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Abstract. In this paper, we consider the existence of a nontrivial solution for the fol-
lowing Schrödinger equations with a magnetic potential A

−∆Au = K(x) f (|u|2)u, in RN

where N > 3, K is a nonnegative function verifying two kinds of conditions and f is
continuous with subcritical growth. We discuss the above equation with K asymptoti-
cally periodic and K ∈ Lr.
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1 Introduction

In this paper, we consider the existence of a nontrivial solution for the following equation

− ∆Au = K(x) f (|u|2)u, in RN . (1.1)

where N > 3, K : RN → R is a nonnegative function and f : R → R is continuous with
subcritical growth.

Problem (1.1) is motivated by the following nonlinear Schrödinger equation(
h
i
∇− A(x)

)2

ψ = K(x) f (|ψ|2)ψ,

where N > 3, h is the Planck constant and A is a magnetic potential of a given magnetic
field B = curl A, and the nonlinear term f is a nonlinear coupling and K is nonnegative.
The function A : RN → RN denotes a magnetic potential and the Schrödinger operator is
defined by

−∆Aψ = −∆ψ + |A|2ψ− 2iA∇ψ− iψ div A, in RN .
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This class of problem with the nonlinearity f verifying the condition f ′(0) = 0 is known as
zero mass.

In recent years, much attention has been paid to the nonlinear Schrödinger equations, we
may refer to [6, 13, 23, 25–29]. In particular, we notice that the existence of solutions for the
problems with zero mass and without magnetic field, namely, A ≡ 0 and f ′(0) = 0. In [5],
Alves and Souto investigated the following problem

− ∆u = K(x) f (u), x ∈ RN , (1.2)

where f is a continuous function with quasicritical growth and K is nonnegative function.
Using the variational method and some technical lemmas, the authors gave the existence of
positive solution for problem (1.2).

In [20], Li, Li and Shi considered a nonlinear Kirchhoff type problem

−
(

a + λ
∫

RN
|∇u|2

)
∆u = K(x) f (u), x ∈ RN ,

where N > 3, a is a positive constant, λ > 0 is a parameter and K is a potential function.
The authors used a priori estimate and a Pohozaev type identity in the case with constant
coefficient nonlinearity. And in the problem with the variable-coefficient, a cut-off functional
and Pohozaev type identity were used to find Palais–Smale sequences.

In [1], Alves studied a quasilinear equation given by

−∆u + V(x)u− k∆(u2)u = K(x) f (u), x ∈ RN ,

where N > 1, k ∈ R, V : RN → R is the potential, and f : R → R and K : RN → R are
continuous. The variational methods were used to establish a Berestycki–Lions type result.
For further results about the elliptic equations with zero mass, we may refer to [4, 7, 8, 19, 24].

Inspired by [1,5,20], we would like to consider Schrödinger equations in RN with magnetic
field and zero mass.

Due to the appearance of the magnetic field, the problem cannot be changed into a pure
real-valued problem, hence we should deal with a complex-valued directly, which causes more
new difficulties in employing the methods and some estimates. Thus there are a few results for
the Schrödinger equations with magnetic field than ones for that without the magnetic field.
In [18], Ji and Yin showed the existence of nontrivial solutions for the following Schrödinger
equation

−∆Au + V(x)u = f (|u|2)u, in RN ,

where N > 3, f has subcritical growth, and the potential V is nonnegative. The solution is
obtained by the variational method combined with penalization technique of del Pino and
Felmer [17] and Moser iteration.

In [15], Chabrowski and Szulkin discussed the semilinear Schrödinger equation

−∆Au + V(x)u = Q(x)|u|2∗−2u, u ∈ H1
A,V+(RN),

where V changes sign. The authors considered the problem by a min-max type argument
based on a topological linking. For the more results involving the magnetic Schrödinger
equations, we see [2, 3, 9, 11, 12, 16, 25] and the references therein.

