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Abstract 34 

The complement system, while being an essential and very efficient effector component of 35 

innate immunity, may cause damage to the host and result in various inflammatory, 36 

autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. 37 

Factor H is a serum glycoprotein and the main regulator of the activity of the alternative 38 

complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-39 

1), inhibits complement activation at the level of the central complement component C3 and 40 

beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is 41 

poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, 42 

there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-43 

1, namely, they enhance complement activation directly and also by competing with the 44 

regulators FH and FHL-1. This review summarizes the current stand and recent data on the 45 

roles of factor H family proteins in health and disease, with focus on the function of FHR 46 

proteins. 47 
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1. Introduction 52 

The immune system is an important defense system of our body. Its main function is to 53 

recognize host-, altered host and foreign structures, and protect against infections and tumors. 54 

It responds with tolerance to materials recognized as harmless self, while eliminating structures 55 

that are recognized as dangerous. The immune system performs recognition, transmitting and 56 

executing functions. Two major branches of the immune system were formed during evolution, 57 

the ancient innate immune system and the phylogenetically more recent adaptive immune 58 

system, which are intricately interconnected and act in cooperation with each other. The innate 59 

immune system primarily recognizes certain conserved molecular patterns associated with 60 

pathogens, whereas the elements of the adaptive immune system recognize with high 61 

specificity the different protein and non-protein type antigenic epitopes. The complement 62 

system is an important humoral component of innate immunity, one of our first defense lines. 63 

The inadequate functioning of the complement system, e.g. its deficiencies, misguided or 64 

exaggerated activation, plays a role in the development and course of various diseases [1, 2]. 65 

Because complement is an ancient component of multicellular organisms, molecules of 66 

this system are integrally involved in multiple host systems and organ functions, thus the 67 

complement system is richly interconnected with diverse other systems in our body, exhibiting 68 

canonical and non-canonical (“non-complement”) functions [3]. Here, we focus on discussing 69 

especially the regulation of the alternative pathway of complement activation by factor H 70 

family proteins in health and disease. 71 

 72 

2. The complement system – its activation and regulation 73 

The complement system is composed of over 40 proteins, including soluble components, 74 

soluble and cell-bound regulatory molecules, and cell surface receptors. As an efficient effector 75 

arm of the innate immune system, complement plays a role in the removal of pathogens and 76 

other dangerous particles, such as immune complexes, cellular debris and dead cells; in 77 

inflammatory processes and activation of various cells, and bridges innate and adaptive 78 

immunity [1, 2, 4]. Depending on the activation trigger, the complement cascade follows one 79 

of three pathways: the classical (CP), the lectin (LP) or the alternative pathway (AP) (Fig. 1). 80 

The complement system in general is inactive until it is activated by various danger signals; 81 

however, as a monitoring and safe-guarding system, the AP is constantly active at a low level 82 

to detect the presence of pathogens and altered self. As a result of infection, activation of 83 

complement leads to opsonization, phagocytosis, and destruction of the pathogen, initiation of 84 

inflammation, and finally activation of the adaptive immune response [2].  85 

Complement activation is primarily initiated by the recognition of certain structures via 86 

pattern recognition molecules. Recognition molecules that initiate complement activation are 87 

C1q in the CP, and mannose binding lectin (MBL), ficolins and collectins in the LP. There are 88 

no traditional recognition molecules for the AP that would trigger complement activation; 89 

although such a function was described for properdin, this was recently challenged [5, 6]. The 90 

complement system recognizes different microorganisms and pathogen-associated molecular 91 

patterns by soluble pattern recognition molecules. In the CP, C1q primarily recognizes the 92 

immune complexes of IgG and IgM, and binds to the Fc portion of the antibody molecules in 93 

the complex, but is also able to activate the CP in an antibody independent manner by binding 94 

to the pentraxins C-reactive protein (CRP) and pentraxin 3 (PTX3), polyanionic structures such 95 

as RNA and DNA, certain extracellular matrix proteins, altered - potentially dangerous - self 96 

structures such as beta-amyloid, prion protein, apoptotic cells and necrotic cells, as well as 97 

microbial ligands like LPS [4, 7]. MBL, collectins and ficolins of the LP bind to various 98 

carbohydrate structures. 99 

 Activation of the proteases associated with the recognition molecules of the CP and LP 100 

lead to the cleavage of C4 and C2, and the formation of the C4b2a convertase that cleaves C3 101 
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into the anaphylatoxin C3a peptide and the opsonic molecule C3b. The AP is constantly 102 

activated at a low rate by the spontaneous hydrolysis of the thioester bond in C3 and the 103 

formation of the initial C3(H2O)Bb convertase, which also cleaves C3 into C3a and C3b. 104 

Through the active thioester group in C3b and C4b, these opsonic complement fragments can 105 

covalently attach to various surfaces and molecules via ester or amide bonds and generate the 106 

surface bound C3bBb AP C3 convertase and the C4b2a CP/LP C3 convertase enzymes, 107 

respectively. Subsequently, these convertases, by cleaving additional C3 molecules, generate 108 

further C3b and C3bBb. Thus, the AP auto-amplifies, as the generated C3b forms the core of 109 

a new AP C3 convertase, and activation of the CP or LP automatically turns the AP on. C3b 110 

when bound to these convertases generates the C5 convertase enzymes of the CP/LP and the 111 

AP, i.e. C4bC2aC3b and C3bBbC3b, respectively. Cleavage of C5 into the anaphylatoxin C5a 112 

and the terminal pathway initiator fragment C5b can lead to inflammation and the formation 113 

of the lytic membrane attack complex (Fig. 1). 114 

To focus complement activation on proper targets and prevent damage to the host, the 115 

system is delicately regulated by fluid-phase and surface bound molecules, which control 116 

activation in body fluids and on various cellular and non-cellular (such as basement 117 

membranes) surfaces [1, 3, 7-9]. Several of the regulatory molecules are coded in chromosome 118 

1q32, forming the human “regulators of complement activation (RCA) gene cluster”. One RCA 119 

region harbours genes encoding C4b binding protein (C4BP), decay accelerating factor (DAF), 120 

complement receptor type 1 (CR1) and membrane cofactor protein (MCP), the other region 121 

includes the genes encoding members of the factor H (FH) protein family. 122 

 Regulation occurs at all main levels of the complement cascade. C1-inhibitor 123 

inactivates the proteases that associate with the recognition molecules of the CP and LP. The 124 

