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Abstract. We establish necessary and sufficient conditions for the existence of peri-
odic solutions to second-order nonlinear difference equations of the form ∆2xi + λxi +
∆ f (xi) = ei, i ∈N, and for a simpler equation with difference-free nonlinearity.

The linear part of the equation has two-dimensional kernel.
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1 Introduction

The problem of finding periodic solutions for discrete semilinear systems has been studied
in recent years by many authors, with emphasis in a variety of features and with recourse
to several techniques. Among the extensive literature on this kind of problems, let us men-
tion a selection of papers (see also their references) which display also a variety of methods
used: Lyapunov–Schmidt reduction, Brouwer fixed point theorem [1, 11, 12], minimax meth-
ods, critical point theory, Morse theory [3, 8, 10, 13, 15], upper and lower solutions [2, 4, 5].
See also [14] for the analysis of linear eigenvalue theory.

If one considers, in particular, second order scalar difference equations, it turns out that
an interesting feature of periodic problems is that they provide resonance models that may
involve a linear operator whose kernel has dimension one or two. Both settings have been
considered in some of the above mentioned articles. An illustration of peculiarities of such
problems can found in [11].

Our purpose in this paper is to study a problem where, on one hand, we have to deal
with a two-dimensional kernel and, on the other hand, the nonlinear part involves first order
differences. Our motivation goes back to the paper of A. C. Lazer [9], where the existence of
2π-periodic solutions to the resonant problem

u′′ + u +
(

F(u)
)′
= e(t) (1.1)
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is studied. Here e is continuous, 2π-periodic, and F is C1. Necessary and sufficient conditions
for existence are found, in terms of the size of the projection of e onto the kernel of the
linear part: namely, if a sin t + b cos t appears in the Fourier series of e, then the condition for
existence is found to be

π
√

a2 + b2 < 2
(

F(∞) − F(−∞)
)
. (1.2)

We propose to consider the difference equation whose structure is reminiscent of (1.1). Specif-
ically, we want to give criteria for the existence of N-periodic solutions to the second-order
nonlinear difference equation

∆2xi + λxi + ∆ f (xi) = ei, i ∈N, (1.3)

where, considering the jump h = 2π
N , we define the difference operators as

∆2xi =
1
h2 (xi+1 − 2xi + xi−1)

and

∆ f (xi) =
1
h
(

f (xi) − f (xi−1)
)
.

In addition, f : R→ R is a given function, λ = N2

π2 sin2 π
N is the smallest positive eigenvalue

of −∆2 with N-periodic conditions (which approaches 1 as N grows larger) and e = (ei) is a
N-periodic vector.

Therefore, the underlying linear operator in our discrete system has in fact two-dimen-
sional kernel; on the other hand the nonlinear term contains first order differences. However,
because it appears as a by-product of the method, we deal also with the (simpler) version in
which the nonlinearity is difference-free

∆2xi + λxi + f (xi) = ei, i ∈N. (1.4)

It is our purpose to relate the existence of periodic solutions to (1.3) – or (1.4) – to some
relationship between f , e and the kernel of the linear operator ∆2 + λ acting on N-periodic
vectors.

We shall proceed by rephrasing the Poincaré–Miranda theorem in appropriate form, so
that it can be used to recover results that correspond to those given by Lazer in [9]. Our
necessary or sufficient conditions for existence are a little more complicated than those in [9]
because the discretization does not allow a sharp statement; they are close to the conditions
in [9] when N is large, but it will be seen that we need to introduce “correcting terms” in the
corresponding inequalities.

Since N-periodic sequences can be identified with vectors in RN , we henceforth identify
the elements of RN with such sequences, that may be indexed in Z. It will be convenient to
consider the following norm and the associated inner product in N-dimensional space:

‖x‖ =

√√√√h
N

∑
i=1

x2
i .

It is easy to see that the kernel of the operator ∆2 + λ is 2-dimensional and is spanned by
s and c, with

sj = sin
(

2π j
N

)
and cj = cos

(
2π j
N

)
.
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With the previous definition in mind, we have that s and c are orthogonal and ‖s‖2 =

‖c‖2 = π.
Another useful observation is that the linear operator ∆2 acting on periodic vectors is

symmetric. That is, we can write it in matrix form as the N × N symmetric matrix

N2

4π2


−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

1 0 0 · · · −2

 .

