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LANJUTAN KAEDAH MANIFOLD BERANGKA BAGI PERMODELAN 

KEPLASTIKAN DAN RETAKAN DI DALAM JISIM BATUAN 

 

7 ABSTRAK 

 

Kajian terdahulu mengenai permodelan berangka bagi masalah kejuruteraan 

geoteknik menunjukkan kepentingan permodelan yang selamat dan mampan bagi 

rekaan projek geoteknik. Secara amnya, kestabilan struktur kejuruteraan yang dibina 

di dalam batu secara langsungnya dipengaruhi oleh kestabilan jisim batu yang 

mengandungi struktur tersebut. Di samping itu, reka bentuk kejuruteraan yang 

ekonomi biasanya  mencadangkan penggunaan batu yang sedia ada untuk 

menyokong struktur bawah tanah itu bagi mengurangkan pengendalian tambahan 

sistem sokongan. Oleh itu, penilaian kestabilan batuan yang tepat dan  jitu 

diperlukan, yang berkemungkinan besar boleh  dicapai  dengan permodelan 

kestabilan jisim batuan. Walau bagaimanapun, banyak peranggaran yang 

dipertimbangkan dalam teknik-teknik permodelan tradisional  jisimbatuan tidak 

dapat meniru kedua-dua permasalahan ketakselanjaran dan selanjaran. . Oleh itu,, 

model baru telah dibangunkan dan diperbaiki untuk menyediakan teknik-teknik 

permodelan tepat untuk mekanik batuan. Kaedah Manifold Berangka (NMM) yang 

dibangunkan oleh Shi (1997 ) adalah salah satu model  cantuman selanjaran-

ketakselanjaran yang sesuai untuk model masalah yang kompleks dalam mekanik 

batuan. Walau bagaimanapun, kaedah NMM memerlukan kajian lanjutan untuk 

menyelesaikan masalah keplastikan dan keretakan  di dalam memodelkan  kestabilan 

jisim batuan  dan  mendapatkan keputusan simulasi yang dipercayai. 

 



xviii 

Dalam kajian ini, kaedah NMM telah dilanjutkan untuk menganalisis perubahan 

bentuk tanah dan anjakan bersama-sama dengan penilaian kegagalan plastik dan 

analisis pertumbuhan retak dalam jisim batuan. NMM telah dilanjutkan  bagi 

memodelkan mekanisma keretakan dan keplastikan di dalam batuan, bersama-sama 

dengan mekanis sentuhanma . Penyelesaian matematik dan pengiraan algoritma telah 

dibangun dan diperluaskan bagi pengaturcaraan model. Teknik-teknik permodelan 

retak telah dimasukkan ke dalam NMM bagi memodelkan retak permulaan dan 

pertumbuhan di dalam batu yang utuh. Mohr - Coulomb kriteria bagi elastik-plastik 

telah digunakan  di dalam NMM bagi model keplastikan  tanah dan batu-batu 

lembut. Teknik-teknik baru permodelan elastik-plastik bilinear telah dicadangkan 

bagi mengsimulasikan fenomena penutupan retak di dalam batu rapuh. Akhirnya, 

algoritma  NMM sentuhan telah dibangunkan  bagi meniru keplastikan, sentuhan dan 

masalah retak di dalam batuan. Model lanjutan NMM  ditentukur, disahkan dan 

dinilai dengan masalah penanda aras dari keputusan eksperimen. Keputusan 

mengesahkan model lanjutan dapat menganalisis masalah mekanik batuan untuk reka 

bentuk kejuruteraan geoteknik. 
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EXTENSION OF NUMERICAL MANIFOLD METHOD FOR PLASTICITY 

AND FRACTURE MODELLING OF ROCK MASS 

 

8 ABSTRACT 

 

Previous studies on numerical modelling of geotechnical engineering problems 

indicate the importance of modelling in safe and sustainable designing of 

geotechnical projects. Generally, the stability of built engineering structures in rock 

is directly influenced by stability of the rock mass that contains the structure. In 

addition, the economical engineering design usually suggests the usage of existing 

rock to support the underground structure hence minimizing the additional handling 

of support systems.  Therefore, an accurate and precise assessment of rock stability is 

required, that can be hugely achieved by modelling the rock mass stability. However, 

many approximations considered in the traditional modelling techniques of the rock 

mass were not able to simulate both discontinuity and continuum problems. Hence, 

new models have been developed and improved for providing accurate modelling 

techniques for rock mechanics. The Numerical Manifold Method (NMM) developed 

by Shi (1997) is one of the hybrid continuum–discontinuum models which is suitable 

for modelling complex problems in rock mechanics. However, the NMM method 

requires extension for solving the plasticity and cracking problems to model rock 

mass stability and determines reliable simulation results. 

