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KAJIAN TERHADAP KETEPATAN PENGIRAAN REDAMAN FILEM 

MAMPAT MENGGUNAKAN ANALISIS UNSUR TERHINGGA 

 

ABSTRAK 

Redaman filem mampat yang terhasil daripada udara yang terperangkap di antara 

struktur membran yang berayun melintang dan substrat tetap merupakan 

pertimbangan yang penting di dalam reka bentuk peranti MEMS kerana ia 

mempengaruhi keupayaan dinamik sesuatu sistem. Oleh itu, pembangunan peranti 

MEMS sangat bergantung kepada kaedah pemodelan dan simulasi untuk 

mengoptimumkan dan menguji reka bentuk tersebut sebelum proses pengeluaran. 

Tesis ini mencadangkan kaedah untuk pemodelan redaman filem mampat 

menggunakan kaedah unsur terhingga untuk mencapai hasil ketepatan yang tinggi 

di dalam masa yang sama dapat mengurangkan darjah kebebasan, dan 

keberkesanannya dikaji dengan membandingkan dengan kaedah yang lain. 

Analisis berangka dilakukan menggunakan perisian komersial ANSYS untuk 

pengiraan pekali redaman. Struktur bagi model-model tersebut dibina 

menggunakan model tiga dimensi (3D) dan model dua dimensi (2D). Keputusan 

yang diperolehi dari model-model kaedah unsur terhingga ini dibandingkan 

dengan data eksperimen yang sedia ada dan juga penyelesaian analitik. Hasil 

keputusan mendapati bahawa dalam pengiraan pekali redaman, model dua 

dimensi menghasilkan ketepatan yang lebih kurang sama dengan model tiga 

dimensi apabila dibandingkan dengan data eksperimen bagi kes jumlah lubang 

yang sedikit. Sebaliknya, bagi kes jumlah lubang yang banyak, model dua dimensi 
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yang dibangunkan di dalam kerja ini menunjukkan ketepatan yang lebih tinggi. 

Keputusan yang diperolehi jelas mengesahkan bahawa model yang dicadangkan 

di dalam tesis ini dapat mencapai ketepatan yang baik untuk penyelesaian pekali 

redaman, dan juga ia hanya memerlukan masa penyelesaian dan memori komputer 

yang rendah. 
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STUDY ON THE ACCURACY OF SQUEEZE FILM DAMPING 

CALCULATION WITH FINITE ELEMENT ANALYSIS 

 

ABSTRACT 

Squeeze film damping due to the air trapped between oscillating membrane 

structure and a fixed substrate is a critical consideration in the design of MEMS 

devices because it can adversely affect the dynamic behaviour of the system. 

Therefore, the development of MEMS depends highly on the modelling and 

numerical simulation in order to optimize and verify their design before the batch 

production process. In this thesis, a method to model squeeze film damping with 

finite element approach to attain sufficiently high accuracy while considerably 

reducing the degrees of freedom is proposed, and its effectiveness is studied by 

comparing with other methods. The numerical analysis was performed using 

commercial ANSYS software. The structures were modelled using three-

dimensional (3D) element and two-dimensional (2D) element. Results obtained by 

finite element models are compared with existing experimental measurements and 

analytical solutions. It was found that for the computation of damping coefficient, 

two-dimensional model yields slightly similar accuracy with three-dimensional 

model with respect to experimental data for low number of holes. In contrast, for 

highly perforated membranes, the proposed two-dimensional model is shown to be 

more accurate. The results clearly validate the proposed model to achieve good 

accuracy for damping coefficient solution while consuming considerably less 

computer time and memory. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of Project 

Micro-electro-mechanical systems (MEMS) is micron-sized integrated 

devices consisting of mechanical and electronic components fabricated on a typically 

silicon material through the microfabrication technology processes. Advanced 

progress in integrated circuit (IC) technology has allowed the fabrication of unique 

MEMS devices that have been gaining widespread applications in industrial and 

consumer products such as microaccelerometers, pressure sensors, microresonators, 

and micromirrors (Bryzek et al., 1994). These demands stem from the capability of 

MEMS that can reduce manufacturing costs, allowing for miniaturization in terms of 

both size and weight to improve the performance of conventional devices. 

A typical MEMS device can be characterized by structures where two parallel 

plates a few microns in sizes are separated by micron-sized gaps. One of the plates 

moves in transverse direction and another plate is fixed. Most of this device operates 

in the ambient conditions of air, in some cases for cost reason, and in other cases to 

meet requirement of specific motion. The schematic diagram of the structures is 

shown in Figure 1.1. However, the presence of air has siginificant effect on the 

dynamics response of the devices. Due to the normal motion of moving plate to the 

fixed plate, a thin film of air is trapped in a narrow gap between these two plates. The 
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Movement direction 

Squeeze film 

X 

Z 

Y 

thin film generates the damping and spring forces to the vibrating structures. At low 

operating frequencies, damping effect dominates, whereas at high frequencies, spring 

effect dominates. Since most MEMS devices operate at low frequencies, many 

researchers concentrate on the study of the damping effect due to the normal motion 

between the two plates that also has been known as squeeze film damping. 

 

 

 

 

 

 

Figure 1.1: Schematic diagram of the MEMS structure. 

 

One of the key requirements of such devices to meet is the low squeeze film 

damping on the structures. Perforation of the moving plate of the structures is a 

common solution for MEMS designers. Besides, perforated microstructure also has 

another function such as for efficient etching of sacrificial layers in the 

microfabrication process (Homentcovschi and Miles, 2005) and for controlling the 

stiffness of the structure (Clark et al., 2002). Alternatively, packaging these devices 

in a vacuum can help minimizing this damping, but it is not always desirable or even 
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practical to vacuum seal all such devices (Pandey and Pratap, 2007). The presence of 

holes makes the analysis of pressure distribution on the microstructure quite 

complicated since the flow of air surrounding the structure also needs to be 

considered in the analysis. A reasonably accurate determination of the fluid pressure 

distribution on the microstructures is a key to computing the squeeze film damping. 

 

1.2 Squeeze Film in Macro- and Micro-Sized Domains 

To design a system to meet its performance criteria, it is often necessary to 

model the system and then to analyze it in the context of those criteria. The type of 

model one uses may be a function of its size. The model will also be a function of its 

geometry, the way it is supported, and how it is constrained. The system’s 

environment, in conjuction with its size, will determine which type of damping is 

important and if it must be taken into account. 

 

Generally, MEMS devices range in size from micrometre to a milimetre. At 

these size scales, the standard cosntructs of classical physics are not always useful. 

As the size of devices becomes smaller, the surface to volume ratio increases, and the 

gas–surface interaction becomes important in microscale gas flows. Thus, surface 

effects such as electrostatics and wetting become more dominant than volume effects 

such as inertia or thermal mass in micro systems. 
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In micro devices, the effects of gas rarefaction including Knudsen number 

and surface accomodations effects, and surface roughness become important (Li, 

2004) under the conditions of low ambient pressure or  small gap. Three important 

parameters in micro devices are: the Knudsen number (  ), the accomodation 

coefficients (   ), and the film thickness ratio. 

1. The Knudsen number,    is defined as the ratio of the mean free path of gas 

to the characteristic length of the squeeze film. 

2. The accomodation coefficients,     (     ) also called the tangential 

momentum accomodation coefficient, TMAC is an indicator of the average 

tangential momentum exchange of the collision between gas molecules and 

the solid boundary. 

3. The film thickness ratio is defined as the ratio of the nominal film thickness 

to the standard deviation of composite roughness, which is an indicator of 

surface roughness. 

Thus, with the introduction of more physical parameters to the model, the 

range of complexity in modelling approaches has been increased resulting in a more 

accurate calculation in the analysis of squeeze film damping. 
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1.3 Problem Statement 

Research on squeeze film damping effect is of major interest since it critically 

influences the dynamic response of a MEMS device. Understanding the response are 

essential since many such devices have a wide range of industrial and consumer 

applications. The cost factor becomes a major issue with experimental works since 

fabrication of MEMS prototypes are in general very costly. Hence, the study of 

MEMS behaviour relies highly on modelling techniques. Generally, there are two 

different approaches of modelling the squeeze film behaviour: analytical model and 

numerical simulation using finite element analysis (FEA). 

Typically, the analytical solution has limited application to simple 

geometrical structures of MEMS only. The real MEMS design consists of a complex 

and irregular geometry which is not adequate to solve with the analytical model. 

Instead, the numerical simulation approach is often used. However, numerical 

approach so far have centered on using three-dimensional (3D) model in structural 

domain that requires huge computational resource. 

Due to most of MEMS devices having a thickness much smaller compared to 

lateral dimension, two-dimensional (2D) model of the membrane part should be 

always preferable in MEMS analysis. However the applicability of classical and 

modern plate theories for perforated, micron-sized plates remains on open question. 

The present research is motivated by the lack of studies in using two-dimensional 

model of perforated plates in modelling the structural part as this approach 

considerably reduces computational effort. 
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In addition, despite the many published analytical models in the literature, 

most of these papers lack extensive validations of the models with experimental data. 

This is understandable since measurements of test structures would require costly 

manufactured devices for test purposes. Another method to verify the models is with 

respect to the numerical modelling. Related analytical models will be used as another 

comparison with the proposed numerical models.  

 

1.4 Objectives of Research 

The objectives of this research are: 

1. To construct a finite element model in two and three dimensions that 

accurately include established structural and fluidic theoretical frameworks in 

the dynamic analysis of MEMS perforated structures using the commercial 

finite element software package ANSYS. 

2. To compare the model with established closed-form solutions and 

experimental data where applicable. 

3. To validate the proposed model based on thin plate theories. 

4. To assess the reduction in computational cost for the proposed model in terms 

of time and memory. 
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1.5 Thesis Outline 

This thesis is organized into six chapters. An introduction of this work was 

presented in the first chapter which provides an overview of the MEMS and squeeze 

film damping, problem statement and the motivation of this work. In Chapter Two, 

the underlying theories that related to this work are discussed in detail. Literature 

review of the previous studies regarding to experimental, analytical, and numerical 

approach were also been presented. Next, the finite element formulation to develop 

the numerical model will be demonstrated in Chapter Three. Chapter Four describes 

the methodology of numerical scheme used to analyze the squeeze film damping. 

Chapter Five presents the comparison between analytical and numerical results to the 

existing experimental data. Discussion on the results are include in this chapter. 

Finally, Chapter Six outlines the conclusions of this work and recommendations for 

the future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter provides an overview of the literature pertaining to squeeze 

film damping. In the first section, the fundamental of squeeze film will be 

reviewed. The second section describes the rarefaction, compressibility, and 

inertia effects in squeeze film behaviour. Third section focuses on a review of the 

modelling approaches of the squeeze film damping behaviour. This is divided into 

two subsections: analytical solutions and numerical approaches. The subsequent 

section presents a review of the plate theory. The next section provides a review 

of experimental studies of squeeze film damping behaviour where some results 

will be used to compare with the current work. The literature studies are critically 

summarized in the last section.   

 

2.1 Squeeze Film Damping 

There are numerous studies attempted to explain the different loss 

mechanism in MEMS devices (Zook et al. (1992); Mihailovich and MacDonald 

(1995); Cho et al. (1994); Lifshitz and Roukes (2000); Yasumura et al. (2000); Ye 

et al. (2003)). The most common mechanisms identified by Tilmans et al. (1992) 

include losses into surrounding fluid due to acoustic radiation and viscous 

damping, losses into support structure mount, and intrinsic damping caused by 

losses inside the material of mechanical structure. Among different sources of 
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energy dissipation, losses into surrounding caused by viscous damping have been 

shown to be a significant loss mechanism for devices operated near the 

atmospheric condition (Hosaka et al., 1995). 

