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TEKNIK UNDIAN GABUNGAN PERSEPTRON BERBILANG LAPISAN 

UNTUK APLIKASI PENGELASAN 

ABSTRAK 

Rangkaian perceptron berbilang lapisan (MLP) adalah model rangkaian 

neural buatan yang ringkas tetapi telah berjaya dalam pelbagai aplikasi. Namun, 

prestasi MLP yang tidak stabil di mana perubahan kecil dalam parameter latihan 

boleh menghasilkan model yang berlainan telah menjadi penghalang kepada kejituan 

tinggi untuk aplikasi pengelasan. Dalam kajian ini, satu sistem bersepadu gabungan 

MLP (MLPE) yang terdiri daripada MLPE dan algoritma undian baru telah dibina 

bertujuan meningkatkan kejituan pengelasan dan mengurangkan bilangan kes kelas 

rosak (reject). MLPE dihasilkan daripada MLP tunggal yang berlainan daripada segi 

algoritma latihan dan berat awalan. Tiga algoritma latihan yang digunakan ialah 

Levenberg-Marquardt (LM), Kebingkasan Perambatan Belakang (RP) dan 

Pengaturan Bayes (BR). Bagi memilih keluaran terakhir MLPE, teknik undian baru 

yang dinamakan teknik Undian Keyakinan-Jumlah (TSV) telah dicadangkan. 

Keberkesanan sistem bersepadu MLPE menggunakan TSV (MLPE-TSV) telah diuji 

ke atas empat kajian kes pengelasan iaitu Tomografi Kemuatan Elektrik (ECT), Imej 

Satelit Landsat (LSI), Kredit German (GC) dan kes diabetes dikalangan Pima Indian 

(PID). Prestasi MLPE-TSV dibandingkan dengan MLPE menggunakan teknik 

undian sedia ada iaitu teknik undian majoriti (MLPE-MV) dan teknik udian 

keyakinan (MLPE-TV). Keputusan yang diperolehi menunjukkan bahawa MLPE-

TSV yang dicadangkan telah berupaya meningkatkan kejituan pengelasan 

berbanding dengan prestasi MLP tunggal, MLPE-MV dan MLPE-TV. MLPE-TSV 

juga telah berjaya mengurangkan bilangan kes kelas rosak. 
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A VOTING TECHNIQUE OF MULTILAYER PERCEPTRON ENSEMBLE 

FOR CLASSIFICATION APPLICATION 

 
ABSTRACT 

MLP is a model of artificial neural network, which is simple yet successfully 

applied in various applications. The instability of MLP performance where small 

changes in training parameter could produce different models that inhibiting 

attainment of high accuracy in classification applications. In this research, an 

integrated system of Multi-Layer Perceptron Ensemble (MLPE) consisting of an 

MLPE and a new voting algorithm has been developed to increase classification 

accuracy and reduce the number of reject class cases. MLPE is produced from 

singular MLPs that are diverse in term of training algorithm and their initial weights. 

Three training algorithms used are Levenberg-Marquardt (LM), Resilient 

Backpropagation (RP) and Bayesian Regularization (BR). In order to choose the 

final output of MLPE, a new voting algorithm named Trust-Sum Voting (TSV) is 

proposed. The effectiveness of MLPE with TSV (MLPE-TSV) has been tested on 

four classification case studies which are Electrical Capacitance Tomography (ECT), 

Landsat Satellite Image (LSI), German Credit (GC) and Pima Indian Diabetes (PID). 

The performance of MLPE-TSV has been compared with the performance of MLPE 

which employs existing voting algorithms which are Majority Voting (MLPE-MV) 

and Trust Voting (MLPE-TV). The obtained results have shown that the proposed 

MLPE-TSV is capable of increasing the accuracy of classification as compared to 

singular MLPs, MLPE-MV and MLPE-TV. MLPE-TSV has also managed to reduce 

the number of cases in reject class.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Classification Using Multilayer Perceptron (MLP) 

Classification is a process of assigning an object to one of several pre-specified 

categories or classes (Windeatt, 2008). Classification task aims to make the learning 

process and pattern recognition become explicit, where it can partially or entirely be 

automated by computers. Automating the classification to obtain optimal 

performance has been investigated in various disciplines such as medicine (Calcagno 

et al., 2010), industrial sectors (Balabin et al., 2010) and finance (Marinaki et al., 

2010). Although there are many types of classifiers such as Bayes and kn-nearest 

neighbour, Multi-Layer Perceptron (MLP) has become one of the most widely used 

classifiers (Windeatt, 2008; Chabaa et al., 2010; Balabin et al., 2010; Marinaki et al., 

2010; Calcagno et al., 2010). MLP becomes one of the popular classifiers because it 

has the ability to handle the non-linearity nature of most classification problems and 

learn complex tasks. Hence, MLP has been applied in this research work.  

