER-Vocamcash O P aroturo e wanaity Porost 5 « Figure shows that porosity and
"is throat radius Segmentation from deep Iearning Figure 8 - Silt fraction comparison from SEM images (orange) and grain size : s Sgifelgtsee%veit[rr?gzzitl;lty both
- Mudrock seals have nanometer-scale pore throats with high capillary analysis (blue), along with porosity values. (Modified from Moore et al., 2012 with ' ) _ _ '
pressures « We created an alternative method for filtering and segmentation data from Kopf et al., 2017 and Nole et al., 2016) = s atoe\;vg(\e/gtrhl?vi{%agg]rgesé)g?g;tte?t
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Images to make the process more streamlined and easier to use. ©  Highsilt  hermeability
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Rock grains  The trained model is available at: Grain packs representing 3 . . Increase in permeability at
https://github.com/abhishekdbihani/deeplabV3_pores-grains mudrocks were created from a : hiaher silt ch))ncentratioxls could
_ stochastic process like Landry et 0.05 begdue 10 preserved larger
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_ Figure 12 - Porosity and Absolute permeability of grain packs
« Two grain packs were created for
N each depth using the value of
o visible porosity. « REV was checked by calculating the porosity and standard deviation of cubic
subsamples at various length scales in increasing order.
i) Fracture opening ii) Capillary invasion * The fraction of Spherl_cal gra_lns . POFOSity tapers towards mean and standard deviation decreases with Iength
Ei 1 - Effect of b t d arain size: i) fracturing. i Nary | . at a depth was varied using 1 0.4
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Silt bndgmg IN mudrocks Figure 5 — Example of SEM image of silt grains (red) and pores (green): content from the SEM images for 23 0.3
A) ground truth data, B) prediction from model Investigating silt bridging. o6 095
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lay grains https://github.com/je-santos/MultiphasePorousMediaPalabos. Figure 13- REV check of a sample grain pack: A) Porosity vs length;

Centroid of polygon formed by the

oroximal grains was found (C) and | | | | | | B) Mean porosity and Standard deviation of porosity vs length.
the distance to the center of Slmulayons were run to investigate flow of a non-wetting fluid across Conclusion
the grain packs, similar to hydrocarbon or CO, across a mudrock seal

B) Silt bridging | drocks (Modified f Schneid t al., 2011). L. : : : : :

) Siftbri ging th mudroe S(_ partied irom schneiger et at, ) selected pore  (C-P) was - Statistical analysis of the images showed that while the porosity decreased with
* Dual porosity is formed in mudrocks due to silt-bridging calculated.  Each simulation run had multiple pressure increments to study flow increasing depth, larger pores were preserved when surrounded by larger

1. Silt bridging preserves large pore throats behavior and were run on the STAMPEDE2 supercomputer. grains, confirming the influence of the silt-bridging effect.
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2. Stress bridges inhibit clay particle alignment
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suggests influence of silt bridging. « At a given depth, with increasing silt content, capillary thresholds are observed

Table 1- Details of SEM images obtained at site C0002 used for analysis at successively lower wetting saturations due to more larger throats Contact: abihani@utexas.edu