The behaviour of squeeze film between moving plate and fixed substrate 

was first discovered from the theory of fluid lubrication (Langlois, 1961). 

Generally, the characteristics of squeeze film are determined by both viscous and 

inertial effect of the fluid. Due to the very small sizes featured in MEMS devices, 

fluid inertia is often neglected in the squeeze film analysis (Bao and Yang, 2007). 

Therefore, the behaviour of fluid film is analyzed through the well-known 

Reynolds equation. The Reynolds equation is a nonlinear partial differential 

equation derived based on the classical Navier-Stokes equation under certain 

assumptions of the fluid flow behaviour (Pratap et al., 2007). A derivation of 

Reynolds equation can be referred in Bao (2005). Starr (1990) wrote the 

commonly used nonlinear Reynolds equation as: 

  

  
(
   

 

  

  
)  

 

  
(
   

 

  

  
)    

 (  )

  
 (2.1) 

where P is the film pressure, ρ is density, μ is viscosity, h is film thickness, and  x 

and y are spatial coordinates. 

The viscous flow effect arises when the fluid particles in the gap are 

moving in and out through the plate gap boundary regions. The force from this 

viscous flow is known as the damping force. On the other hand, if the fluid is not 

able to escape the gap region, it will be compressed due to normal movement of 



10 
 

the plate to the substrate. The spring force will generate due to the compression of 

the fluid. 

The introduction of perforated holes to the microstructure causes the above 

conventional Reynolds equation to be no longer applicable since the mentioned 

equation only considers the fluid flow through the gap only (Feng et al., 2007). 

Since the perforated holes allow the air to flow across them, a new viscous force 

will be produced in the microstructure. Therefore, in the analysis of squeeze film 

for perforated microstructure, the Reynolds equation need to be modified by 

accounting the parameters related to the viscous flow through the holes (Bao et 

al., 2003). 

These viscous and inertial forces are sometimes used as design parameters 

and desired in the MEMS devices. In other cases, these forces could decrease the 

device performance. For both reasons, prediction of these forces in MEMS device 

becomes very crucial. 

 

2.2 Rarefaction, Compressibility, and Inertia Effects 

 In modelling the squeeze film effect in a perforated microstructure, it is 

important to understand the various phenomenons related to the gas flow and the 

geometry itself. The main effects that should be considered are gas rarefaction, 

compressibility, and inertial effects. These effects are characterized in term of 

non-dimensional numbers. 

 



11 
 

2.2.1 Rarefaction 

The rarefaction effect becomes a more crucial consideration when a fluid 

flows in a micro-channel. In a perforated microstructure, air rarefaction effect in 

both flows in the air gap and through the holes must be recognized. Knudsen 

number is the indicator of characterizing the rarefaction effect. The Knudsen 

numbers for both flows in the air gap Kng and through the holes Knh are expressed 

in Eqs. (2.2) and (2.3). The value of Knudsen number will determine the regimes 

of flows taken in the microstructure as shown in Table 2.1 (Karniadakis et al., 

2005). It is possible to have to different flow regimes in the air gap and the holes. 

 
    

 

 
 (2.2) 

 
    

 

 
 (2.3) 

where r is the radius of the holes side and   is the mean free path of particle. 

 

Table 2.1: Flow regimes and their Knudsen number ranges. 

Flow regimes Knudsen number, Kn 

Continuum flow < 0.01 

Slip flow 0.01 < Kn < 0.1 

Transition flow 0.1 < Kn < 10 

Molecular flow > 10 
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The mean free path of particle is inversely proportional to the pressure. So, 

under very low pressure condition, the mean free path will be larger so that the 

Knudsen number also will be higher. The mean free path in micrometer can be 

expressed as: 

 
  

     

 
 (2.4) 

When the Knudsen number lies on the slip flow regime, the translational 

flow regime or the free molecular regime, the rarefied gas effect must be 

considered in the analysis. In the slip flow regime, a difference between surface 

velocity and average fluid velocity occur at the surface. This slip boundary 

condition can be treated using the ‘effective’ viscosity coefficient to replace the 

viscosity coefficient of fluid. An effective viscosity coefficient is a function of the 

Knudsen number. Veijola et al. (1995) has proposed a relationship that 

approximates the pressure and film thickness dependence of the viscosity as 

below: 

      
 

         
      (2.5) 

However, when the pressure becomes much lower than an atmospheric 

pressure, the distance travelled by a gas particle between collisions becomes 

larger than the gap thickness. Hence, the collision among the particles will reduce 

such that the assumption of the gas as a viscous fluid is not applicable. This 

regime is known as the free molecular flow regime. There are some free 

molecular models had published by several authors to define this regime in the 

analysis (Christian (1966); Kádár et al. (1996); Li et al. (1999); Bao et al. (2002); 
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Hutcherson and Ye (2004)). The study of squeeze film damping in this regime 

also can be found in (Sumali, 2007). 

For translational flow regime, the mean free path is neither very small nor 

very large to the characteristic dimension of the structure. The collision of the 

molecules with the surface of the body and intermolecular collisions are of more 

or less equal importance and consequently the analysis becomes very complicated 

(Pandey et al., 2008). 

2.2.2 Compressibility 

 Compressibility effect is characterized with the squeeze number σ. If the 

squeeze number is less than 1, the compressibility effect is ignored and the flow 

can be treated as incompressible. For the higher value than 1, the compressibility 

effect becomes a significant to the analysis. Hence, the compressibility effect 

needs to be take consideration in the analysis. The squeeze number can be defined 

as (Pratap et al., 2007): 

 
  

      

    
 (2.6) 

where l is the characteristic dimension related to the smallest dimension of the 

structure and ω is the radial frequency. Eq. (2.6) clearly shows that 

compressibility are proportional depending on the operating frequency and the 

ratio of characteristic dimension to the air gap height whereas it is inversely 

proportional to the pressure condition. 
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2.2.3 Inertia 

 The presence of inertial effect is defined in term of non-dimensional 

Reynolds number. The Reynolds number for both flows through the gap Reg and 

the holes Reh are given by Eqs. (2.7) and (2.8), respectively (Pratap et al., 2007). 

 
    

    

 
 (2.7) 

 
    

    

 
 (2.8) 

Fluid inertial effect may be neglected when the Reynolds number is below 

than 1 (Re<1). Both equations suggest that the inertial effect is in dependence on 

the operating frequency, air gap height, and the radius of perforated holes. 

However, since most MEMS devices is fabricated in micron and nano scale sizes, 

operating frequency will be the major influence of the inertia effect. 

 

2.3 Analytical and Computational Approaches 

There are two different approaches used in modelling the squeeze film 

damping in microstructures. The first one is by analytical solution or compact 

modelling, and the second one is based on the numerical models. The major 

advantage of analytical approaches is their simplicity. However their applications 

are limited to simple geometry of the structure and certain regime conditions. The 

numerical modelling is a much more applicable to various geometries and the 

complete analysis of fluid flow is also possible. In modelling approaches, a major 

issue is to accurately estimate the pressure distribution in the microstructure 
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especially in the presence of the holes. The proper calculation of this pressure 

patterns is the goal of many studies. 

2.3.1 Analytical Solutions 

In an analytical model, all the relevant physical aspects of the system are 

described precise using the mathematical closed-form equations. During the past 

decades, a considerable amount of analytical models have been introduced to 

describe the behaviour of squeeze film effect in perforated microstructures. 

Basically, there are two common approaches were used to solve the modified 

Reynolds equation in the literatures. The main concept used in both approaches is 

representing the perforated plate as uniformly distributed cells with each cell 

having a single perforation. Table 2.2 gives an overview of the various squeeze 

film analytical models at a glance. 

Figure 2.1(a) illustrates the schematic diagram of a vibrating perforated 

plate with circular holes considered as a set of uniformly distributed cells. ro is the 

cell radius and ri is the hole radius. The shape and size of these cells depends on 

the flow characteristics around the holes and the pitch of the hole distribution over 

the plate (Pandey and Pratap, 2008). 
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(a) 

 
(b)

Figure 2.1: Schematic diagram of the perforated plate with uniformly distributed 

cell of (a) circular holes and (b) square holes. 

 

 

For a plate with uniformly distributed square section of the hole with size 

S0 and pitch q as in Figure 2.1(b), the equivalent hole radius, b can be determined 

by comparing the resistance through a square channel and a circular pipe of the 

same length. The cell radius a is calculated by equating the areas of the square and 

circular shapes. The expression for the equivalent hole radius b and the cell radius 

a are (Veijola, 2006): 

 
  

       
 

 (2.9) 

   
 

√ 
 (2.10) 

In the first approach, the squeeze film damping within a single cell was 

obtained first by solving the related equation. Then, the overall damping is 

calculated by multiplying the damping of the single cell with the total number of 

cells. It has been applied in the studies done by the Mohite et al. (2005), Kwok et 

al. (2005) and Homentcovschi and Miles (2010). 
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Table 2.2: An overview of the different analytical models for perforated 

structures.  

Damping 

coefficient 
Authors Equation 

Important effects 

modelled 

   
Mohite et al. 

(2005) 
(2.11) 

Rarefaction and 

compressibility 

   Kwok et al. (2005) (2.12) Rarefaction 

   
Homentcovschi 

and Miles (2010) 
(2.13) Compressibility 

   Bao et al. (2003) (2.14), (2.15) - 

   
Pandey and Pratap 

(2008) 

(2.16), (2.17), 

(2.18) 

Rarefaction and 

compressibility 

   Veijola (2006) (2.19) Rarefaction 

 

In 2005, Mohite et al. proposed the closed-form solution for the damping 

and stiffness coefficients for perforated back plates of MEMS. They include the 

rarefaction and compressibility effect in their model. However, the model would 

appear to be inaccurate when they applied zero pressure condition at the inner cell 

while neglecting the flow rate across the holes for the boundary conditions. 

Neglecting flow across the holes is suitable for the cases where too small 

thickness of the holes is considered. According to this model, the damping 

coefficient is: 
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(2.11) 

where Ri = ri/ro, Ro= ro/ro =1, I0 and I1 are the modified Bessel functions of the 

first kind of order zero and one, respectively, K0 and K1 are the Macdonald’s 

function of the second kind of order zero and one, respectively. 

Then, Kwok et al. (2005) derived the formula of damping constant based 

on the solution of Reynolds equation by using non-zero pressure at the inner 

boundary and zero pressure at the outer boundary for the boundary conditions of 

the cell. They show that the pressure at the inner boundary can be represented by 

the product of the squeeze number, a geometry term, and a rarefaction term. The 

damping coefficient of Kwok’s model is determined by: 

 
   

      
  

   
 ( )           

(     
 ) 

   
 (2.12) 

where N is the number of holes, Tp is the plate thickness,         is the ratio of 

the hole to cell radius, and  ( )                 The damping constant 

expression in this case captures the loss due to flow in the gap under the cell on 

the first term of equation and the loss due to flow through the holes on the second 

term. 
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In another study, Homentcovschi and Miles (2010) developed the 

analytical solution for fluid damping based on the Navier-Stokes equation. This 

model is developed for cases when the Reynolds equation cannot be applied in 

which the air gap is the same order with the characteristic dimension of the plate. 

They characterize the fluid flow through the holes by using 2D axisymmetrical 

pattern problem. The damping coefficient in this case is given by: 

 
   

    
 

   
    (  )

    (  )
*  

  
 

      (  )
  +    (2.13) 

where ρo is the unpertubed air density, k, β and Wo are the constants as defined in 

(Homentcovschi and Miles, 2010). 