In this paper, we consider problem (1.1) with the different function K. First of all, we
assume the potential A verifying
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(A) A ∈ L2
loc(R

N , RN).

In the first case, we propose the following assumptions for function K:

(K1) there exist k0 > 0 such that

K(x) > k0, for ∀x ∈ RN ,

(K2) there exist a positive continuous periodic function Kp : RN → R

Kp(x + y) = Kp(x), ∀x ∈ RN and ∀y ∈ ZN ,

such that
|K(x)− Kp(x)| → 0 as |x| → +∞.

(K3) KP is defined in (K2) such that

K(x) > Kp(x), ∀x ∈ RN .

In addition, we assume that function f satisfies:

( f 1) there holds

lim
t→0+

f (t)

t
2∗−2

2

= lim
t→+∞

f (t)

t
2∗−2

2

= 0,

where 2∗ = 2N
N−2 and N > 3.

( f 2) function F is defined by F(t) =
∫ t

0 f (s)ds, and

F(t)
t
→ ∞ as t→ +∞,

( f 3) function H(t) = t f (t)− F(t) is increasing in t and H(0) = 0.

Now we are in a position to state the first result.

Theorem 1.1. Assume that (A), (K1)–(K3) and ( f 1)–( f 3) hold. Then, problem (1.1) has a nontrivial
solution.

In the second case, we involve that K is positive almost everywhere:

(K4) the Lebesgue measure of {x ∈ RN : K(x) 6 0} is zero.

Then, we state the second result as follows.

Theorem 1.2. Assume that K ∈ L∞(RN)∩ Lr(RN), for some r > 1, satisfies (K4), and (A), ( f 1)–( f 3)
hold. Then, problem (1.1) has a ground state solution.

Remark 1.3. In fact, we consider the second case under a weaker condition than K ∈ Lr(RN).
We only require to suppose that for all R > 0 and any sequence of Borel sets {En} of RN such
that |En| 6 R, for every n, we have

lim
R→+∞

∫
En∩Bc

R(0)
K(x)dx = 0, uniformly in n ∈N. (1.3)

The paper is organized as follows. In the next section, we state the functional setting and
give some preliminary lemmas. In Section 3, when K verifies the periodic condition, we study
problem (1.1) and establish the existence of a ground state solution. In Section 4, we give the
existence of a nontrivial solution for asymptotically periodic problem, proving Theorem 1.1.
In the last section we consider problem (1.1) with condition (K4) and we prove Theorem 1.2.
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2 Preliminaries

In this section, we outline the variational framework for problem (1.1) and give some prelimi-
nary lemmas. We write

∆Au := (∇+ iA)2u

and
∇Au := (∇+ iA)u.

Let N > 3 and 2∗ = 2N/(N − 2). We denote D1,2
A (RN) the Hilbert space with the scalar

product

〈u, v〉A = Re
∫

RN
(∇u + iA(x)u)(∇v + iA(x)v)dx,

and the norm induced by the product 〈·, ·〉A is

‖u‖A =
( ∫

RN
|∇Au|2dx

) 1
2

=
( ∫

RN
|∇u + iA(x)u|2dx

) 1
2

=
( ∫

RN
(|∇u|2 + |A(x)|2|u|2)dx− 2 Re

∫
RN

iA(x)u∇udx
) 1

2
,

and C∞
0 (RN , C) is dense in D1,2

A (RN) with respect to the norm ‖u‖A. It is easy to know that

D1,2
A (RN) :=

{
u ∈ L2∗(RN , C) : ∇Au ∈ L2(RN , C)

}
.

Furthermore, the following diamagnetic inequality (see [21, Theorem 7.21]) will be used fre-
quently: ∣∣∇Au(x)

∣∣ > ∣∣∇|u(x)|
∣∣, for ∀u ∈ D1,2

A (RN , C), (2.1)

and it implies that if u(x) ∈ D1,2
A (RN , C), the fact that |u(x)| ∈ D1,2(RN , R) will holds. There-

fore, by Sobolev embedding
∫

RN

∣∣∇|u|∣∣2dx > S
( ∫

RN |u|2
∗
dx
) 2

2∗ , the embedding D1,2
A (RN , C) ↪→

L2∗(RN , C) is continuous for N > 3.