Hence, setting
A = ∆2 + λ,

we have
N

∑
i=1

(∆2ai + λai)bi = (Aa) · b = a · (Ab) =
N

∑
i=1

ai(∆2bi + λbi).

From this, it also follows that the kernel and the image of the operator A are orthogonal
(Im(A) = Ker(A)⊥) and any x ∈ RN can be written uniquely as x = αs + βc + w, for some
α, β ∈ R and w ∈ M := Im(A).

As already stated, we think of e and the solution x as N-periodic vectors, which are iden-
tified with elements of RN . We consider the orthogonal projection of e on Ker(A), denoted
by

As + Bc

meaning that

A =
h
π

N

∑
i=1

ei sin
(

2πi
N

)
, B =

h
π

N

∑
i=1

ei cos
(

2πi
N

)
. (1.5)

We also set
f (−∞) = lim

t→−∞
f (t), f (∞) = lim

t→+∞
f (t)

and
m = sup

t∈R

| f (t)|. (1.6)

Before stating the main results, further notation must be introduced. For θ ∈ R consider
the N-periodic vector σj = σj(θ) = sin

(
θ + 2π j

N

)
. Let x+ = max{x, 0}. We introduce the num-

bers αN , βN by

αN = min
θ∈R

h
N

∑
j=1

σ+
j , βN = max

θ∈R
h

N

∑
j=1

σ+
j (1.7)

and we also set

α′N := 2 cos
π

N
cos

2π

N
. (1.8)

It is easily seen that the sequences αN , βN and α′N have limit 2 as N → ∞.
In order to simplify the statements and proofs, we shall take N to be a multiple of 4.

This assumption will not appear in the statements.
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Theorem 1.1. Let {ei}i∈N be N-periodic and f : R→ R be a continuous function such that f (∞)

and f (−∞) are finite. Then with the notation of (1.5), (1.6) and (1.8):

(i) Suppose that ∀x ∈ R, f (−∞) < f (x) < f (∞). Then if the equation (1.3) has a N-periodic
solution, the condition

π
√

A2 + B2 < 2
(

f (∞) − f (−∞)
)

is satisfied.

(ii) Assume that
π
√

A2 + B2 + 4 m sin
π

N
< α′N

(
f (∞) − f (−∞)

)
. (1.9)

Then equation (1.3) has a N-periodic solution.

Theorem 1.2. Let {ei}i∈N be N-periodic and f : R→ R be a continuous function such that f (∞)

and f (−∞) are finite. With the notation of (1.5), (1.6) and (1.7):

(i) Suppose that ∀x ∈ R, f (−∞) < f (x) < f (∞). Then if the equation (1.4) has a N-periodic
solution, the condition

π
√

A2 + B2 < βN
(

f (∞) − f (−∞)
)

(1.10)

holds.

(ii) Assume that
π
√

A2 + B2 + 8 mπ2/N2 < αN
(

f (∞) − f (−∞)
)
. (1.11)

Then equation (1.4) has a N-periodic solution.

Remark 1.3. In the above conditions (1.9), (1.10), (1.11), we must use the approximations αN ,
βN , α′N , rather than the constant 2 (the integral of sin+ over a period) that appears in [9].
Moreover, we add “correcting terms” that behave as O(1/N) and O(1/N2), respectively, and
are not needed when one deals with a differential equation. Our conditions make sense for
large values of N.

2 Auxiliary results

We shall use the following elementary formula for “summing by parts”.

Lemma 2.1. Let ai and bi be two N-periodic vectors. Setting ∆ai = ai − ai−1 we have:

N

∑
i=1

∆aibi = −
N

∑
i=1

ai ∆bi+1.

Let us recall the Poincaré–Miranda’s theorem, stated as follows.

Theorem 2.2. Let Li > 0, i=1, . . . , N, Ω =
{

x ∈ RN : |xi| ≤ Li, i=1, . . . , N
}

and f : Ω→ RN

be continuous satisfying:

fi
(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN
)
≥ 0 for 1 ≤ i ≤ N,

fi
(
x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN

)
≤ 0 for 1 ≤ i ≤ N.