CP and LP are also inhibited at the level of C4b by the fluid-phase regulator C4BP, and at the 125 

level of C3b by C4BP, and the membrane regulators CR1, MCP and DAF. C4BP, CR1 and 126 

MCP are cofactors for the serine protease factor I in the proteolytic inactivation of C4b and 127 

C3b. CR1 and DAF can also accelerate the decay of the C3 and C5 convertases. The AP in the 128 

fluid-phase is inhibited by FH, which is also a convertase decay accelerator molecule and a 129 

cofactor for factor I in the cleavage of C3b. Properdin is a positive regulator and stabilizes the 130 

C3bBb convertase. The formation of the terminal complex of the complement system is 131 

regulated by the soluble vitronectin and clusterin, and the cell membrane-anchored CD59 132 

molecule [1, 4]. 133 

  134 

3. The human factor H protein family – structure, ligands, and function 135 

Six genes in tandem arrangement in the RCA cluster encode the serum glycoproteins that 136 

constitute the human FH protein family (Fig. 2). Among these proteins, FH and FH-like protein 137 

1 (FHL-1) are encoded by the CFH gene, and the factor H-related proteins (FHR-1 to FHR-5) 138 

are encoded by the CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5 genes [10-12]. These genes 139 

arose through partial gene duplications, rendering this genomic region prone to rearrangements 140 

(see also section 4). The FH family proteins are all exclusively composed of individually 141 

folding globular domains called complement control protein (CCP) domains (also termed Sushi 142 

domains or short consensus repeats, SCRs). The domains of the FHR proteins show varying 143 

degree of amino acid sequence identity to the homologous domains in FH and/or other FHR 144 

proteins; however, in general FHRs lack domains homologous to FH CCPs 1-4, i.e. the FH 145 

domains that mediate the complement activation inhibiting effects, but they are present in FHL-146 

1 (Fig. 2).  147 

The main source of these proteins is the liver, but several cell types were reported to 148 

produce locally FH and/or FHL-1, such as monocytes, dendritic cells, endothelial cells, 149 

fibroblasts, retinal pigment epithelial cells and keratinocytes [13-20]. FH and FHL-1 are 150 

inhibitors of the alternative complement pathway. The function of the FHR proteins is less 151 
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characterized and in part controversial [11]. While some forms of complement inhibiting 152 

activity have been described for the FHRs, recent data strongly support a role opposite to that 153 

of FH and FHL-1 for the FHRs in complement activation: direct facilitation of alternative 154 

pathway activation by binding C3b and promoting formation of the C3 convertase C3bBb, and 155 

indirect enhancement of alternative pathway activation by competing with the regulators FH 156 

and FHL-1 [9, 11, 21-26]. In addition, FHRs may influence complement activation by 157 

interacting with other host molecules, e.g. by recruiting pentraxins that can bind C1q and allow 158 

for CP activation, or being recruited by CRP and thus enhance AP activation [23, 24, 27, 28]. 159 

 160 

3.1. Factor H 161 

FH is the main soluble regulator protein of the alternative pathway [29-31]. It is composed of 162 

20 CCP domains, of which the N-terminal four domains mediate binding to C3b and are 163 

responsible for the complement activation inhibiting activity of FH. While CCPs 1-4 are 164 

sufficient for the complement regulatory activity [32, 33], a recent report indicates contribution 165 

of the other adjacent CCP domains (also present in FHL-1) to a more pronounced regulatory 166 

activity of FH [34]. FH affects the C3bBb convertase in two ways: it competes with factor B 167 

for binding to C3b, thus prevents formation of the C3bBb convertase, and also accelerates the 168 

decay of this convertase once already formed (“decay accelerating activity”). In addition, FH 169 

regulates the C3b-containing C5 convertases. FH also acts as a cofactor for factor I in the 170 

inactivation of C3b (“cofactor activity”). FH interacts with many other ligands, both in body 171 

fluids and on various surfaces, several of them also directing its regulatory activity to cell 172 

surfaces or to extracellular matrices, e.g. basement membranes (reviewed in more detail 173 

elsewhere: [9, 35-37]). The major ligand and surface recognition domains reside in CCPs 6-7 174 

and 19-20 of FH; importantly, these domains are variably conserved in the FHR proteins (see 175 

below in sections 3.3-3.7) (Fig. 2.) [11]. Thus, FH inhibits alternative pathway activation in 176 

blood plasma and other body fluids, as well as on cellular and noncellular surfaces. CCPs 19-177 

20 harbour a sialic acid binding site that is critical in the differentiation between self and nonself 178 

by FH [38-42]. 179 

FH has two major C3b binding sites, in CCPs 1-4 and 19-20 [43]. The latter site is 180 

specialized to bind C3b or its degradation product C3d when covalently bound on a self surface, 181 

and this binding is facilitated by interaction of FH with cell surface sialic acid moieties [40, 41, 182 

44, 45]. Thus, FH can recognize host cells that are attacked by complement and, by binding to 183 

this surface, down-regulate complement activation and protect the host. Cell surface 184 

polyanionic molecules, as markers of self, represent important ligands for FH, including 185 

heparin and other glycosaminoglycans (GAGs) and sialic acids [42]. The composition of the 186 

glycomatrix varies at different anatomic sites and can determine which GAG site in FH mediate 187 

the binding and thus also influencing the strength of the interaction of this complement 188 

regulator with various surfaces. It was demonstrated that FH uses primarily the GAG site in 189 

CCPs 6-7 for binding to the Bruch’s membrane in the eye, whereas the GAG site in CCPs 19-190 

20 is responsible for binding to the glomerular basement membrane [15, 46]. 191 

FH can be recruited to other host surfaces, e.g. to extracellular matrices and apoptotic 192 

or necrotic cells, and protect these surfaces from overwhelming complement activation. FH 193 

binds to certain extracellular matrix proteins, such as fibromodulin, osteoadherin and 194 

chondroadherin, while it does not bind to biglycan, decorin and lumican [47-49]. On dead cells, 195 

identifed FH ligands include DNA, Annexin II and histones [50, 51]. In addition, FH may bind 196 

through soluble pattern recognition molecules, such as the pentraxins CRP and PTX3, which 197 

target the complement inhibiting activity of FH to these surfaces [52-56]. Malondialdehyde 198 