 

In this study the NMM method was extended to analyse ground deformation 

and displacement together and evaluation of plastic failure and crack growth analysis 

in rock mass. NMM was extended to model rock crack mechanism and plasticity, 

alongside with contact mechanics. The mathematical solutions and computational 



xx 

algorithms were developed and expanded for programming the model. The crack 

modelling techniques was adopted with NMM for modelling crack initiation and 

growth in the intact rock. The Mohr–Coulomb elasto–plastic criterion was applied to 

the NMM for modelling the plasticity of geomaterials such as soils and soft rocks. A 

new bilinear elasto–plastic modelling techniques was suggested for simulation crack 

closure phenomena in brittle rocks. Ultimately, the NMM contact algorithms were 

developed to simulate plasticity, contact and crack problems in rock. The extended 

NMM model calibrated, verified and assessed by benchmark problems with 

experimental result. The results confirmed the extended model able to analyse rock 

mechanic problems for geotechnical engineering design. 
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1 CHAPTER 1- 

INTRODUCTION 

 

1.1 Background 

To protect the environment and, in particular, to avoid noise and pollution in 

residential areas, railways and highways have more frequently been constructed 

underground or cut through mountains. With so many geotechnical structures being 

built, it is important to have a comprehensive understanding of induced 

displacements and stresses due to rock mechanics and their impact on nearby 

structures.  

 

Rock masses consist of intact rock and discontinuous components like joints, 

faults, and bedding planes is a natural non-elastic, inhomogeneous, anisotropic, and 

largely discontinuous material, which makes modelling the rock structure difficult 

(Jing, 2003; Ning et al., 2012). Generally, rock can act both as an elastic and inelastic 

material; however a discontinuous mass results in a much more inelastic material. 

Also, soft rocks and clays from soil mechanics behave mostly in a non-elastic 

manner (Hoek, 2000). Therefore, the use of a variety of modelling techniques has 

been reported in the literature for modelling the different problems in rock 

mechanics. 

 

Based on the different problems facing a rock engineering project, modelling 

techniques can be categorized into three groups. Numerical modelling that assumes 

the rock medium as a single homogeneous material, such as the Finite Element 

Method (FEM), is a continuum model. The second group is focused on 

discontinuities in the rocks and models rock problems as a discontinuum medium 
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with a rigid block. This group includes the well known Discrete Element Method 

(DEM) and Discontinues Deformation Analysis (DDA) methods. These two groups 

of modelling techniques are limited to an assumed approximation. Therefore, a third 

group of modelling techniques has been developed recently for handling both 

discontinuity and deformation of the rock medium (Jing, 2003). The hybrid FEM-

DEM and Numerical Manifold Method (NMM) are the examples of this third group. 

 

The choice of continuous or discrete method depends on many factors that are 

mostly dependant on the scale of the problem and the fracture system. The 

continuum approach can be used if small amount of discontinuity is present. The 

discrete approach is particularly suitable for moderately fractured rocks where the 

number of fractured elements is large, or when the problem involves large 

displacements of individual blocks. No method provides an absolute advantage over 

the others. However, some disadvantages of the two continuous models can be 

overcome by combining discrete and continuum methods (hybrid models) (Jing and 

Hudson, 2002). 

 

1.2 Problem Statement 

Analysis and design of geotechnical projects involving rock mass is dependent 

on the combined strength of the intact rock and the various discontinuities in the rock 

mass. Failures in the rock mass are categorized in three types. The first category is 

related to failure of intact rock, jointed rock or heavily jointed rock which is induced 

from overstressing. Then, rock blocks may be formed in this stage due to the 

coalescence of the newly generated fractures in the intact rock with the pre-existing 

internal discontinuities. Secondly, failure may occur due to instability along the 
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discontinuities. Finally, the block failure happens caused by loosening or falling of 

the rock blocks. For example, in rock slope failures, movement of the collapsed rock 

blocks governs the disaster to a great extent; in the other case during the blasting 

process, the spread distance of the rock fragments may needs to be controlled within 

the expected range. 