3 A periodic problem

In the section, we will discuss the existence of a ground state solution for the following equa-
tion {

−∆Au = Kp(x) f (|u|2)u, in RN ,

u ∈ D1,2
A (RN , C),

(3.1)

where Kp : RN → R is a continuous function verifying the following hypotheses

(K5) for all x ∈ RN and y ∈ ZN ,
Kp(x + y) = Kp(x),

(K6) there is a positive constant k1 > 0 such that

Kp(x) > k1, ∀x ∈ RN .

In this section, the main result is the following.
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Theorem 3.1. Assume that (A), (K5)–(K6) and ( f 1)–( f 3) hold. Then, problem (3.1) has a nontrivial
solution.

We denote by I : D1,2
A (RN , C) → R the energy functional for the problem (3.1), which is

defined by

I(u) =
1
2
‖u‖2

A −
1
2

∫
RN

Kp(x)F(|u|2)dx, (3.2)

with derivative, for ∀u, v ∈ D1,2
A (RN , C),

I′(u)v = Re
∫

RN
∇Au∇Avdx− Re

∫
RN

Kp(x) f (|u|2)uvdx. (3.3)

The weak solution for (3.1) are the critical points of I. furthermore, we can use ( f 1)–( f 3)
to check that functional I satisfies the geometry of the mountain pass. There is a sequence
(un) ⊂ D1,2

A (RN , C) such that
I(un)→ c (3.4)

and (
1 + ‖un‖A

)
‖I′(un)‖ → 0, (3.5)

where c is the mountain pass level given by

c = inf
γ∈Γ

max
t∈[0,1]

I
(
γ(t)

)
with

Γ =
{

γ ∈ C
(
[0, 1], D1,2

A (RN , C)
)

: γ(0) = 0 and I
(
γ(1)

)
6 0

}
.

This sequence is called as Cerami sequence for I at level c, see [14].
Notice that from ( f 3) one obtains H(s) > 0 for every s ∈ R. Then, we have the next

estimates: by ( f 1), for ∀ε > 0, there exist a τ = τ(ε) and cε > 0 such that∣∣s2 f (s2)
∣∣ 6 ε|s|2∗ + cε|s|pχ{|s|>τ}(s) (3.6)

and, by ( f 3), ∣∣F(s2)
∣∣ 6 ε|s|2∗ + cε|s|pχ{|s|>τ}(s) (3.7)

where χ is the characteristic function to the set T = {t ∈ RN : |t| > τ}.
In the proof of Theorem 3.1, we announce a lemma which resembles a classical result

in [22].

Lemma 3.2. Let (un) be a bounded sequence in D1,2
A (RN , C). Then either

(i) there are R, η > 0 and (yn) ⊂ RN such that
∫

BR(yn)
|un|2 > η, for all n,

or

(ii)
∫

RN
|ûn|q → 0, where ûn = unχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

Proof. If (i) does not happen, going if necessary to a subsequence, we have

lim
n→+∞

sup
y∈R

∫
BR(y)

|un|2 = 0.



6 Z. Yin and C. Ji

Let ψ : C→ R be a smooth function such that

0 6 ψ(s) 6 1, ψ(s) = 0 for |s| < τ

2
and ψ(s) = 1 for |s| > τ,

it is easy to check that the sequence ũn = ψ(un)un belongs to D1,2
A (RN , C) and satisfies

lim
n→+∞

sup
y∈RN

∫
BR(y)

|ũn|2 = 0.

Hence, by [22],

lim
n→+∞

∫
RN
|ũn|p = 0, ∀q ∈ (2, 2∗),

from where it follows that

lim
n→+∞

∫
RN
|ûn|p = 0, ∀q ∈ (2, 2∗) and τ > 0,

finishing the proof.

