
A VOTING TECHNIQUE OF MULTILAYER
PERCEPTRON ENSEMBLE FOR

CLASSIFICATION APPLICATION

HAFIZAH BINTI TALIB

UNIVERSITI SAINS MALAYSIA

2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository@USM

https://core.ac.uk/display/286782826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A VOTING TECHNIQUE OF MULTILAYER
PERCEPTRON ENSEMBLE FOR CLASSIFICATION

APPLICATION

by

HAFIZAH BINTI TALIB

Thesis submitted in fulfillment of requirements

for the degree of

Master of Science

February 2014

ii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for all the strengths and His blessing in

completing this thesis. I would like to express my deep gratitude to Associate Prof.

Dr Junita Mohamad Saleh, my research supervisors, for her patient guidance,

enthusiastic encouragement, useful critiques of this research work and her time

checking this thesis. I would also like to thank Associate Prof. Dr Zalina Abdul Aziz

for her advice and assistance.

I would also like to extend my thanks to my fellow friends, Khursiah Zainal Mokhtar

and Hosni Anis Kamaruddin for their ideas and help. Assistance provided by them

were greatly appreciated.

To Encik Md Isa bin Ibrahim, Head of Department, National Youth Skills Institute of

Bukit Mertajam, his encouragement and understanding was very much appreciated.

To my colleagues, Nor Rumaizah Azmi, Norhayati Abdul Rasib and Hashim Ahmad,

their continuous support gives me strength to complete this thesis.

I wish to thank my parents, Encik Talib bin Ali and Puan Rofisah Mohd Arif for their

love, inspiration and encouragement throughout my study.

I would also like to acknowledge the Fundamental Research Grant Scheme No.

203/6071165 from the Malaysian Ministry of Higher Education for the financial

support for this work.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

ABSTRAK xii

ABSTRACT xiii

CHAPTER 1: INTRODUCTION

1.1 Classification Using Multilayer Perceptron (MLP) 1

1.2 Multilayer Perceptron 1

1.3 Problem Statements and Motivation 5

1.4 Research Objectives 7

1.5 Thesis Outline 8

CHAPTER 2: A REVIEW OF MULTILAYER PERCEPTRON (MLP)
AND MULTILAYER PERCEPTRON ENSEMBLE (MLPE)

2.1 Introduction 10

2.2 Neuron Physiology 11

2.3 Artificial Neuron 12

2.4 Artificial Neural Network (ANN) 15

 2.4.1 Applications of Artificial Neural Networks 15

 2.4.2 Multilayer Perceptron (MLP) 16

iv

 2.4.3 Learning in MLP 18

2.5 MLP Backropagation Training Algorithm 19

 2.5.1 Levenberq Marquardt (LM) Training Algorithm 21

 2.5.2 Resilient Backpropagation (RP) Training Algorithm 24

 2.5.3 Bayesian Regularization (BR) Training Algorithm 26

 2.5.4 Hidden Processing Element and Stopping Criterion 26

2.6 Multilayer Perceptron Ensemble (MLPE) 29

 2.6.1 Majority Voting 32

 2.6.2 Trust Voting 33

2.7 Summary 36

CHAPTER 3: DEVELOPMENT OF INTEGRATED MULTILAYER
PERCEPTRON ENSEMBLE

3.1 Introduction 38

3.2 Research Proposal 38

3.3 Preparation of Singular MLP 39

 3.3.1 Data Preprocessing 39

 3.3.2 MLP Training 41

3.3 The Construction of MLPE 44

3.4 Implementation of Voting Scheme 44

 3.4.1 Trust-Sum Voting (TSV) 44

 3.4.2 Majority Voting (MV) 45

 3.4.3 Trust Voting (TV) 47

3.5 Performance Assessment 47

3.6 Summary 50

v

CHAPTER 4: APPLYING THE DEVELOPED MLPE TO
CLASSIFICATION TASK

4.1 Introduction 52

4.2 Case Study I: Electrical Capacitance Tomography 52

 4.2.1 Case Study I: Results and Discussion 56

4.3 Case Study II: Landsat Satellite Image (LSI) 67

 4.3.1 Case Study II: Results and Discussion 69

4.4 Case Study III: German Credit 81

 4.4.1 Case Study III: Results and Discussion 81

4.5 Case Study IV: Pima Indian Diabetes (PID) Data 87

 4.5.1 Case Study IV: Results and Discussion 89

4.6 Summary 92

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion and Contribution 95

5.2 Research Contribution 96

5.3 Suggestion for Future Work 97

 5.3.1 Data Preprocessing: Feature Selection 97

 5.3.2 Bagging and Boosting 98

 5.3.3 Mixture of Expert 98

REFERENCES 99

LIST OF PUBLICATIONS 104

vi

LIST OF TABLES

 Page

Table 2.1 MLP output representation for MLP with three output

classes

35

Table 2.2 An example for calculating C for MLP ensemble with
MLP networks

35

Table 3.1 Example of the calculation of the classification accuracy 43

Table 3.2 Example of CV calculation of for three MLPs presented
with the same data

45

Table 3.3 Example of selecting MLPE output using MV 46

Table 3.4 Example for occurrence of reject class 46

Table 3.5 Example of C calculation for two presented data with three
MLPs in MLPE

47

Table 3.6 The confusion matrix for MLP with three output classes
plus additional column for reject class

49

Table 3.7 The confusion matrix for medical diagnosis 49

Table 4.1 Number of data in each of the flow regime 54

Table 4.2 Output representation for each flow regimes 55

Table 4.3 Number of instances in the verification set for the MLPE
verification

56

Table 4.4 Performance comparison of best-performed MLP trained
with different training algorithms