 

The importance of underground structure safety for rock mechanical 

engineering has become the subject of special attention in accurate modelling of rock 

structures. The nonlinear, inhomogeneous and anisotropic behaviour of rocks and 

especially rock mass make rock mechanical problems very complex, and increase the 

amount of special cases that must be addressed by numerical modelling of any 

geotechnical project. Well known numerical computation methods usually apply 

large approximation assumptions to the system of modelling. However, the 

approximation selection usually depends on the importance of the project and 

computational resources to provide enough accuracy for an engineering design. 

Then, engineering design usually involves a large safety factor to ensure the stability 

of the structures.  

 

Different modelling techniques have been developed based on the design 

requirements and different conditions of rock engineering structures. Discontinuity is 

an important aspect in rock mechanical design, and therefore, most discontinuum 

modelling techniques were developed to meet the need for accurate rock mechanical 

design. However, because of limitations in computational resources, many 

approximations are considered in the modelling techniques.  
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In recent years, improved computational processors have become available for 

better computational resources; and many studies provided better and more accurate 

solutions in mechanical engineering. The necessity of developing a general 

computational model has motivated many studies, and well known numerical 

models, such as FEM, have been extended and integrated for modelling the crack and 

plasticity individually. However, existing modelling techniques can not model 

plasticity, fracture analysis and discontinuity all together. Although, presented 

modelling techniques usually require modification for improving the computational 

time and accuracy. One of the suitable numerical models for modification and 

extension is NMM, which potentially can be extended for crack, plasticity and 

discontinuity analysis of rock mechanical problems. However, the NMM still 

requires extension and modification for modelling complex problems. The NMM 

also requires adaptation for modelling crack and plasticity in combination with the 

contact simulation. 

 

1.3 Objective  

This study was conducted to provide the fundamental tools, for developing the 

professional and universal rock mechanic simulation model. Hence, a comprehensive 

modelling technique was developed for analysing the displacement and failure of the 

geotechnical construction in rock mass using the NMM. Main objectives of this 

study are as follows: 

 

• To construct mathematical solutions and computational algorithms, as a 

requirement for analysing crack tip stress, crack propagation, plasticity and 
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contact problems of discontinuities of geomaterials using developed 

mathematical models. 

 

• To develop an improved NMM model for simulating the stress strain behaviour 

of intact rock based on elasto–plastic theories. 

 

• To extend the NMM model for simulating the crack growth, failure and 

breakage potential of the rock under static loading. 

 

1.4 Scope of Research 

A constitutive modelling method was developed in this study for simulating the 

behaviour of rock mass. The research was focused on developing a general model 

which can handle main problems in modelling of the fractured rocks. In this study, 

three main modelling difficulties of rock masses, crack initiation, plasticity and 

contact were accumulated in a single computation program. The presented model is 

an extension to NMM model which was developed by Shi (1988).  All mathematical 

and numerical solutions, algorithms and techniques are provided as fundamental 

tools for modelling the complex rock modelling. The model was calibrated, tested 

and verified for some well known resolved problems. A simple tunnel section was 

also modelled for validation and verification of the model.  

 

1.5 Structure of Thesis 

This thesis is divided into six chapters. Chapter 1 briefly introduces the 

research, including objective and scope of works for study. A review of the previous 

research and modelling techniques is presented in Chapter 2 to provide the 

background of this research. Chapter 3 is provided all the developed and required 
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algorithms and techniques for modelling of the rock mass problems. Chapter 4 

describes the experimental testing methods and characteristics of rocks used for 

verification of the model. First section of chapter 5 presents the assessment and 

calibration of the model. In addition the verification of the model and sample 

modelled problems are described in this chapter. The conclusion and 

recommendation for this research are presented in Chapter 6. 
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2 CHAPTER 2- 

LITERATURE REVIEW 

 

2.1 Introduction 

Design of geotechnical engineering projects is directly related to the geological 

material such as soils and rocks that are substrates for the project. Most geotechnical 

design involves either surface or underground structures. Various geotechnical 

medium depends on the origin, location and environmental condition of the site.  

 

In any geotechnical project that involves rock, various problems may occur 

because of discontinuity within the rock medium. The numerical modelling solution 

for each case depends on the condition of the rock and its discontinuity behaviour. 