 

1.2 Multilayer Perceptron (MLP) 

MLP is a type of Artificial Neural Network (ANN). ANN is inspired by the function 

of the human brain. The brain is the central element of our nervous system. It is 

joined by receptors that carry sensory information to it and deliver action commands 

to effectors. The brain itself has a network of about 1011 neurons that are 

interconnected through sub-networks called nuclei (Haykin, 2008). The sensory 

system and its sub-networks in the brain are exceptionally good at decomposing 
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complex sensory information into those fundamental components that are the crucial 

element of sense.  

Amongst all ANNs, MLP is the most widely used, accounting for more than 70% of 

ANN  applications (Tsai, 2009). It has been proven in the literature that MLP is able 

to solve a variety of problems, including classification (Ouelli et al., 2012; Barnaghi 

et al., 2012; Rowan et al., 2007; Balabin and Safieva, 2008; Yan et al., 2004; Xia 

and Yang, 2000; Ren et al., 2000), system modelling and prediction (Niroobaksh et 

al., 2012; Yarlagadda and Khong, 2001; Maqsood et al., 2004) and function 

approximation (Lee et al., 2004).  

A basic MLP is a simple perceptron consisting of input, hidden and output layers 

with weight and connections laid between them as shown in Figure 1.1.  

 ⋮  ⋮ 

0x

1x

2x

1nx

 ⋮ 

1y

2y

my

 

Figure 1.1 MLP architecture 

The MLP neural network will process the data that have been presented to the input 

layer by multiplying at the weight layer (Noriega, 2005). The outcome of this 

multiplication will be processed by neurons in the output layer using a particular 

function that verifies whether or not the output nodes fire. The process of finding the 

correct values for the weight is called learning rule. Finding the correct values of 
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weight can be done using a learning paradigm called supervised learning which 

sometimes is referred to as training. The term ‘supervise’ refers to the fact that the 

input data are constituted with correct output, which acts like a ‘teacher’.  Beginning 

with random weights, input data present the network and the initial guess on what 

output should be, is made. During the training phase, the error between the output of 

the network and the actual output value is measured and the weights are changed in 

order to minimize the error. Then, the MLP neural network is tested with new data 

which have never been observed by the performance and to determine whether it can 

work well when new data are presented.  

Although MLP has been proven to be a good classifier, its learning algorithm has 

complex error surface that can get trapped in local minima (Windeatt, 2008). The 

problem of local minima is caused by a gradient descent algorithm which is used to 

train the MLP neural network to find globally optimal solution (Ng et al., 2012). The 

training is believed to have reached a local minimum when there is no obvious 

change in the error function through large number of epochs, because of the change 

of weight becomes negligible. Hence, the performance of MLP will remain 

unchanged due to the insignificant change of weight. There are different ways of 

trying to overcome this local minima problem (Haykin, 2008) and MLP ensemble 

(MLPE) is one of the methods (Valdovinos and Sanchez, 2006; Adhikari and 

Agrawal, 2012). 

Another problem when employing MLP is the selection of the best-performed MLP 

system.  During the training phase, several MLP neural networks might give the 

same highest percentage of accuracy. Theoretically, in such a case, the MLP neural 

network with the least number of hidden PE is chosen to represent the problem due 

to the fact that it has simpler network architecture.  However, a problem is 
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encountered when not all of the best MLPs (with the same highest percentage of 

accuracy) show the same performance towards a new set of data because of the 

different ways in their generalization during learning and different architectural 

structure (i.e. different number of hidden neurons).  As an example, two MLP neural 

networks, say MLPa and MLPb give 90% of accuracy when presented with 100 

patterns. The first pattern is correctly classified by the MLPa, yet is incorrectly 

classified by MLPb. The second pattern is incorrectly classified by MLPa but is 

correctly classified by MLPb and so on. At the end of the training process, both of 

the MLP neural networks give 90% of accuracy as they produce the same number of 

correctly classified patterns although they disagree with some of the presented 

patterns. Hence, logically, utilization of MLPa and MLPb in a MLPE, gives a better 

chance to improve the overall classification accuracy. 

