

A TRIGONOMETRY BASED LINEAR FORM-FINDING METHOD FOR IRREGULAR MULTI-LAYER PRISM TENSEGRITY

MOHAMMAD MOGHADDAS

UNIVERSITI SAINS MALAYSIA 2017

A TRIGONOMETRY BASED LINEAR FORM-FINDING METHOD FOR IRREGULAR MULTI-LAYER PRISM TENSEGRITY

by

MOHAMMAD MOGHADDAS

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

May 2017

ACKNOWLEDGEMENT

I owe my gratitude to all those people who have made this dissertation possible. Foremost, I would like to express my sincere gratitude to my supervisor Associate Prof. Dr. Choong Kok Keong, who gave me the freedom to explore on my own, and at the same time guide me to recover when my steps were faltered.

I owe my heartiest appreciation to my family. My special thanks to my loving and supportive spouse Elham, she is my most enthusiastic cheerleader; best friend; and an amazing wife without her this journey would not have been possible.

TABLE OF CONTENTS

ACK	NOWLE	DGEMENT	ii
TAB	LE OF C	ONTENTS	iii
LIST	OF TAB	BLES	viii
LIST	OF FIG	URES	xii
LIST	OF SYM	IBOLS	xix
LIST	OF ABB	REVIATIONS	xxii
ABS	ГRAK		xxiii
ABS	ГКАСТ		XXV
СНА	PTER O	NE: INTRODUCTION AND LITERATURE REVIE	W
1.1	Prelude	3	1
1.2	Chrono	ology	1
1.3	Definit	ion	4
1.4	Applic	ation area	5
1.5	Classif	ication	9
1.6	Prism t	ensegrity	10
	1.6.1	Single layer prism tensegrity	11
	1.6.2	Multi-layer prism tensegrity	11
1.7	Motiva	tion of the research study	14
1.8	Objecti	ives	16
1.9	Organi	zation of this thesis	16
СНА	PTER TV	WO: LITERATURE REVIEW	
2.1	Prelude	2	18
2.2	Previou	us research studies on form-finding methods	18

CHAPTER THREE: FORM-FINDING OF SINGLE LAYER PRISM TENSEGRITY STRUCTURE

3.1	Prelude	2	32
3.2	Length	relation condition	32
3.3	Symbo	ls description	34
3.4	Novel	form-finding approach for single layer prism tensegrity system	36
	3.4.1	Procedure of the novel approach	38
	3.4.2	Trigonometry solution	41
	3.4.3	Special method for symmetrical prism tensegrity	46
3.5	Numer	ical examples for single layer prism tensegrity	48
	3.5.1	Example 1: Symmetrical simplex prism tensegrity	49
	3.5.2	Example 2: Unsymmetrical simplex prism tensegrity	54
	3.5.3	Example 3: Unsymmetrical prism tensegrity with twenty joints	55
	3.5.4	Example 4: Unsymmetrical 200 member-Prism Tensegrity with smaller second ring within the perimeter of the first ring	57
	3.5.5	Example 5: Unsymmetrical 200 member-Prism Tensegrity with smaller second ring outside the perimeter of the first ring	60
	3.5.6	Example 6: Unsymmetrical 200 member-Prism Tensegrity with similar size second ring overlapping the perimeter of the first ring	62
	3.5.7	Example 7: Unsymmetrical 200 member-Prism Tensegrity with similar size second ring outside the perimeter of the first ring	65
	3.5.8	Example 8: Unsymmetrical 200 member-Prism Tensegrity with smaller size first within the perimeter of the second ring	66
	3.5.9	Example 9: Unsymmetrical 200 member-Prism Tensegrity with smaller size first outside the perimeter of the second ring	68