Four scale of problem can be defined based of number of discontinuity in the rock as 

shown in Figure 2.1. In first case, the problems are simply related to the intact rock; 

for example, when a rock burst occurs during drilling or excavating in good quality 

rock. In second case, a rock with one or a small number of discontinuities can cause 

a local rock failure in the roof or wall of the excavation. In the third case, problems 

related to the rock mass with high discontinuity can be simulated by modelling a 

group of discrete blocks. In the final and fourth case, problems involving a high level 

of discontinuity, the discontinuities are considered as rock mass with uniform 

properties for modelling. Each case can be chosen for simulation based on the scale 

of the problem domain (Brady and Brown, 2007).  
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Figure 2.1: Concept of the transition from intact rock to a heavily jointed rock mass 
(after Brady and Brown (2007)) 

 

Different problem condition described above is required different kinds of 

modelling and simulating techniques, depending on rock characteristics, loading 

condition and problems regarding the engineering design. Rock mechanics modelling 

has developed for the design of rock engineering structures with widely different 

purposes. Different modelling techniques was developed based on (i) previous design 

experiences, (ii) simplified models and analytical methods such as rock mass 

classification (RMR, Q, GSI), (iii) modelling which attempts to capture most 

applicable mechanisms for example basic numerical methods (FEM, BEM, DEM, 

hybrid); or (iv) widespread  modelling which are extended numerical methods and 

fully-coupled models (Jing, 2003).  

 

 

�

 

Intact rock 

Several discontinuities Rock mass 

Less discontinuity 
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2.2 Numerical Techniques in Rock Mechanics 

Rock mass deformation is a consequence of deformation of the intact rock and 

displacement of rock blocks along joints. Therefore, the most realistic modelling 

should consider both phenomena. However, lack of resources and computation 

difficulties make rock mass modelling complicated and most researches prefer to 

simplify the modelling techniques. Rock mass modelling is usually categorized into 

three groups:  

• Continuum based modelling 

• Discontinuum based modelling 

• Hybrid continuum- discontinuum models 

 

Some well known numerical methods used in geotechnical engineering are 

summarized in Table 2.1. 

 

Table 2.1: Common numerical method in rock mechanics 

Methods Abbreviation Continuum Discontinuum 

Finite Difference Method FDM X   

Boundary Element Method BEM X  

Finite Element Method FEM X  

Distinct Element Method DEM  X 

Discrete Fracture Network DEN  X 

Discontinuous Deformation Analysis DDA  X 

Hybrid FEM/BEM FEM/BEM X X 

Hybrid FEM/DEM FEM/DEM X X 

Numerical Manifold Method NMM X X 
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The FDM is a straight approximation of the governing partial deferential 

equations (PDE). Equations of FDM are formed by introducing the system of 

algebraic equations and placing the original PDEs for each grid points in terms of 

unknowns. Then, the solution of the system equation can be obtained by assumption 

of the necessary initial and boundary conditions (Jing, 2003). 

�

In FEM the problem domain divisions are assumed as sub-domains named 

elements with standard shapes (triangle, quadrilateral, tetrahedral) and fixed number 

of nodes at the vertices and on the edges. Subsequently, usually polynomial trial 

function is used to approximate the behaviour of PDEs in each element for 

generation of the local algebraic equations. The relations between the elements are 

then assembled the global system of algebraic equations based on to the geometrical 

relations between the nodes and elements. The solution of the global equations is 

obtained by imposing the properly defined initial and boundary conditions (Jing, 

2003).  

 

The BEM is used the discretization of the domain boundary, which cause 

reducing the dimensions of problem. Therefore, BEM is greatly simplified the input 

requirements in compare with FEM. A boundary integral equation is then solved 

individually based on the information on the boundary. The BEM is the most 

efficient technique for fracture propagation analysis with better accuracy than FEM 

at the same level of discretization (Jing, 2003). 

 

The DEM is represented the fractured medium as assemblages of blocks 

formed by connected fractures. Subsequently, the equations of motion of blocks are 

solved with DEM using treatment of contacts between the blocks. The original DEM 
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assumed the blocks to be rigid and the deformable block afterwards is simulated with 

FEM discretizations. DEM can handle large displacements caused by rigid body 

motion of each block, block rotation, fracture opening and complete detachments 

which is impossible in the FEM or BEM (Jing, 2003). 