In this approach, it seems the major sources of error comes from the 

assumption of each cell is identical to each other. This is because the cells located 

around the plate boundary and the cells in the interior are considerably having 

different pressure distribution. This error becomes more significant in the small 

perforation ratio plate and when the number of holes in the boundary is 

comparable to the number of holes in the interior. 

In the second approach, the total squeeze film damping was determined by 

directly solving the modified Reynolds equation within the whole plate. Some 

examples of this approach were found in Bao et al. (2003), Pandey and Pratap 

(2008) and Veijola (2006). 
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Bao et al. (2003) have solved the modified Reynolds equation for 

uniformly perforated rectangular plate. Here, the incompressible gas is assumed. 

The authors validated their model by comparing with the experimental results 

done by Kim et al. (1999). The damping coefficient can be written as: 

 
    

    

  
 (2.14) 

Here, the expression of γ is obtained as: 
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(2.15) 

where       is the plate aspect ratio, and       , where l is the 

attenuation length in (Bao et al., 2003), depending on the air gap height, the 

effective hole thickness, the ratio between the hole and cell radius, and the hole 

radius. 

Further work on Bao’s model was performed by Pandey and Pratap 

(2008).  They have included the compressibility and rarefaction effects in their 

model. They also introduced an important term which captures the perforation 

effect coupling with the compressibility and rarefaction effects. The term is 

defined by the ratio of the width of the plate to the characteristics length given in 

(Pandey and Pratap, 2008). In this case, the width is the smallest dimension 
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compare to the length of the plate. The final expression of damping coefficient is 

given by: 

          (2.16) 

where 
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 (2.17) 

and 

 
      (

  

   
    )    (2.18) 

The Qth is the flow rate factors which account rarefaction effect in the flow 

through the holes given in (Veijola, 2006), and ΔE is the relative elongation of the 

hole side (Pandey and Pratap, 2008). 

Veijola (2006) published a paper that presented a very complete model 

which derived by dividing the perforation cell into several regions: the squeezed 

film and intermediate region in the air gap, the capillary flow in the hole, and the 

outflow region above the hole. Each region is defined with their flow resistances. 

On solving a modified Reynolds equation which takes into accounts both 

compressibility and rarefaction effects, an expression of damping coefficient are 

obtained as: 
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(2.19) 

where Rp is the total flow resistance. 
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In order to improve the model, De Pasquale et al. (2010) have proposed 

the contribution of the gas damping due to the supporting springs should be 

included. The approximate equation in estimation the damping coefficient due to 

the springs with considering four springs, slips conditions, non-translational 

motion and border elongation is: 

 
   

 

 

  [(      (        ) )]
  

  (      )
 (2.20) 

Besides, they also mentioned the relatively large spacing between the outmost 

holes and the plate border, S2 causes an increased pressure frame around the 

perforated region that contributed to the total damping on the structure. The 

expression of damping coefficient for the pressure frame is: 

 
   

(         )  
  

  (      )
 (2.21) 

2.3.2 Numerical Approaches 

Typically, analytical solutions are restricted to relatively simple structures 

of MEMS only. Often actual MEMS designs consist of a complex and irregular 

geometry structures with non uniform size and distribution of holes which is not 

adequate to solve with the analytical model. In addition, non-linear pressure 

response may also present. Numerical simulations using finite element method 

(FEM) approach is often used to evaluate the behaviour of MEMS at device 

design stage. Moreover, the numerical approach has been commonly used to 

assess the accuracy of the analytical model or the experimental test. 
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Recently, there is increasing capability of modelling squeeze film damping 

in commercial FEA package like ANSYS, and numerical results are often found 

in the literatures. Somà and De Pasquale (2007) and Somà and De Pasquale 

(2008) predicted the damping and stiffness coefficients numerically using two 

different techniques: constant imposed velocity method and a modal projection 

method. They concluded that the mesh density significantly influences the 

accuracy of results in the modal projection method while the effect is negligible 

for the first method. 

From the literatures, the absence of 2D models for modelling the 

perforated plate vibration is rather glaring considering high aspect ratios of 

MEMS plates should lead one to model them in 2D. So far, most studies use the 

3D solid modelling the structural part, but there are no attempts at that using 2D 

shell plates or model in evaluating the squeeze film damping behaviour. Such 

papers that using the 3D solid element are presented in Beltman et al. (1997), 

Pandey and Pratap (2007), Guo et al. (2007), and Chaterjee and Pohit (2010). In 

2009, De Pasquale and Soma has suggested the application of 2D shell element 

structure model however it is limited to predict the resonance frequency of the 

MEMS structure only (De Pasquale and Somà, 2009). 

Alternative approach to numerical solutions of Reynolds equation is also 

proposed in the literatures.  A Perforation Profile Reynolds (PPR) method was 

presented by Veijola and Råback in solving the squeeze film damping problem 

(Veijola and Råback, 2007). This method is also based on the same Reynolds 

equation as Eq. (2.1) but the equation is improved with an additional term to 
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account the leakage flow resistance through the perforations. The same method 

was also utilized in De Pasquale and Veijola (2008) study. They found the 

damping force results from PPR method give a better agreement than the 

conventional method in 3D simulations. 

A semi-analytical approach was presented by Nayfeh and Younis (2004) 

in modelling and simulation of flexible microstructures under the effect of 

squeeze-film damping by first using perturbation techniques to linearize the 

coupled equation of elasticity and the Reynolds equation to expressing the 

pressure distribution in terms of the structural mode shapes. The resulting 

governing equation is then solved using a FEM to extract natural frequencies, 

structural mode shapes, corresponding pressure distribution, and quality factor. 

 

2.4 Plates Vibration Modelling 

The vibration of plates is a special case of the more general problem of 

mechanical vibrations. The equations governing the vibration of plates are simpler 

than those for a general three-dimensional object due to one of the dimensions of 

a plate is much smaller than the other two. A plate theory takes advantage of this 

disparity in length scale to reduce the analysis of three-dimensional structures to a 

two-dimensional problem. This suggests that a two-dimensional plate theory will 

give an excellent approximation to the actual three-dimensional motion of a plate. 

The theory of plates is an approximation of the three-dimensional elasticity theory 

to two dimensions, which permits a description of the deformation of every point 
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in the plate in terms of only the deformation of the midplane of the plate (Rao, 

2007).  

There are several classical theories that have been developed to describe 

the motion of plates. The most commonly used are the Kirchhoff-Love theory
 
and 

the Reissner-Mindlin theory. The Kirchoff-Love plate theory or classical plate 

theory is an extension of Euler-Bernoulli beam theory. The following assumptions 

are made (Rao, 2007): 

1. The middle plane of the plate remains as the neutral plane after 

deformation. 

2. The displacements of the midsurface of the plate are small compared to the 

thickness of the plate. 

3.  The influence of transverse shear deformation is neglected. 

The Reissner-Mindlin theory of plates is an extension of Kirchoff-Love 

theory that takes into account shear deformations along the thickness of the plate. 

Another assumption is that the originally line normal to the middle surface 

remains straight, but it is not necessarily normal to middle surface (Bathe, 1996). 

It also often called the first-order shear deformation theory of plates. 

Indeed, many different shell elements have already been proposed in the 

literature. Several studies on this shell element technology have been carried out 

on Schoop (1989), Wriggers et al. (1995), and Hauptmann and Schweizerhof 

(1998). However, these types of element are not available in commercial FEA 

software like ANSYS. 
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Fortunately, the analysis of solid plates is well established. However, for a 

plate having a holes, different theories have been introduced to solve such 

vibration of plate problem. By considering the hole as an extremely thin part of 

the plate, the vibration analysis of such plates with a hole can be transformed into 

an equivalent plate with non-uniform thickness (Huang and Sakiyama, 1999). Lee 

et al. (1990) pointed that the numerical methods for analysed the natural 

frequencies of perforated plate can be classified into three categories, namely the 

finite element and finite difference methods, the series-type analytical method, 

and the semi-analytical approach based on the Rayleigh-Ritz principle. 

As in Leissa (1969), one of the major classical studies of this such problem 

was done by Takahashi (1958) who used the Rayleigh-Ritz method and deflection 

functions which are products of beam deflection functions to predict the 

fundamental frequency at the first mode of vibration. Elsewhere, Hegarty and 

Ariman (1975) has reported Takahashi’s study where they found that the 

frequency increased constantly with increasing hole size. 

 

2.5 Experimental Data 

In order to validate the accuracy of the analytical and numerical modelling 

approaches which previously explained, we need the experimental data as the 

benchmark to evaluate the models effectiveness. However, the major drawback is 

the quite small amounts of experimental data were reported in the literatures. 
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Typically, the measured damping and stiffness values were only extracted at first 

mode resonance frequency. 

The preliminary work on measured the damping coefficients in vibrating 

perforated microstructure was undertaken by Kim et al. (1999). They had done the 

experimental work on a set of nine polysilicon structures, having three different 

holes sizes with three different numbers of holes. The measured data has been 

validated with the theoretical values comes from finite element analysis. They 

have found bigger discrepancy from the theoretical value so that they conclude the 

major possibility error comes from the zero pressure boundary condition applied 

on the holes edges in the finite element analysis. 

Pandey and Pratap (2008) performed an experiment on polysilicon square 

MEMS structure to validate their proposed analytical model. It also compared 

with the different analytical models that already exist in the literature. They show 

that their proposed model agrees within 5% to the experimental results while the 

other models lie far from the experimental value. They also measured the quality 

factor of the structure as the result validation.  

Then, Soma et al. provide the measurement data of six different 

polysilicon structures which the first four specimens in the same size in plate 

dimensions but differ by holes cross section size while the other two structures are 

characterized by the same holes dimension but a different plate width. The plate 

structure is supported by four lateral clamped beams. The experimental 

measurements were conducted by the optical interferometric microscope where 
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the damping and stiffness extraction were done by the Frequency Shift technique 

(Somà and De Pasquale, 2008). 

Later, Veijola et al. carried out experiment on six rectangular polysilicon 

perforated microstructures. The structure consists of various dimension sizes, 

number of holes and sizes of holes. They have compared their measured damping 

coefficients with the different compact models and the reasonable error of 

differences value was also been discussed (Veijola et al., 2009). 

In this work, we considered the data provided by De Pasquale et al. 

(2009). The authors carried out experiment on six gold rectangular plates and 

twenty-eight gold square plates with variety of cases in term of the number of 

holes and the holes sizes. The plate side dimension is also variable. The 

experiments have been performed by the structures were electrostatically excited 

to vibrate at their fundamental mode. Then the vibration amplitudes were 

measured optically. The half-power method has been used to extract damping 

parameters of the vibrating system. The details dimension of this structure will be 

shown in the Chapter Four. 

 

2.6 Summary 

 There are three main effects that need to be understood in modelling 

perforated MEMS structure behaviour. The compressibility and inertial effects are 

dominant only at higher operating frequencies. On the contrary, rarefaction effect 

can be apparent even at low frequencies. 
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To date, based on a review of literature presented, it is evident that 

modelling the perforated MEMS structure with two-dimensional model are scarce 

and most of the work previously focused on three-dimensional model. Based on 

literature on the plate theory, it suggested the capability to model the structural 

part using two-dimensional element. Experimental work done by De Pasquale et 

al. (2009) is used as case study. The relevant analytical has been selected for 

validation of accuracy of the proposed model. 
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CHAPTER THREE 

FINITE ELEMENT METHOD FOR PLATES VIBRATION WITH 

SQUEEZE FILM DAMPING  

 

This chapter presents the theoretical background to the Finite Element 

Method (FEM) used in the analysis of squeeze film damping. It illustrates how the 

FEM can be applied to solve for problems involving squeeze film. The theoretical 

overview of the plate theory and their finite element formulation was discussed 

first. Then, the finite element formulation for fluid domain was presented. 