The structure of an integrated MLPE is as shown in Figure 1.2. The integrated MLPE 

system consists of an assembly of several MLP neural networks and a voting system.  

The MLPs in MLPE are first independently trained with the same set of data. Then, 

the MLPs with highest accuracy are chosen to be part of a MLP ensemble. In 

general, the MLPs cannot be combined in parameter (i.e weight) space as their 

integration involves ‘stacked’ MLP neural networks (see Figure 1.2). Hence, the 

ensemble needs a voting system to select the final output. The voting system is 

responsible to determine the best output solution for the data presented. The selection 

is done based on a specific voting algorithm. 
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Figure 1.2 Structure of an integrated MLPE 

The most widely used voting technique is majority voting (Bouzane et al., 2011; 

Oliveira, 2009; Binsaeid et al., 2009; Bhattacharia and Chaudhuri, 2003). It is a non-

statistical technique that mainly depends on the agreement among individual MLPs 

in an ensemble. When there is a consensus vote on one output class, the output will 

be assigned to that class. However, when the draw number of votes occurs, the data 

will be classified as reject class. This happens because MLPE fails to classify it as 

any of the available output classes. 

Another voting algorithm is trust voting (TV). It is a statistical-based approach that 

uses confidence measure to determine which MLP output is to be used as the output 

of the ensemble (Kumar et al., 2000). This trust voting scheme has been employed 

by Kumar et al. (2000), Hartono and Hashimoto (2004) and Mohamad-Saleh et al. 

(2011) to construct MLPE to improve the classification accuracy. 

 

1.3 Problem Statements and Motivation 

MLPE can be developed using two different methods, it is either focused on the pre-

training or the post-training stage. At the pre-training stage, MLPs are trained using 
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different training subsets to create distinct individual MLPs. The bootstrap and 

boosting are the statistical approaches that can be used to create those subsets. 

However, this requires more time since the MLP has to be trained several times to 

create distinct individual MLPs. On the other hand, the post-training approach 

creates distinctive individual MLPs by using the same training set with different 

initial training parameters. A single output from an ensemble is chosen based on the 

voting algorithm. This work uses the post-training approach in developing an MLPE 

to reduce training time. 

Another method to construct an ensemble has been proposed by Bishops and 

Svensen (2003). They propose the mixture of experts as one of the methods in 

constructing ensemble. The term ‘expert’ here refers to the combination of different 

types of ANN architectural models. Such ensemble has been given better 

performance, but it increases the complexity of the system. Hence, its development 

was time-consuming because of the complexity of dealing with different output 

representations of different ANN architectures. Thus, this work only employs MLP 

to construct an ensemble. 

MV is one of the popular voting algorithms used to develop an ensemble (Bouzane et 

al., 2011; Oliveira et al., 2009; Binsaeid et al., 2009; Bhattacharia and Chaudhuri, 

2003). The advantages of this voting algorithm lie in the fact that it is easy to 

understand and it is simple to implement regardless of the form of the MLP output 

representation. The drawback of this voting algorithm is that it requires an odd 

number of MLPs to avoid the occurrence of tie vote that leads to reject class. To 

avoid such problem, it is best to use more than one MLP to construct an ensemble. In 

this work, the minimum number of MLPs employed is three. The TV approach is 

rather more complex compared to MV because it involves the calculation of 
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confidence measure. It uses two most significant output bits to calculate each of the 

MLP output confidence measure. The confidence measure represents how confident 

an MLP is with its output. The TV method has been extensively used for a variety of 

applications. One limitation of this voting algorithm is that it considers only two bits, 

i.e. the highest and second highest, and abandon the others, even though there are 

more than two outputs in an MLP. It has become an encouragement to design a new 

voting algorithm that has good performance and easy to implement as there are a 

limited number of voting schemes that have been employed in constructing an 

MLPE. 

MLP trained with different training algorithms may have different generalizations 

over the same presented data. Hence, it drives some inspiration to look into the 

performance of the MLPE constructed by different kinds of training algorithms and 

trained on the same training data. By using the same training data, the performance 

of MLPs is comparable since they only differ in their initial training parameters.  