CHAPTER FOUR: FORM-FINDING OF MULTI-LAYER PRISM TENSEGRITY STRUCTURE

70

4.1	Prelude	,	73
4.2	Connec	ction polygon and conjunction polygon	74
	4.2.1	Connection polygon	76
	4.2.2	Conjunction polygon	78
4.3	Form-f	inding of multi-layer prism tensegrity	87
	4.3.1	Determination of the subsequent layer	88
4.4	Numeri	cal examples for multi-layer prism tensegrity	98
	4.4.1	Example 1: Unsymmetrical two-layer prism tensegrity with octagonal base polygon	98
	4.4.2	Example 2: Unsymmetrical three-layer domical prism tensegrity with decagonal base polygon	103
	4.4.3	Example 3: Unsymmetrical four-layer spherical prism tensegrity with octagonal base polygon	105
	4.4.4	Example 4: Unsymmetrical six-layer cantilever shaped prism tensegrity with pentagonal base polygon	107
	4.4.5	Example 5: Unsymmetrical six-layer arcuate prism tensegrity with hexagonal base polygon	109
	4.4.6	Example 6: Unsymmetrical two-branch prism tensegrity with 48 members	111
	4.4.7	Example 7: Unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	113
	4.4.8	Example 8: Unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	118
	4.4.9	Example 9: Unsymmetrical prism tensegrity space station	122
	4.4.10	Example 10: Unsymmetrical mega torus with 28400 members	127

CHAPTER FIVE: INFLUENCE OF SELF-WEIGHT ON STRUCTURAL BEHAVIOUR OF MULTI-LAYER PRISM TENSEGRITY

5.1	Prelud	le	135
5.2	The se	elf-weight effect	135
5.3	Nume	rical examples for analysis of prism tensegrity	139
	5.3.1	Example 1: Symmetrical three-layer domical prism tensegrity with decagon base polygon	142
	5.3.2	Example 2: Unsymmetrical three-layer domical prism tensegrity with decagon base polygon	145
	5.3.3	Example 3: Symmetrical three-layer domical prism tensegrity with hexagon base polygon	148
	5.3.4	Example 4: Symmetrical four-layer domical prism tensegrity with decagon base polygon	150
	5.3.5	Example 5: Symmetrical four-layer spherical prism tensegrity with octagon base polygon	153
	5.3.6	Example 6: Unsymmetrical four-layer spherical prism tensegrity with octagon base polygon	156
	5.3.7	Example 7: Symmetrical six-layer arcuate prism tensegrity with hexagon base polygon	159
	5.3.8	Example 8: Unsymmetrical six-layer arcuate prism tensegrity with hexagon base polygon	162
	5.3.9	Example 9: Unsymmetrical three-layer domical prism tensegrity with decagon base polygon	165
5.4	Summ	ary	166
СНА	PTER S	IX: CONCLUSION	
6.1	Conclu	usion	173
6.2	Recon	nmendation for future work	175
REF	ERENCH	ES	176

APPENDICES

- Appendix A The additional data for the numerical examples of Chapter 2
- Appendix B The additional data for the numerical examples of Chapter 3
- Appendix C The additional data for the numerical examples of Chapter 4

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 3.1	The assumed parameters	37
Table 3.2	The unknown parameters	37
Table 3.3	The primary results for length, force ratio, and azimuth angle of members	50
Table 3.4	The final coordinates of joints of the first and second rings	51
Table 3.5	The final force ratio and length for all members	52
Table 3.6	The coordinates of joints of the first and the second rings	53
Table 3.7	The force ratio of members	54
Table 3.8	The coordinates of joints	54
Table 3.9	The length and the force ratio of members	54
Table 3.10	The coordinates of joints of the first ring	56
Table 3.11	The coordinates of joints of the second ring	56
Table 3.12	The length and the force ratio of members	56
Table 3.13	The coordinates of joints of the first ring in Example 4	58
Table 3.14	The coordinates of joints of the second ring in Example 4	59
Table 3.15	The coordinates of joints of the second ring in Example 5	61
Table 3.16	The coordinates of joints of the second ring in Example 6	63
Table 3.17	The coordinates of joints of the second ring in Example 7	65
Table 3.18	The coordinates of joints of the second ring in Example 8	67
Table 3.19	The coordinates of joints of the second ring in Example 9	69
Table 4.1	The coordinates of joints of the first ring of the first layer	98
Table 4.2	The coordinates of joints of the second ring of the first layer	99
Table 4.3	The force ratio of members of the first layer	99
Table 4.4	The coordinates of joints of the connection polygon	101
Table 4.5	The force ratio of members of the connection polygon	101