Approach of Modal Projection Method is explained in the last section. By 

studying the relevant theoretical frameworks, a suitable approach to obtain 

optimal computations for the solutions is expected. 

 

3.1 Structural Domain 

A plate is a structure where its thickness is small compared with other 

characteristic dimensions, i.e., length and width. They are widely used in many 

engineering applications such as bridges, turbine disks, airplanes and ships. Plates 

used in such applications are normally subjected to lateral loads, causing bending 

of the plate. In general, plate can be classified into three major categories 

according to the ratio of the lateral dimension of a plate, l to the plate thickness, 

Tp. The various types of plate classification are given in Table 3.1 (Ventsel and 

Krauthammer, 2001). 
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Table 3.1: Classification of the different types of plate. 

Plate types Thick Thin Membrane 

Lateral 

dimension/thickness 
≤ {8 – 10} 

{8 – 10} ≤ l/Tp ≤ 

{80 – 100} 
≥ {80 – 100} 

Equivalent theory Elasticity theory 
Classical plate 

theory 

Nonlinear plate 

theory 

 

For a plate with ratios l/Tp ≤ {8 – 10}, the analysis of such a plate is based 

on general three-dimensional theory of elasticity. However, as the thickness 

becomes very small, several assumptions may be introduced to simplify the 

solution. The basic assumption is that the stress through the thickness (i.e., 

perpendicular to the mid-surface) of the plate is zero. Applying the above 

assumptions, a three-dimensional model of the plate may be reduced to a two-

dimensional model. 

The thin plate behaviour is studied first using the classical plate theory that 

is based on the Love-Kirchoff assumption. In the Love-Kirchoff theory, the shear 

deformations along the thickness of the plate are neglected and an imaginary 

straight line perpendicular to the midsurface remains straight line during 

deformation. Later, the development of Kirchoff-Love plate theory called 

Reissner-Mindlin plate theory was proposed which takes into account the shear 

deformation along the thickness of the plate. As the thickness becomes very small, 

i.e., the ratio l/Tp get extremely high, l/Tp ≥ {80 – 100}, the plate will potentially 

undergo considerably large deflections, hence nonlinear plate theory is crucial for 

this case.  
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In this work, it is observed that, in general the plate vibration is modelled 

in three dimension which obviously requires more computational resource in 

finite element (FE) computations. Hence, the main focus is to validate the 

viability of reducing the problem into its two-dimensional equivalence. The 

accuracy between the three-dimensional and two-dimensional finite element 

model for structural domain in modelling the squeeze film analysis is on interest 

in this study. Here, we summarize the essential theory of plate with their finite 

element formulation related to two and three dimensions. General FE formulation 

for structural analysis can be found in Zienkiewicz and Taylor (2005) and Bathe 

(1996). 

3.1.1 Three-Dimensional (3D) Model 

In general, theory of elasticity is used to predict the behaviour of a three-

dimensional structural plate. Consider a plate that is discretized using quadratic 

20-nodes isoparametric hexahedral element. The standard element is as shown in 

Figure 3.1. The element has three degrees of freedom (DOF) on each node: 

displacements in the x, y, and z directions. 

The nodal displacements are given by: 

   *                           +
  (3.1) 

where n is refer to the number of nodes of the element and T donates the matrix 

transpose. 
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Figure 3.1: A 20-nodes hexahedral element. 

 

The approximation values of displacement within an element can be 

determined with: 

 
  ∑    

 

   

        ∑    

 

   

        ∑    

 

   

 (3.2) 

where x, y, and z are the local displacements at any point of the element and xi, yi, 

and zi are the corresponding element displacements at ith node. The term of Ni 

represents the shape functions associated with ith node. The shape functions for 

the quadratic element with 20 nodes can be written as the following form: 
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where       ,       , and       . The   ,   , and    are values of local 

coordinates   ,  , and   at nodes. 

By using either the Lagrange dynamical equations or Hamilton’s 

variational principle, the consistent element mass matrix for structure element can 

be written as (Bathe, 1996): 

 
   ∫        

  

 (3.4) 

where ρ is the mass density of the material and  s is the element’s structure 

domain. The matrix of shape functions is: 

 

  [

         
         
         

] (3.5) 

Assuming a linear elastic body with the stress-strain relation       and 

a strain-displacement relation     , the element stiffness matrix corresponding 

to general plane stress is given by the expression: 

 
   ∫         

  

 (3.6) 
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The elasticity tensor Db for isotropic material reads as follows: 

 

   
 

    

[
 
 
 
 
 
 
 
 
      
      
      

   
   

 
  

    
   

 
 

     
   

 ]
 
 
 
 
 
 
 
 

 (3.7) 

where E is Young’s modulus and v is the Poisson’s ratio. 

The strain-displacement matrix B is described by: 

 

  

[
 
 
 
 
 
 
     ⁄   

      ⁄  

       ⁄

     ⁄      ⁄  

      ⁄      ⁄

     ⁄       ⁄ ]
 
 
 
 
 
 

 (3.8) 

Integration of expressions for mass me and stiffness ke matrices are usually 

evaluated numerically using Gauss-Legendre quadrature. 

3.1.2 Two-Dimensional (2D) Model 

In two dimensions, the structural domain is modelled using the Reissner-

Mindlin plate theory which takes into account both bending and shear 

deformation through the thickness of the plate. Derivation of the element mass 

and stiffness matrices can be constructed from the principle of virtual work 

(Bathe, 1996). The expression for the principle of virtual work describes the 

energy Ue due to bending and shear forces are: 
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        (3.9) 

where the internal bending moments and shear forces are Dbκ and Dsγ, 

respectively with 
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 (3.10) 

The elasticity tensors for isotropic element in 2D for bending (Db) and 

shear (Ds) are: 
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]             
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] (3.11) 

where u is the displacement of the plate, θx and θy are the rotations around x and y 

axis, respectively, and κ is the shear energy correction factor. 

 

 
Figure 3.2: A 8-nodes quadrilateral element. 
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Using eight-nodes quadrilateral elements as shown in Figure 3.2, each 

node has three DOF: displacements in the x, y, and z axis. The nodal degrees of 

freedom and the approximation displacement within an element using their nodal 

values are same as given in Eqs. (3.1) and (3.2), respectively. Now, the shape 

functions for the 8-nodes quadrilateral two-dimensional elements are presented as 

below: 
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The consistent element mass matrix is equivalent to:  

 

   ∫    [
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      ⁄
]    

  

 (3.13) 

Then, the element stiffness matrix is: 

 
   ∫

  

  
        

  

 ∫     
        

  

 (3.14) 

where B and Bs denotes the derivatives of the shape function, N in accordance 

with Eq. (3.10). 

 Refer to Eq. (3.14), the thickness of the element is implicitly defined here. 

The numerical integration is also based on Gauss-Legendre quadrature. 
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3.2 Fluidic Domain 

As described in the previous chapter, the flow of a fluid in a thin channel 

between two solids in relative motion is describes by the Reynolds equation. The 

most important assumption in the derivation of this Reynolds equation is that the 

film thickness is small compared to the other dimensions of the domain. It is 

further assumed that the viscosity and pressure are constant across the film, and 

that the flows are laminar and isothermal condition (Pratap et al., 2007). As a 

result the Reynolds equation represents the mass conservation of the fluid in terms 

of the pressure and film thickness as written in Eq. (2.1). However, this form of 

equation is not suitable for FEM discretization (Hannot and Rixen, 2009). 

 

 
Figure 3.3: Fluid element geometry with pressure DOF. 

 

In general case, the Reynolds equation is a two-dimensional equation that 

is based on the assumption that there is no variation of pressure across the fluid 

film. Consider the squeeze film to be discretized with 2D plain element with 8-
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nodes quadrilateral elements that provide quadratic approximation of pressure as 

shown in Figure 3.3. The element consists of one pressure DOF at each node. The 

pressure within an element is approximated using the nodal values as given by: 

 
  ∑     

 

   

 (3.15) 

for n = 8 and Nfi represents the shape function of a fluid element associated with i 

node. The same shape functions for the structural domain are used for the fluid 

domain. 

The element degrees of freedom are: 

    *          +
  (3.16) 

By using the Einstein’s summation convention, the Reynolds equation in 

Eq. (2.1) can be simplified in the following form: 

  (  )
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) (3.17) 

where i runs from 1 to 2, i.e., x and y. 

 When it is assumed that the flow is to be isothermal, the density is 

proportional to the pressure: 

 
 
  

  
  

  

  
 
 

   
(
   

   

  

   
) (3.18) 

For the boundary conditions, it is assumed that the pressure on the open 

edges of the plate is equal to the ambient pressure and that zero pressure gradient 

at the closed edges of the plates: 
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     (3.19) 

where the ni is the component of the normal vector in the direction of xi. 

 In order to discretized the Reynolds equation for finite element 

formulation, Eq. (3.18) is transformed into its weak form by multiplying with a 

test function v, and integrated over the fluid domain: 

 
∫ * 
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)   +    (3.20) 

The last term of the above equation can be rewritten as: 
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(3.21) 

where   is the boundary of the fluid domain. When the boundary condition of the 

Eq. (3.19) is substituted into Eq. (3.21), this leads to: 

 
∫ 

 

   
(
   

   

  

   
)    ∫

  

   

   

   

  

   
   (3.22) 

Now the FEM discretization of pressure and fluid is defined with the: 

     
                 

    (3.23) 

and with the Galerkin method, the shape functions are used as test functions: 

      (3.24) 
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Introducing of Eqs. (3.22), (3.23), and (3.24) into Eq. (3.20) gives: 

 
∫     

   
  

  
 ∫

   

   

   

   

   
 

   
    ∫     

   
  

  
 (3.25) 

Eq. (3.25) can be written in matrix vector form as: 

    ̇        
  ̇    (3.26) 

where Mf and Kf are, respectively, the assembled global mass and stiffness 

matrices for the fluid. The global coupling matrix Qf transfers the velocities of the 

structure to the fluid domain. A superposed dot represents the time derivative. The 

element-wise mass, stiffness and coupling matrix matrices can be defined with the 

following relations: 

 
   

 

 
∫  

      (3.27) 
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)   

(3.28) 

 
   ∫  

      
(3.29) 

The numerical integration of Eqs. (3.27) and (3.28) is handled using 3   3 

Gauss-Legendre quadrature. 

 For the element used to model the fluid flow through the perforation holes, 

there are some assumptions too: isothermal viscous flow at low Reynolds 

numbers, small channel length compared to the acoustic wave length, and a small 

pressure drop with respect to ambient pressure (ANSYS 12.0). As this element 

considers gas rarefaction, it also allowed channel lengths to be small compared to 

the mean free path. 
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 Based on continuum flow theory, the volume flow rate Q of the square 

cross-sections channel is evaluated by the Hagen-Poiseuille equation: 

 
  

   
 

  

 

  
   (3.30) 

where    is the hydraulic radius,   is holes cross-sectional area,    is the hole 

length,   is the friction factor, and    is the pressure gradient along the channel 

length. The hydraulic radius is defined as: 

 
   

  
 

 (3.31) 

while the friction factor   for square holes is approximated by: 

 
  

  

     
 (3.32) 

The mechanical resistance    of the holes can be estimated by: 

 
   

 

 
 
     

    
 (3.33) 

Note that       and      , where   is the fluid velocity at the cross-

sections. 

 In summary, a linear elastic theory is used for three-dimensional model 

and the Reissner-Mindlin theory is used for two-dimensional model to analyze the 

displacement field, whereas the Reynolds equation is used for the air pressure 

field. The formulation is based on a finite element discretization of both the 

displacement and pressure fields. 
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3.3 Modal Projection Method 

As the structure encounters the flexible oscillation dynamic motion, the 

modal projection method is used in ANSYS for the analysis of the squeeze film. 