(MDA) epitopes generated upon oxidative stress are also recognized by FH, thus FH can inhibit 199 

local complement activation and inflammation on cellular debris and accumulated waste 200 

material [57, 58]. These ligands are all bound via binding sites in CCPs 6-7 and 19-20, although 201 
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the avidity and specificity of these interactions are apparently different and need to be further 202 

investigated. 203 

CCPs 6-7 and 19-20 also mediate self-association of FH, which might be facilitated by 204 

zinc or polyanionic molecules such as heparin [59-61]. To clarify the physiological or 205 

pathological relevance of this self-association property, further studies are needed. 206 

The plasma concentration of FH is relatively high in comparison with the FHR proteins. 207 

Average FH levels of 233-400 µg/ml (in some cases, even higher concentrations) were 208 

reported, but recent assays using well-characterized antibodies and excluding co-measurement 209 

of FHL-1 and the FHRs found consistently ~230 µg/ml [62-66]. 210 

 211 

3.2. FHL-1 212 

FHL-1 is derived from the CFH gene by alternative splicing. It contains the N-terminal seven 213 

CCP domains of FH, and four additional amino acids encoded by exon 10 that is only 214 

transcribed in FHL-1 (Ser-Phe-Thr-Leu [SFTL]) [67, 68]. FHL-1 lacks the FH CCP 8-20 215 

domains and thus the C-terminal sialic acid binding site, and has different cell surface 216 

specificity and different role than FH in complement control on surfaces [34, 46]. Due to the 217 

shared domains with FH, FHL-1 also binds C3b and has cofactor and convertase decay 218 

accelerating activities [33]; it also binds to several other FH ligands with CCPs 6-7. It has been 219 

reported that the C-terminal unique four amino acids influence the interaction of FHL-1 with 220 

CRP and PTX3 [69]. Clark et al. reported that the retinal pigment epithelial cells in the eye are 221 

able to express FHL-1, and FHL-1 can passively diffuse into the Bruch’s membrane (the 222 

innermost layer of the choroid), while due to its size FH is not able to go through this membrane 223 

[15]. Thus, FHL-1 is probably the main complement inhibitory molecule that provides greater 224 

protection at the key site of age-related macular degeneration (AMD) at the Bruch’s membrane 225 

than does FH [15]. It was shown that FHL-1 and the FH CCPs 6-8 fragment could not bind to 226 

sialylated oligosaccharides [70], explaining the dominant role in host surface recognition of 227 

CCPs 6-7 at the Bruch’s membrane in the eye and CCPs 19-20 at the glomerular basement 228 

membrane in the kidney. 229 

 Due to the lack of available FHL-1 specific antibodies, no reliable data on serum FHL-230 

1 concentration exist. One study reported an average FHL-1 serum concentration of 47 µg/ml, 231 

determined from two samples [17]. Several recent studies that reported FH concentrations used 232 

antibodies that do not detect the FHR proteins; however, these reported FH concentrations 233 

often include the concentration of FHL-1, too. 234 

  235 

3.3. FHR-1 236 

FHR-1 consists of five CCP domains (Fig. 2), and has a molecular weight of 37 kDa (FHR-237 

1α) or 43 kDa (FHR-1β), depending on the number of N-linked carbohydrate chains [71, 72]. 238 

Two allelic variants have been described, FHR-1*A (acidic isoform) and FHR-1*B (basic 239 

isoform). The CCP3 domain of FHR-1*B is identical to CCP18 of FH, whereas CCP3 of FHR-240 

1*A differs from it in three amino acids [73]. As a consequence of the high sequence identity 241 

between CCPs 4-5 of FHR-1 and CCPs 19-20 of FH (with FHR-1 CCP4 being identical to FH 242 

CCP19, and the most C-terminal domains differing only in two amino acids), FHR-1 is also 243 

able to bind several ligands of FH. For example, FHR-1 can bind to C3b, heparin, pentraxins 244 

(PTX3, CRP) and certain microbial surface molecules [24, 74-80]. The role of FHR-1 in 245 

complement regulation is controversial and discussed in sections 3.8-3.10 in more detail. 246 

The two N-terminal domains (CCPs 1-2) of FHR-1 are remarkably similar to CCPs 1-247 

2 of FHR-2 and FHR-5, and have been shown to mediate “head to tail” dimerization [81]. 248 

Circulating FHR-1 homodimers and FHR-1/FHR-2 heterodimers have been detected ex vivo 249 

[82]. 250 



7 
 

FHR-1 is certainly the most abundant glycoprotein among the FHRs, yet its plasma 251 

concentration is still controversial. A number of studies established a concentration of ~40–252 

100 µg/ml [72, 77, 83, 84], although ~10-fold lower levels have more recently been reported 253 

[82, 85]. The reason behind the notable deviation might be explained in part by the use of 254 

different antibodies and ELISA set-ups and by the variation in frequency of a common deletion 255 

polymorphism of the CFHR1 and CFHR3 genes (delCFHR3-CFHR1) among different 256 

populations [86]. The delCFHR3-CFHR1 allele is most frequent in African regions, whereas 257 

the lowest frequency is seen within East Asia and South America [86]. This double gene 258 

deletion is associated with lower FHR-1 levels in heterozygotes and complete FHR-1 259 

deficiency in homozygotes, and is variably associated with diseases (see section 4). Beside the 260 

population-dependency of the delCFHR3-CFHR1 polymorphism, other factors may also 261 

influence the accurate measurement of FHR-1 levels, e.g. the existence of FHR-1/FHR-2 262 

heterodimers [82] and the ability of FHR-1 to interact with high-density lipoprotein particles 263 

[87] or cells [78]. 264 

 265 

3.4. FHR-2 266 

FHR-2 consists of four CCP domains. It exists in serum in a non-glycosylated (24 kDa) and a 267 

glycosylated (29 kDa) form. The N-terminal CCPs 1-2 are distantly related to FH CCPs 6-7 268 

(41% and 34% amino acid sequence identity), and its C-terminal CCPs are less similar to FH 269 