Table 4.6	The coordinates of joints of the second ring at the second layer	102
Table 4.7	The force ratio of members of the second ring at the second layer	102
Table 4.8	The coordinates of joints of the first ring at the first layer of the domical prism tensegrity	103
Table 4.9	The specified parameters of the domical prism tensegrity	103
Table 4.10	The coordinates of joints of the first ring at the first layer of the spherical prism tensegrity	105
Table 4.11	The specified parameters of the spherical prism tensegrity	105
Table 4.12	The coordinates of joints of the first ring at the first layer of the cantilever shaped prism tensegrity	107
Table 4.13	The specified parameters of the cantilever shaped prism tensegrity	108
Table 4.14	The coordinates of joints of the first ring at the first layer of the arcuate prism tensegrity	109
Table 4.15	The specified parameters of the arcuate prism tensegrity	110
Table 5.1	The four different sets of initial strains	140
Table 5.2	The coordinates of joints of Example 1	144
Table 5.3	The maximum vertical displacement ratio, deflection ratio, and stress of the three-layer symmetrical domical prism tensegrity with decagonal base polygon	145
Table 5.4	The coordinates of joints of Example 2	147
Table 5.5	The maximum vertical displacement ratio, the deflection ratio, and the stress of the three-layer unsymmetrical domical prism tensegrity with decagonal base polygon	148
Table 5.6	The coordinates of joints of Example 3	149
Table 5.7	The maximum vertical displacement ratio, deflection ratio, and stress of the three-layer unsymmetrical domical prism tensegrity with hexagonal base polygon	150
Table 5.8	The coordinates of joints of Example 4	152
Table 5.9	The maximum vertical displacement ratio, deflection ratio, and stress of the four-layer unsymmetrical domical prism tensegrity with decagonal base polygon	153
Table 5.10	The coordinates of joints of Example 5	155

Table 5.11	The maximum vertical displacement ratio, deflection ratio, and stress of the four-layer symmetrical spherical prism tensegrity with symmetrical octagonal base polygon	156
Table 5.12	The coordinates of joints of Example 6	158
Table 5.13	The maximum vertical displacement ratio, deflection ratio, and stress of the four-layer unsymmetrical spherical prism tensegrity with symmetrical octagonal base polygon	159
Table 5.14	The coordinates of joints of Example 7	161
Table 5.15	The maximum vertical displacement ratio, deflection ratio, and stress of the six-layer symmetrical arcuate prism tensegrity with hexagonal base polygon	162
Table 5.16	The coordinates of joints of Example 8	164
Table 5.17	The maximum vertical displacement ratio, deflection ratio, and stress of the six-layer unsymmetrical arcuate prism tensegrity with hexagonal base polygon	165
Table 5.18	The values and the location of application of applied external loads	165
Table 5.19	The maximum vertical displacement ratio, deflection ratio, and stress of the three-layer unsymmetrical domical prism tensegrity with decagonal base polygon with nodal external loads	166
Table 5.20	Summary of results of analysis for all the nine examples	168
Table 5.21	Ratio of maximum vertical displacement in Example 1 (with decagonal base polygon) to Example 3	169
Table 5.22	Effect of number of side of base polygon in Example 1 (three-layer symmetrical domical prism tensegrity with decagonal base polygon) and Example 3 (three-layer symmetrical domical prism tensegrity with hexagonal base polygon) on maximum deflection ratio	169
Table 5.23	Ratio of maximum vertical displacement in Example 4 (four- layer) to Example 1	169
Table 5.24	Effect of number of layers in Example 1 (three-layer symmetrical domical prism tensegrity with decagonal base polygon) and Example 4 (four-layer symmetrical domical prism tensegrity with decagonal base polygon) on maximum deflection ratio	170
Table 5.25	Effect of level of initial stress on maximum vertical displacement: Comparison of results in \mathcal{E}_4 vs \mathcal{E}_3	170

- Table 5.26Effect of initial stress on maximum deflection ratio: Comparison171of results under \mathcal{E}_3 and \mathcal{E}_4
- Table 5.27Effect of configuration (un-symmetry vs symmetry) on 171
displacement: Ratio of maximum vertical displacement under
condition of unsymmetrical to symmetrical shape (in %)171
- Table 5.28Effect of configuration (symmetry vs non-symmetry) on172maximum deflection ratio