Due to the displacement and the velocity varying along the flexible structure, the 

correlation between the deformed shapes to the fluid pressure acting on the 

structure need to be accurately determined. This technique analyzes the damping 

and stiffness coefficients of the squeeze film using the eigenvectors of the 

structure. 

Due to the most dynamic MEMS devices employ microfabricated plate 

structures, the squeeze film analysis is generally performed using the 2D 

isothermal compressible Reynolds equation coupled with equations governing the 

plate deflection under the assumptions of small displacements and strains. 

Consider a microplate subjected to a net pressure force  (     ) per unit area due 

to the squeezing action of air underneath the plate due to its transverse motion 

pushing and pulling on the fluid film, we obtain the following equation governing 

the transverse motion of the plate: 

 
 (
   

   
  

   

      
 
   

   
)     

   

   
   (     ) (3.34) 

where  (     ) is the transverse deflection of a point (   ) on the plate at time  , 

  
   

 

  (    )
 is the plate flexural rigidity,   is the Young modulus, and   is the 

Poisson’s ratio. 
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The algorithm used to compute the damping and stiffness coefficients in this 

technique are expressed as follows (Mehner et al., 2003): 

1. First, the modal analysis of the elastic structure is carried out using FEM to 

extract the resonant frequencies and the eigenvectors of different modes by 

solving Eq. (3.34) without any forcing term. After finite element 

discretization, Eq. (3.34) can be written in the matrix form as: 

 , -* ̈+  ,  -* +  * + (3.35) 

where , - is the structural mass matrix, ,  - is the structural stiffness 

matrix, and * + is the nodal load vector. If the displacement  (     ) is 

written in terms of   eigenvectors   (   ) and a time-dependent modal 

coordinate   ( ) as: 

 
 (     )  ∑  (   )

 

   

  ( ) (3.36) 

then the eigenvectors and the resonant frequencies can be calculated from 

the dynamic equilibrium equation: 

 ,  -*  +    
 , -*  + (3.37) 

Based on the orthogonal properties of eigenvectors, we get the following 

expression for the resonance frequencies corresponding to different mode 

shapes: 

 *  +
 ,  -*  +    

 *  +
 , -*  + (3.38) 
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Letting, 

 *  +
 , -*  +    

  and *  +
 ,  -*  +    

  (3.39) 

we get 

 
  
  

  
 

  
  (3.40) 

where   
  and   

  are the modal mass and stiffness of the structure 

corresponding to the ith eigenvector    and the resonance frequency   . 

2. The squeeze film is excited with wall velocities that correspond to the 

values of the ith eigenvector of the structure. 

3. A harmonic response analysis is performed to extract the pressure response 

within the desired frequency range. 

4. The real and imaginary component of the element pressure is integrated for 

each frequency to compute the element nodal force vector: 

 
* +  ∫    (     )  

    

 (3.41) 

where    is the finite element shape function,    is the ith eigenvector, and 

   is the ith modal coordinate. 

5. The nodal force vector is multiplied for each eigenvectors resulting the 

modal forces which indicate how much the pressure distribution acts on 

each mode shape (back projection): 

 
  * +    ∫    (     )  

    

 (3.42) 
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6. The damping coefficient is extracted from the real component of modal 

force while the stiffness coefficient is extracted from the imaginary 

component as: 

 
    

  
 ∫    { (     )}  

 ̇
 

    
  
 ∫    { (     )}  

 
 

(3.43) 

The damping and spring coefficients of each mode due to the squeeze film 

are the main diagonal entries    and    . Off-diagonal terms (   ) 

represent the fluidic cross-talk among modes which occurs in the case of 

asymmetric air gap. 

7. The procedure from step 2 is repeated for the next eigenmode. 
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CHAPTER FOUR 

NUMERICAL IMPLEMENTATION 

 

In this chapter, detail descriptions of the steps involved in performing the 

squeeze film analysis and the method for assessing the computational approach 

are discussed. All the computations are performed with the commercial FEA 

package ANSYS. 

 

4.1 ANSYS Simulation Methodology 

In this work, the analyses were conducted with the industrial-strength 

commercial finite element analysis software package ANSYS version 12.0. This 

version of ANSYS has all the features to successfully implement the squeeze film 

damping effect. 

Generally, a typical analysis using ANSYS consist of three main phases: 

pre-processing, solution, and post-processing stages. In the pre-processing stage, 

the data such as the geometry, materials, and element types are provided to the 

program. The analysis type will be defined in the solution stage. The finite 

element solution will be initiated in this stage. The boundary conditions may be 

specified in either pre-processing or solution stages. In the post-processing stage, 

the results of the analysis can be reviewed through visualization and data listings. 
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The details flow of the steps involved in such typical analysis in ANSYS is 

illustrated in Figure 4.1. 

ANSYS Parametric Design Language, APDL is powerful scripting 

language that allows a user to parameterize model and automate common tasks. 

The most benefit of this tool is it can save the set up time compared if an 

individual command were manually performed by a user. In this work, the 

analyses in ANSYS were performed using the APDL script. 

 

4.2 Geometry Model 

In this work, we considered two different sets of test structures based on 

the past researchers (De Pasquale et al., 2009). Both sets are required in validation 

the numerical models that will be discussed in the next chapter in terms of natural 

frequency and squeeze film damping coefficients, respectively. The first set of test 

structure is a gold rectangular shape plate whereas the second type is a gold 

square plate structure. 
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Figure 4.1: Flow of the steps involved in ANSYS simulation. 
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4.2.1  Perforated Rectangular Structures 

In the study of natural frequency, the gold rectangular plate MEMS 

structures fabricated by De Pasquale et al. (2009) is used as the case study. The 

structures are characterized by different plate widths and holes sizes. The plate 

thickness Tp and the air gap height h are 6.3 μm and 3.0 μm, respectively. Table 

4.1 lists the characteristic dimensions of the test structures. The dimensions of the 

supporting beams acting as suspensions at the both ends are presented in Table 

4.2. 

 

 
Figure 4.2: Rectangular plate with square holes structure. 
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Table 4.1: Plate dimensions of the rectangular plate structures with plate 

thickness, Tp = 6.3 μm. 

Plate 

No. 

Plate length, L 

(μm) 

Plate width, W 

(μm) 

Holes side, S0 

(μm) 

No. of holes,   

M   N 

1 

376 

99 

7.20 

18   4 
2 9.30 

3 10.70 

4 12.60 

5 158 7.20 18   7 

6 277 7.20 18   13 

 

Table 4.2: Suspension beams dimensions for rectangular structures. 

Parameter Symbol Value (μm) 

Length Lb 96.08 

Width Wb 13.52 

Thickness Tb 2.620 

 

The geometric parameters of S1 and S2 along the plate length L as depicted 

in Figure 4.2 can be calculated from the following relations: 

 
   

 

   
    (4.1) 

 
   

 

   
 
  
 

 (4.2) 

Along the plate width W, the values of S1 and S2 are: 

 
   

 

   
    (4.3) 
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 (4.4) 

S0, S1, and S2 provide unique dimensions of a perforated plate with specific size 

and arrangement of the holes. 

4.2.2  Perforated Square Structures 

In the analysis of squeeze film damping, the gold square plates of MEMS 

structures designed by De Pasquale et al. (2009) are considered as shown in 

Figure 4.3. The authors fabricated 28 gold square plates with variety of plate side 

dimensions, as the number of holes and the hole sizes. The plate thickness and the 

air gap height are the same as the gold rectangular plate structures. The 

geometrical parameters of the gold square structures are listed in Table 4.3 while 

Table 4.4 provides the dimensions of the supporting beams. 

 

 
Figure 4.3: Square plate with square holes structure. 
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Table 4.3: Plate dimensions of the square plate structures with plate thickness, Tp 

= 6.3 μm. 

Plate 

No. 

Plate side, L 

(μm) 

Holes side, S0 

(μm) 

No of holes,   

M   M 

7 

55 

7.20 

2   2 
8 9.30 

9 10.70 

10 12.60 

11 

76 

7.20 

3   3 
12 9.30 

13 10.70 

14 12.60 

15 

96 

7.20 

4   4 
16 9.30 

17 10.70 

18 12.60 

19 

115 

7.20 

5   5 
20 9.30 

21 10.70 

22 12.60 

23 

137 

7.20 

6   6 
24 9.30 

25 10.70 

26 12.60 

27 

157 

7.20 

7   7 
28 9.30 

29 10.70 

30 12.60 

31 

185 

7.20 

8   8 
32 9.30 

33 10.70 

34 12.60 
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Table 4.4: Suspension beams dimensions for square structures. 

Parameter Symbol Value (μm) 

Length Lb 96.66 

Width Wb 12.88 

Thickness Tb 2.606 

 

The values of S1 and S2 as indicated in Figure 4.3 can be calculated with the same 

expressions as Eqs. (4.1) and (4.2). 

 

4.3 Boundary Conditions 

For our analysis, two types of degrees of freedom are involved: the 

pressure magnitude and the displacement vectors. Firstly, the pressure at nodes 

along the plate edges is set to be zero as this will sets the pressure as atmospheric 

pressure. Secondly, the displacement vectors at the end of the each supporting 

beams are set to zero in all directions. Figure 4.4 shows the boundary conditions 

applied on a typical finite element model. 
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Figure 4.4: Boundary conditions on typical finite element model. 

 

4.4 Material Properties 

For all analysis, material properties specified to be linear since there is no 

thermal effect included. In addition, displacement of the plate is assumed to be 

small enough that even for a membrane model to be used in the analysis, the 

linear material model still applies. The material properties that have been assigned 

to both the structure and surrounding fluid is shown in Table 4.5 and Table 4.6 

respectively. 

 

Table 4.5: MEMS structure material properties. 

Properties Values 

Young’s modulus 98.5e3 kg/µm/s
2
 

Density 19.32e-15 kg/µm
3
 

Poisson ratio 0.42 

Thermal expansion coefficient 14.0 (10
-6

/ 
o
C) @ 20 

o
C 
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Table 4.6: Properties of air. 

Properties Values 

Viscosity 18.5e-12 kg/µm/s 

Ambient pressure 0.1 kg/µm/s
2
 

Reference pressure for free path 0.1 kg/µm/s
2
 

Mean free path at reference pressure 65e-9 µm 

 

4.5 The Finite Elements 

In this analysis, there are two different domains involved which are 

structural and fluidic domains. The structural domain is the MEMS structure 

while the fluidic domain is the air surrounding the structure. Both domains are 

required to be coupled at their interface since one domain influences the other and 

no vacuum should exist between the interfaces. 

4.5.1 The Structural Domain 

As the main objective of this work is to study the applicability of two-

dimensional (2D) plane structure in the modelling of the complex three-

dimensional (3D) perforated MEMS structure, two different finite elements are 

used to model the structural domain for comparison. In order to simulate the full 

three-dimensional structural analysis, 20-node three-dimensional hexahedral 

element that exhibits quadratic approximation of displacement is preferred. This 

element type is labelled SOLID186 in ANSYS, and hereafter is referred to as 3D 

solid model in this thesis.  
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(a) 

 
(b) 

Figure 4.5: Geometries and node locations of standard (a) 20-node hexahedral 

elements (SOLID186) and (b) 8-node shell elements (SHELL281). 

 

For two-dimensional model, the 8-node shell element is used. It consists of 

eight nodes with six degrees of freedom per node: translations in the x, y, and z-

axis and rotations about the x, y, and z-axis. This element is labelled SHELL281 

in ANSYS, and will be referred to as 2D shell element model. Alternatively, this 

element can be defined as a membrane element that allows only translational DOF 

(i.e., zero rotations). This element type will be referred to as 2D membrane model. 