58

Table 4.5 Results of singular MLP and MLPE produced by different
voting schemes towards the verification data

59

Table 4.6 Confusion matrix for MLPLM6 60

Table 4.7 Confusion matrix for MLPLM14 61

vii

Table 4.8 Confusion matrix for MLPRP22 62

Table 4.9 Confusion matrix for MLPBR4 63

Table 4.10 Confusion matrix for MLPE-MV 64

Table 4.11 Confusion matrix for MLPE-TV 65

Table 4.12 Confusion matrix for MLPE-TSV 66

Table 4.13 MLPs and MLPEs performances comparison for particular
flows

66

Table 4.14 Data distribution and output representation for the LSI data 68

Table 4.15 Performance comparison of best-performed MLP based on
the LSI data

72

Table 4.16 Class distribution of LSI in the verification set

72

Table 4.17 Results of best-performed singular MLPs and MLPEs
towards LSI verification data

73

Table 4.18 The confusion matrix of MLPLM16 towards the LSI
verification data

74

Table 4.19 The confusion matrix of MLPRP57 towards the LSI
verification data

75

Table 4.20 The confusion matrix of MLPBR20 towards the LSI
verification data

76

Table 4.21 Confusion matrix of MLPE-MV for LSI data 77

Table 4.22 Confusion matrix of MLPE-TV for the LSI verification
data

78

Table 4.23 Confusion matrix of MLPE-TSV 79

Table 4.24 Comparison of MLPs and MLPEs performances for
specific classes

80

Table 4.25 Summary of best-performed MLP for each training
algorithm toward GC training and test set

83

Table 4.26 Summary of MLPs and MLPEs performances toward the
GC verification set

84

viii

Table 4.27 Confusion matrix of MLPLM2 on the GC verification data 84

Table 4.28 Confusion matrix of MLPRP5 on the GC verification data 85

Table 4.29 Confusion matrix for MLPBR22 on the GC verification data 85

Table 4.30 Confusion matrix for MLPE-MV on GC the verification
data

86

Table 4.31 Confusion matrix for MLPE-TV on GC the verification
data

86

Table 4.32 Confusion matrix for MLPE-TSV on the GC verification
data

87

Table 4.33 Comparison of MLPs and MLPEs performance for
spectacular class

87

Table 4.34 Class distribution of the PID dataset 88

Table 4.35 Performance comparison for best-performed singular
MLPs

91

Table 4.36 Results of singular MLPs and MLPEs towards the PID
verification set

92

ix

LIST OF FIGURES

 Page

Figure 1.1 MLP architecture 2

Figure 1.2 Structure of integrated MLPE 5

Figure 2.1 A biological neuron 11

Figure 2.2 An artificial neuron 12

Figure 2.3 The logistic sigmoid activation function 13

Figure 2.4 The hyperbolic tangent activation function 14

Figure 2.5 The linear activation function 15

Figure 2.6 An architecture of the MLP with two hidden layers 17

Figure 2.7 A basic frame of MLP ensemble 31

Figure 2.8 Consensus patterns in a group of 10 MLPs: unanimity,
simple majority and plurality

33

Figure 3.1 The process of developing an MLPE 39

Figure 3.2 Flow process of MLP training 42

Figure 4.1 The ECT sensor 53

Figure 4.2 The schematic diagram of flow regimes a) Full b) Empty
c) Stratified d) Bubble e) Core f) Annular. The shaded
area indicates oil and the white area indicates air.

54

Figure 4.3 Test data classification performance of MLP trained with
LM training algorithm for flow regime classification
from ECT data

56

Figure 4.4 Test data classification performance of MLP trained with
RP training algorithm for flow regime classification from
ECT data

57

Figure 4.5 Test data classification performance of MLP trained with
BR training algorithm for flow regime classification from
ECT data

58

x

Figure 4.6 Test data classification performance of MLP trained with
LM training algorithm for LSI data

70

Figure 4.7 Test data classification performance of MLP trained with
RP training algorithm for LSI data

70

Figure 4.8 Test data classification performance of MLP trained with
BR training algorithm for LSI data

71

Figure 4.9 Test data classification performance of MLP trained with
LM training algorithm for GC data

82

Figure 4.10 Test data classification performance of MLP trained with
RP training algorithm for GC data

82

Figure 4.11 Test data classification performance of MLP trained with
BR training algorithm for GC data

83

Figure 4.12 Test data classification performance of MLP trained with
LM training algorithm for PID data

81

Figure 4.13 Test data classification performance of MLP trained with
RP training algorithm for PID data

82

Figure 4.14 Test data classification performance of MLP trained with
BR training algorithm for PID data

82

xi

LIST OF ABBREVIATIONS

ANN Artificial neural network

MLP Multilayer perceptron

MLPE Multilayer perceptron ensemble

PE Processing element

MV Majority voting

TV Trust voting

TSV Trust-sum voting

CCP Correct classification percentage

LM Levenberq Marquardt

RP Resilient backpropagation

BR Bayesian regularization

ECT Electrical capacitance tomography

LSI Landsat satellite image

GC German credit

PID Pima Indian diabetes

MLPE-MV Multilayer perceptron ensemble with majority voting

MLPE-TV Multilayer perceptron ensemble with trust voting

MLPE-TSV Multilayer perceptron with trust-sum voting

xii

TEKNIK UNDIAN GABUNGAN PERSEPTRON BERBILANG LAPISAN

UNTUK APLIKASI PENGELASAN

ABSTRAK

Rangkaian perceptron berbilang lapisan (MLP) adalah model rangkaian

neural buatan yang ringkas tetapi telah berjaya dalam pelbagai aplikasi. Namun,

prestasi MLP yang tidak stabil di mana perubahan kecil dalam parameter latihan

boleh menghasilkan model yang berlainan telah menjadi penghalang kepada kejituan

tinggi untuk aplikasi pengelasan. Dalam kajian ini, satu sistem bersepadu gabungan