LIST OF FIGURES

Figure 1.1	Snelson's X-shape module	2
Figure 1.2	The triplex tensegrity structure	2
Figure 1.3	The inside view of the White Rhino- known as the world first real construction using tensegrity	3
Figure 1.4	A single joint of a tensegrity	4
Figure 1.5	(a) Human spinal cord, (b) Human leg (Scarr, 2014), (c) The cytoskeleton (Ingber, 2008)	5
Figure 1.6	(a) Tensegrity sculpture (Snelson, 2012), (b) Tensegrity table (Lees-Maffei and Fallan, 2013)	5
Figure 1.7	(a) Snake robot tensegrity (Mirletz et al., 2014), (b) Tensegrity aircraft wing	6
Figure 1.8	(a) Harris deployable antenna system, (b) Alpha sat antenna (Tibert, 2002)	7
Figure 1.9	(a) Tensegrity bridge (Franklin et al., 2010), (b) Tensegrity shelter (Kojima, 2014)	8
Figure 1.10	(a) Prism tensegrity cell, (b) Zigzag tensegrity cell, (c) Star like tensegrity cell, (d) Circuit tensegrity cell	9
Figure 1.11	(a) The prism structure with 6 struts, (b) The zigzag tensegrity structure with 6 struts, (c) The circuit tensegrity structure with 6 struts, (d) The star like a tensegrity with 6 struts	10
Figure 1.12	Formation of multi-layer prism tensegrity from two single layer prism tensegrity through connection polygon	12
Figure 1.13	A normal prism tensegrity and a tensegrity with extra members	13
Figure 1.14	Various examples of configurations which can be formed by multi-layer prism tensegrity	13
Figure 2.1	The simplest tensegrity with its joints	21
Figure 2.2	The five joints of a symmetrical prism tensegrity	24
Figure 3.1	A closed polygon formed by four lines	33

Figure 3.2	Two adjacent diagonal members and a member of basic polygons create a polygon	34
Figure 3.3	The six joints of the first and the second polygon with their connected members	35
Figure 3.4	The first joint of the first ring and the second ring with their connected members	39
Figure 3.5	Three force vectors and the angles between them	41
Figure 3.6	A view of the computational Excel tool for the form-finding of prism tensegrity based on the novel approach	45
Figure 3.7	Designing process for a symmetrical tensegrity structure	48
Figure 3.8	The vertices and their coordinates of the first polygon	49
Figure 3.9	The 3D view of symmetrical simplex prism tensegrity	51
Figure 3.10	The second polygon is drawn based on the first one and twisting angle	52
Figure 3.11	The 3D view of unsymmetrical simplex prism tensegrity	55
Figure 3.12	The 3D view of unsymmetrical prism tensegrity with twenty joints	57
Figure 3.13	The 3D view of unsymmetrical 200 member-Prism Tensegrity with smaller second ring within the perimeter of the first ring	60
Figure 3.14	The top view of unsymmetrical 200 member-Prism Tensegrity with smaller second ring within the perimeter of the first ring	60
Figure 3.15	The 3D view of unsymmetrical 200 member-Prism Tensegrity with smaller second ring outside the perimeter of the first ring	62
Figure 3.16	The top view of unsymmetrical 200 member-Prism Tensegrity with smaller second ring outside the perimeter of the first ring	62
Figure 3.17	The 3D view of unsymmetrical 200 member-Prism Tensegrity with similar size second ring overlapping the perimeter of the first ring	64
Figure 3.18	The top view of unsymmetrical 200 member-Prism Tensegrity with similar size second ring overlapping the perimeter of the first ring	64
Figure 3.19	The 3D view of unsymmetrical 200 member-Prism Tensegrity with similar size second ring outside the perimeter of the first ring	66