 

2.2.1 Continuous and Discontinuous Modelling of Rock Mass 

Some engineering problems can be modelled using a finite number of well-

defined components. The behaviour of the components is also well known, or can be 

individually treated mathematically. Inter-relations between components can be 

defined the global behaviour of the system. In larger problems, the definition of such 

independent components may require an infinite sub-division of the problem domain 

which is known as the continuous problem and have infinite degrees of freedom. 

Then, the continuous problem is divided into a finite number of subdomains 

(elements) with approximated mathematical explanation to be used in numerical 

modelling methods, and whose behaviour is with finite degrees of freedom. 

Therefore, the computational methods is approximate the infinite degree of freedom 

by a discrete system with finite degrees of freedom (Jing, 2003). 

  

The elements of a discrete system are usually treated as continuous and their 

characteristics can be obtained from laboratory tests if the components are 

macroscopically homogeneous like an elastic beam structures, or may be 

mathematically derived from homogenization processes for heterogeneous or/and 

fractured components, such as the fractured rock masses which are considered in this 

study. Therefore, the concepts of continuum and discontinuum are not absolute and 

are depending mainly on the size of the problem. This is particularly true for rock 
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mechanics problems. Furthermore, the closed solution is not available for the 

fractured rock mass and numerical methods must be used for solving practical 

problems. Due to the differences in the fundamental material assumptions, different 

numerical methods have been developed for discontinues and continuous problems 

(Jing, 2003). 

 

2.3 Numerical Methods for Rock Mechanics Modelling 

Assumption of infinitesimal element with infinite degrees of freedom can be 

applied in many problems, which is known as the continuous. The differential 

equations of the continuous system can be solving by subdividing the domain to the 

finite number of sub-domains called elements. Therefore, the whole system can be 

solved numerically by solving the simpler numerical expression with finite degrees 

of freedom. Then, the continuity condition and elements interface should be satisfy 

using the principal differential equations. Therefore, the continuum based numerical 

model was developed using this idea by approximating the continuous system with 

infinite degrees of freedom by discrete system with finite degrees of freedom (Jing, 

2003). Continuum-based models are the most commercial of the available 

mechanical engineering and material modelling software, and generally use the well 

known FEM and boundary element method (BEM).  

 

The rock mass can be considered as a system of blocks cut by planes of 

discontinuity. The geometrical distribution and physical properties of discontinuities 

always effects on the jointed rock system (Hoek and Bray, 1981). The conventional 

continuous-based methods can not model the system of block correctly by the 

assumption of displacement continuity across elements, even using the likewise 

interface element alone without the displacement continuity assumption. In the large 
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deformations and displacements condition the continuum methods can not satisfy the 

conditions (Shentu, 2011). Continuum methods for modelling joints and large 

displacements involve inappropriate approximations, and often researchers choose 

discontinuum modelling techniques for projects that involve rock mass. Therefore, 

discontinuum methods are developed to solve the problems involving the 

discontinuity such as rock mass. The discontinuum methods solve the displacement 

function across the element boundaries. The Distinct Element Method or Discrete 

Element Method (DEM) is the most commonly used in commercial geotechnical 

software. Another discontinuum method currently available, discontinuous 

deformation analysis (DDA) was developed by Shi (1988).  

 
However, in most cases the individual discrete blocks are also able to deformed 

or fracture, which both continuous to discontinuous problems should be involved in 

the problems analysis. The combined continuum-based and discontinuum-based 

numerical methods that are known as Hybrid methods are able to represent these 

problems, such as the numerical manifold method (NMM) and the combined finite-

discrete element method (Munjiza, 2004). The review and basics of some of well-

known numerical methods are presented in the following sections. 

 

2.3.1 Finite Difference Methods (FDM) 

The finite difference method is the oldest numerical method used for the 

solution of group of differential equations, given initial values or boundary values. 

FDM is directly replaced an algebraic expression for each set of governing equations, 

The algebraic expressions is defined in terms of the field variables (e.g., stress or 

displacement) at discrete points in space which are undefined within elements. One 

of the most commercially available software which has been used in both soil and 
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rock mechanics is FLAC (Mitra, 2006). Some of the studies using FDM method was 

carried out by (Iannacchione and Vallejo, 1991; Zipf Jr, 1999; Burke, 2003; 

Esterhuizen and Iannacchione, 2005; Esterhuizen and Karacan, 2005). 