CCPs 19-20 compared with FHR-1 (89% and 61% sequence identity, respectively) (Fig. 2) 270 

[88]. The FHR-2 CCP1 and CCP2 domains exhibit a high degree of similarity to the CCPs 1-271 

2 domains of FHR-1 and FHR-5, and these domains mediate dimerization of the proteins [81]. 272 

Ex vivo FHR-2 homodimers and FHR-1/FHR-2 heterodimers have been described; the 273 

existence of FHR-2/FHR-5 heterodimers is controversial [82, 89]. The serum concentration of 274 

FHR-2 homodimers is approximately 3 µg/ml. Due to the very low concentration, FHR-2 is 275 

the limiting factor in the formation of FHR-1/FHR-2 heterodimers; therefore, most FHR-2 are 276 

present in heterodimer form in serum [82]. FHR-2 deficiency has not yet been described, but 277 

hybrid proteins containing FHR-2 domains were identified (see later in section 4). 278 

  279 

3.5. FHR-3 280 

FHR-3 is composed of five CCP domains, each showing a remarkable sequence identity with 281 

the CCP domains of FH or other FHR proteins, especially with FHR-4 [90]. CCPs 1 and 2 of 282 

FHR-3 are homologous to CCPs 6 and 7 of FH (91 and 85% similarity, respectively), whereas 283 

the C-terminal domains of FHR-3 (CCPs 3-5) demonstrate a high level of sequence identity 284 

(>93%) with CCPs 2, 4, 6, 8 and 9 of FHR-4A and CCPs 2, 4 and 5 of FHR-4B (Fig. 2). Due 285 

to the presence of homologous domains, FHR-3 shares some binding characteristics with FH; 286 

thus, it is able to bind C3b and heparin [91]. Multiple forms of FHR-3 are detected in plasma 287 

with molecular weights ranging from 37 to 50 kDa, likely representing differentially 288 

glycosylated proteins [12, 73]. 289 

Similar to FHR-1, the serum concentration of FHR-3 is strongly influenced by the 290 

presence of the delCFHR3-CFHR1 allele. The mean concentration is estimated to be 0.81 291 

µg/ml (22 nM) in healthy individuals carrying two CFHR3 genes and about 2-fold lower in 292 

individuals with only one CFHR3 gene copy [92]. Interestingly, serum levels are also 293 

determined by CFHR3 gene variants [93]. Two genetic variants, CFHR3*A and CFHR3*B 294 

have been reported [94]. A common polymorphism (c.721C>T) in exon 5 results in a proline 295 

to serine change in CCP4 of FHR-3 and was observed to associate with higher levels of FHR-296 

3, thus allele CFHR3*B (coding for serine in position 241) is considered a high-expression 297 

allele and is associated with increased risk of the kidney disease atypical hemolytic uremic 298 

syndrome (aHUS) [94]. The delCFHR3-CFHR1 allele was shown to have protective effect in 299 

AMD [95]. 300 
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 301 

3.6. FHR-4 302 

CFHR4 is the only CFHR gene from which two splice variants are expressed, FHR-4A and 303 

FHR-4B [96, 97], although the existence of the latter has recently been questioned [98]. FHR-304 

4A consists of 9 CCP domains (86 kDa), from which CCPs 1-4 show high similarity to CCPs 305 

5-8, probably as a result of a partial, internal gene duplication (Fig. 2) [96]. FHR-4B consists 306 

of 5 CCP domains (43 kDa); all these are also present in FHR-4A. The sequence of FHR-4B 307 

CCP1 is 98% identical to FHR-4A CCP1, and FHR-4B CCPs 2-5 have 100% sequence identity 308 

to FHR-4A CCPs 6-9. Like FHR-3, both variants lack the N-terminal dimerization motif 309 

characteristic of FHR-1, FHR-2 and FHR-5. 310 

The total amount of FHR-4A and FHR-4B in serum was previously determined as 25.4 311 

µg/ml [26]. Recently, novel well-characterized FHR-4A specific monoclonal antibodies have 312 

been applied to determine FHR-4 serum levels; this novel ELISA measured 10 times lower 313 

FHR-4A concentration (2.55 ± 1.46 µg/ml) in serum. It is very challenging to generate an FHR-314 

4B specific antibody because FHR-4B domains are practically identical with those of FHR-315 

4A. FHR-4B was not detectable in plasma with different monoclonal antibodies, which in turn 316 

recognized the recombinant FHR-4B [98]. This may mean that the FHR-4B serum 317 

concentration is so low that it is not detectable, or it is absent from serum. FHR-4 is also capable 318 

of binding to the central molecule of the complement system, C3b [26, 91, 99]. It has been 319 

reported that FHR-4 is able to activate complement, and bind to pentameric CRP and 320 

participate in the opsonization of necrotic cells by pCRP binding [26-28]. 321 

  322 

3.7. FHR-5 323 

FHR-5 (65 kDa) which was identified in human glomerular complement deposits [100] is 324 

special among the FHRs because it contains CCPs homologous to the middle part of FH (Fig. 325 

2). FHR-5 consists of nine domains that are related to CCPs 6-7, CCPs 10-14 and CCPs 19-20 326 

of FH, but the two N-terminal domains of FHR-5, which are responsible for dimer formation, 327 

are more similar to CCPs 1-2 of FHR-1 and FHR-2 (>85%) [82, 100]. However, in vivo it 328 

seems that FHR-5 mostly exists as homodimers, raising difficulties in determining serum 329 

concentrations [82]. Serum concentration of FHR-5 in the range of 3-6 µg/ml was initially 330 

reported [101], which was essentially confirmed by recent studies reporting 2.46 μg/ml [83] 331 

and 1.66 μg/ml [82] concentrations. However, it was also demonstrated that locally, under 332 

specific conditions such as inflammation or infection, FHR-5 serum level can be increased [83, 333 

102].  334 

Due to the sequence similarity, FHR-5 binds to some FH ligands, such as C3b, heparin, 335 

pentraxins (mCRP, PTX3) and ECM but, contrary to FH, FHR-5 rather enhances complement 336 

activation on surfaces and allows alternative pathway C3 convertase assembly [23, 101, 103]. 337 