The thickness of shell element implicitly defines the structure thickness as 

mentioned in Section 3.1.2. The geometry and node location for both elements are 

shown in Figure 4.5. 

4.5.2 The Fluidic Domain 

The fluidic domain is characterized by two different behaviours of the 

fluid flow due to the geometry of the perforated plate. The first fluid flow 

behaviour is in the gap between the moving plate and the fixed base substrate. An  
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8-node quadrilateral element type with pressure degrees of freedom is used (cf. 

Section 3.2). The element is known as FLUID136 in ANSYS. The fluid in the gap 

is modelled by overlaying this element on the below the solid element mentioned 

above. The element behaviour is based on the Reynolds squeeze film theory as 

discussed in Section 3.2. In addition it also includes rarefied gases theory. 

However there are some assumptions to be considered: 

1. Isothermal viscous gas flow condition is assumed. 

2. Lateral dimension of the structure is much larger than the gap size. 

3. Pressure change is small relative to the ambient pressure. 

4. Knudsen number is less than 880. 

 

 
Figure 4.6: Fluid domain mesh in perforated plate. 
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The second fluid flow behaviour is for the flow through the hole defined by 

two nodes. This element type is labelled FLUID138 in ANSYS. The first node is 

pointed at the centre of the cross section of the holes region on the same plane as 

the squeeze film element is located. The position of second node is at the opposite 

face of the structure through the hole depth. This element preserve the pressure 

drop through the hole by coupling the pressure DOF for the nodes of the squeeze 

film elements at the periphery of the hole to the pressure DOF for first node of 

this element while the pressure DOF for second node should be set to the 

surrounding pressure as shown in Figure 4.6.  A sample of the APDL command 

for model the FLUID138 element is included in Appendix B. This element 

accounts the gas rarefaction effect and fringe effects due to the short channel 

length. Table 4.7 shows a summary of the characteristics for all the elements 

involved in the analysis. 

 

4.6 Mesh Generation 

Meshing generation is one of the most critical steps since it will determine 

the accuracy of solution and the computational cost. In general, a fine mesh may 

result in better approximation of the solution with a costly computation cost and 

vice versa. Thus, seeking a mesh with optimal size on shapes of elements is a 

main objective to meet in the meshing procedure.  
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Table 4.7: Summary of the elements characteristics. 

Element type 
ANSYS 

label 

Degree of 

freedom 
Dimension Characteristics 

20-nodes 

hexahedral 

SOLID 

186 
Translation 3D 

Twenty nodes hexahedral-

shaped element that exhibits 

quadratic approximation 

displacement. 

8-nodes 

quadrilateral 

shell 

SHELL 

281 

Translation 

and 

rotational 

(zero 

rotation 

may be 

assumed) 

2D 

Eight nodes quadrilateral-

shaped element that exhibits 

quadratic approximation 

displacement. 

8-nodes 

quadrilateral 

FLUID 

136 
Pressure 2D 

The element should be 

oriented such that the 

element normal is pointing 

toward the fluid domain. 

2-nodes 
FLUID 

138 
Pressure 1D 

The first node is positioned 

at the centre of the cross 

section of the holes region 

on the same plane as the 

elements used to model the 

squeeze film fluid region. 

The second node is 

positioned at the opposite 

face of the structure through 

the hole length. 

 

As the model involves the fluid-structure interaction, these two different 

physics must be meshed properly. First, the structural geometries were meshed 

with quadrilateral shape element with free type meshing. In this analysis, meshing 

around to 50 000 elements is considered. Test with 100 000 elements and more 

only change the results by about 2%. The meshed geometry of both 3D solid and 

2D shell elements are shown in Figures 4.7 and 4.8. 
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Then, the fluid gap elements were overlaid on the surface of an existing 

structural mesh to define the behaviour of fluid domain in the gap while ensuring 

element compatibility at the interface. In order to preserve the pressure drop 

through the perforated holes, single fluid hole element is defined at the each hole. 

 

Figure 4.7: Meshing of 3D solid element for structural model. 
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Figure 4.8: Meshing of 2D shell element for structural model. 

 

4.7 Solution and Postprocessing 

There are three types of analysis available in the squeeze film behaviour 

studies using ANSYS that are the static, harmonic, and modal analysis. In general, 

static analysis is used to determine the damping effects at low operating 

frequencies while the harmonic response analysis can be used to compute 

damping and stiffness parameters at higher frequencies. Modal analysis is used to 

determine the natural frequencies and mode shapes of the structure. 
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In this work, Modal Projection Method is use for the extraction of 

damping and stiffness coefficients of the fluid. This technique provides an 

efficient method for analysis of flexible oscillating structures. Damping and 

stiffness coefficients extraction is based on the structure velocity profile 

determination through a series of harmonic analysis. The flows of the steps in 

performing the analysis via this method are shown in Figure 4.9. 

Pre-stress effect is subjected to the 2D shell element model to compensate 

the variations of stress state produced by the assumptions appeared in shell 

element theory. This stiffening effect normally needs to be considered for thin 

structure with bending stiffness very small compared to axial stiffness. The effect 

of stress stiffening is accounted for by generating and the using an additional 

stiffness matrix, hereinafter called the ‘stress stiffness matrix’. This matrix is 

added to the regular stiffness matrix in order to give the total stiffness.   

Once the ANSYS solution phase has ended, that is when the damping and 

stiffness parameters is compute, results can be now be accessed through 

postprocessing phase in ANSYS. 
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Figure 4.9: Flows of the steps in modal projection method. 
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

 

The results obtained from the analysis will be discussed in details in this 

chapter. It consists of three sections. In the first section, the preliminary modal 

analysis is done to validate the accuracy of numerical models with respect to the 

relevant theories for plate vibrations. In the subsequent section, the modal analysis 

of perforated MEMS structures is performed to verify the accuracy of numerical 

models as described in Chapter 3 in terms of computations for natural frequencies. 

The mode shapes of the structures are also presented. The analysis of squeeze film 

damping will be demonstrated in the next section. In the last section, the 

computational cost of such numerical models will be analyzed. 

 

5.1 Preliminary Modal Analysis 

In this preliminary study, the modal analysis of a simple perforated plate 

will be presented. The analysis uses different finite element types to evaluate their 

accuracies with established closed-form solution. 

A square plate with a centrally located circular hole is modelled. The 

dimensions of square plates are 10 000 μm   10 000 μm   100 μm and the 

following gold material properties are given: Young Modulus E = 98.5   10
3
 kg / 

μm s
2
, density ρ = 19.32  10

-15
 kg / μm

3
, Poisson ratio υ = 0.30, and thermal 
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expansion coefficient α = 14   10
-6

 
o
C

-1 
at 20 

o
C. Diameter of circular hole is 200 

μm. The model is as shown in the Figure 5.1. 

 

 
Figure 5.1: A square plate with a circular hole. 

 

 

For boundary condition, square plate four sides are clamped so that the 

degrees of freedom of all four edges are made zero. Meshing the perforated plate 

models was done using two different structural element types: 3D solid elements 

and 2D shell elements. Such numerical results were validated with the theoretical 

study done by Takahashi (1958) as mentioned in Section 2.4. The resulting 

frequencies values were shown in Table 5.1. 
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Table 5.1: Natural frequencies and relative errors for different element types. 

Element type No. of nodes 
Natural frequency 

of first mode (Hz) 

Relative 

errors 

3-D solid 81198 4229 -0.40 

2-D shell 83304 4062 3.56 

Theory _ 4212 _ 

 

As can be seen from the table above, the relative error of the 2D elements 

with respect to the theoretical study is below 5% which is generally acceptable.  

The results prove the applicability of the 2D shell elements that are based on thin 

plate Reissner-Mindlin theory for use in modal analysis of a plate with a hole. 

This preliminary study was set out with the aim of assessing the applicability of 

such element types against classical plate theory in solving the perforated 

structure. 

 

5.2 Modal Analysis of Perforated MEMS Structures 

 In this section, the perforated structure model is validated for the solution 

of natural frequencies. The structures as summarized in Table 5.2 are used in this 

analysis. The natural frequency evaluation by the numerical approach was carried 

out using three different structural element types: 3D solid model, 2D shell model, 

and 2D membrane model. The approximation number of elements used for 

meshing 3D and 2D models are 50 000. 
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Table 5.2: Plate dimensions for modal analysis (cf. Figure 4.2). 

Plate 
Plate length, L 

(μm) 

Plate width, W 

(μm) 

Holes side, S0 

(μm) 

No. of holes,   

M   N 

1 

376 

99 

7.20 

18   4 
2 9.30 

3 10.70 

4 12.60 

5 158 7.20 18   7 

6 277 7.20 18   13 

 

The FE computations were compared with the experimental data acquired 

from the previous work made by De Pasquale et al. (2009). The natural frequency 

of the first mode is assessed. Table 5.3 lists the differences between the natural 

frequencies from the FE computations and the experiment. 

 

Table 5.3: Resonance frequency values obtained from the experimental work De 

Pasquale et al. (2009) and through FEA simulations for each plate structure. 

Plate 

Resonance frequency, fn (kHz) 

Experimental 

Numerical approaches 

3D solid model 2D shell model 
2D membrane 

model 

1 20.25 19.90 20.88 16.73 

2 20.70 20.18 21.52 17.30 

3 20.98 20.46 22.11 17.81 

4 21.92 21.04 23.15 18.74 

5 17.00 16.94 17.13 13.44 

6 13.61 13.55 13.20 10.21 
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As shown, the natural frequency of the structures increased through the 

increase of the holes size, which can be seen in Figure 5.2. However, as expected, 

the data also show that the resonance frequency decreased with the decrease of the 

plate aspect ratio, L/W. Figure 5.3 shows that the resonance frequency decreased 

with the increase plate width. 

 

 
Figure 5.2: Resonance frequency results for increasing holes size (18   4 holes). 
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Figure 5.3: Resonance frequency results for increasing plate width (S0 = 7.20 μm). 

 

In terms of relative errors with respect to the experimental data, Table 5.4 

lists the percentage differences of the results data in Table 5.3. 

 

Table 5.4: Percentage differences results for numerical models with respect to the 

experimental values. 

Plate 

Percentage differences with respect to 

experimental values, ε (%) 

3D solid 

model 
2D shell model 

2D membrane 

model 

1 1.73 -3.11 17.38 

2 2.51 -3.96 16.43 

3 2.48 -5.39 15.11 

4 4.01 -5.61 14.51 

5 0.35 -0.76 20.94 

6 0.44 3.01 24.98 
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The comparison of the relative errors as a function of perforated holes size 

S0 is shown in Figure 5.4. As indicated, the 2D membrane model has the lowest 

accuracy. From the mathematical model, the only difference between the shell and 

membrane models is the absence of rotation. It can be concluded that neglecting 

rotation causes over-prediction of the first natural frequency of the perforated 

structure. 3D solid model shows the most accurate results. 

Observing the data for 2D shell model, it suggests that 2D shell model 

tends to under-predict the natural frequency. It is suspected that although both 

bending and shear deformations are allowed similar to 3D model, the rank-2 

elasticity tensors are not sufficient to capture the true deformation of the plate 

since it only allows first order estimate of shear deformations. Nevertheless, 

within the generally accepted 5% error, application of 2D shell model can 

acceptably valid. 

In Figure 5.5, it shows the comparison of the accuracy of numerical 

models with respect to the plate width. The models exhibit similar trends as 

described before. 3D membrane model gives the lowest accuracy compared to the 

other models. While the solid model provides the best accuracy, the shell model is 

still with the acceptable range of accuracy. However, the solid model results were 

consistent with the experimental data. 
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Figure 5.4: Influences of holes size on the numerical models accuracy (18   4 

holes). 