   

2.3.2 Finite Element Method (FEM) 

The concept of discretization in solving PDE provided the basis for developing 

the FEM, which is the most commonly, used numerical method. The FEM is the 

most popular method for rock mechanics because the flexibility the method provides 

for overcoming most geotechnical problems. The domain discretization is the initial 

step in FEM, and is followed by defining the approximation for each discretization 

part (elements). Finally, the resulting linear equations can be solved using any 

available numerical linear algebra methods (Jing, 2003). The approximation 

functions are identified using linear or higher order equations and specified for each 

unknown values for each element. The weight function definition is based on 

Galekin's method for each element: 

 

�� � �����
�

�

���

 (2-1) 

 

where ��� is the FEM shape function and m is the order of elements. Subsequently, 

according to the elastic problem (Hook's law), the partial differential equation of 

elasticity problem can be written as follows: 
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where ���   is the coefficient matrix which is known as the FEM stiffness matrix, 

��  is unknown nodal displacement vector, and ��  is the vector of external forces. 

The stiffness matrix is defined by the relation between the elasticity matrix� �� , the 

shape function, and the element geometry matrix� �� , given by: 

��� � �� ��
� ��

�

�� ��� (2-3) 

 

The original finite element theories have been modified for many rock 

mechanical problems. Some models were developed to improve FEM for 

overcoming the difficulties encountered with the original FEM. Such modifications 

resulted in extended finite element method (XFEM) (Moës et al., 1999) and 

generalized finite element method (GFEM) (Strouboulis et al., 2000; Strouboulis et 

al., 2001), which uses the theories of partition of unity proposed by (Melenk and 

Babuška, 1996). 

 

2.3.3 Distinct Element Method (DEM) 

Cundall (1971) developed the discontinuum method referred to as the DEM, 

which uses an explicit time-marching scheme to solve the equation of motion for 

blocks. The first DEM used an assembly of rigid blocks and interaction between the 

blocks to model jointed rocks. The DEM is commonly used in large-scale block 

problems with large displacements and rotations. Fundamentally, the DEM solves 

Newton’s second law of motion to determine the displacements and velocities 

through a finite difference algorithm (Bobet et al., 2009). DEM uses an explicit time-

marching scheme for solving the dynamic equations of motion of the rigid block 

system. For deformable block systems, can be applied to DEM using explicit 

solution with finite volume discretization of the block interiors for the treatment of 
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block deformability, which is not required to solving large-scale matrix equations. 

The other alternative is using an implicit solution with finite element discretization of 

the block interiors which leads to a matrix equation of block system deformability.  

The method has found many applications in rock mechanics, soil mechanics, 

structural analysis, granular materials, material processing, fluid mechanics, multi-

body systems, robot simulation, computer animation, etc. and became one of most 

rapidly developing method in computational mechanics. DEM uses the rigid or 

deformable blocks as the problem domain and then contact among them identified 

and continuously updated during analysis process (Jing, 2003). This fundamental 

conception leads to three central issues: 

1. Identification of blocks of the system and the fractures geometry in the 

problem domain 

2. Producing the formulation of blocks motion and solve the equations 

3. Detection the contacts of blocks and updating the deformation and motion 

of the discrete system.  

The DEM consider the contact pattern between the blocks of the system which 

are continuously changing with the deformation process, but are fixed for the latter 

difference which make difference between DEM and continuum based methods. The 

DEM method is suitable for simulating the mechanical processes in rock mechanics 

applications. 

 

The DEM is commonly used in commercial numerical programs. The most 

well-known explicit DEM methods is the Distinct Element Method created by 

Cundall (1980) and the computer codes UDEC (ITASCA, 2012) was developed 

based on DEM. The bonded particle method (BPM) developed by Potyondy and 
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Cundall (2004) is based on DEM and includes an assumption that discontinuous 

medium is comprised of circular disks in two dimensions. The method uses cantered 

particle approximation to solve the global equation. Simulation using BPM assumes 

the deformation is the result of particle contact or relative displacement between the 

particles (Bobet et al., 2009). Partial Flow Code (PFC) (Cundall and Strack, 1999) is 

a BPM–based commercial computer program, which was previously used by 

researchers to evaluate rock mechanical problems. 

 

Other parallel developments were made based on the distinct element approach 

that named discrete element methods such as in (Taylor, 1983; Williams and Mustoe, 

1987; Williams, 1988; Williams and Pentland, 1992; Williams and O’Connor, 1995). 