Three different kinds of training algorithms used to train MLP neural networks in 

this work are the Levenberq Marquardt (LM), Resilient Backpropagation (RP) and 

Bayesian Regularization (BR). Thus, three is the minimum number of MLP used to 

construct MLPE.  

 

1.4 Research Objectives 

The main goal of this research is to design a new method to develop an integrated 

MLPE consisting of an MLPE that uses a new proposed voting algorithm aimed at 

improving classification accuracy. To accomplish the aim, this work focuses on the 

following objectives:  
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i. To propose and develop an MLPE consisting of MLPs that differ in training 

algorithm, initial weights and size to attain a variety of intelligent systems. 

i. To propose and investigate a new voting scheme to improve classification 

accuracy and reduce rejects class cases. 

ii. To assess the performance of developed MLPE employing proposed voting 

technique by comparison with existing commonly used voting schemes. 

In this research work, an MLPE was developed using MLPs that are differing in their 

initial weights, training algorithm and architecture. All the MLPs were trained on the 

same training data. The best MLPs performed from each training algorithm are 

selected to become the members of MLPE 

A new voting algorithm, trust--sum voting (TSV) is proposed as the voting technique 

for the MLPE system. The developed MLPE (MLPE-TSV) was tested on four 

benchmark case studies under the domain of classification. Then, the proposed 

MLPE-TSV performance was compared with MLPE-TV and MLPE-MV to assess 

its performance. 

 

1.5 Thesis Outline 

This chapter briefly introduces some preliminaries on this research work. It discusses 

the problems associated with MLPE, leading towards the motivation of research. The 

research objectives are listed and explained. 

Chapter 2 reviews the literature on MLP, including its architecture and training 

algorithm. It also presents the literature of MLPE constructed by using voting 



9 
 

schemes. Two different voting schemes which are majority voting (MV) and trust 

voting (TV) are discussed. 

Chapter 3 concentrates on the methodologies of this research work. The details of the 

steps in developing an MLPE using the proposed voting scheme and existing voting 

schemes are explained. 

Chapter 4 presents the application of the proposed voting scheme in constructing 

MLPE. The applicability of the voting scheme was tested on four case studies in the 

classification domain. The first one is the ECT data with 66 input and 6 output 

classes, followed by the Landsat image satellite with 36 input and six output classes. 

The other two case studies have two outputs with German credit data having 24 

attributes whilst Pima Indian diabetes has only eight inputs. The performance of 

MLPE using the new voting scheme in each case study was compared to singular 

MLPs and MLPE using TV and MV. 

Chapter 5 presents the whole conclusion of this research work.  From the results 

obtained, the MLPE new voting scheme shows outstanding performance compared to 

singular MLPs and MLPE using existing voting schemes. The developed MLPEs 

using MLPs with different training algorithms demonstrate superior performance 

compared to singular MLPs. The overall results illustrate that MLPE using the 

proposed voting scheme is able to perform the classification task for multiple output 

classes. The areas to be pursued as the future work are also suggested. 
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CHAPTER 2 

 

A REVIEW OF MULTILAYER PERCEPTRON (MLP) AND MULTILAYER 

PERCEPTRON ENSEMBLE (MLPE) 

 

2.1 Introduction 

An artificial neural network (ANN), often called a neural network, is inspired by 

biological neurons. In the ANN, the nodes or neurons can be seen as computational 

units. They receive inputs and process them to produce an output. The neurons can 

be trained to classify an object according to their feature using examples (Padhy, 

2005). In this chapter, the review of the ANN including their features will be 

discussed. Then, one of the most widely used ANN types which is the multilayer 

perceptron (MLP) will be discussed.  

The next section presents a review on the multilayer perceptron ensemble (MLPE). 

The ensemble is an integration of several MLP neural networks to produce a single 

system. The aim of the MLPE is to generate more certain, precise and accurate 

system results. Various researches have been conducted and the findings have proven 

that the ensemble has superior performance to any singular ANN (Bhattacharya and 

Chaudhuri, 2003; Dietrich, 2002; Brown, 2004). In order to develop an MLPE, a 

voting technique is needed. The last section of this chapter presents a review on two 

existing voting techniques and they are the majority and trust voting. 
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2.2 Neuron Physiology 

The neuron is the fundamental element of the nervous system, particularly the brain 

(Padhy, 2005). A biological neuron consists of three main components: cell body, 

dendrites and axon (see Figure 2.1). There is a cell body or soma that contains a 

nucleus in a neuron and each of the neuron has dendrites that receive connections 

from the other neurons.  Neurons also have an axon which makes its way out from 

the neuron and in the end splits into a number of strands to make a connection with 

the other neurons. Synapses are the points where the neurons interact with the other 

neurons. A neuron can receive 10,000 or more synaptic contacts and can be ventured 

onto thousands of target cells (Haykin, 2008).  