Figure 3.20	The top view of unsymmetrical 200 member-Prism Tensegrity with similar size second ring outside the perimeter of the first ring	66
Figure 3.21	The 3D view of unsymmetrical 200 member-Prism Tensegrity with smaller size first within the perimeter of the second ring	67
Figure 3.22	The top view of unsymmetrical 200 member-Prism Tensegrity with smaller size first within the perimeter of the second ring	68
Figure 3.23	The 3D view of unsymmetrical 200 member-Prism Tensegrity with smaller size first outside the perimeter of the second ring	69
Figure 3.24	The top view of unsymmetrical 200 member-Prism Tensegrity with smaller size first outside the perimeter of the second ring	70
Figure 3.25	The progress chart of trigonometry approach for form-finding of single layer prism tensegrity	71
Figure 3.26	The flow chart of trigonometry approach for form-finding of single layer prism tensegrity	72
Figure 4.1	The Pugh's pattern for multi-layer prism tensegrity	73
Figure 4.2	The modified Pugh's pattern for multi-layer prism tensegrity	74
Figure 4.3	Connection between the subsequent layer to previous layer	75
Figure 4.4	The connection polygon and its two conjunction polygons	76
Figure 4.5	The four subsequent joints of the connection polygon	77
Figure 4.6	The scaled first conjunction polygon enclosed the second conjunction polygon	78
Figure 4.7	The scaled second conjunction polygon encloses the first conjunction polygon	79
Figure 4.8	The first conjunction polygon, the scaled first conjunction polygon, and the scaled second conjunction polygon	80
Figure 4.9	The two different scaled second conjunction polygons for the unique first conjunction polygon by changing s	81
Figure 4.10	The maximum possible scaled first conjunction polygon for the case of symmetrical first conjunction polygon	82
Figure 4.11	The two different second conjunction polygon for the unique first conjunction polygon by changing <i>s</i> "	83
Figure 4.12	The two different second conjunction polygons for the unique first conjunction polygon by changing the scaling base point	84

Figure 4.13	Detailed view of the first conjunction polygon, the scaled first conjunction polygon, and the scaled second conjunction polygon	85
Figure 4.14	Scaled second conjunction polygons rotated (a) clockwise and (b) counter-clockwise, relative to the scaled first conjunction polygon	87
Figure 4.15	Conversion of three length vectors to a close triangle	89
Figure 4.16	Finding intersection of \overline{F}_{l_i} and $\overline{F}_{l_{i-1}}$ as scaling base point	90
Figure 4.17	The orientations of the two adjacent members of the second ring of the subsequent layer	91
Figure 4.18	The six consecutive joints of a connection polygon	93
Figure 4.19	The view of the extended computational Excel tool for form- finding of multi-layer prism tensegrity, (a) The first layer, (b) The subsequent layer	97
Figure 4.20	The 3D view of the first layer of unsymmetrical two-layer prism tensegrity with octagonal base polygon	100
Figure 4.21	The 3D view of unsymmetrical two-layer prism tensegrity with octagonal base polygon	102
Figure 4.22	The sequence of building up for unsymmetrical three-layer domical prism tensegrity with decagonal base polygon, (a) First layer, (b) Second layer, (c) Third layer	104
Figure 4.23	The 3D view of unsymmetrical three-layer domical prism tensegrity with decagonal base polygon	104
Figure 4.24	The sequence of building up for unsymmetrical four-layer spherical prism tensegrity with octagonal base polygon	106
Figure 4.25	The 3D view of unsymmetrical four-layer spherical prism tensegrity with octagonal base polygon	107
Figure 4.26	The sequence of building up for unsymmetrical six-layer cantilever shaped prism tensegrity with pentagonal base polygon	108
Figure 4.27	The 3D view of unsymmetrical six-layer cantilever shaped prism tensegrity with pentagonal base polygon	109
Figure 4.28	The sequence of building up for unsymmetrical six-layer arcuate prism tensegrity with hexagonal base polygon	110

Figure 4.29	The 3D view of unsymmetrical six-layer arcuate prism tensegrity with hexagonal base polygon	111
Figure 4.30	The sequence of building up for unsymmetrical two-branch prism tensegrity with three layers	112
Figure 4.31	The 3D view of unsymmetrical two-branch prism tensegrity	113
Figure 4.32	The sequence of building up for unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	115
Figure 4.33	The 3D view (Top- Front- Left) of unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	116
Figure 4.34	The 3D view (Top- Back- Right) of unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	116
Figure 4.35	The top view of unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	117
Figure 4.36	The front view of unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	117
Figure 4.37	The left view of unsymmetrical domical prism tensegrity with five extra unsymmetrical half-arcuate shaped supports	117
Figure 4.38	The sequence of building up for unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	119
Figure 4.39	The 3D view (Top- Front- Left) of unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	120
Figure 4.40	The 3D view (Top- Back- Right) of unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	120
Figure 4.41	The top view of unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	121
Figure 4.42	The front view of unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	121