Researchers was studied the application of discrete element methods for solving rock 

engineering problems (Wang and Garga, 1993; Hu, 1997; Li and Wang, 1998; Li and 

Vance, 1999). The Discontinuous Deformation Analysis (DDA) is an implicit DEM 

was originated by Shi (1988), further review of DDA is presented in next section. 

 

2.3.4 Discontinues Deformation Analysis (DDA) 

Shi developed DDA based on his block theory (Shi and Goodman, 1985; Shi, 

1988). Both DDA and DEM analysis treats joined rock mass as a discrete block 

system. However, there is fundamental difference between two methods, in the DEM 

each block is analyzed separately to calculate the solution while the DDA is 

calculating the block problems by minimizing the total potential energy of whole 

blocks (Bobet et al., 2009).�DDA has two advantages over the explicit DEM which 

make it more practical in engineering, (i) DDA can handle relatively larger time 

steps and (ii) DDA uses closed-form integrations for the stiffness matrices of 
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elements. In addition, the typical FEM code can transform into a DDA code and 

keeping all the advantageous features of the FEM (Jing, 2003).  

 

The unknown displacement is solved in DDA by using motion theory and 

simulating block interaction by applying the force and stiffness to the system, the 

interaction between blocks is calculated based on the mechanical spring and penalty 

function. The system of equations is then solved in the same way as the FEM by 

minimizing the potential energy. Shi (1992) was assumed the total displacement and 

deformation of the system as the accumulation of small displacements and 

deformations of time steps. Additional development for stress-deformation analysis 

was done by (Chang, 1994). Also, some studies has improved the contact algorithm 

of DDA (Yeung et al., 2007; Bao and Zhao, 2010; Wang et al., 2013). Many studies 

were used, extended and verified the DDA using the comparison of predicted results 

of NMM with the analytical solutions (Doolin and Sitar, 2002; Wu et al., 2005; 

MacLaughlin and Doolin, 2006; Tsesarsky and Hatzor, 2006). 

 

2.3.5 Hybrid Models 

Hybrid models are frequently used in rock engineering for flow and stress–

deformation problems of fractured rocks. The most acknowledgeable types of hybrid 

models are the hybrid BEM/FEM, DEM/BEM and hybrid DEM/FEM models. The 

BEM is most commonly used for simulating far-field rocks as an equivalent elastic 

continuum, and the FEM and DEM for the non-linear or fractured near-field where 

explicit representation of fractures or non-linear mechanical behaviour, such as 

plasticity, is needed. This harmonizes the geometry of the required problem 
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resolution with the numerical techniques available, thus providing an effective 

representation of the effects of the far-field to the near-field rocks. (Jing, 2003). 

 

2.3.5(a) Hybrid FEM/BEM 

Zienkiewicz et al. (1977) were proposed the hybrid FEM/BEM, afterward 

Brady and Wassyng (1981) and Beer (1983) were used it as a general stress analysis 

technique. The hybrid FEM/BEM has been used mainly for simulating the 

mechanical behaviour of underground excavations in rock mechanics (Varadarajan et 

al., 1985; Von Estorff and Firuziaan, 2000; Rizos and Wang, 2002). 

 

The coupling algorithms are also developed by Beer and Watson (1992). The 

technique builds an artificially symmetrized stiffness matrix for treatment of the 

BEM region using the least-square techniques. Therefore, the matrix can be easily 

included in the symmetric FEM stiffness matrix, which is easier to handle than the 

non-symmetric BEM stiffness matrix. This symmetrization process initiates 

additional errors into the final system equations. The coupling may performed in the 

opposite direction by treating the FEM region as a BEM element, and apply the 

corresponding FEM stiffness matrix into the final BEM stiffness matrix. Then, this 

makes an asymmetric stiffness matrix of the final equation, which needs additional 

computational process (Jing, 2003). 

�

2.3.5(b) Hybrid DEM/BEM 

The hybrid DEM/BEM model was created by Lorig and Brady (1982) and 

applied to the explicit Distinct Element Method which is used in code of UDEC by 

de Lemos (1985). The super block of BEM was defined the cover the DEM region 
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interface, the DEM can be treated by standard DEM contact concepts. The model 

should satisfy the conditions of: (i) the kinematics continuity along the interfaces of 

the two regions during the time-marching process, (ii) the elastic properties of the 

two regions near the interface are similar, (iii) blocks of DEM region assumed to be 

deformable (Jing, 2003).  