MLP (MLPE) yang terdiri daripada MLPE dan algoritma undian baru telah dibina

bertujuan meningkatkan kejituan pengelasan dan mengurangkan bilangan kes kelas

rosak (reject). MLPE dihasilkan daripada MLP tunggal yang berlainan daripada segi

algoritma latihan dan berat awalan. Tiga algoritma latihan yang digunakan ialah

Levenberg-Marquardt (LM), Kebingkasan Perambatan Belakang (RP) dan

Pengaturan Bayes (BR). Bagi memilih keluaran terakhir MLPE, teknik undian baru

yang dinamakan teknik Undian Keyakinan-Jumlah (TSV) telah dicadangkan.

Keberkesanan sistem bersepadu MLPE menggunakan TSV (MLPE-TSV) telah diuji

ke atas empat kajian kes pengelasan iaitu Tomografi Kemuatan Elektrik (ECT), Imej

Satelit Landsat (LSI), Kredit German (GC) dan kes diabetes dikalangan Pima Indian

(PID). Prestasi MLPE-TSV dibandingkan dengan MLPE menggunakan teknik

undian sedia ada iaitu teknik undian majoriti (MLPE-MV) dan teknik udian

keyakinan (MLPE-TV). Keputusan yang diperolehi menunjukkan bahawa MLPE-

TSV yang dicadangkan telah berupaya meningkatkan kejituan pengelasan

berbanding dengan prestasi MLP tunggal, MLPE-MV dan MLPE-TV. MLPE-TSV

juga telah berjaya mengurangkan bilangan kes kelas rosak.

xiii

A VOTING TECHNIQUE OF MULTILAYER PERCEPTRON ENSEMBLE

FOR CLASSIFICATION APPLICATION

ABSTRACT

MLP is a model of artificial neural network, which is simple yet successfully

applied in various applications. The instability of MLP performance where small

changes in training parameter could produce different models that inhibiting

attainment of high accuracy in classification applications. In this research, an

integrated system of Multi-Layer Perceptron Ensemble (MLPE) consisting of an

MLPE and a new voting algorithm has been developed to increase classification

accuracy and reduce the number of reject class cases. MLPE is produced from

singular MLPs that are diverse in term of training algorithm and their initial weights.

Three training algorithms used are Levenberg-Marquardt (LM), Resilient

Backpropagation (RP) and Bayesian Regularization (BR). In order to choose the

final output of MLPE, a new voting algorithm named Trust-Sum Voting (TSV) is

proposed. The effectiveness of MLPE with TSV (MLPE-TSV) has been tested on

four classification case studies which are Electrical Capacitance Tomography (ECT),

Landsat Satellite Image (LSI), German Credit (GC) and Pima Indian Diabetes (PID).

The performance of MLPE-TSV has been compared with the performance of MLPE

which employs existing voting algorithms which are Majority Voting (MLPE-MV)

and Trust Voting (MLPE-TV). The obtained results have shown that the proposed

MLPE-TSV is capable of increasing the accuracy of classification as compared to

singular MLPs, MLPE-MV and MLPE-TV. MLPE-TSV has also managed to reduce

the number of cases in reject class.

1

CHAPTER 1

INTRODUCTION

1.1 Classification Using Multilayer Perceptron (MLP)

Classification is a process of assigning an object to one of several pre-specified

categories or classes (Windeatt, 2008). Classification task aims to make the learning

process and pattern recognition become explicit, where it can partially or entirely be

automated by computers. Automating the classification to obtain optimal

performance has been investigated in various disciplines such as medicine (Calcagno

et al., 2010), industrial sectors (Balabin et al., 2010) and finance (Marinaki et al.,

2010). Although there are many types of classifiers such as Bayes and kn-nearest

neighbour, Multi-Layer Perceptron (MLP) has become one of the most widely used

classifiers (Windeatt, 2008; Chabaa et al., 2010; Balabin et al., 2010; Marinaki et al.,

2010; Calcagno et al., 2010). MLP becomes one of the popular classifiers because it

has the ability to handle the non-linearity nature of most classification problems and

learn complex tasks. Hence, MLP has been applied in this research work.

1.2 Multilayer Perceptron (MLP)

MLP is a type of Artificial Neural Network (ANN). ANN is inspired by the function

of the human brain. The brain is the central element of our nervous system. It is

joined by receptors that carry sensory information to it and deliver action commands

to effectors. The brain itself has a network of about 1011 neurons that are

interconnected through sub-networks called nuclei (Haykin, 2008). The sensory

system and its sub-networks in the brain are exceptionally good at decomposing

2

complex sensory information into those fundamental components that are the crucial

element of sense.

Amongst all ANNs, MLP is the most widely used, accounting for more than 70% of

ANN applications (Tsai, 2009). It has been proven in the literature that MLP is able

to solve a variety of problems, including classification (Ouelli et al., 2012; Barnaghi

et al., 2012; Rowan et al., 2007; Balabin and Safieva, 2008; Yan et al., 2004; Xia

and Yang, 2000; Ren et al., 2000), system modelling and prediction (Niroobaksh et

al., 2012; Yarlagadda and Khong, 2001; Maqsood et al., 2004) and function

approximation (Lee et al., 2004).

A basic MLP is a simple perceptron consisting of input, hidden and output layers

with weight and connections laid between them as shown in Figure 1.1.