 

 
Figure 5.5: Influences of plate width on the numerical models accuracy (S0 = 7.20 

μm). 
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There are several factors that can explain the small discrepancies found 

between the simulated models and experimental results. One source of error is the 

material properties defined in ANSYS simulation and those of the experimental 

structure can vary. The two significant properties that would affect the difference 

between the experimental and simulated models are Young’s modulus and 

density. The values of the properties are dependent on the fabrication process 

involved. Another possible reason for the discrepancy is the residual stress that 

likely to be present within the structure after the fabrication process. 

The corresponding mode shape of the structures was also determined in 

the numerical approaches. The mode shape plots for Plate 1 are selected here as 

representative of the other plate. The mode shapes of the first natural frequency of 

such plates for different numerical models are shown in the Figure 5.6. The mode 

shapes of all plates for different numerical models are attached in Appendix A.  

Colouring was used as an indicator for the out-of-plane z-direction 

displacement, where a dark red indicates large displacements from the equilibrium 

position and dark blue indicates negligible displacement. As shown, the deformed 

shape characteristics of all plate structures corresponding to this mode are 

represented by out of plane bending and the vertical translation in the z-axis 

direction. 

As seen in the solid model, there are variations of mode shape colouring 

when decreasing the aspect ratio of plate dimension while for both 2D models, 

there are not too many variations especially in the membrane model.  
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(a) 

 
(b)

 
(c)

Figure 5.6: The simulated mode shapes of Plate 1 at first mode of vibration for (a) 3D solid model (b) 2D shell model and (c) 

2D membrane model. 
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Based on the modal analysis results, we can conclude that even though 

complex 3D solid model result is considered the most accurate, however, the 2D 

shell model results are also very close. Thus, it is indicating that the validity of a 

simpler 2D shell model element in determination of natural frequency of MEMS 

perforated structure. The next section will discuss the validation of such numerical 

models in analyzing the squeeze film damping behaviour. 

 

5.3 Analysis of Squeeze Film Damping 

A parameter of interest in the analysis of squeeze film behaviour in MEMS 

structures is the damping coefficient. This is because the damping is directly 

related to the dynamic response of the system. The accuracy of the numerical 

models is studied in terms of solving squeeze film damping problem in perforated 

MEMS structure. 

In this study, evaluations of the squeeze film damping coefficients were 

performed for a variety of cases that correspond to the experimental works 

investigated in the past. The experimental data is needed as the benchmark to 

evaluate the model effectiveness. In particular, the experimental data on damping 

coefficients by De Pasquale et al. (2009) is considered. 

De Pasquale et al. (2009) reported the damping coefficient for twenty-

eight square gold perforated plates. There are four plates for each number of 

holes, which differ in terms of holes size. All the characteristic dimensions of 

such cases are collected in Table 5.5. 
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Table 5.5: Geometrical characteristics of gold plates reported by De Pasquale et 

al. (2009) (cf. Figure 4.3). 

Plate 
Plate side, L 

(μm) 

Holes side, S0 

(μm) 

No of holes, M 

  M 

7 

55 

7.20 

2   2 
8 9.30 

9 10.70 

10 12.60 

11 

76 

7.20 

3   3 
12 9.30 

13 10.70 

14 12.60 

15 

96 

7.20 

4   4 
16 9.30 

17 10.70 

18 12.60 

19 

115 

7.20 

5   5 
20 9.30 

21 10.70 

22 12.60 

23 

137 

7.20 

6   6 
24 9.30 

25 10.70 

26 12.60 

27 

157 

7.20 

7   7 
28 9.30 

29 10.70 

30 12.60 

31 

185 

7.20 

8   8 
32 9.30 

33 10.70 

34 12.60 
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Table 5.6: Damping coefficient values obtained from the experimental work De 

Pasquale et al. (2009) and through FEA simulations for each plate structure. 

Plate 

Damping coefficient (  10
-6 

Ns/m) 

Experimental 

Numerical approaches 

3D solid model 2D shell model 
2D membrane 

model 

7 2.341 2.746 2.720 3.341 

8 2.124 1.944 1.951 2.292 

9 1.492 1.604 1.627 1.846 

10 1.168 1.305 1.342 1.446 

11 3.143 3.554 3.556 5.976 

12 2.970 2.148 2.196 3.517 

13 2.483 1.639 1.687 2.593 

14 1.702 1.223 1.267 1.824 

15 6.218 4.059 4.145 8.180 

16 4.588 2.239 2.324 4.399 

17 3.542 1.613 1.698 3.092 

18 3.374 1.124 1.194 2.033 

19 9.030 4.326 4.502 9.635 

20 6.043 2.198 2.366 4.889 

21 5.155 1.546 1.660 3.309 

22 4.606 1.026 1.111 2.076 

23 10.796 4.758 5.069 11.433 

24 7.478 2.309 2.558 5.615 

25 6.433 1.554 1.743 3.723 

26 6.087 1.011 1.118 2.260 

27 15.966 4.763 5.323 12.323 

28 10.450 2.365 2.599 5.880 

29 9.292 1.516 1.736 3.838 

30 8.108 0.933 1.078 2.267 

31 19.334 5.682 6.216 14.705 

32 13.611 2.652 3.017 7.021 

33 12.163 1.765 2.002 4.583 

34 10.843 1.044 1.226 2.712 
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In this analysis, the damping coefficient of squeeze film is evaluated by 

numerical FEM simulations using three different structural models: 3D solid 

model, 2D shell model, and 2D membrane model. Table 5.6 presents the values of 

damping coefficients determined by experimental data and numerically evaluated 

by the different FEM models. 

Figure 5.7 presents the comparison between three different models in the 

FEA simulation in terms of the percentage differences with respect to the 

experimental data. Firstly, what is interesting in this data is that the results 

provided by the 2D shell model are very closer to the results of 3D solid model for 

the whole plates. The shell model gives a slightly better accuracy rather than the 

solid model. The average differences between both models are about 2% only. 

The results of this study indicate that the rotational DOF introduced in the shell 

element can cause the characteristic of the shell element to behave like a solid 

element in damping analysis of squeeze film. 

However, both models are surprisingly providing a good accuracy for a 

small number of holes cases only.  As the number of holes increases, the 2D 

membrane element clearly provides the better agreement. These phenomena 

related to the equivalent theory that relevant to each classification of plate types as 

described in the Chapter 3. 
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Figure 5.7: Percentage errors of damping coefficients returned by different FEM 

models. 

 

As mentioned before, 3D elasticity theory can be used to describe the 

behaviour of the plate that had ratio l/Tp less than 10 while the classical plate 

theory that implemented two-dimensional form analysis can be used to describe 

the behaviour of the plate that had ratio l/Tp more than 10. Refer to the Table 5.7 

that shows the ratio of the lateral dimension of a plate, l to the plate thickness, Tp, 

only plates 7 - 10 have the ratio less than 10. It is evident that the 3D solid 

element model is only applicable for such plates. 

In the Figure 5.7, it also noted that the percentage differences values were 

increasing when the number of holes increases. Furthermore, the differences 

values also increasing when the size of holes becomes larger in most plates. The 

possible reason for this discrepancy is due to increasing singularity points when 
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more holes are introduced into the plate and the hole sizes also becomes larger, 

thus degenerate the accuracy of finite element solution. 

 

Table 5.7: Ratio between the lateral dimension of a plate, l to the plate thickness, 

Tp for each plate. 

Plate l/Tp 

  

Plate l/Tp 

7 

8.73 

21 
18.25 

8 22 

9 23 

21.75 
10 24 

11 

12.06 

25 

12 26 

13 27 

24.92 
14 28 

15 

15.24 

29 

16 30 

17 31 

29.37 
18 32 

19 
18.25 

33 

20 34 

 

 Next, the accuracy of numerical approaches is compared with the results 

given by related analytical models. In this work, the analytical models that 

proposed by Veijola (2006) and De Pasquale et al. (2010)  have been referred. We 

considered Veijola’s model since he reported their model effectiveness by 

validated with the same study cases as experimental work done by De Pasquale et 

al. (2009). But, that model was assumed the plates are uniformly perforated. 

However, in this work study cases, the distance between outmost holes and the 
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edge of the plate, S2 is not same as the distance between the holes, S1. According 

to that, De Pasquale et al. model was used to overcome the error when they 

introduced the pressure frame model due to that non-uniformly perforation. 

Besides, the contribution of supporting beams to the damping force also has been 

recommended to improve the original Veijola’s model. Table 5.8 provides the 

results obtained from both analytical models of calculated damping coefficients. 

  

 
Figure 5.8: Comparison of two analytical models for percentage differences of 

damping coefficients with respect to the experimental values. 

 

The comparison of results obtained through these analytical models in 

terms of their percentage differences to the experimental data is plotted in Figure 

5.8. As shown, it is apparent that the corrections made by De Pasquale et al. 

model has much improved the results of Veijola’s model, especially for the small 

number of holes cases. As the number of holes becomes larger, it seems that the 

differences between both models become less significant. 
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Table 5.8: Damping coefficients values analytically calculated. 

Plate 

Damping coefficients (  10
-6

 Ns/m) 

Veijola (2006) 

model 

De Pasquale et al. 

(2010) model 

7 0.838 1.732 

8 0.432 1.271 

9 0.288 1.093 

10 0.169 0.933 

11 2.314 3.433 

12 1.182 2.206 

13 0.791 1.758 

14 0.469 1.365 

15 4.500 5.822 

16 2.264 3.455 

17 1.511 2.622 

18 0.896 1.911 

19 7.221 8.713 

20 3.583 4.911 

21 2.380 3.609 

22 1.406 2.516 

23 11.691 13.469 

24 5.783 7.349 

25 3.851 5.290 

26 2.290 3.573 

27 16.443 18.432 

28 8.082 9.821 

29 5.373 6.962 

30 3.193 4.599 

31 26.727 29.296 

32 13.257 15.489 

33 8.902 10.932 

34 5.386 7.168 
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Figure 5.9 plotted the comparison between 2D membrane model of 

numerical approach and De Pasquale et al. analytical model in terms of their 

percentage differences in damping coefficient with respect to the experimental 

data. The surprising correlation between these models is they produces a mirror 

trend in x-axis. Overall, the finite element of the 2D membrane model gives a 

good agreement result in a small number of holes cases. As the number of holes 

increases, the analytical model given by De Pasquale et al. provides better 

accuracy. This discrepancy is due to the error present in the finite element 

approaches become larger when increasing the number of holes in the structure. 

 

 
Figure 5.9: Comparison between FEM 2D membrane model and De Pasquale et 

al. analytical model for percentage differences of damping coefficients with 

respect to the experimental data. 
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As the conclusion to the squeeze film damping analysis, the results 

indicate that the 2D membrane model gave the best accuracy in a larger number of 

perforated holes cases. The 2D shell model only shows the better agreement with 

experimental data in a small number of holes cases. Meanwhile, the 3D solid 

model results only lies 2% lower than the shell model in terms of accuracy with 

respect to the experimental data. In the next section, the computational cost of 

such numerical models in doing the squeeze film analysis will be studied. 

 

5.4 Computational Effort of Numerical Models 

As another validation of the effectiveness finite element models, the 

computational costs of such numerical models as described before were measured 

and the results were compared. In the simulation analysis, the key is to achieve 

reliable and accurate results quickly and robustly. Here, there are two important 

criteria are considered in delivering the performance of the numerical model: the 

overall computation time and amount of memory required to store computation 

data. 