The next lemma is used to prove that the Cerami sequence is bounded in D1,2
A (RN , C).

Lemma 3.3. There is a positive constant M > 0 such that I(tun) 6 M for every t ∈ [0, 1] and n ∈N.

Proof. Let tn ∈ [0, 1] be such that I(tnun) = maxt>0 I(tun). If either tn = 0 or tn = 1, we are
done. Thereby, we can assume that tn ∈ (0, 1), and so I′(tnun)tnun = 0. From this

2I(tnun) = 2I(tnun)− I′(tnun)tnun =
∫

RN
Kp(x)H(|tnun|2).

Once that Kp is positive, it follows that ( f 3)

2I(tnun) 6
∫

RN
Kp(x)H(|un|2) = 2I(un)− I′(un)un = 2I(un) + on(1).

Since (I(un)) converges to c, so I(tun) is bounded.

Lemma 3.4. The sequence (un) is bounded in D1,2
A (RN , C).

Proof. Suppose by contradiction that ‖u‖A → ∞ and set wn = un
‖un‖A

. Since ‖wn‖A = 1, there
exists w ∈ D1,2

A (RN , C) such that wn ⇀ w in D1,2
A (RN , C). Next, we will show that w = 0. First

of all, notice that

on(1) + 1 =
∫

RN

Kp(x)F(|un|2)
‖un‖2

A
=
∫

RN

Kp(x)F(|un|2)
|un|2

|wn|2.

By ( f 2), for each M > 0, there is ξ > 0 such that

F(s2)

s2 > M, for |s| > ξ,

hence

on(1) + 1 >
∫

Ω∩{|un|>ξ}

Kp(x)F(|un|2)
|un|2

|wn|2 > Mk1

∫
Ω∩{|un|>ξ}

|wn|2,

where Ω =
{

x ∈ RN : w(x) 6= 0
}

. By Fatou’s Lemma

1 > Mk1

∫
Ω
|w|2dx.
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Therefore
∣∣Ω∣∣ = 0, showing that w = 0.

Notice that for each C > 0, one has C
‖un‖A

∈ [0, 1] for n sufficiently large. Thus

I(tnun) > I
( C
‖u‖A

un

)
= I(Cwn) =

C2

2
− 1

2

∫
RN

Kp(x)F
(
C2|wn|2

)
.

We claim that
lim

n→+∞

∫
RN

Kp(x)F
(
C2|wn|2

)
= 0. (3.8)

We postpone for minutes the proof of (3.8). But if it were true, we would get

lim
n→+∞

I(tnun) >
C2

2
, for every C > 0,

which is a contradiction with Lemma 3.3, since (I(tnun)) 6 M.
We prove (3.8) by using Lemma 3.2, which gives two alternatives: either∫

BR(yn)
|wn|2 > η for some η > 0 and (yn) ∈ ZN ,

or ∫
RN
|ŵn|pdx → 0, where ŵn = wnχ{|un|>τ}, p ∈ (2, 2∗) and τ > 0.

By showing the boundedness of (un), we will prove that the first alternative does not hold. If
the first alternative occurs, we define ũn = un(x + yn) and w̃n = ũn

‖un‖A
. These two sequences

satisfy

I(ũn)→ c,
(

1 + ‖ũn‖A

)
‖I′(ũn)‖ → 0 and w̃n ⇀ w̃ 6= 0,

which is a contraction compared to what we have written in the beginning of this proof.
Hence, the second alternative holds and

lim
n→+∞

∫
RN
|ŵn|pdx = 0.

Then∣∣Kp(x)F
(
C2|wn|2

)∣∣ 6 ‖Kp‖∞
∣∣F(C2|wn|2

)∣∣ 6 ‖Kp‖∞

[
εC2∗ |wn|2

∗
+ cεCp|wn|pχ{C|wn|>δ}

]
,

from where it follows∣∣Kp(x)F
(
C2|wn|2

)∣∣ 6 ‖Kp‖∞[εC2∗ |wn|2
∗
+ cεCp|wn|p].