 ⋮ ⋮

0x

1x

2x

1nx

 ⋮

1y

2y

my

Figure 1.1 MLP architecture

The MLP neural network will process the data that have been presented to the input

layer by multiplying at the weight layer (Noriega, 2005). The outcome of this

multiplication will be processed by neurons in the output layer using a particular

function that verifies whether or not the output nodes fire. The process of finding the

correct values for the weight is called learning rule. Finding the correct values of

3

weight can be done using a learning paradigm called supervised learning which

sometimes is referred to as training. The term ‘supervise’ refers to the fact that the

input data are constituted with correct output, which acts like a ‘teacher’. Beginning

with random weights, input data present the network and the initial guess on what

output should be, is made. During the training phase, the error between the output of

the network and the actual output value is measured and the weights are changed in

order to minimize the error. Then, the MLP neural network is tested with new data

which have never been observed by the performance and to determine whether it can

work well when new data are presented.

Although MLP has been proven to be a good classifier, its learning algorithm has

complex error surface that can get trapped in local minima (Windeatt, 2008). The

problem of local minima is caused by a gradient descent algorithm which is used to

train the MLP neural network to find globally optimal solution (Ng et al., 2012). The

training is believed to have reached a local minimum when there is no obvious

change in the error function through large number of epochs, because of the change

of weight becomes negligible. Hence, the performance of MLP will remain

unchanged due to the insignificant change of weight. There are different ways of

trying to overcome this local minima problem (Haykin, 2008) and MLP ensemble

(MLPE) is one of the methods (Valdovinos and Sanchez, 2006; Adhikari and

Agrawal, 2012).

Another problem when employing MLP is the selection of the best-performed MLP

system. During the training phase, several MLP neural networks might give the

same highest percentage of accuracy. Theoretically, in such a case, the MLP neural

network with the least number of hidden PE is chosen to represent the problem due

to the fact that it has simpler network architecture. However, a problem is

4

encountered when not all of the best MLPs (with the same highest percentage of

accuracy) show the same performance towards a new set of data because of the

different ways in their generalization during learning and different architectural

structure (i.e. different number of hidden neurons). As an example, two MLP neural

networks, say MLPa and MLPb give 90% of accuracy when presented with 100

patterns. The first pattern is correctly classified by the MLPa, yet is incorrectly

classified by MLPb. The second pattern is incorrectly classified by MLPa but is

correctly classified by MLPb and so on. At the end of the training process, both of

the MLP neural networks give 90% of accuracy as they produce the same number of

correctly classified patterns although they disagree with some of the presented

patterns. Hence, logically, utilization of MLPa and MLPb in a MLPE, gives a better

chance to improve the overall classification accuracy.

The structure of an integrated MLPE is as shown in Figure 1.2. The integrated MLPE

system consists of an assembly of several MLP neural networks and a voting system.

The MLPs in MLPE are first independently trained with the same set of data. Then,

the MLPs with highest accuracy are chosen to be part of a MLP ensemble. In

general, the MLPs cannot be combined in parameter (i.e weight) space as their

integration involves ‘stacked’ MLP neural networks (see Figure 1.2). Hence, the

ensemble needs a voting system to select the final output. The voting system is

responsible to determine the best output solution for the data presented. The selection

is done based on a specific voting algorithm.

5

nMLP

2MLP

 

1MLP



Figure 1.2 Structure of an integrated MLPE

The most widely used voting technique is majority voting (Bouzane et al., 2011;

Oliveira, 2009; Binsaeid et al., 2009; Bhattacharia and Chaudhuri, 2003). It is a non-

statistical technique that mainly depends on the agreement among individual MLPs

in an ensemble. When there is a consensus vote on one output class, the output will

be assigned to that class. However, when the draw number of votes occurs, the data

will be classified as reject class. This happens because MLPE fails to classify it as

any of the available output classes.

Another voting algorithm is trust voting (TV). It is a statistical-based approach that

uses confidence measure to determine which MLP output is to be used as the output

of the ensemble (Kumar et al., 2000). This trust voting scheme has been employed

by Kumar et al. (2000), Hartono and Hashimoto (2004) and Mohamad-Saleh et al.

(2011) to construct MLPE to improve the classification accuracy.

1.3 Problem Statements and Motivation

MLPE can be developed using two different methods, it is either focused on the pre-

training or the post-training stage. At the pre-training stage, MLPs are trained using

6

different training subsets to create distinct individual MLPs. The bootstrap and

boosting are the statistical approaches that can be used to create those subsets.

However, this requires more time since the MLP has to be trained several times to

create distinct individual MLPs. On the other hand, the post-training approach

creates distinctive individual MLPs by using the same training set with different

initial training parameters. A single output from an ensemble is chosen based on the

voting algorithm. This work uses the post-training approach in developing an MLPE

to reduce training time.

Another method to construct an ensemble has been proposed by Bishops and

Svensen (2003). They propose the mixture of experts as one of the methods in

constructing ensemble. The term ‘expert’ here refers to the combination of different

types of ANN architectural models. Such ensemble has been given better

performance, but it increases the complexity of the system. Hence, its development

was time-consuming because of the complexity of dealing with different output

representations of different ANN architectures. Thus, this work only employs MLP

to construct an ensemble.