 

Hybrid DEM/BEM was applied for modelling of hybrid discrete-continuum 

models for coupled hydro-mechanical analysis of fractured rocks (Wei and Hudson, 

1998). They used Discrete Fracture Network (DFN) for covering the near-field of a 

fractured rock mass simulation by using independent DFN and DEM codes. Also, the 

far-field flow and stress-deformation in a continuum is simulated by BEM codes. 

The equations of flow and motion are coupled through an internal linking algorithm 

with the time-marching process after independently analysis of each DFN, DEM and 

BEM codes (Jing, 2003). 

 

2.3.5(c) Numerical Manifold Method (NMM) 

The NMM was developed by Shi (1997) based on DDA contact theories and 

partition of unity. The NMM can identify as an extension for DDA which can 

describe the deformability of the materials based on most common numerical 

modelling technique (FEM). The NMM is used the main concept of FEM in solving 

the element based problems. However, Shi (1997) was resolved some of limitation of 

FEM by introducing the mathematical and physical cover as separate layer which are 

linked together based on NMM frameworks. The NMM also known as Finite Cover 

Method (FCM) is extended and well adopted for solving special problems such as 

week and strong discontinuities (Kurumatani and Terada, 2009). A few studies also 
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used the plasticity theories in combination with the NMM for modelling the 

nonlinear problems (Terada et al., 2003). 

  

The main function � ���  on the whole physical domain is defined. The 

physical domain is divided to finite small parts, physical cover (�� � � � ��� ��), to 

simplify the function. The cover function ������� is defined for each physical cover 

��.  

 

�� �� � ������������������ �� � �� (2-4) 
 

The cover function ������� can be constructed by constant, linear or higher 

order polynomial functions. The local displacement functions in NMM 

approximation are solved over the mathematical cover and are independent of the 

physical domain. The global displacement function is the same as other normal 

analytical methods defined over the material volume comprised of the local 

displacement functions. For each mathematical cover, a cover function ������� is 

defined by the following: 

 

�� �� � � ��������������� �� � � �� 

�� �� � � ��������������� �� � � �� 
(2-5) 

 

and  
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The estimation of global function � ���  in the whole physical domain is 

defined from the sum of cover functions: 
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The manifold-based equilibrium equations are solved in the same way as the 

finite element theories using the principal of virtual work (Ma et al., 2010). The weak 

form of the NMM approximation equation is based on virtual work and can be 

describe by assuming that the virtual work of external forces is equal to the virtual 

strain energy of the system. Therefore: 
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 (2-8) 

 

where  

ε = strain tensor  

σ = stress tensor 

u = displacement vector  

b = body force per unit volume 

 t = traction on the boundary 

ρ = is the density 

u�� = the acceleration vector 

 

 

In the same manner as the FEM, equilibrium is reached by minimizing the total 

potential energy (Π). The total potential energy is obtained from the summation of 

the potential energy of different sources for each force, stress and strain.  

 

Table 2.2 lists the different types of potential energy for force or stress and the 

name of the corresponding matrix. 
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Table 2.2: Different types of potential energy 

Source Symbol Matrix 

Strain potential energy Πe Stiffness matrix 

Potential energy of initial stresses Πσ Initial stress matrix 

Potential energy of inertia Πi Mass matrix 

Potential energy of point load Πp Point load matrix 

Potential energy of body load Πω Body load matrix 

Potential energy of contact springs Πs Contact matrices 

Potential energy of friction force Πf - 

 

The equation of motion is used to mathematically describe the dynamics of the 

system with assumption that the F  force vector depends on time as well as D , D� and 

D�� (displacement vector, velocity and acceleration, respectively).  

 

����� � ����� � ����� � ���� (2-9) 
 

In Equation (2-9) the parameter K, C and M are the stiffness, damping and 

mass matrices. It is also possible to set the initial condition, �� � �� and��� � ��. 

Equation (2-10) can describe the static condition can be obtained from Equation 

(2-9) and can be used for simulating with NMM.  

 

����� � ���� (2-10) 
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Otherwise, the total potential energy has the following form: 
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(2-11) 

 

The equilibrium of the load and forces acting on cover i (node i) in the x and y 

directions is as follows: 
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The minimization of the total potential energy of Equation (2-11) produces n 

submatrix equations for n physical cover by using the following differential equation 

for the unknowns ��� and����: 
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Adding whole matrices for each physical cover is produces the same of motion: 
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