Consequently∫
RN

∣∣Kp(x)F
(
C2|wn|2

)∣∣dx 6 ‖Kp‖∞

[
εC2∗

∫
RN
|wn|2

∗
dx + cεCp

∫
RN
|wn|pdx

]
,

showing that

lim
n→+∞

∫
RN

∣∣Kp(x)F
(
C2|wn|2

)∣∣dx = 0,

and the proof is finished.
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Proof of Theorem 3.1. Since (un) is bounded, by applying Lemma 3.2, we have two alternatives,
either

(i) there are R, η > 0 and (yn) ⊂ RN such that
∫

BR(yn)
|un|2 > η, for all n,

or

(ii)
∫

RN
|ûn|q → 0, where ûn = unχ{|s|>τ}, q ∈ (2, 2∗) and τ > 0.

Notice that (ii) does not occur. Otherwise, the inequality∫
RN

∣∣Kp(x) f (|un|2)|un|2
∣∣ 6 ‖Kp‖∞

[
ε
∫

RN
|un|2

∗
+ cε

∫
RN
|un|p

]
leads to

lim sup
n→+∞

∫
RN

∣∣Kp(x) f (|un|2)|un|2
∣∣ = 0,

and so
lim

n→+∞

∫
RN

Kp(x) f (|un|2)|un|2 = 0.

The fact that I′(un)un = on(1) imply that ‖un‖A → 0, constituting a contradiction. Since
alternative (i) is true and Kp is periodic, the sequence ũn(x) = un(x + yn) is a Cerami sequence
for I at level c, namely,

I(ũn)→ c,
(

1 + ‖ũn‖A

)
‖I′(un)‖ → 0 and ũn ⇀ ũ in D1,2

A (RN , C).

A direct computation indicates that I′(ũ) = 0, and ũ is a nontrivial weak solution for problem
(3.1). Then, we will prove that ũ is a ground state solution for (3.1).we will check that I(ũ)
accords with the mountain pass level. By Fatou’s Lemma,

2c= lim inf
n→+∞

2I(ũn)= lim inf
n→+∞

(
2I(ũn)− I′(ũn)ũn

)
= lim inf

n→+∞

∫
RN

Kp(x)H(|ũn|2)>
∫

RN
Kp(x)H(|ũ|2).

Since
2I(ũ) = 2I(ũ)− I′(ũ)ũ =

∫
RN

Kp(x)H(|ũ|2)dx,

we can conclude that I(ũ) 6 c. But then, the condition ( f 3) leads to

c = inf
{

I(u) : u ∈ D1,2
A (RN)\{0} and I′(u)u = 0

}
.

It follows that I′(ũ) > c, and so I′(ũ) = c.

4 The proof of Theorem 1.1

In the section, we will discuss the existence of a nontrivial solution for problem (1.1), thus
showing Theorem 1.1. Therefore, we need to prove Lemmas 4.1 and 4.2 below. Hence, we will
presume that the condition (A), (K1)–(K3) and ( f 1)–( f 3) hold.

We recall that u ∈ D1,2
A (RN , C) is a weak solution of problem (1.1), if

Re
∫

RN
∇Au∇Avdx = Re

∫
RN

K(x)F(|u|2)uvdx,



Two classes of Schrödinger equations in RN with magnetic field and zero mass 9

for all v ∈ D1,2
A (RN , C).