Then, f (x) = 0 has a solution in Ω.
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We need slight variations of this statement, where the vector field is defined on a product
of intervals with a ball. Although such versions may be related to the approach of [7], we
include simple proofs for completeness.

In what follows we shall denote by γ the orthogonal projection of RN = RN−2 ×R2 onto
the second factor R2.

Proposition 2.3. Let Li (i=1, . . . , N) and R be positive numbers. Let Ω =
{

x ∈ RN : |xi| ≤ Li,

i = 1, . . . , N − 2, x2
N−1 + x2

N ≤ R2} =
N−2
∏
i=1

[−Li, Li] × BR ⊆ RN−2 ×R2 and f : Ω→ RN be a

continuous function satisfying:

fi
(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN
)
< 0 for 1 ≤ i ≤ N − 2,

fi
(
x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN

)
> 0 for 1 ≤ i ≤ N − 2

and
∀x ∈

N−2

∏
i=1

[−Li, Li] × ∂BR, f (x) · γx > 0.

Then there exists x∗ ∈ Ω such that f (x∗) = 0.

Proof. We use a standard compactness argument to show that there exists ε > 0 such that the
mapping x 7→ x − ε f (x) maps Ω into Ω. The conclusion follows from Brouwer’s fixed point
theorem. In fact, if the claim is not true, we find εn ↓ 0 and xn ∈ Ω such that xn− εn f (xn) 6∈ Ω.
Then, considering subsequences if necessary, either there exists i ∈ {1, . . . , n − 2} such that,
say

xni − εn fi(xn) > Li

or
‖γxn − εnγ f (xn)‖ > R2.

We may suppose that xn → x. In the first case we obtain xi ≥ Li, that is, xi = Li, and then,
by the continuity of f and the assumption on fi, the first inequality gives a contradiction for
large n. In the second case, setting M = maxz∈Ω ‖ f (z)‖, we have

‖γxn‖2 − 2 εnγxn · γ f (xn) + M2ε2
n > R2.

The previous argument then gives ‖γx‖ = R and, since by the assumptions limn→∞ γxn ·
γ f (xn) > 0, again a contradiction for large n is obtained.

Proposition 2.3 is a very natural generalization of Poincaré–Miranda’s theorem, as the
dot product condition gives a reasonable notion of the vector field “to point outside” of the
domain. Finally, we state a last version of the result, with a variation of the dot product
condition.

Proposition 2.4. Let Ω be as in the preceding proposition and f : Ω→ RN be a continuous function
satisfying:

fi
(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN
)
< 0 for 1 ≤ i ≤ N − 2,

fi
(

x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN
)
> 0 for 1 ≤ i ≤ N − 2

and

∀x ∈
(N−2

∏
i=1

[−Li, Li]

)
× ∂BR, f (x) · ρ(γx) > 0,

where ρ denotes a rotation of angle π
2 in the plane R2.

Then there exists x∗ ∈ Ω such that f (x∗) = 0.
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Proof. Define g : Ω→ RN by g(x) = f
(
x − γ(x), ρ−1(γ(x))

)
. Then g satisfies the conditions

of the previous proposition. The conclusion follows.

Now let Q, P : RN → RN be the orthogonal projections onto Ker(A) and M = Ker(A)⊥,
respectively. Let K : M→ M be defined by

K =

(
A∣∣M

)−1

.

We now write problem (1.3) in operator form as

Ax + G(x) = e

where G : RN → RN is the nonlinear map whose i-th component is 1
h

(
f (xi) − f (xi−1)

)
.

Using the orthogonal decomposition x = u + v, with u ∈ Ker(A) and v ∈ M, we obtain

Ax + G(x) = e ⇐⇒ Av + G(u + v) = e

or equivalently

v − K
(
−PG(u + v) + Pe

)
= 0, QG(u + v) − Qe = 0. (2.1)

We can then define V : M × Ker(A)→ M × Ker(A) by:

V(v, u) =
(

v − K
(
−PG(u + v) + Pe

)
, QG(u + v) − Qe

)
,

and conclude that:

Proposition 2.5. The periodic problem (1.3) has a solution if and only if there is a solution to
V(v, u) = 0.