 

Figure 2.1 A biological neuron 

Due to the electrical properties of the neuronal membranes, the signals that reach the 

dendrite rapidly decay in strength in time (temporal) and over distance (spatial), and 

thus lose the facility to stimulate the neuron, except for the fact that they are 

supported by another signal occurring at almost the same time and/ or nearby the 

locations (Ham and Kostanic, 2001). The soma sums the arriving signals (inputs) 



12 
 

from the dendrites and also sums the signals from numerous synapses on its surface. 

When the threshold level of the sum of the received signals is reached, the neuron 

generates an action potential which fire and transmit an action potential of its axon to 

other neurons or target cells outside the nervous system. Nevertheless, if the 

threshold level of the inputs is not reached, the inputs will quickly decay and will not 

generate an action potential. The strength of the inputs is measured by the number of 

action potential generated per second. 

 

2.3 Artificial Neuron 

An artificial neuron is an information processing unit that is essential to the operation 

of the ANN (Padhy, 2005). Figure 2.2 shows the schematic representation of an 

artificial neuron.  

 

Figure 2.2 An artificial neuron 

It consists of a set synapse or a connecting link and each of the links is characterized 

by a weight or strength of its own. The values of weights, w0, w1, w2,…,wn are to 

determine the strength of the input vector X = [x0, x1, x2,…, xn.]T.  Each input is 

multiplied by an associated weight of the neuron connection XTW. The synaptic 
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weights of an artificial neuron can have positive or negative values according to the 

acceleration or inhibition of the electrical signals flow (Padhy, 2005). 

The processing element consists of two parts. The first part is an adder, used to sum 

up the input signals. The second part consists of an activation function which is used 

to limit the output of a neuron. The activation function is also referred as the 

squashing function, which performs a mathematical operation to squash the 

amplitude of the output signal into some finite ranges (Chakraborty, 2010). An 

external bias, Bk is also applied to the neuron. It is used to raise or to reduce the net 

input of the activation function (Padhy, 2005).  

 There are many different types of activation functions and the selection of one type 

over another depends on the problem that the ANN network needs to solve. The 

current ANN model often uses a sigmoid (S-shaped) activation function (Acharya et 

al., 2003; Nkwogu and Allen, 2012). 

Figure 2.3 shows the logistic sigmoid activation function. For the range -∞ <vq< 

∞where vq is the internal activity potential of neuron q, f(vq) is given by (Haykin, 

2008) 

  1
1 qq vf v

e



                                           (2.1) 

 

Figure 2.3 The logistic sigmoid activation function 
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Alternatively, MLP can use the hyperbolic tangent sigmoid activation function (see 

Figure 2.3) and can be written as (Haykin, 2008) 

  
q q

q q

v v

q v v
e ef v
e e









 (2.2) 

The range of the activation function for the tangent sigmoid is -1 to +1.  

 

Figure 2.4 The hyperbolic tangent activation function 

 Occasionally, the ANN uses the linear activation function (refer to Figure 2.5) and 

this is given by     

  q qf v kv
   (2.3) 

where k is the slope of the straight line. 

However, the use of the linear activation function will remove the nonlinear behavior 

of the ANN (Padhy, 2005). Thus, the ANN cannot perform on the non-linear 

problem.  
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Figure 2.5 The linear activation function. 

 

2.4 Artificial Neural Network (ANN) 

An ANN is a huge parallel distributed processor that has a natural tendency for 

storing experiential knowledge and making it available for use (Haykin, 2008). It 

consists of highly interconnected processing elements (artificial neuron) in an 

architecture, which is inspired by the cerebral cortex structure of the brain (Padhy, 

2005).  

 

 

2.4.1 Applications of Artificial Neural Networks  

ANNs have been used in many diverse applications because of their ability to 

generalize and describe non-linear processes.  The applications of the ANN can be 

classified into three major categories; classification, pattern association and function 

approximation (Ham and Kostanic, 2001).  