The Energy functional associated to (1.1) is

J(u) =
1
2
‖u‖2

A −
1
2

∫
RN

K(x)F(|u|2)dx, ∀u ∈ D1,2
A (RN , C) (4.1)

with derivative

J′(u)v = Re
∫

RN
∇Au∇Avdx− Re

∫
RN

K(x) f (|u|2)uvdx, ∀u, v ∈ D1,2
A (RN , C). (4.2)

As in the proof of the periodic case, one observes that J satisfying the geometry of the
mountain pass. Therefore, there is a sequence (vn) ⊂ D1,2

A (RN , C) verifying

J(vn)→ d and
(

1 + ‖vn‖A

)
‖J′(vn)‖ → 0, (4.3)

where d denotes the mountain pass level correlative of J.
Since I(u) = c, by property (K3), one obtains d 6 c. With loss of generality, we can assume

that K 6≡ Kp, consequently

d 6 max
t>0

J(tu) = J(t0u) < I(t0u) 6 I(u) = c. (4.4)

Lemma 4.1. The sequence (un) is bounded in D1,2
A (RN , C).

Proof. Let tn ∈ [0, 1] be such that J(tnvn) = maxt>0 J(tvn). If either tn = 0 or tn = 1, we are
done. Thereby, we can assume tn ∈ (0, 1), and so J′(tnvn)tnvn = 0. From this

2J(tnvn) = 2J(tnvn)− J′(tnvn)tnvn =
∫

RN
K(x)H

(
t2
n|vn|2

)
.

Since K is a nonnegative function, from ( f 3),

2J(tnvn) 6
∫

RN
K(x)H

(
|vn|2

)
= 2J(vn)− J′(vn)vn = 2J(vn) + on(1).

Since (J(vn)) is convergent, so it is bounded.
Suppose by contradiction that ‖vn‖A → ∞. Proving as in Lemma 3.4, the sequence wn =

vn
‖vn‖A

weakly converges to 0 in D1,2
A (RN , C). Since ‖wn‖A = 1, by applying Lemma 3.2, we

have two alternatives, either

(i) there are R, η > 0 and (yn) ⊂ RN such that
∫

BR(yn)
|wn|2 > η, for all n,

or

(ii)
∫

RN
|ŵn|q → 0, where ŵn = wnχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

If that (i) occurred, we could define the functions ṽn(x) = vn(x + yn) and w̃n(x) = ṽn(x)
‖(̃v)n‖A

.
These two sequences satisfy

J(ṽn)→ d,
(

1 + ‖ṽn‖A

)
‖J′(ṽn)‖ → 0 and w̃n ⇀ w̃ 6= 0,

which contradicts wn ⇀ 0.
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Suppose that (ii) is true. As in the proof of Lemma 3.4

lim
n→+∞

∫
RN

K(x)F
(
C2|wn|2

)
= 0 (4.5)

for each C > 0, and one has C
‖vn‖A

∈ [0, 1] for n sufficiently large. There is a constant M > 0
such that J(tvn) 6 M for every t ∈ [0, 1] and n ∈N. Thus

J(tnvn) > J
( C
‖vn‖A

vn

)
= J(Cwn) =

C2

2
− 1

2

∫
RN

K(x)F
(
C2|wn|2

)
.

By (4.5), one would get

lim
n→+∞

J(tnvn) >
C2

2
, for every C > 0,

which constitutes a contradiction, since
(

J(tnvn)
)

is bounded. Consequently, the sequence
(vn) is bounded.

From the preceding lemma, since the Hilbert space D1,2
A (RN , C) is reflexive, there exists v ∈

D1,2
A (RN , C) and a subsequence of (vn), still denoted by (vn), such that vn ⇀ v in D1,2

A (RN , C).

Lemma 4.2. The weak limit v of (vn) is nontrivial.

Proof. Suppose by contradiction that v ≡ 0. Since∫
BR

∣∣K(x)− Kp(x)
∣∣∣∣F(|vn|2)

∣∣dx 6 ε
∫

BR

∣∣K(x)− Kp(x)
∣∣|vn|2

∗
dx +

∫
BR

∣∣K(x)− Kp(x)
∣∣|vn|pdx,

as consequence of v ≡ 0, it follows that∫
BR

∣∣K(x)− Kp(x)
∣∣∣∣F(|vn|2)

∣∣dx → 0 as n→ +∞. (4.6)

On the other hand, from (K2), given ε > 0 there exists R = R(ε) such that∣∣K(x)− Kp(x)
∣∣ < ε, for all |x| > R.