MV is one of the popular voting algorithms used to develop an ensemble (Bouzane et

al., 2011; Oliveira et al., 2009; Binsaeid et al., 2009; Bhattacharia and Chaudhuri,

2003). The advantages of this voting algorithm lie in the fact that it is easy to

understand and it is simple to implement regardless of the form of the MLP output

representation. The drawback of this voting algorithm is that it requires an odd

number of MLPs to avoid the occurrence of tie vote that leads to reject class. To

avoid such problem, it is best to use more than one MLP to construct an ensemble. In

this work, the minimum number of MLPs employed is three. The TV approach is

rather more complex compared to MV because it involves the calculation of

7

confidence measure. It uses two most significant output bits to calculate each of the

MLP output confidence measure. The confidence measure represents how confident

an MLP is with its output. The TV method has been extensively used for a variety of

applications. One limitation of this voting algorithm is that it considers only two bits,

i.e. the highest and second highest, and abandon the others, even though there are

more than two outputs in an MLP. It has become an encouragement to design a new

voting algorithm that has good performance and easy to implement as there are a

limited number of voting schemes that have been employed in constructing an

MLPE.

MLP trained with different training algorithms may have different generalizations

over the same presented data. Hence, it drives some inspiration to look into the

performance of the MLPE constructed by different kinds of training algorithms and

trained on the same training data. By using the same training data, the performance

of MLPs is comparable since they only differ in their initial training parameters.

Three different kinds of training algorithms used to train MLP neural networks in

this work are the Levenberq Marquardt (LM), Resilient Backpropagation (RP) and

Bayesian Regularization (BR). Thus, three is the minimum number of MLP used to

construct MLPE.

1.4 Research Objectives

The main goal of this research is to design a new method to develop an integrated

MLPE consisting of an MLPE that uses a new proposed voting algorithm aimed at

improving classification accuracy. To accomplish the aim, this work focuses on the

following objectives:

8

i. To propose and develop an MLPE consisting of MLPs that differ in training

algorithm, initial weights and size to attain a variety of intelligent systems.

i. To propose and investigate a new voting scheme to improve classification

accuracy and reduce rejects class cases.

ii. To assess the performance of developed MLPE employing proposed voting

technique by comparison with existing commonly used voting schemes.

In this research work, an MLPE was developed using MLPs that are differing in their

initial weights, training algorithm and architecture. All the MLPs were trained on the

same training data. The best MLPs performed from each training algorithm are

selected to become the members of MLPE

A new voting algorithm, trust--sum voting (TSV) is proposed as the voting technique

for the MLPE system. The developed MLPE (MLPE-TSV) was tested on four

benchmark case studies under the domain of classification. Then, the proposed

MLPE-TSV performance was compared with MLPE-TV and MLPE-MV to assess

its performance.

1.5 Thesis Outline

This chapter briefly introduces some preliminaries on this research work. It discusses

the problems associated with MLPE, leading towards the motivation of research. The

research objectives are listed and explained.

Chapter 2 reviews the literature on MLP, including its architecture and training

algorithm. It also presents the literature of MLPE constructed by using voting

9

schemes. Two different voting schemes which are majority voting (MV) and trust

voting (TV) are discussed.

Chapter 3 concentrates on the methodologies of this research work. The details of the

steps in developing an MLPE using the proposed voting scheme and existing voting

schemes are explained.

Chapter 4 presents the application of the proposed voting scheme in constructing

MLPE. The applicability of the voting scheme was tested on four case studies in the

classification domain. The first one is the ECT data with 66 input and 6 output

classes, followed by the Landsat image satellite with 36 input and six output classes.

The other two case studies have two outputs with German credit data having 24

attributes whilst Pima Indian diabetes has only eight inputs. The performance of

MLPE using the new voting scheme in each case study was compared to singular

MLPs and MLPE using TV and MV.

Chapter 5 presents the whole conclusion of this research work. From the results

obtained, the MLPE new voting scheme shows outstanding performance compared to

singular MLPs and MLPE using existing voting schemes. The developed MLPEs

using MLPs with different training algorithms demonstrate superior performance

compared to singular MLPs. The overall results illustrate that MLPE using the

proposed voting scheme is able to perform the classification task for multiple output

classes. The areas to be pursued as the future work are also suggested.

10

CHAPTER 2

A REVIEW OF MULTILAYER PERCEPTRON (MLP) AND MULTILAYER

PERCEPTRON ENSEMBLE (MLPE)

2.1 Introduction

An artificial neural network (ANN), often called a neural network, is inspired by

biological neurons. In the ANN, the nodes or neurons can be seen as computational

units. They receive inputs and process them to produce an output. The neurons can

be trained to classify an object according to their feature using examples (Padhy,

2005). In this chapter, the review of the ANN including their features will be

discussed. Then, one of the most widely used ANN types which is the multilayer

perceptron (MLP) will be discussed.

The next section presents a review on the multilayer perceptron ensemble (MLPE).

The ensemble is an integration of several MLP neural networks to produce a single

system. The aim of the MLPE is to generate more certain, precise and accurate

system results. Various researches have been conducted and the findings have proven

that the ensemble has superior performance to any singular ANN (Bhattacharya and

Chaudhuri, 2003; Dietrich, 2002; Brown, 2004). In order to develop an MLPE, a

voting technique is needed. The last section of this chapter presents a review on two

existing voting techniques and they are the majority and trust voting.

11

2.2 Neuron Physiology

The neuron is the fundamental element of the nervous system, particularly the brain

(Padhy, 2005). A biological neuron consists of three main components: cell body,

dendrites and axon (see Figure 2.1). There is a cell body or soma that contains a

nucleus in a neuron and each of the neuron has dendrites that receive connections

from the other neurons. Neurons also have an axon which makes its way out from

the neuron and in the end splits into a number of strands to make a connection with

the other neurons. Synapses are the points where the neurons interact with the other

neurons. A neuron can receive 10,000 or more synaptic contacts and can be ventured

onto thousands of target cells (Haykin, 2008).