Moreover, FHR-5 competes with FH for binding to different ligands and surface molecules 338 

and inhibits FH regulatory activity, a process which is termed FH deregulation [23, 81].  339 

 340 

3.8. Data supporting complement regulatory roles for the FHR proteins 341 

Early studies on the FHRs investigated their potential complement inhibiting capacity, based 342 

on their interaction with C3b and assuming functional analogy with FH. Indeed, recombinant 343 

FHR-3 and FHR-4 were able to act as cofactors for factor I in C3b cleavage when applied at 344 

very high concentrations (400 µg/ml). In addition, both FHRs enhanced the cofactor activity 345 

of FH [91]. Later, a strong cofactor activity, although at supraphysiological concentrations, 346 

was also reported for FHR-3 [104]. Similarly, for FHR-5 weak cofactor activity and fluid phase 347 

C3 convertase inhibiting activity were reported [101]. FHR-2 was shown to have neither 348 

cofactor nor decay accelerating activity but to be capable of binding to C3b and C3d; FHR-2 349 

was also shown to inhibit the activity of the C3bBb convertase [105]. 350 
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In addition, inhibition at the C5 level and/or the terminal pathway (lysis) was reported 351 

for FHR-1 [77, 104], FHR-2 [105] and FHR-3 [104]. FHR-1 was studied by several other 352 

groups and they found no terminal pathway inhibiting activity [24, 81, 106, 107]. On the other 353 

hand, human FHR-1 expressed in the brain in a mouse model of neuromyelitis optica spectrum 354 

disorders by applying engineered neural stem cells protected astrocytes from complement 355 

activation and terminal complement complex formation [108]. Recently, FHR-5 was found to 356 

inhibit both the alternative and the classical pathway C5 convertases in a bead based in vitro 357 

model [109]. In these latter assays, the effective FHR-5 concentrations were close to serum 358 

levels measured in samples from healthy donors or patients with glomerulonephritis [82, 83, 359 

101, 110]. 360 

Recent studies re-evaluated the serum levels of the FHR proteins, and found that they 361 

are in general much lower than previously estimated [82, 92, 98]; this issue is reviewed in more 362 

detail in [9]. Thus, the above activities of the FHRs need to be further studied, either confirmed 363 

or disproved. Even if some of the reported regulatory functions prove real when high 364 

concentrations of the FHRs are applied, questions remain regarding their physiological 365 

relevance when such concentrations and conditions do not occur in vivo. Some discrepancies 366 

may be related to the different assay conditions, e.g. fluid-phase versus surface assays. 367 

 368 

3.9. FHR proteins as positive regulators of complement activation 369 

In recent years, accumulating data on the FHR proteins strongly indicate a role for them in 370 

complement activation that stands in sharp contrast to that of FH and FHL-1. While initially – 371 

due to their structural similarity with FH – only complement inhibiting activities were 372 

investigated, later studies revealed that FHRs can enhance complement activation both directly 373 

and indirectly (i.e., via competing with FH). Thus, they emerge as “regulators of the 374 

regulators”, namely competitive inhibitors of FH (and possibly FHL-1), resulting in de-375 

regulation of complement activation (Fig. 3) [11, 81]. 376 

 Competition between FHRs and FH for binding to several ligands was described. FHR-377 

1, FHR-3, FHR-4 and FHR-5 were shown to variably compete with FH for binding to C3b; 378 

some of these differential effects may be related to the different avidities also determined by 379 

homo- or heterodimerization of FHR-1 and FHR-5 [77, 81, 104, 111]. In addition, FHR-5 can 380 

strongly inhibit FH binding to the pentraxins CRP and PTX3, as wells as to extracellular matrix 381 

and malondialdehyde-acetaldehyde epitopes, and enhance alternative pathway activation [23, 382 

103]. In similar assays, FHR-1 was less effective in inhibiting FH binding to CRP and 383 

enhancing complement activation, despite the conserved pentraxin binding site in the C 384 

terminus of FHR-1 [24]. This is likely explained by the lower avidity of FHR-1 for the 385 

relatively low density CRP and deposited C3b under the assay conditions. However, 386 

recruitment of mCRP by FHR-1 can result in classical pathway activation by allowing 387 

interaction of C1q with FHR-1 bound mCRP [24].  388 

 For FHR-1, FHR-4 and FHR-5 it was shown that, by binding C3b, they can serve as a 389 

platform for the assembly of a functionally active C3bBbP convertase, and enhance activation 390 

of the alternative pathway [23, 24, 26]. FHR-5 was also reported to recruit properdin via the 391 

CCPs 1-2 and thus activate the alternative pathway [21]. Both FHR-1 and FHR-4 were shown 392 

to activate the classical pathway (C4 deposition) by binding CRP, the monomeric CRP form 393 

(FHR-1) or the native, pentameric CRP (FHR-4) [24, 27, 28]. 394 

 While non-human FHRs have not yet been characterized in detail, recent functional 395 

studies on murine FHR proteins also support a role for them in the enhancement of complement 396 

activation by competing with FH and by C3b binding and convertase assembly [112, 113]. 397 

 These functions also need to be studied further, especially for their physiological 398 

relevance. However, the association of enhanced complement activation with elevated FHR 399 

levels or pathological, avidity gain-of-function dimerization mutants of FHR-1, FHR-2 and 400 
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FHR-5 in diseases such as IgA nephropathy (IgAN) and C3 glomerulopathy (C3G), as well as 401 

protection against AMD in the absence of FHR-1 and FHR-3, are strongly suggestive of a 402 

major role of FHRs in balancing FH (and FHL-1) mediated inhibition and thus regulating the 403 

prime regulators of the AP (see section 4). 404 

 405 

3.10. Microbial ligands of factor H family proteins and role in infectious diseases 406 

A major function of host complement is to provide immediate protection from infectious agents 407 

by opsonization and supporting opsonophagocytosis, initiation of inflammatory processes and 408 

complement-mediated cell lysis [2]. However, during co-evolution with their hosts, several 409 

pathogenic microbes acquired means to evade recognition and elimination assisted by the 410 

complement system. One of the commonly used microbial strategies is to bind host 411 

complement regulators, such as FH, FHL-1, C4BP, and vitronectin, to inhibit the AP, CP, LP, 412 

and the terminal complement pathway [114-116].  413 

Binding of FH provides microbial protection by inhibiting the assembly of the 414 

alternative pathway C3 convertase and by accelerating the decay of already formed 415 

convertases, thus preventing further activation and amplification of the complement cascade. 416 