Thus ∫
Bc

R

∣∣K(x)− Kp(x)
∣∣∣∣F(|vn|2)

∣∣dx 6 εM (4.7)

where
lim sup

n→+∞

∫
RN

∣∣F(|vn|2)
∣∣dx = M.

From (4.6) and (4.7)

lim
n→+∞

∫
RN

∣∣K(x)− Kp(x)
∣∣∣∣F(|vn|2)

∣∣dx = 0, (4.8)

and
|J(vn)− I(vn)| → 0 as n→ +∞.

A similar argument shows that

|J′(vn)vn − I′(vn)vn| → 0 as n→ +∞.
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Consequently,
I(vn) = d + on(1) and I′(vn)vn = on(1). (4.9)

Let sn be positive number verifying

I′(snvn)vn = 0. (4.10)

We claim that (sn) converges to 1 as n→ +∞. We begin proving that

lim sup
n→+∞

sn 6 1. (4.11)

Suppose by contradiction that, going if necessary to a subsequence, sn > 1 + δ for all
n ∈N, for some δ > 0. From (4.9),

‖vn‖2
A =

∫
RN

Kp(x) f (|vn|2)|vn|2dx + on(1).

On the other hand, from (4.10),

sn‖vn‖2
A =

∫
RN

Kp(x) f
(
s2

n|vn|2
)
sn|vn|2dx.

Consequently ∫
RN

Kp(x)
[

f
(
s2

n|vn|2
)
− f

(
|vn|2

)]
|vn|2dx = on(1),

and from ( f 3) combined with (K1)–(K3),∫
RN

[
f
(
s2

n|vn|2
)
− f

(
|vn|2

)]
|vn|2dx = on(1). (4.12)

Since (vn) is bounded, by Lemma 3.2 again, we have two alternatives, either

(i) there are R, η > 0 and (yn) ⊂ RN such that
∫

BR(yn)
|vn|2 > η, for all n,

or

(ii)
∫

RN
|v̂n|q → 0, where v̂n = vnχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

In case (ii), we derive

lim
n→+∞

∫
RN

f
(
|vn|2

)
|vn|2dx = 0,

which implies vn → 0 in D1,2
A (RN , C) that is impossible.

Let (yn) be given by (i), and define ṽn(x) = vn(x + yn). Since∫
BR(0)

|ṽn|2dx > η > 0,

there exists ṽ 6= 0 in n D1,2
A (RN , C) such that (vn) is weakly convergent to ṽ in D1,2

A (RN , C).
From (4.12) and ( f 3), Fatou’s Lemma yields,

0 <
∫

RN

[
f
(
(1 + δ)2|ṽn|2

)
− f

(
|ṽn|2

)]
|ṽn|2dx = 0,
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which is impossible. Hence
lim sup

n→+∞
sn 6 1.

From this, (sn) is bounded. Without loss of generality, we can assume that

lim
n→+∞

sn = s0 6 1.

If s0 < 1, we have that sn < 1 for n large enough. Hence, by Fatou’s Lemma

0 <
∫

RN

[
f
(
|ṽn|2

)
− f

(
s2

0|ṽn|2
)]
|ṽn|2dx = 0, when s0 > 0,

and
0 <

∫
RN

f
(
|ṽn|2

)
|ṽn|2dx = 0, when s0 = 0,

which are impossible. Therefore,
lim

n→+∞
sn = 1. (4.13)

As a consequence of (4.13),∫
RN

Kp(x)F
(
s2

n|vn|2
)
dx−

∫
RN

Kp(x)F
(
|vn|2

)
dx = on(1)

and (
s2

n − 1
)
‖vn‖2

A = on(1),

leading to
I(snvn)− I(vn) = on(1).

Then, by(4.9)
c 6 I(snvn) = I(vn) + on(1) = d + on(1).