The most typical problem that is related to the analysis performance is the 

density of finite element model mesh. This parameter is directly related to the 

modelling precision and computational resources. Usually, a denser mesh is 

preferable in the finite element analysis, since it will lead to smaller errors of 

modelling results. However, decrease in finite element size leads to increase of 

simulation time. Therefore, a large amount of computational power may be 

required in such case. 
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In study the performance of such numerical models, twelve plates with the 

different number of holes and holes size from the previous section is chosen as the 

study cases to be evaluated. Table 5.9 below summarizes the geometrical 

characteristics of the plate structure. 

 

Table 5.9: Geometrical characteristics of plate for computational requirements 

study. 

Plate 
Plate side, L 

(μm) 

Holes side, S0 

(μm) 

No of holes, M 

  M 

7 

55 

7.20 

2   2 
8 9.30 

9 10.70 

10 12.60 

19 

115 

7.20 

5   5 
20 9.30 

21 10.70 

22 12.60 

31 

185 

7.20 

8   8 
32 9.30 

33 10.70 

34 12.60 

 

5.4.1 Computation Time 

 As engineering simulations become more sophisticated, designers are 

looking forward to reducing overall simulation processing time in order to save 

the cost. For the analysis of simulation time of such numerical models, the time 

taken to solve the squeeze film damping analysis is extracted at a variable number 
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of degrees of freedom (DOF). The number of DOF can vary depending on the 

change in the mesh size of the element. 

 In Figure 5.10, the computation time in solving such analysis of the 2 2 

number of holes case given by different holes sizes were plotted for 3D solid, 2D 

shell, and 2D membrane numerical models. Figures 5.11 and 5.12 presents the 

same results obtained from the 5 5 number of holes and 8 8 number of holes 

cases, respectively.  

 From all this data, we can see that in a small number of holes plates, 

increases the holes size did not give any significant effect to the computational 

time for all the numerical models. However, when the number of holes becomes 

larger, increases the size of holes will results significant differences in 

computational time, especially for 3D solid element. 

 The clear observation for performance of such numerical models in 

simulation time study can be seen in the Figures 5.13, 5.14, and 5.15. The results 

of these plotted shows that the two-dimensional models give faster solution time 

than the complex three-dimensional model. This is expected, as the two-

dimensional element models involved the area meshed only rather than three-

dimensional element that meshed the whole volume of structure. 

The most interesting finding is that the 2D membrane model produces 

slightly faster than the 2D shell model. This result may be explained by the fact 

that the membrane element only consists of translational DOF rather than shell 



87 
 

model that also involved rotational DOF. The neglected of the rotational DOF in 

membrane element generates the solution time become slightly faster. 

In general, therefore, it can conclude that the 3D solid model gave a long 

computational time compare than the 2D shell model. However, the 2D 

membrane model will offer the less computational time rather than the 2D shell 

model in squeeze film damping. The differences between these models seem to 

become significant when the number of DOF involved is increases.  
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Figure 5.10: Comparison of the time duration to solve squeeze film damping 

given by different holes sizes and numerical models for 2   2 number of holes 

plates. 

 

Membrane 

Shell 

Solid 



89 
 

 

 

 

Figure 5.11: Comparison of the time duration to solve squeeze film damping 

given by different holes sizes and numerical models for 5   5 number of holes 

plates. 
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Figure 5.12: Comparison of the time duration to solve squeeze film damping 

given by different holes sizes and numerical models for 8   8 number of holes 

plates. 
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Figure 5.13: Comparison of the time duration to solve squeeze film damping 

given by different numerical models for different perforated holes sizes for 2   2 

number of holes plates. 
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Figure 5.14: Comparison of the time duration to solve squeeze film damping 

given by different numerical models for different perforated holes sizes for 5   5 

number of holes plates. 
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Figure 5.15: Comparison of the time duration to solve squeeze film damping 

given by different numerical models for different perforated holes sizes for 8   8 

number of holes plates. 
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12.60 μm 
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5.4.2 Storage Memory Requirements 

 To yield reliable results in the finite element analysis, the model 

simulation must be sufficiently detailed. As the level of detail is increase, 

computer memory requirements also increase. This will lead to the increasing of 

overall costs. 

Figure 5.16 obtained the storage memory required in solving squeeze film 

damping analysis of the 2 2 number of holes case given by different holes sizes 

for 3D solid, 2D shell, and 2D membrane numerical models. Figures 5.17 and 

5.18 shows the same results obtained from the 5 5 number of holes and 8 8 

number of holes cases, respectively. 

Based on the observation from this plotted data, increases the sizes of hole 

did not give any significant effect to the amount of storage memory required in 

the analysis applies for the any number of holes cases tested. This trend is 

consistent for the 3D solid, 2D shell, and 2D membrane models. 

 The amount of computational storage required of such numerical models 

for different holes sizes are plotted in the Figures 5.19, 5.20, and 5.21 regarding 

the different number of holes involved. These results demonstrate that the three-

dimensional model required large computational storage than the simple two-

dimensional models. This is also expected, as the three-dimensional element 

model involves the complex volume meshed rather than two-dimensional element 

that involves area meshed only. 
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As the 2D membrane model is based on the neglected the rotational DOF 

of the 2D shell model, it is clearly expected that the membrane model will require 

fewer amounts of memory storage than the shell model. 

It is to be noted that 2D membrane model required smaller amount of 

memory storage rather than the 2D shell model. However, 3D solid model will 

need at least twice the computational memory storage than both models in the 

squeeze film damping analysis. The differences between these models seem to 

become more significant when the number of DOF involved is increases. 
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Figure 5.16: Comparison of the memory requirement to solve squeeze film 

damping given by different holes sizes and numerical models for 2   2 number of 

holes plates. 
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Figure 5.17: Comparison of the memory requirement to solve squeeze film 

damping given by different holes sizes and numerical models for 5   5 number of 

holes plates. 
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Figure 5.18: Comparison of the memory requirement to solve squeeze film 

damping given by different holes sizes and numerical models for 8   8 number of 

holes plates. 
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Figure 5.19: Comparison of the memory requirement to solve squeeze film 

damping given by different numerical models for different perforated holes sizes 

for 2   2 number of holes plates. 
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Figure 5.20: Comparison of the memory requirement to solve squeeze film 

damping given by different numerical models for different perforated holes sizes 

for 5   5 number of holes plates. 
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Figure 5.21: Comparison of the memory requirement to solve squeeze film 

damping given by different numerical models for different perforated holes sizes 

for 8   8 number of holes plates. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 

 

6.1 Executive Summary 

 This thesis mainly focuses in development of two-dimensional finite 

element model that is based on the established structural and fluidic theoretical 

frameworks in the dynamic analysis of MEMS perforated structure. In the 

preliminary studies, the modal analysis of simple perforated plate was performed 

to evaluate the applicability of such proposed model. A general 3D solid model 

and  proposed 2D shell model results were compared with the related theoretical 

work with good agreement of results. 

For the modal analysis of perforated MEMS structure, it was found that 

3D solid model gave a better agreement with the experimental data. However, the 

2D shell model produces a result slightly close to the solid model. Meanwhile, the 

2D membrane model result showed that it is not applicable in such analysis. In the 

squeeze film damping analysis, 2D shell element model provided the better 

accuracy results in modelling the small number of holes cases. When the number 

of holes becomes larger, the 2D membrane element model indicates the better 

agreement with the experimental data. The 3D solid model yields the results 

accuracy slightly lower than the shell element model. 
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 The study of performance of such numerical models presents that the 2D 

membrane model consumed low computational time and memory storage for the 

analysis of squeeze film damping. 2D shell model utilized slightly higher 

computational time and memory whereas the 3D solid model taken long 

computational time and large memory storage in similar mesh density. When the 

mesh density becomes denser, the differences between these models become more 

significant. 

 In short, the goal for modelling the squeeze film damping analysis of 

perforated MEMS structures on two-dimensional model that on Reissner-Mindlin 

theory has successfully achieved. 

 

6.2 Recommendations for Future Work 

 In squeeze film damping analysis, a proposed two-dimensional model that 

derived under the Reissner-Mindlin theory is not adequate to produce very good 

agreements results with respect to the experimental data. This may due to the 

some assumptions presented in this theory formulation. Nowadays, a lot of shell 

element formulations has been introduced in the literatures as mentioned in 

Section 2.4. A more sophisticated approach to shell elements to capture nonlinear 

shear should be pursued in the analysis. 
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 For most MEMS devices, air gap height is large enough to neglect the 

effect of surface roughness on squeeze film damping. However, when the size of 

the device reduces to nano scale, it eventually affect the behaviour of squeeze 

film. This implementation will provide good prospect in increases the modelling 

accuracy. However, the measurement of surface roughness profile of two surfaces 

facing each other in the air gap in MEMS structure is most challenging part. 
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A.1 Mode Shapes at First Mode of Vibration for Plate 1

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model 
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A.2 Mode Shapes at First Mode of Vibration for Plate 2

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model
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A.3 Mode Shapes at First Mode of Vibration for Plate 3

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model
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A.4 Mode Shapes at First Mode of Vibration for Plate 4

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model
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A.5 Mode Shapes at First Mode of Vibration for Plate 5

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model
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A.6 Mode Shapes at First Mode of Vibration for Plate 6

 

(a) 3D Solid Model 

 

(b) 2D Shell Model

 

(c) 2D Membrane Model 
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APPENDIX B: Sample APDL Command for Model FLUID138 Element 

#  Plate 1 structure (2   2 no. of holes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/prep7 

 

s_ll=27.5  : Half plate length 

s_t=6.3  : Plate thickness  

 

c_1=55/6  : Hole center 

c_2=c_1+c_1 

 

s_d=7.2  : Hole size 

 

!holes generation for 1st row 

 

*do,i,1,2      

nsel,all 

*get,numb,node,,num,max 

n,numb+1,-s_ll+i*c_2,c_1,0 ! Location for first node of 

FLUID138 element 

n,numb+2,-s_ll+i*c_2,c_1,s_t ! Location for second node of 

FLUID138 element 

type,2 

mat,2 

real,2 

e,numb+1,numb+2   ! Define element 

 

esel,s,type,,1 

nsle,s,1 

local,11,0,-s_ll+i*c_2,c_1 

csys,11 

nsel,r,loc,x,s_d/2,-s_d/2 ! Select all nodes on the hole 

nsel,r,loc,y,s_d/2,-s_d/2  circumference   

nsel,a,node,,numb+1 

*get,next,node,,num,min 

cp,i,pres,numb+1,next 

nsel,u,node,,numb+1 

nsel,u,node,,next 

cp,i,pres,all ! Coupled DOF set for pressure 

constant 

csys,0 

allsel 

*enddo 
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!holes generation for 2nd row 

 

*do,i,1,2      

nsel,all 

*get,numb,node,,num,max 

n,numb+1,-s_ll+i*c_2,-c_1,0 ! Location for first node of 

FLUID138 element 

n,numb+2,-s_ll+i*c_2,-c_1,s_t ! Location for second node of 

FLUID138 element 

type,2 

mat,2 

real,2 

e,numb+1,numb+2   ! Define element 

 

esel,s,type,,1 

nsle,s,1 

local,11,0,-s_ll+i*c_2,-c_1 

csys,11 

nsel,r,loc,x,s_d/2,-s_d/2 ! Select all nodes on the hole 

nsel,r,loc,y,s_d/2,-s_d/2  circumference   

nsel,a,node,,numb+1 

*get,next,node,,num,min 

cp,i+2,pres,numb+1,next 

nsel,u,node,,numb+1 

nsel,u,node,,next 

cp,i+2,pres,all ! Coupled DOF set for pressure 

constant 

csys,0 

allsel 

*enddo 
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