Two major microbial interaction sites have been described in FH: one within CCPs 6 and 7, 417 

the other within the carboxyl-terminal domains CCPs 19 and 20 [115, 117]. The majority of 418 

microbes utilize both sites for an efficient protection; however, pathogens like Streptococcus 419 

pyogenes and Treponema denticola bind only via CCPs 6-7 [118, 119]. Some microbes bind at 420 

additional sites in FH, like Streptococcus pneumoniae in CCPs 8-14 [120]. 421 

Numerous microbial FH-binding proteins have been identified. The most well-studied 422 

among these include the FH-binding protein (fHbp) of Neisseria meningitidis [121], the M 423 

protein family of Streptococcus pyogenes [118], the elongation factor Tuf of Pseudomonas 424 

aeruginosa [122], the pneumococcal surface protein C (PspC) from Streptococcus pneumoniae 425 

[123], the staphylococcal binder of immunoglobulin (Sbi) of Staphylococcus aureus [124] and 426 

several surface proteins of Borrelia [125-127] and Leptospira [74, 114] species. In addition to 427 

pathogenic bacteria, the ability to bind FH was also demonstrated for eukaryotic organisms, 428 

like Candida albicans [128], Aspergillus fumigatus [129] and even for the malaria unicellular 429 

parasite Plasmodium falciparum [130] and the filarial parasite Onchocerca volvulus [131]. 430 

Strikingly, the main microbial ligand binding domains of FH, especially the CCPs 19-431 

20, are conserved among the FHR proteins, which led to the assumption that microbes can also 432 

bind FHRs. However, because of the absence of FH-homologue regulatory domains it is 433 

supposed that the FHRs cannot mediate the escape of pathogens from complement attack. In 434 

fact, they might evolved as decoy proteins that counteract the FH sequestering strategy of 435 

microbes [11, 115].  436 

Indeed, binding of FHR-1 to numerous microorganisms was described but the relevance 437 

of FHR-1 binding to the microbes was rarely investigated [74, 76, 78, 79, 122, 124, 132-135]. 438 

FHR-4 binding was demonstrated for Candida albicans and Fusobacterium necrophorum, but 439 

the functional significance of these interactions is not yet determined [78, 136]. 440 

Several FHR-binding proteins have been identified in Borrelia spirochetes, collectively 441 

termed Complement Regulator-Aquiring Surface Proteins (CRASPs) [76, 125, 137, 138]. ErpA 442 

(CRASP-5, OspE) and ErpP (CRASP-3) were shown to interact with FHR-1, FHR-2 and FHR-443 

5, whereas ErpC (CRASP-4) bound to FHR-1 and FHR-2. Interestingly, binding of FH and 444 

FHL-1 is mediated by two distinct proteins: CspA (CRASP-1) and CspZ (CRASP-2) [137, 445 

138]. Protection of the bacteria against serum complement was shown to be solely mediated 446 

by FH, and not by any of the FHRs, indicating no relevant complement inhibiting activity for 447 

FHR-1, FHR-2 and FHR-5 under these conditions [135]. 448 

Pathogenic Leptospira species were also demonstrated to bind FHL-1 and FHR-1 via 449 

different surface molecules [139]. The best characterized surface proteins are the leptospiral 450 
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complement regulator-acquiring protein A (LcpA), the leptospiral immunoglobulin-like 451 

proteins A and B (LigA, LigB), and the leptospiral endostatin-like proteins A and B (LenA, 452 

LenB). LcpA was shown to bind FH by the C-terminal CCP20 domain [114]. Both LigA and 453 

LigB, which have identical N-terminal parts and differ in their C-terminal amino acid sequence, 454 

bind FHL-1 and FHR-1 [74]. LenA and LenB can also interact with FH, and LenA binds both 455 

FH and FHR-1, but not FHL-1 [140, 141]. The functional consequence of FHR-1 binding to 456 

Leptospira has not yet been investigated. 457 

FHR-1 has recently been reported to bind to Plasmodium falciparum, the causative 458 

agent of malaria, compete with FH for binding to the parasite, and impair FH regulatory activity 459 

and C3b inactivation on the parasite surface [79, 134]. Also, the Sbi protein of Staphylococcus 460 

aureus was shown to bind to C3b and, in addition, to FH and FHR-1, and thus form tripartite 461 

complexes [124]; FHR-1 binding resulted in competitive inhibition of FH binding and 462 

enhanced complement activation in serum [142]. 463 

Binding of FH increases the survival of Neisseria meningitidis in human serum by 464 

downregulating complement activation on its surface [121, 143, 144]. FHR-3 was shown to 465 

bind to the fHbp surface lipoprotein with similar affinity as FH; however, fHbp variants and 466 

SNPs within the CFH and CFHR3 genes also influence the binding affinities [111, 145]. 467 

Furthermore, a competition between FH and FHR-3 was demonstrated, which had a significant 468 

effect on the survival of N. meningitidis in serum bactericidal assays [111]. Thus, FHR-3 469 

binding favours microbial clearance and the relative serum levels and affinities of these FH 470 

family proteins determine serum susceptibility of N. meningitidis. 471 

These evidence emphasize a host protective role of the FHRs against infections by 472 

promoting complement activation on microbes. Further studies should investigate such 473 

mechanisms in the case of additional microbes, including in vivo studies, and experiments 474 

addressing the role of the other FHRs in host-pathogen interactions. In addition to their role in 475 

modulating complement activation, FHRs may influence the activation of immune cells and 476 

thus innate and adaptive immune responses by binding to cellular receptors [78] or receptor 477 

ligands [146]; such non-canonical functions of FH and the FHRs are discussed in more detail 478 

elsewhere [147]. 479 

 480 

4. Role in complement-mediated diseases 481 

The role of FH, FHL-1 and the FHRs in infectious diseases was described above. Of note, 482 

exploitation of FH and FHL-1 similar to that seen in the case of microbes, may occur by tumor 483 

cells by expressing and binding these complement regulators, and is discussed in more detail 484 

elsewhere [35, 148]. This section summarizes the current knowledge on the role of the factor 485 