3 Proof of Theorem 1.2

We start with some simple remarks and notation. Recall the meaning of the expression

σi = σi(t) = sin
(

t +
2πi
N

)
and set

S+ =
{

i : σi > 0, i = 1, . . . , N
}

, S− =
{

i : σi < 0, i = 1, . . . , N
}

.

Since N is even, there is at most an index i∗ ∈ S+ such that 0 < σi∗ < sin π
N . In such case,

there exists a (unique) j∗ ∈ S− with |σj∗| = σi∗ < sin π
N . In fact it is easy to see that, assuming

without loss of generality that − 2π
N < t ≤ 0, we have i∗ = 1 or i∗ = N

2 . Let us then define

S+∗ = S+\ i∗, S−∗ = S+\ j∗ .

Otherwise, if σi ≥ sin π
N for all i ∈ S+, put

S+∗ = S+, S−∗ = S−.
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We are now ready to present the proof for the case of a difference-free nonlinearity.
The abstract approach is very similar to the one described above, where we replace G with
F : RN → RN which is defined component-wise as Fi(x) = f (xi). Hence we consider the
operator problem

Ax + F (x) = e.

As before, finding a periodic solution to (1.2) is equivalent to solving

W(v, u) :=
(

v − K
(
−PF (u + v) + Pe

)
, QF (u + v) − Qe

)
= 0.

Proof. (i) Let x be a solution of (1.4) and consider the orthogonal splitting of e,

e = As + Bc + w,

where A, B ∈ R and w ∈ M. The inner product of equation (1.4) with z = As + Bc yields

F (x) · z = e · z = ‖z‖2 = π(A2 + B2).

On the other hand

F (x) · z = h
N

∑
i=1

f (xi) zi

and there exists ϕ ∈ R such that zi =
√

A2 + B2 sin
(

ϕ + 2πi
N

)
. Hence summing separately over

the sets of indices where the zi are positive and where the zi are negative and using the
definition of βN and the assumption of (i) we obtain

π(A2 + B2) < βN

√
A2 + B2

(
f (∞) − f (−∞)

)
.

(ii) We have to prove that W(v, u) = 0 has a solution, using the analogue of Proposi-
tion 2.5. Suppose that (1.11) holds.

First, we want to show that there exists an L > 0 such that

(∗) If vi = L, then Wi(v, u) > 0 (respectively if vi = −L, then Wi(v, u) < 0), for 1 ≤ i ≤ N−2.
Here of course the vi are coordinates with respect to some basis of M.

To this purpose it suffices to prove that K
(
−PF (u + v) + Pe

)
is bounded.

Since K is linear there is a constant C such that:

‖Kx‖ ≤ C‖x‖, ∀x ∈ RN .

Since f is bounded, so is F and we have

‖ − F (u + v) + e‖ ≤ C∗ for some C∗ ∈ R.

Since P is an orthogonal projection, it follows then that∥∥K
(
−PF (u + v) + e

)∥∥ ≤ C
∥∥P
(
−F (u + v) + e

)∥∥
≤ CC∗.

Therefore we can pick up a positive number L with the property (∗).
Now fix ε such that

π
√

A2 + B2 + 8 mπ2/N2 < αN
(

f (∞) − f (−∞) − 2 ε
)
.
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Consider a ball in Ker(A) with radius R. Let u be on the boundary of the ball, with
u = αs + βc. There exists t ∈ R so that we can write

u =
√

α2 + β2 σ, σi = sin
(

2πi
N

+ t
)

.

In particular R =
√

π(α2 + β2). Let v ∈ M with |vi| ≤ L. Then, with the notation introduced
in the beginning of this section

Q
(
F (u + v) − e

)
· u = F (u + v) · u − e · u

≥ h
N

∑
i=1

f (ui + vi)ui − π
√

A2 + B2
√

α2 + β2

= h ∑
i∈S+∗

f
(

R√
π

σi + vi

)
R√
π

σi + h f
(

R√
π

σi∗ + vi∗

)
R√
π

σi∗

+ h ∑
i∈S−∗

f
(

R√
π

σi + vi

)
R√
π

σi + h f
(

R√
π

σj∗ + vj∗

)
R√
π

σj∗

− π
√

A2 + B2
√

α2 + β2

where the summands that contain h f
( R√

π
σi∗ + vi∗

)
and h f

( R√
π

σj∗ + vj∗
)

appear only if i∗ and
j∗ exist.