Taking n → +∞, we find c 6 d, which obtain a contradiction, because, by (4.4), d < c. This
contradiction comes from the assumption that v ≡ 0.

5 The proof of Theorem 1.2

In this section, we mean to prove Theorem 1.2. As the proof in the preceding section, we can
prove that the functional I satisfies the geometry of the mountain pass and there is a Cerami
sequence (un) ∈ D1,2

A (RN , C) satisfying (3.4) and (3.5). Finally, we have proved Lemma 3.3. In
order to check that (un) is bounded in D1,2

A (RN , C), we should show that the (3.8) holds and
proceed as in the proof of Lemma 3.4.

Let Ω, ξ, w, M be defined as in the proof of Lemma 3.4. Notice that
∣∣Ω∣∣ = 0, since

on(1) + 1 >
∫

Ω∩{|un|>ξ}

K(x)F(|un|2)
|un|2

|wn|2

implies that

1 > M
∫

Ω
K(x)|w|2,

and from (K4), we have w = 0.



Two classes of Schrödinger equations in RN with magnetic field and zero mass 13

Let us prove the limit (3.8). From ( f 1), for each ε > 0, we have δ > 0 and Cε > 0 such that∣∣s2 f (s2)
∣∣ 6 ε|s|2∗ + Cεχ{|s|>δ}, for all s ∈ RN , (5.1)

and ∣∣F(s2)
∣∣ 6 ε|s|2∗ + Cεχ{|s|>δ}, for all s ∈ RN . (5.2)

By Sobolev embedding and (2.1), there exists Ŝ > 0 such that∫
RN
|v|2∗dx 6 Ŝ

( ∫
RN
|∇Av|2dx

) 2∗
2

,

for all v ∈ D1,2
A (RN , C). Observe that ∆n = {x ∈ RN : |Cwn(x)| > δ} is such that∫

∆n

|wn|2
∗
6 Ŝ.

This implies, besides (5.2), that∫
|x|>R

K(x)F
(
|Cwn|2

)
dx 6 εC2∗‖K‖∞

∫
Bc

R(0)
|wn|2

∗
dx + Cε

∫
Bc

R(0)∩∆n

K(x)dx,

and from (1.3)

lim
R→+∞

∫
|x|>R

K(x)F
(
|Cwn|2

)
dx 6 εŜC2∗‖K‖∞, uniformly in n.

On the other hand, for any R > 0, from ( f 1) and Strauss’ compactness lemma (see [10])

lim
n→+∞

∫
|x|6R

K(x)F
(
|Cwn|2

)
dx = 0,

which shows that (3.8) holds and (un) is bounded in D1,2
A (RN , C).

To prove Theorem 1.2, it is important to show that (un) converges in D1,2
A (RN , C). In this

way we can see that

lim
n→+∞

∫
RN

K(x) f (|un|2)|un|2dx =
∫

RN
K(x) f (|u|2)|u|2dx. (5.3)

To verify (5.3), consider En =
{

x ∈ RN : |un(x)| > δ
}

which satisfies supn∈N |En| < ∞.
From (5.1) ∫

|x|>R
K(x) f (|un|2)|un|2dx 6 ε‖K‖∞

∫
Bc

R(0)
|un|2

∗
dx + Cε

∫
Bc

R(0)∩En

K(x)dx

and from (1.3)

lim sup
R→+∞

∫
|x|>R

K(x) f (|un|2)|un|2dx 6 εŜ‖K‖∞, uniformly in n.

Again, from ( f 1) and Strauss’ compactness lemma

lim
n→+∞

∫
|x|6R

K(x) f (|un|2)|un|2dx =
∫
|x|6R

K(x) f (|u|2)|u|2dx,

for all r > 0 fixed, and it shows that (5.3) holds. Since I′(un)un → 0, (5.3) implies that

lim
n→+∞

∫
RN
|∇Aun|2dx =

∫
RN

K(x) f (|u|2)|u|2dx =
∫

RN
|∇Au|2dx

finishing the proof of Theorem 1.2.
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