H family proteins in complement-associated inflammatory and autoimmune diseases.  486 

 Rare and common gene variants of FH and/or the FHRs have been linked to AMD, 487 

aHUS, C3G, IgAN and systemic lupus erythematosus (SLE), strongly underlining the role of 488 

these proteins in the regulation or modulation of complement activation [9, 11, 149-153]. While 489 

many CFH gene variants have been described, not all of them have been functionally validated; 490 

thus, the role of some of these variants in disease is uncertain. There are some genotype-491 

phenotype correlations, e.g. quantitative FH deficiency generally associates with C3G, 492 

mutations in the FH complement regulatory N-terminal domains associate with C3G and C-493 

terminal mutations with defective surface recognition functions and aHUS [154-168]. In any 494 

case, functional validation of variants is important to confirm disease association and gain 495 

insight into disease pathomechanism [44, 55, 64, 151, 157, 159, 164, 167-180]. The FH Y402H 496 

polymorphism affecting FH CCP7 is strongly associated with AMD [181-184]; however, in 497 

light of recent data it is likely that the main protein functionally affected by this amino acid 498 

exchange is FHL-1 and not FH in the context of AMD (see also sections 3.1 and 3.2) [15, 49, 499 

58, 65, 69, 185-188]. 500 
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Disease-associated variants of FHRs include CFHR1*A linked to AMD [189] and both 501 

CFHR1*B and CFHR3*B predisposing to aHUS, the latter two being linked together with 502 

CFH(H3) in an extended aHUS-risk haplotype [73, 94]. Several CFHR5 variants were 503 

described in patients with aHUS, dense deposit disease (formerly termed 504 

membranoproliferative glomerulonephritis type II), AMD and IgAN [154, 190-193]. Few of 505 

these mutant FHR proteins were functionally analyzed, FHR-1*A and FHR-1*B for pentraxin 506 

binding [24, 55] and some FHR-5 mutants for C3b binding [193], but no clear pathological 507 

effects have yet been demonstrated. Variations in the CFHR2 and CFHR4 genes were also 508 

observed and analyzed only at the genetic level in connection with diseases [194, 195]. 509 

 The genomic region encoding the FH protein family is prone to rearrangements leading 510 

to gene deletions or giving rise to genes coding for hybrid proteins. The most common change 511 

is the joint deletion of the CFHR3 and CFHR1 genes. It occurs in the normal population with 512 

allelic frequencies of 0-0.55, depending on the ethnic background [86]. The CFHR3-CFHR1 513 

deletion may associate with certain CFH haplotypes [196, 197], thus as part of certain extended 514 

haplotypes it was found to be protective in AMD and IgAN, whereas it is a risk factor in aHUS 515 

and SLE [95, 198-201]. The double gene deletion of CFHR1-CFHR4 is more rare and was 516 

associated with aHUS [73, 202]. The protective effects of these CFHR gene deletions can be 517 

explained by the removal of a competitor molecule (FHR-1 and/or FHR-3) of FH. The lack of 518 

FHR-1 as a risk factor in the case of aHUS is explained by the observed association of FHR-1 519 

deficiency with the presence of anti-FH autoantibodies in aHUS [203, 204]. Most of such FH-520 

specific autoantibodies bind to an epitope on the hypervariable loop in FH CCP20 [73, 202, 521 

205-208], which may take an alternate conformation upon binding to certain ligands, e.g. 522 

microbial proteins. Structural comparison of the C-terminal domains of FH and FHR-1 523 

indicated that this changed conformation in FH CCP20 is similar to the homologous 524 

conformation in FHR-1 CCP5; however, there is no tolerance induction against it when FHR-525 

1 is lacking in an individual. Thus, it was hypothesized that under certain conditions, especially 526 

following infections, the lack of FHR-1 protein may directly lead to autoantibody generation 527 

due to an induced neoepitope on FH CCP20 [205].  528 

Hybrid proteins composed of FH and FHRs (indicated by double colons between the 529 

proteins), namely FH::FHR-1, FHR-1::FH and FH::FHR-3 are associated with aHUS, because 530 

these changes either replace FH CCP20, which harbors the surface/sialic acid recognition site 531 

in FH (FH::FHR-1 and FH::FHR-3), or remove the regulatory CCPs 1-4 domains (FHR1::FH) 532 

[25, 209-215]. Hybrid FHRs containing domains from two proteins (FHR-3::FHR-1, FHR-533 

1::FHR-5, FHR-2::FHR-5, FHR-5::FHR-2) and FHR-1 and FHR-5 with duplicated 534 

dimerization domains (CCPs 1-2) due to intragenic duplications are associated with C3G; the 535 

hybrids between FHR-1 and FHR-5 or FHR-2 and FHR-5 also have duplicated dimerization 536 

domains [22, 89, 216-221]. These abnormal FHR proteins are thought to lead to enhanced 537 

complement de-regulation at surfaces, especially in the kidney, likely because of their 538 

enhanced oligomer formation and thus enhanced avidity towards disease-relevant ligands, 539 

leading to increased glomerular C3 deposition and the manifestation of C3G [21, 22, 89]. The 540 

composition of the various hybrid proteins and their characterization is described in detail 541 

elsewhere [9, 153]. 542 

 Recent studies measuring FHR serum levels in various patient cohorts and healthy 543 

controls indicate the importance of the balance between the complement regulator FH and the 544 

de-regulator FHR proteins. Elevated FHR-3 serum levels were measured in aHUS patients (in 545 

association with the CFHR3*B allele), as well as in patients with SLE, rheumatoid arthritis, 546 

and polymyalgia rheumatica, and in septic patients [92, 93, 222]. Elevated FHR-1 and FHR-5 547 

serum levels, or lower FH levels (thus increased FHR-1/FH ratios), have been found in IgAN 548 

patients and the increased concentration of FHR-1 relative to FH correlated with disease 549 

progression [83, 84]. While in the case of FHR-5 its slightly increased serum level did not 550 
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correlate with disease progression [83], increased glomerular FHR-5 deposition was associated 551 

with progressive disease [223]. These latter data strongly support a role for both FHR-1 and 552 