Let R be so large that
R√
π

sin
π

N
− L > T

where T is such that

f (x) > f (+∞) − ε ∀x ≥ T, f (x) < f (−∞) + ε ∀x ≤ −T.

Hence, using symmetry, in any case the above expression is greater than

R√
π

((
f (+∞) − ε

)
h ∑

i∈S+∗
σi −

(
f (−∞) + ε

)
h ∑

i∈S−∗
|σi| − 2 hm

π

N
− π

√
A2 + B2

)
≥

≥ R√
π

((
f (+∞) − f (−∞) − 2 ε

)
h ∑

i∈S+∗
σi − 4 m

π2

N2 − π
√

A2 + B2

)

≥ R√
π

((
f (+∞) − f (−∞) − 2 ε

)(
αN − h

π

N

)
− 4 m

π2

N2 − π
√

A2 + B2

)
≥ R√

π

((
f (+∞) − f (−∞) − 2 ε

)
αN − 8 m

π2

N2 − π
√

A2 + B2

)
> 0.

By Proposition 2.3, it follows that there is a solution to W(v, u) = 0 and, consequently,
a solution to the periodic problem (1.2).
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4 Proof of the main result

First we list some elementary facts to be used in the sequel.

Lemma 4.1. If σi(t) > sin π
N , then σi+1(t + π

2 ) < σi(t + π
2 ). If 0 ≤ σk(t) ≤ sin π

N then∣∣∣∣σk+1

(
t +

π

2

)
− σk

(
t +

π

2

)∣∣∣∣ ≤ 2 sin
π

N
.

Proof. It suffices to remark that σi+1
(
t + π

2

)
− σi

(
t + π

2

)
= −2 sin π

N sin
( 2πi

N + π
N + t

)
.

Lemma 4.2.
N

∑
i=1

(
σi+1(t) − σi(t)

)+ ≤ 2.

Lemma 4.3. ∑
i∈S+∗

(
σi+1

(
t +

π

2

)
− σi

(
t +

π

2

))−
≥ 2 cos

2π

N
cos

π

N
.

Proof. Suppose first that i∗ exists, and to fix ideas i∗=1. Then we may take S+∗={2, . . . , N/2}
and − 2π

N < t < − π
N

(
so that in fact 0 < 2π

N + t < π
N

)
. Then, writing N = 4p and using the el-

ementary formula for sin x − sin y,

∑
i∈S+∗

(
σi+1

(
t +

π

2

)
− σi

(
t +

π

2

))−
=

N/2

∑
i=2

[
sin
(

2π(i + 1 + p)
N

+ t
)
− sin

(
2π(i + p)

N
+ t
)]−

= sin
(

2π(2 + p)
N

+ t
)
− sin

(
2π(N

2 + p + 1)
N

+ t
)

= sin
(

4π + 2πp
N

+ t
)
− sin

(
Nπ + 2π + 2πp

N
+ t
)

= 2 cos
(

3π

N
+ t
)

cos
π

N
.

Since 3π
N + t ∈

[
π
N , 2π

N

]
, the inequality follows.

Now suppose that S+∗ = S+. Then either S+∗ = {1, . . . , N/2} with t = − π
N or S+∗ =

{1, . . . , N/2− 1} with t = 0. In the first case the sum is 2− 2
(
1− cos π

N

)
= 2 cos π

N . In the
second case the sum is equal to 2−

(
1− cos 2π

N

)
= 1+ cos 2π

N . In both cases the result is greater
than 2 cos 2π

N cos π
N .

Remark 4.4. The fact that N is a multiple of 4 yields a simple formulation and proof of the
above lemma.

We now prove Theorem 1.1.