Figure 4.43	The left view of unsymmetrical spherical prism tensegrity with four extra unsymmetrical half-arcuate and one unsymmetrical mast shaped branches	122
Figure 4.44	The sequence of building up for unsymmetrical prism tensegrity space station	123
Figure 4.45	The 3D view (Top- Front- Left) of unsymmetrical prism tensegrity space station	124
Figure 4.46	The 3D view (Top- Back- Right) of unsymmetrical prism tensegrity space station	125
Figure 4.47	The top view of unsymmetrical prism tensegrity space station	126
Figure 4.48	The front view of unsymmetrical prism tensegrity space station	126
Figure 4.49	The left view of unsymmetrical prism tensegrity space station	127
Figure 4.50	The sequence of building up for unsymmetrical mega torus	128
Figure 4.51	The 3D view of unsymmetrical mega torus with its all members	129
Figure 4.52	The front view of unsymmetrical mega torus with all members	129
Figure 4.53	The top view of unsymmetrical mega torus with all members	129
Figure 4.54	The 3D view of rings of unsymmetrical mega torus	130
Figure 4.55	The front view of rings of unsymmetrical mega torus	130
Figure 4.56	The top view of rings of unsymmetrical mega torus	130
Figure 4.57	The cross section AA of unsymmetrical mega torus	131
Figure 4.58	The cross section BB of unsymmetrical mega torus	131
Figure 4.59	The progress chart of trigonometry approach for form-finding of multi-layer prism tensegrity	133
Figure 4.60	The flow chart of trigonometry approach for form-finding of multi-layer prism tensegrity	134
Figure 5.1	Application of initial strain using the concept of dilatation in Robot Structural Analysis	137
Figure 5.2	The 3D view of three-layer symmetrical domical prism tensegrity with decagonal base polygon	143

Figure 5.3	The plan view of three-layer symmetrical domical prism tensegrity with decagonal base polygon	143
Figure 5.4	The 3D view of three-layer unsymmetrical domical prism tensegrity with decagonal base polygon	145
Figure 5.5	The plan view of three-layer unsymmetrical domical prism tensegrity with decagonal base polygon	146
Figure 5.6	The 3D view of three-layer symmetrical domical prism tensegrity with hexagonal base polygon	148
Figure 5.7	The plan view of three-layer symmetrical domical prism tensegrity with hexagonal base polygon	149
Figure 5.8	The 3D view of four-layer symmetrical domical prism tensegrity with decagonal base polygon	151
Figure 5.9	The plan view of four-layer symmetrical domical prism tensegrity with decagonal base polygon	151
Figure 5.10	The 3D view of four-layer symmetrical spherical prism tensegrity with octagonal base polygon	154
Figure 5.11	The plan view of four-layer symmetrical spherical prism tensegrity with octagonal base polygon	154
Figure 5.12	The 3D view of four-layer unsymmetrical spherical prism tensegrity with octagonal base polygon	157
Figure 5.13	The plan view of four-layer unsymmetrical spherical prism tensegrity with octagonal base polygon	157
Figure 5.14	The 3D view of six-layer symmetrical arcuate prism tensegrity with hexagonal base polygon	160
Figure 5.15	The plan view of six-layer symmetrical arcuate prism tensegrity with hexagonal base polygon	160
Figure 5.16	The 3D view of six-layer unsymmetrical arcuate prism tensegrity with hexagonal base polygon	163
Figure 5.17	The plan view of six-layer unsymmetrical arcuate prism tensegrity with hexagonal base polygon	163
Figure 5.18	The directions of the external nodal loads and the loaded joints	166

LIST OF SYMBOLS

[C]	Incidence matrix
[D]	Force density matrix
[D]	Damping matrix
[G]	Matrix of generalized coordinate of struts
[K]	Stiffness matrix
[M]	Mass matrix
[T]	Matrix of tension force of cables
[Δ]	matrix of change in the length of cables related to struts
[δL]	matrix of change in length of cables
b	Distance between the scaling base point to the mid-point of the member of the first conjunction polygon
С	Compression diagonal member
ċ	Number of cables
d	Member of the second ring of the previous layer
d'	Member of the second ring of the subsequent layer
е	Elongation of member
\overline{F}	Vector of force
i	Joint number of the first or previous layer
Ι	Reference factor
i'	Joint number of the subsequent layer
j	Joint of the first ring of the previous layer
j'	Joint of the second ring of the previous layer
<i>j</i> "	Joint of the first ring of the subsequent layer
k	Coefficient for the force ratio of the members of the first ring
k'	Coefficient for the force ratio of the members of the second ring
<i>k</i> "	Adjusting factor