Figure 2.1 A biological neuron

Due to the electrical properties of the neuronal membranes, the signals that reach the

dendrite rapidly decay in strength in time (temporal) and over distance (spatial), and

thus lose the facility to stimulate the neuron, except for the fact that they are

supported by another signal occurring at almost the same time and/ or nearby the

locations (Ham and Kostanic, 2001). The soma sums the arriving signals (inputs)

12

from the dendrites and also sums the signals from numerous synapses on its surface.

When the threshold level of the sum of the received signals is reached, the neuron

generates an action potential which fire and transmit an action potential of its axon to

other neurons or target cells outside the nervous system. Nevertheless, if the

threshold level of the inputs is not reached, the inputs will quickly decay and will not

generate an action potential. The strength of the inputs is measured by the number of

action potential generated per second.

2.3 Artificial Neuron

An artificial neuron is an information processing unit that is essential to the operation

of the ANN (Padhy, 2005). Figure 2.2 shows the schematic representation of an

artificial neuron.

Figure 2.2 An artificial neuron

It consists of a set synapse or a connecting link and each of the links is characterized

by a weight or strength of its own. The values of weights, w0, w1, w2,…,wn are to

determine the strength of the input vector X = [x0, x1, x2,…, xn.]T. Each input is

multiplied by an associated weight of the neuron connection XTW. The synaptic

13

weights of an artificial neuron can have positive or negative values according to the

acceleration or inhibition of the electrical signals flow (Padhy, 2005).

The processing element consists of two parts. The first part is an adder, used to sum

up the input signals. The second part consists of an activation function which is used

to limit the output of a neuron. The activation function is also referred as the

squashing function, which performs a mathematical operation to squash the

amplitude of the output signal into some finite ranges (Chakraborty, 2010). An

external bias, Bk is also applied to the neuron. It is used to raise or to reduce the net

input of the activation function (Padhy, 2005).

 There are many different types of activation functions and the selection of one type

over another depends on the problem that the ANN network needs to solve. The

current ANN model often uses a sigmoid (S-shaped) activation function (Acharya et

al., 2003; Nkwogu and Allen, 2012).

Figure 2.3 shows the logistic sigmoid activation function. For the range -∞ <vq<

∞where vq is the internal activity potential of neuron q, f(vq) is given by (Haykin,

2008)

  1
1 qq vf v

e



 (2.1)

Figure 2.3 The logistic sigmoid activation function

14

Alternatively, MLP can use the hyperbolic tangent sigmoid activation function (see

Figure 2.3) and can be written as (Haykin, 2008)

  
q q

q q

v v

q v v
e ef v
e e









 (2.2)

The range of the activation function for the tangent sigmoid is -1 to +1.

Figure 2.4 The hyperbolic tangent activation function

 Occasionally, the ANN uses the linear activation function (refer to Figure 2.5) and

this is given by

  q qf v kv
 (2.3)

where k is the slope of the straight line.

However, the use of the linear activation function will remove the nonlinear behavior

of the ANN (Padhy, 2005). Thus, the ANN cannot perform on the non-linear

problem.

15

Figure 2.5 The linear activation function.

2.4 Artificial Neural Network (ANN)

An ANN is a huge parallel distributed processor that has a natural tendency for

storing experiential knowledge and making it available for use (Haykin, 2008). It

consists of highly interconnected processing elements (artificial neuron) in an

architecture, which is inspired by the cerebral cortex structure of the brain (Padhy,

2005).

2.4.1 Applications of Artificial Neural Networks

ANNs have been used in many diverse applications because of their ability to

generalize and describe non-linear processes. The applications of the ANN can be

classified into three major categories; classification, pattern association and function

approximation (Ham and Kostanic, 2001).

Classification –The ANN is trained to be able to classify the input patterns

presented. As one type of classifiers, the ANN can serve numerous areas for different

purposes such as for the medical (Kamruzzaman et al. 2004; Chai et al. 2004), and

16

industrial purposes for control (Balabin and Safieva 2008; Yan et al., 2004; Xia and

Yang, 2000; Ren et al., 2000).

Pattern association - Pattern association can be classified into two types;

autoassociation and heteroassociation. The association entails constantly showing the

ANN a certain pattern and the ANN should be able to store it and when a distorted

image of the same pattern is presented, the ANN should retrieve it. Heteroassociation

differs from autoassociation in the sense that it is supervised. Some examples of

works that are related to pattern association are business transactions (Kar and De,

2009) and robot controller (Zin et al., 2009).

Function approximation – The ANN can be used as the function approximator

where the ANN is able to receive an input and desired output and then, approximate

the function that has been used. The work done by Lee et al. (2004) is one of the

examples of solving the function approximation problem using the ANN.

2.4.2 Multilayer Perceptron (MLP)

MLP is an important class of ANN (Haykin, 2008). Basically, the MLP neural

network consists of three layers; the input layer, hidden layer and output layer. The

input signal transmits through the MLP neural network in a forward direction on a

layer-by-layer basis (see Figure 2.6). The first and second hidden layers consist of

hidden processing elements (PEs) also known as neurons which process the

information sent from the input layer. This single hidden layer is sandwiched

between the input and output layers. For n input neuron, the input vector, x = [x0,

x1… xn-1] T and ࢞ ∈ ℜ௡ିଵ	×	ଵ Meanwhile, y is the vector response of the MLP neural

17

network where ࢟ ∈ ℜ௞×	ଵ. The neuron is regarded by n + 1 weights which multiply

each input and activation function that are applied to the weighted sum of the inputs

in order to produce the neuron’s output. The weighted sum of inputs includes the bias

often called the net input or internal activation potential, v. The neuron output is the

function of the net input, f(v) and can be written as

 
1

0

n

i i n
i

y f v x w w




   (2.4)

 ⋮ ⋮ ⋮

0x

1x

2x

1nx

 ⋮

1y

2y

my

Figure 2.6 An architecture of the MLP with two hidden layers.