Classification –The ANN is trained to be able to classify the input patterns 

presented. As one type of classifiers, the ANN can serve numerous areas for different 

purposes such as for the medical (Kamruzzaman et al. 2004; Chai et al. 2004), and 



16 
 

industrial purposes for control (Balabin and Safieva 2008; Yan et al., 2004; Xia and 

Yang, 2000; Ren et al., 2000). 

Pattern association - Pattern association can be classified into two types; 

autoassociation and heteroassociation. The association entails constantly showing the 

ANN a certain pattern and the ANN should be able to store it and when a distorted 

image of the same pattern is presented, the ANN should retrieve it. Heteroassociation 

differs from autoassociation in the sense that it is supervised. Some examples of 

works that are related to pattern association are business transactions (Kar and De, 

2009) and robot controller (Zin et al., 2009). 

Function approximation – The ANN can be used as the function approximator 

where the ANN is able to receive an input and desired output and then, approximate 

the function that has been used. The work done by Lee et al. (2004) is one of the 

examples of solving the function approximation problem using the ANN.  

 

2.4.2 Multilayer Perceptron (MLP) 

MLP is an important class of ANN (Haykin, 2008). Basically, the MLP neural 

network consists of three layers; the input layer, hidden layer and output layer. The 

input signal transmits through the MLP neural network in a forward direction on a 

layer-by-layer basis (see Figure 2.6). The first and second hidden layers consist of 

hidden processing elements (PEs) also known as neurons which process the 

information sent from the input layer. This single hidden layer is sandwiched 

between the input and output layers. For n input neuron, the input vector, x = [x0, 

x1… xn-1] T and ࢞ ∈ ℜ௡ିଵ	×	ଵ Meanwhile, y is the vector response of the MLP neural 
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network where ࢟ ∈ ℜ௞×	ଵ. The neuron is regarded by n + 1 weights which multiply 

each input and activation function that are applied to the weighted sum of the inputs 

in order to produce the neuron’s output. The weighted sum of inputs includes the bias 

often called the net input or internal activation potential, v. The neuron output is the 

function of the net input, f(v) and can be written as  

 
1

0

n

i i n
i

y f v x w w




                                                            (2.4) 
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Figure 2.6 An architecture of the MLP with two hidden layers. 

 

An MLP has three distinctive features 

1. The model of each neuron in the MLP neural network comprises of 

nonlinearity at the output end. The nonlinearity is crucial or else the input-

output relation of the MLP neural network could be decomposed to that of a 

single layer perceptron (Haykin, 2008). Indeed, this nonlinearity of the 

neuron is smooth (i.e. differentiable everywhere). 
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2. The MLP neural network consists of one or more hidden layers of PE that are 

not part of the input or output of the network. These hidden PE allow the 

MLP neural network to learn a complex task of extracting evolutionary 

significant aspects from the input patterns (vectors).  

3. The MLP neural network demonstrates high degree of connectivity, 

determined by the synapses of the MLP neural network (Haykin, 2008). A 

change in the connectivity of the network needs a change in the population of 

synaptic connections or their weights.  

MLP has been successfully applied to various classification problems by training it 

in a supervised manner using a popular algorithm known as error backpropagation 

(Haykin, 2008; Valdovinos and Sanchez, 2006; Adhikari and Agrawal, 2012). 

Hence, it is chosen to be employed in this work. The term ‘supervised’ refers to the 

existence of a ‘teacher’ during the training. The term ‘teacher’ is in reference to the 

desired outputs that are paired up with the corresponding inputs. The weights are 

adjusted according to the error obtained during the learning process.  

 

2.4.3 Learning in MLP 

The MLP  training process starts by initializing all weights to a small non-zero value 

and frequently these weights are generated randomly. One complete presentation of 

the entire training set during the learning process is called an epoch. The learning 

process remains on the epoch-by-epoch basis until the threshold levels and the 

synaptic weights of the network stabilize and the average squared error over the 

entire training set converges to some minimum values. For a given training set, the 

MLP network may learn in one of two basic approaches; Pattern mode and batch 
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mode. In the pattern mode, the weight updating is done after the presentation of each 

training input. In the batch mode learning, the weights are updated after a sequence 

of inputs is presented.  