l	Member of the first ring of the previous layer
l'	Member of the first ring of the subsequent layer
İ	Length of cable
Ē	Vector of length
n	Number of vertices
р	Member of the connection polygon
POL	Polygon
q	Force density
r	Radius of circle
S	Scale ratio of the second ring
<i>s'</i>	Scale ratio of the first conjunction polygon
Ś	Number of struts
\ddot{S}	Number of parameters of generalized coordinates of strut
<i>s"</i>	Scale ratio of the second conjunction polygon
t	Initial force of member
t	Tension diagonal member
U	Vectors of displacement
<i>ù</i>	Vectors of velocity
ü	Vectors of acceleration
X	Distance between a joint in the first conjunction polygon and the same joint in the scaled first conjunction polygon
<i>x'</i>	Distance between the mid-point of the member of the first conjunction polygon to mid-point of the member of the scaled first conjunction polygon
α	Internal angle of the first ring
α'	Azimuth angle of the member of the first ring
α	Twisting angle between upper and lower polygon
β	Internal angle of the second ring

- β' Azimuth angle of the member of the second ring
- β^{\cdot} Central angle of upper polygon
- γ Polar angle of the diagonal tension member
- δ Polar angle of the diagonal compression member
- δg Virtual displacement
- θ Angle between the member of the scaled second conjunction polygon and the member of the scaled first conjunction polygon
- *v* Azimuth angle of the diagonal tension member
- φ Azimuth angle of the diagonal compression member

LIST OF ABBREVIATIONS

3D	Three dimensions
All.	Allowable
ASTM	American Society for Testing and Materials
AutoCAD	Autodesk® AUTOCAD ®
Ave.	Average
CCW	Counter clockwise
CPR	Centroid point of the second ring
CW	Clockwise
Def.	Deflection
Dis.	Displacement
GPa	Giga Pascal
kN	Kilo Newton
т	Meter
Max	Maximum
mm	Millimetre
MPa	Mega Pascal
RDC	Rotational direction of the second conjunction polygon
Robot	Autodesk® Robot TM Structural Analysis
SJP	Rotational direction of the second ring of the previous layer
SYM	Symmetrical
USYM	Unsymmetrical

KAEDAH PENENTUAN-BENTUK LELURUS BERDASARKAN TRIGONOMETRI UNTUK STRUKTUR TENSEGRITI PRISMA PELBAGAI LAPIS TAK-SERAGAM

ABSTRAK

Tensegriti prisma adalah sejenis sistem tensegriti yang sesuai dipertimbangkan untuk penggunaan dalam bidang kejuruteraan awam dan senibina atas sebab ciri khasnya. Proses penentuan-bentuk untuk satu tensegriti prisma tak-seragam adalah satu proses tak-lelurus secara kebiasaannya atas sebab bilangan persamaan keseimbangan daya adalah kurang daripada bilangan parameter yang tidak diketahui. Peninjauan kajian lepas berkaitan kaedah penentuan-bentuk yang telah dikemukan menunjukkan bahawa tiada di antara kesemua kaedah adalah praktikal untuk tujuan penentuan-bentuk tensegiti tak-seragam dengan jumlah anggota yang besar. Atas sebab di atas, kajian ini telah dijalankan dengan matlamat untuk mengemukakan satu kaedah penentuan-bentuk yang praktikal yang cepat, tepat dan boleh memuaskan kehendak pereka. Tambahan lagi, adalah diketahui bahawa berat sendiri dan beban luaran mempunyai kesan ke atas bentuk akhir tensegriti prisma yang biasanya diabaikan dalam analisa penentuan-bentuk. Tensegriti prisma yang digunakan dalam bidang kejuruteraan awam dan senibina perlu mematuhi keperluan praktikal anjakan struktur dan ubahbentuk anggota. Justeru, kajian ini juga disasarkan untuk mengkaji kesan tegasan awal dan bentuk ke atas ubahbentuk tensegriti prisma di bawah berat sendiri. Dalam kajian ini, hubungan trigonometri digunakan untuk mengaitkan persamaan hubungan panjang dan persamaan keseimbangan daya untuk mendapatkan satu kaedah lelurus untuk penentuan-bentuk yang dikenali sebagai kaedah trigonometri. Pertama sekali, kaedah trigonometri baru untuk penentuan-bentuk tensegriti prisma satu lapis diperkenalkan. Selepas itu, konsep poligon penghubung