An MLP has three distinctive features

1. The model of each neuron in the MLP neural network comprises of

nonlinearity at the output end. The nonlinearity is crucial or else the input-

output relation of the MLP neural network could be decomposed to that of a

single layer perceptron (Haykin, 2008). Indeed, this nonlinearity of the

neuron is smooth (i.e. differentiable everywhere).

18

2. The MLP neural network consists of one or more hidden layers of PE that are

not part of the input or output of the network. These hidden PE allow the

MLP neural network to learn a complex task of extracting evolutionary

significant aspects from the input patterns (vectors).

3. The MLP neural network demonstrates high degree of connectivity,

determined by the synapses of the MLP neural network (Haykin, 2008). A

change in the connectivity of the network needs a change in the population of

synaptic connections or their weights.

MLP has been successfully applied to various classification problems by training it

in a supervised manner using a popular algorithm known as error backpropagation

(Haykin, 2008; Valdovinos and Sanchez, 2006; Adhikari and Agrawal, 2012).

Hence, it is chosen to be employed in this work. The term ‘supervised’ refers to the

existence of a ‘teacher’ during the training. The term ‘teacher’ is in reference to the

desired outputs that are paired up with the corresponding inputs. The weights are

adjusted according to the error obtained during the learning process.

2.4.3 Learning in MLP

The MLP training process starts by initializing all weights to a small non-zero value

and frequently these weights are generated randomly. One complete presentation of

the entire training set during the learning process is called an epoch. The learning

process remains on the epoch-by-epoch basis until the threshold levels and the

synaptic weights of the network stabilize and the average squared error over the

entire training set converges to some minimum values. For a given training set, the

MLP network may learn in one of two basic approaches; Pattern mode and batch

19

mode. In the pattern mode, the weight updating is done after the presentation of each

training input. In the batch mode learning, the weights are updated after a sequence

of inputs is presented.

2.5 Backpropagation Training Algorithm

Learning in MLP is almost always carried out using the backpropagation algorithm.

The algorithm was first developed by Werbos (1974) and rediscovered by Parker in

1982, LeCun in 1985 and Rumelhart et al. in 1986. The work done by Rumelhart et

al. proposes the use of error backpropagation to set the weights and to train the MLP

neural network (Graupe, 2007).

The backpropagation can be applied to MLP in any number of hidden layers. The

aim of the training is to adjust the weights, so that the application of a set of inputs

can well generate the desired output. The MLP training involves two phases. In the

forward pass, an activity pattern (input vector) is applied to the sensory nodes of the

MLP neural network and its effects transmit through the MLP neural network, layer

by layer (Haykin, 2008). Finally, a set of outputs is generated as the MLP neural

network’s actual response. Throughout the forward pass, the synaptic weights of the

MLP neural network are all fixed. On the other hand, during the backward pass, the

synaptic weights are all adjusted in accordance with the error correction rule.

Particularly so, the actual response of the MLP neural network is subtracted from a

desired output to produce an error signal. Then, this error signal transmits backwards

through the MLP neural network against the direction of the synaptic connections.

The synaptic weights are amended in such a way to make the actual response of the

MLP neural network move closer to the desired response (Haykin, 2008).

20

The backpropagation algorithm offers an ‘approximation’ to the trajectory in weight

space by the scheme of the steepest descent. The smaller value of the learning

parameter, μ, the smaller will be the changes to the synaptic weights in the MLP

neural network from one iteration to the next and the smoother will be the trajectory

in weight space (Haykin, 2008). However, this improvement will result in a slower

rate of learning. If the learning parameter, μ is too large, this will accelerate the

learning rate, but unfortunately it will result in large changes in the synaptic weights

in such a way that the network may become unstable.

Although the backpropagation algorithm has less computational complexity, it

suffers from slow convergence rate and is easily trapped in the local minima and

cannot converge to the global minimum (Ng et al., 2012). A MLP neural network is

caught in local minima when the changes of weights become negligible. This leads

an insignificant change in the error function through a large number of epochs and

hence, there is no change in the output of a MLP. Therefore, the target error value

cannot be obtained and thus the training will be unsuccessful. A lot of researches

have been done to improve the backpropagation algorithm to overcome the local

minimum problem and accelerate the learning process (Wang et al., 2004; Ng et al.,

2004).

There are several training algorithms adopted to accelerate the learning of

backpropagation algorithm such as Levenberq Marquardt (LM), Resilient

backpropagation (RP) and Bayesian regularization (BR). These several training

algorithms are the modification of the standard backpropagation algorithm.

21

2.5.1 Levenberq Marquardt (LM) Training Algorithm

The Levenberq Marquardt (LM) algorithm represents a simplified version of the

Newton’s method (Haykin, 2008). Newton’s method is a well known method for a

numerical optimization technique with quadratic speed of convergence. The LM

algorithm was introduced by Levenberq (1984) and Marquardt (1963) and typically

serves as the fastest training algorithm (Hagan and Menhaj, 1994).