 

2.5 Backpropagation Training Algorithm 

Learning in MLP is almost always carried out using the backpropagation algorithm.  

The algorithm was first developed by Werbos (1974) and rediscovered by Parker in 

1982, LeCun in 1985 and Rumelhart et al. in 1986. The work done by Rumelhart et 

al. proposes the use of error backpropagation to set the weights and to train the MLP 

neural network (Graupe, 2007).  

The backpropagation can be applied to MLP in any number of hidden layers. The 

aim of the training is to adjust the weights, so that the application of a set of inputs 

can well generate the desired output. The MLP training involves two phases. In the 

forward pass, an activity pattern (input vector) is applied to the sensory nodes of the 

MLP neural network and its effects transmit through the MLP neural network, layer 

by layer (Haykin, 2008). Finally, a set of outputs is generated as the MLP neural 

network’s actual response. Throughout the forward pass, the synaptic weights of the 

MLP neural network are all fixed. On the other hand, during the backward pass, the 

synaptic weights are all adjusted in accordance with the error correction rule.  

Particularly so, the actual response of the MLP neural network is subtracted from a 

desired output to produce an error signal. Then, this error signal transmits backwards 

through the MLP neural network against the direction of the synaptic connections. 

The synaptic weights are amended in such a way to make the actual response of the 

MLP neural network move closer to the desired response (Haykin, 2008). 
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The backpropagation algorithm offers  an ‘approximation’ to the trajectory in weight 

space by the scheme of the steepest descent. The smaller value of the learning 

parameter, μ, the smaller will be the changes to the synaptic weights in the MLP 

neural network  from one iteration to the next and the smoother will be the trajectory 

in weight space (Haykin, 2008). However, this improvement will result in a slower 

rate of learning. If the learning parameter, μ is too large, this will accelerate the 

learning rate, but unfortunately it will result in large changes in the synaptic weights 

in such a way that the network may become unstable. 

Although the backpropagation algorithm has less computational complexity, it 

suffers from slow convergence rate and is easily trapped in the local minima and 

cannot converge to the global minimum (Ng et al., 2012). A MLP neural network is 

caught in local minima when the changes of weights become negligible.  This leads 

an insignificant change in the error function through a large number of epochs and 

hence, there is no change in the output of a MLP. Therefore, the target error value 

cannot be obtained and thus the training will be unsuccessful. A lot of researches 

have been done to improve the backpropagation algorithm to overcome the local 

minimum problem and accelerate the learning process (Wang et al., 2004; Ng et al., 

2004).  

There are several training algorithms adopted to accelerate the learning of 

backpropagation algorithm such as Levenberq Marquardt (LM), Resilient 

backpropagation (RP) and Bayesian regularization (BR). These several training 

algorithms are the modification of the standard backpropagation algorithm.  
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2.5.1 Levenberq Marquardt (LM) Training Algorithm 

The Levenberq Marquardt (LM) algorithm represents a simplified version of the 

Newton’s method (Haykin, 2008). Newton’s method is a well known method for a 

numerical optimization technique with quadratic speed of convergence. The LM 

algorithm was introduced by Levenberq (1984) and Marquardt (1963) and typically 

serves as the fastest training algorithm (Hagan and Menhaj, 1994).  

An apparent problem with Newton’s method lies in the computational requirements 

concerned with calculating the inverse of the Hessian matrix (Haykin, 2008). The 

LM algorithm provides a feasible alternative to Newton’s method with less 

complexity and roughly the same convergence speed. The problem of training MLP 

has to be formulated as a nonlinear optimization problem as to be able to apply the 

LM algorithm. Consider an MLP network shown in Figure 2.6. The task of the ANN 

training can be viewed as determining a set of network weights that minimizes the 

error between the target and the actual output of network for all the patterns in the 

training set. If the number of pattern is finite, the energy function can be written as 

(Ham and Kostanic, 2001) 

E(w)= 1
2
∑ ቀdq-yqቁ

TQ
q=1 ቀdq-yqቁ= 1

2
∑ ∑ (dqh-yqh)

2m
h=1

Q
q=1           (2.5) 

where Q is the total number of training pattern, w represents the vector containing all 

the weights in the network, dq is the desired output and yqh is the actual network 

output due to the qth training pattern. Based on Newton’s method, the set of optimal 

weights that minimizes the energy function in (2.5) can be determined by applying  