FHR-5 in promoting complement activation in IgAN. 553 

 554 

5. Concluding remarks 555 

The identified links between the individual members of the FH protein family and various 556 

diseases gave impetus to further characterize these proteins. Evidence accumulated over the 557 

past decade underline the versatile roles of FH, FHL-1 and the FHR proteins in infectious, 558 

inflammatory and autoimmune diseases and cancer. While some controversies regarding the 559 

functions and activities of the FHRs need to be resolved, currently available data attest to the 560 

role of FHRs in relation to FH (and possibly FHL-1) in fine-tuning complement activity and 561 

modulating physiological and pathological complement activation (Fig. 3). Thus, this protein 562 

family includes the complement inhibitors FH and FHL-1, and the deregulator and complement 563 

activator FHR proteins. It appears that under normal conditions there is little or no competition 564 

between FHRs and FH, due to the lower FHR serum levels and their lower affinity to 565 

physiological FH ligands. Increased FHR/FH ratio can shift the balance of complement 566 

regulation towards activation and enhanced opsonization, as it was observed in infectious and 567 

kidney diseases. The diversity among the FHRs in terms of structure, ligand binding and 568 

function is likely related to the diverse ligands (e.g., altered host structures and/or microbial 569 

structures) and circumstances where competition is favored. Further functional studies and 570 

determination of FH/FHL-1/FHR levels or the presence of FHRs in various biological samples 571 

will certainly provide further insight into the pathomechanism of diseases, potentially 572 

identifying some of them as biomarkers of disease and providing novel possibilities of 573 

therapeutic intervention. 574 
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Figure legends 1374 

Figure 1. Overview of complement activation and its regulation by factor H. 1375 

Complement is activated through three main pathways, initiated by the binding of recognition 1376 

molecules, such as C1q in the classial pathway and mannose-binding lectin and ficolins in the 1377 

lectin pathway, as well as by the spontaneous hydrolysis of C3b in the alternative pathway. 1378 

The activation cascades generate C3 convertases that cleave C3 and produce active C3b 1379 

molecules, which covalently bind to target surfaces and opsonize them for enhanced 1380 

phagocytosis; further activation and the deposition of additional C3b molecules generate C5 1381 

convertases that trigger the terminal pathway, which may ultimately lead to target cell lysis. 1382 

FH inhibits complement activation at the level of the central C3b molecule, thus also blocks 1383 

the amplification loop and the terminal pahway. 1384 

 1385 

Figure 2. The human factor H protein family. 1386 

Members of the FH protein family are exclusively built up from complement control protein 1387 

(CCP) domains. FH is composed of 20 CCPs, of which the N-terminal CCPs 1-4 mediate the 1388 

complement regulatory (cofactor and convertase decay acceleration) activities. Major ligand 1389 

binding and surface recognition sites are located in CCPs 6-7 and 19-20. FHL-1 is derived by 1390 

alternative splicing from the CFH gene and essentially contains the N-terminal seven CCPs, 1391 

thus shares complement regulatory activity with FH, as well as the N-terminal ligand/surface 1392 

recognition site (CCPs 6-7). By contrast, the FHR proteins lack homologs of the complement 1393 

regulatory domains, but do include domains that display variable degree of sequence identity 1394 

to the ligand- and surface recognition domains of FH. In addition, FHR-1, FHR-2 and FHR-5 1395 

contain unique N-terminal domains that mediate homo- and heterooligomerization of these 1396 

proteins. 1397 

Each CCP is represented by a circle, the major binding and activity sites are indicated 1398 

by color coding. The CCPs of the molecules are aligned vertically based on highest sequence 1399 

similarity to each other. Numbers indicate the percentage of amino acid sequence identity to 1400 

the corresponding FH domains or, in the case of the dimerization domains, to each other. 1401 

 1402 

Figure 3. Roles of factor H family proteins under physiological and disease conditions. 1403 

The figure shows a schematic overview of the roles of FH versus FHR proteins in complement 1404 

regulation and activation on various surfaces in light of the latest data [9, 11, 115]. The 1405 

alternative pathway is continuously active and probes any surface by generating and depositing 1406 

active C3b fragments at a low rate. The nature of the surfaces and the relative concentrations 1407 

of functionally active FH and FHRs influence the degree of complement activation. 1408 

(A) Healthy host cells are recognized by FH via cell surface glycosaminoglycans or sialic acids 1409 

(indicated by the brown dots), which engage the C-terminal C3b/C3d binding site to anchor 1410 

FH to the surface when C3b is deposited in low density due to the continuous, low-level 1411 

activation of the alternative pathway. Surface-bound FH promotes inactivation of C3b and the 1412 

C3bBb convertase, and thus down-regulates local complement activation. There is no 1413 

significant competition between FH and the FHRs under these conditions. 1414 

(B) Changes in their relative amounts or avidity influence binding of FH and FHRs to host cells 1415 

and may associate with diseases. Mutations in FH or the generation of autoantibodies that affect 1416 

the recognition of host glycans and/or surface-bound C3b/C3d, can cause insufficient 1417 

complement control on surfaces. In addition, FHR proteins – particularly when their avidities 1418 

increase due to nonphysiological oligomerization caused by e.g. duplication of their 1419 

dimerization domains, or due to the appearance of new ligands (indicated by orange triangles) 1420 

on altered cells – may compete with FH for ligand and surface binding and, similarly, result in 1421 

enhanced complement activation. Moreover, some FHRs may propagate alternative pathway 1422 

activation by binding C3b and thus recruiting C3 convertase to the surface (indicated by black 1423 
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arrow). While enhancing C3 fragment deposition and thus opsonization, FHRs may inhibit the 1424 

terminal pathway and membrane attack complex (MAC) formation, a potential activity that 1425 

needs further clarification (indicated by dotted line).  1426 

(C) Pathogens, even though generally lacking host-like glycosaminoglycans/sialic acid, may 1427 

sequester host FH by expressing FH binding surface proteins (schematically shown in black), 1428 

thus disguising themselves as “self” and reducing complement activation on their surface. 1429 

(D) FHR proteins may bind to FH-binding microbial proteins and competitively inhibit the 1430 

recruitment of this host complement inhibitor, as shown for FHR-3 and FHR-1. Consequently, 1431 

complement activation is enhanced on the microbial surface. 1432 
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