Proof. (i) Let x be a solution to (1.1) and consider again the orthogonal splitting of e,

e = As + Bc + w,

where A, B ∈ R and w ∈ M. The inner product of equation (1.3) with z = As + Bc yields

G(x) · z = e · z = ‖z‖2 = π(A2 + B2).
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On the other hand, by Lemma 2.1,

G(x) · z = −h
N

∑
i=1

f (xi) (zi+1 − zi)

h
.

There exists ϕ ∈ R such that zi =
√

A2 + B2 sin
(

ϕ + 2πi
N

)
. Hence splitting the sum into

−
N

∑
i=1

f (xi) (zi+1 − zi)
+ +

N

∑
i=1

f (xi) (zi+1 − zi)
−

and using the assumptions and Lemma 4.2 we obtain

π(A2 + B2) < 2
√

A2 + B2
(

f (∞) − f (−∞)
)
.

(ii) By Proposition 2.5, we only need to prove that V(v, u) = 0 has a solution, which we
do using Proposition 2.4. Suppose that (1.9) holds.

First, we want to show that there exists an L such that if vi = L, then Vi(v, u) > 0
(respectively if vi = −L, then Vi(v, u) < 0), for 1 ≤ i ≤ N − 2. It suffices then to prove that
K
(
−PG(u + v) + Pe

)
is bounded, and this is done the same way as given in the proof of

Theorem 2.2 (note that G is bounded as well).
Let ε > 0 be such that(

f (+∞) − f (−∞) − 2 ε
)

α′N − 4 m sin
π

N
− π

√
A2 + B2 > 0

and fix T > 0 such that

f (x) > f (+∞) − ε ∀x ≥ T, f (x) < f (−∞) + ε ∀x ≤ −T.

Consider now a ball in Ker(∆2 + λ) with radius R so that R√
π

sin π
N − L > T. Let u be

on the boundary of the ball, with u = αs + βc, meaning that R =
√

π(α2 + β2). Consider the
rotation ρ of angle π/2 in this two-dimensional subspace, given by

ρ(u) = −βs + αc.

It is easily seen that, if ui =
R√
π

sin
( 2πi

N + t
)
, then ρ(u)i =

R√
π

sin
( 2πi

N + t + π
2

)
. Then we com-

pute, with |vi| ≤ L:

Q
(
G(u + v) − e

)
· ρ(u) = G(u + v) · ρ(u) − e · ρ(u)

≥ h
N

∑
i=1

∆ f (ui + vi) ρ(u)i − π
√

A2 + B2
√

α2 + β2

= −
N

∑
i=1

f (ui + vi)
(
ρ(u)i+1 − ρ(u)i

)
− π

√
A2 + B2

√
α2 + β2.

Noticing that the σi and the differences ρ(u)i+1 − ρ(u)i have opposite signs (as they lie in
sine graphs misaligned by a translation of π

2 ) we may write

−
N

∑
i=1

f (ui + vi)
(
ρ(u)i+1 − ρ(u)i

)
= ∑

i∈S+

f
(

R√
π

σi + vi

)(
ρ(u)i+1 − ρ(u)i

)− − ∑
i∈S−

f
(

R√
π

σi + vi

)(
ρ(u)i+1 − ρ(u)i

)+.
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Hence

Q
(
G(u + v) − e

)
· ρ(u)

≥ ∑
i∈S+∗

f
(

R√
π

σi + vi

)(
ρ(u)i+1 − ρ(u)i

)− − ∑
i∈S−∗

f
(

R√
π

σi + vi

)(
ρ(u)i+1 − ρ(u)i

)+
− m

(
ρ(u)i∗+1 − ρ(u)i∗

)− − m
(
ρ(u)j∗+1 − ρ(u)j∗

)+ − π
√

A2 + B2
√

α2 + β2 .

By Lemmas 4.1 and 4.3 and the definition of α′N we obtain

Q
(
G(u + v) − e

)
· ρ(u) ≥ R√

π

((
f (+∞) − f (−∞) − 2 ε

)
α′N − 4 m sin

π

N
− π

√
A2+B2

)
> 0.

We then conclude that there exists a solution to V(v, u) = 0 and therefore there exists a
periodic solution to (1.3).