An apparent problem with Newton’s method lies in the computational requirements

concerned with calculating the inverse of the Hessian matrix (Haykin, 2008). The

LM algorithm provides a feasible alternative to Newton’s method with less

complexity and roughly the same convergence speed. The problem of training MLP

has to be formulated as a nonlinear optimization problem as to be able to apply the

LM algorithm. Consider an MLP network shown in Figure 2.6. The task of the ANN

training can be viewed as determining a set of network weights that minimizes the

error between the target and the actual output of network for all the patterns in the

training set. If the number of pattern is finite, the energy function can be written as

(Ham and Kostanic, 2001)

E(w)= 1
2
∑ ቀdq-yqቁ

TQ
q=1 ቀdq-yqቁ= 1

2
∑ ∑ (dqh-yqh)

2m
h=1

Q
q=1 (2.5)

where Q is the total number of training pattern, w represents the vector containing all

the weights in the network, dq is the desired output and yqh is the actual network

output due to the qth training pattern. Based on Newton’s method, the set of optimal

weights that minimizes the energy function in (2.5) can be determined by applying

݇)࢝ + 1) = (݇)࢝ ௞ࡴ−
ିଵࢍ௞ (2.6)

22

where

௞ࡴ = ∇ଶ࢝|(࢝)ܧୀ࢝(௞) (2.7)

and

௞ࢍ = (2.8) (௞)࢝ୀ࢝|(࢝)ܧ∇

By defining P=kQ, (2.5) can be rewritten as

(࢝)ܧ = ଵ
ଶ
∑ ൫݀௣ − ௣൯ݕ

ଶ
=௉

௣ୀଵ
ଵ
ଶ
∑ ݁௣ଶ௉
௣ୀଵ (2.9)

where ep is the network error given by

 ݁௣ = ݀௣ − ௣ (2.10)ݕ

The gradient of the energy function in (2.8) can be computed as follows (Haykin,

2008)

ࢍ = డா(࢝)
డ࢝

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡డ෍ ௘೛మ

ು

೛సభ

డ௪భ

డ෍ ௘೛మ
ು

೛సభ

డ௪మ
⋮

డ෍ ௘೛మ
ು

೛సభ

డ௪ಿ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= (2.11) ࢋ்ࡶ

Where ࡶ ∈ ℜ௉×ே is the Jacobian matrix defined by

ࡶ =

⎣
⎢
⎢
⎢
⎢
⎡

డ௘భ
డ௪భ

డ௘భ
డ௪మ

⋯ డ௘భ
డ௪ಿ

డ௘మ
డ௪భ

డ௘మ
డ௪మ

⋯ డ௘మ
డ௪ಿ

⋯⋯⋯⋯⋯⋯⋯⋯⋯
డ௘ು
డ௪భ

డ௘ು
డ௪మ

⋯ డ௘ು
డ௪ಿ ⎦

⎥
⎥
⎥
⎥
⎤

 (2.12)

23

By using the expression in (2.12), the Hessian can be expressed as

[∇ଶ(࢝)ܧ] = ࡶ்ࡶ + (2.13) ࡿ

Where matrix ࡿ ∈ ℜே×ே is the matrix of the second order derivatives given by

ࡿ = ∑ ݁௣∇ଶ௉
௣ୀଵ ݁௣ (2.14)

When approaching the minimum of the energy function, the elements of matrix S

become small, and the Hessian matrix can be closely approximated by

ࡴ ≈ (2.15) ࡶ்ࡶ

Substitute (2.11) and (2.15) into the expression of Newton’s method expressed in

(2.5) result in

݇)࢝ + 1) = (݇)࢝ − ௞்݁௞ (2.16)ࡶଵି[௞ࡶ௞்ࡶ]

where subscript k indicates the evaluation of the suitable matrices at w = w(k).

However, the iterative update given in (2.16) needs the inversion of matrix H =

JTJwhich may be ill-conditioned or even singular (Ham and Kostanic, 2001). This

problem can be resolved using the following adjustment of (2.15)

ࡴ ≈ ࡶ்ࡶ + (2.17) ࡵߤ

whereμ is a small number and ࡵ ∈ ℜே×ே is the identity matrix. Substituting (2.11)

and (2.14) constructs the LM algorithm for updating the network weights given by

(Ham and Kostanic, 2001)

݇)࢝ + 1) = (݇)࢝ − ௞ࡶ௞்ࡶ] + ௞்݁௞ (2.18)ࡶଵି[ࡵ௞ߤ

For a small value of μk, (2.17) approaches, the Newton’s algorithm is given in (2.16).

If the value of μk is increased, the second term inside the square bracket (refer to

(2.18) becomes dominant and the updated equation can be written as

24

݇)࢝ + 1) = (݇)࢝ − ௞்݁௞ࡶଵି[ࡵ௞ߤ] = ଵ
ఓೖ
 ௞்݁௞ (2.19)ࡶ

The major problem in executing the LM algorithm can be seen in the calculation of

the Jacobian matrix J (w). Each term in the matrix has

௜௝ܬ = డ௘೔
డ௪ೕ

 (2.20)

The simplest method to compute the derivative in (2.20) is using the approximation

௜௝ܬ ≈
∆௘೔
∆௪ೕ

 (2.21)

where ∆݁௜	represents the change in the output error due to the small perturbation of

the weights ∆ݓ௝. The value of ∆ݓ௝is kept small, at least an order of magnitude

smaller than the current learning rate parameter, μk. The weight update can be

performed using (2.19) after computing the Jacobian matrix.

2.5.2 Resilient Backpropagation (RP) Training Algorithm

Resilient Backpropagation (RP) proposed by Riedmiller and Braun in 1993, is a

training scheme that performs a direct adaptation of the weight step based on the

local gradient information. The size of the actual weight perturbation, Δݓ௜௝ is not

only dependent on the learning rate, but also on the partial derivative ഃ೐
ഃೢ೔ೕ

. The effect

of the vigilantly adapted learning rate can be drastically disturbed by the

unpredictable behaviour of the derivative itself (Riedmiller and Braun, 1993). The

purpose of using the RP algorithm is to eliminate the harmful effect caused by the

magnitude of partial derivatives (Haykin, 2008).