݇)࢝ + 1) = (݇)࢝ ௞ࡴ−
ିଵࢍ௞ (2.6) 
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where 

௞ࡴ = ∇ଶ࢝|(࢝)ܧୀ࢝(௞) (2.7) 

and 

௞ࢍ =  (2.8) (௞)࢝ୀ࢝|(࢝)ܧ∇

By defining P=kQ, (2.5) can be rewritten as  

(࢝)ܧ = ଵ
ଶ
∑ ൫݀௣ − ௣൯ݕ

ଶ
=௉

௣ୀଵ
ଵ
ଶ
∑ ݁௣ଶ௉
௣ୀଵ  (2.9) 

where ep is the network error given by 

 ݁௣ = ݀௣ −  ௣            (2.10)ݕ

 

The gradient of the energy function in (2.8) can be computed as follows (Haykin, 

2008) 
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Where ࡶ ∈ ℜ௉×ே is the Jacobian matrix defined by 
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By using the expression in (2.12), the Hessian can be expressed as  

[∇ଶ(࢝)ܧ] = ࡶ்ࡶ +  (2.13) ࡿ

Where matrix ࡿ ∈ ℜே×ே is the matrix of the second order derivatives given by  

ࡿ = ∑ ݁௣∇ଶ௉
௣ୀଵ ݁௣       (2.14) 

When approaching the minimum of the energy function, the elements of matrix S 

become small, and the Hessian matrix can be closely approximated by 

ࡴ  ≈   (2.15)                                                                               ࡶ்ࡶ

Substitute (2.11) and (2.15) into the expression of Newton’s method expressed in 

(2.5) result in 

݇)࢝ + 1) = (݇)࢝ −   ௞்݁௞                                                   (2.16)ࡶଵି[௞ࡶ௞்ࡶ]

where subscript k indicates the evaluation of the suitable matrices at w = w(k). 

However, the iterative update given in (2.16) needs the inversion of matrix H = 

JTJwhich may be ill-conditioned or even singular (Ham and Kostanic, 2001). This 

problem can be resolved using the following adjustment of (2.15) 

ࡴ ≈ ࡶ்ࡶ +  (2.17) ࡵߤ

whereμ is a small number and ࡵ ∈ ℜே×ே is the identity matrix. Substituting (2.11) 

and (2.14) constructs the LM algorithm for updating the network weights given by 

(Ham and Kostanic, 2001)  

݇)࢝ + 1) = (݇)࢝ − ௞ࡶ௞்ࡶ] +  ௞்݁௞     (2.18)ࡶଵି[ࡵ௞ߤ

For a small value of μk, (2.17) approaches, the Newton’s algorithm is given in (2.16). 

If the value of μk is increased, the second term inside the square bracket (refer to 

(2.18) becomes dominant and the updated equation can be written as  
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݇)࢝ + 1) = (݇)࢝ − ௞்݁௞ࡶଵି[ࡵ௞ߤ] = ଵ
ఓೖ
 ௞்݁௞ (2.19)ࡶ

The major problem in executing the LM algorithm can be seen in the calculation of 

the Jacobian matrix J (w). Each term in the matrix has  

௜௝ܬ = డ௘೔
డ௪ೕ

      (2.20) 

The simplest method to compute the derivative in (2.20) is using the approximation  

௜௝ܬ ≈
∆௘೔
∆௪ೕ

                                                                       (2.21) 

where ∆݁௜	represents the change in the output error due to the small perturbation of 

the weights ∆ݓ௝. The value of ∆ݓ௝is kept small, at least an order of magnitude 

smaller than the current learning rate parameter, μk. The weight update can be 

performed using (2.19) after computing the Jacobian matrix.  

 

2.5.2 Resilient Backpropagation (RP) Training Algorithm 

Resilient Backpropagation (RP) proposed by Riedmiller and Braun in 1993, is a 

training scheme that performs a direct adaptation of the weight step based on the 

local gradient information. The size of the actual weight perturbation, Δݓ௜௝  is not 

only dependent on the learning rate, but also on the partial derivative ഃ೐
ഃೢ೔ೕ

. The effect 

of the vigilantly adapted learning rate can be drastically disturbed by the 

unpredictable behaviour of the derivative itself (Riedmiller and Braun, 1993). The 

purpose of using the RP algorithm is to eliminate the harmful effect caused by the 

magnitude of partial derivatives (Haykin, 2008). 