A final remark is in order. The estimates for L and R obtained in the proof of Theorem 1.1
depend on N. However under natural assumptions we can show that norms of the solutions
are kept below some constant. This is so because there exist a priori bounds for the solutions
of (1.3) which do not depend on N. To see this, suppose that e = eN is defined for all N and
that

E := sup
N
‖eN‖ < ∞.

Keeping the notation introduced in section 2, consider a solution x = v + u. Let us decom-
pose v into

v = (c, c, . . . , c) + w

where c ∈ R and w is orthogonal to (1, 1, . . . , 1) (and, of course, to s and c as well). The inner
product of (1.3) with (c, c, . . . , c) yields

λ|c| ≤ E.

The next step consists in proving that w is bounded. In fact the inner product of (1.3) with w
gives

−1
h

N

∑
i=1

(
wi+1wi − 2 w2

i + wi−1wi
)
= λ‖w‖2 +

N

∑
i=1

f (ui + vi) (wi+1 − wi) − e · w + 2π λc‖w‖.

Hence

N
2π

N

∑
i=1

(wi+1 − wi)
2 ≤ λ‖w‖2 + C‖w‖ + m

√√√√N
N

∑
i=1

(wi+1 − wi)2

where C is a constant independent of N. Recall that λ = λN stays close to 1 for large N.
Now we claim that for all w orthogonal to (1, 1, . . . , 1), s and c we have

N

∑
i=1

(wi+1 − wi)
2 ≥ 4 sin2 2π

N

N

∑
i=1

w2
i . (4.1)

Combining this with the previous inequality we conclude that the quantity

N

∑
i=1
|wi+1 − wi|
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is bounded independently of N and therefore (using the fact that w has components with both
signs) it follows that there is a constant L such that, for all N,

|wi| ≤ L, ∀i = 1, . . . , N.

Finally we consider the boundedness of the component u. Assume in addition that there
exists δ > 0 such that

π
√

A2 + B2 + δ < 2
(

f (∞) − f (−∞)
)

for all sufficiently large N (recall that A = AN and B = BN although we omit the subscript).
If the components of u are ui = R sin

(
t+ 2πi

N

)
, we consider ũ with ũi = R sin

(
t+ π

2 + 2πi
N

)
. The

inner product of the second equation in (2.1) with ũ gives

N

∑
i=1

f (ui + vi) (ũi+1 − ũi) = Q e · ũ

or equivalently

N

∑
i=1

f

(
R sin

(
t +

2πi
N

)
+ vi

)
2 sin

π

N
sin
(

2πi
N

+
π

N
+ t
)
= h

N

∑
i=1

ei sin
(

t +
π

2
+

2πi
N

)
,

which implies

ξN
2π

N

N

∑
i=1

f

(
R sin

(
t +

2πi
N

)
+ vi

)
sin
(

2πi
N

+
π

N
+ t
)
≤ π

√
A2 + B2

where ξN → 1 as N → ∞. Given the boundedness of the vi it is not difficult to see that,
for all large N and R sufficiently large, the left-hand side becomes arbitrarily close to
2
(

f (∞) − f (−∞)
)
, a contradiction with the assumption.

For completeness, we provide a

Proof of (4.1). We compute the minimum of the quadratic form ∑N
i=1(wi+1 − wi)

2 in the unit
sphere (for the standard norm of RN) of the subspace M′ consisting of vectors orthogonal to
(1, 1, . . . , 1), s and c. Since in the unit sphere

N

∑
i=1

(wi+1 − wi)
2 = 2− 2

N

∑
i=1

(wi+1wi)

we have only to compute the maximum of 2 ∑N
i=1(wi+1wi) in the sphere. Now the matrix of

this quadratic form 
0 1 0 · · · 0 1
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

1 0 0 · · · 1 0


is symmetric and circulant, hence it shares the same eigenvectors of the matrix for ∆2.
By elementary properties of circulant matrices (see e.g. [6]), the eigenvalues corresponding
to eigenvectors in M′ are the numbers 2 cos jπ

N , j = 4, . . . , N
2 − 1. The greatest of them is

2 cos 4π
N = 2− 4 sin2 2π

N . This completes the proof.
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