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Abstract. In this paper, we investigate the derivative dependent second-order problem
subject to Stieltjes integral boundary conditions{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],
au(0)− bu′(0) = α[u], cu(1) + du′(1) = β[u],

where f : [0, 1]×R+ ×R → R+ is continuous, α[u] and β[u] are linear functionals in-
volving Stieltjes integrals. Some inequality conditions on nonlinearity f and the spectral
radius condition of linear operator are presented that guarantee the existence of posi-
tive solutions to the problem by the theory of fixed point index. Not only is the general
case considered but a large range of coefficients can be chosen to weaken the condi-
tions in previous work for some special cases. The conditions allow that f (t, x1, x2)
has superlinear or sublinear growth in x1, x2. Two examples are provided to illustrate
the theorems under multi-point and integral boundary conditions with sign-changing
coefficients.
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1 Introduction

The existence of solutions for second-order boundary value problem (BVP) with dependence
on derivative in nonlinearity{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = u(1) = 0
(1.1)
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was considered by Li [8], where f : [0, 1] ×R+ ×R → R+ is continuous. The results of [8]
extend those of [16] in which only sublinear problem was treated. Recently, the authors in
[17] studied the existence of positive solutions for BVP{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = α[u], u′(1) = 0,
(1.2)

where f : [0, 1]×R+ ×R+ → R+ is continuous and α[u] =
∫ 1

0 u(t)dA(t) is a Stieltjes integral
with the function A of bounded variation. In [8,17], the theory of fixed point index is applied
and the nonlinearity f (t, x1, x2) has superlinear or sublinear growth on x1 and x2. Zima [18]
studied the problem with au(0)− bu′(0) = α[u], u′(1) = β[u] for positive measures and also
allows f to be singular in u, u′.

In this paper, we discuss the existence of positive solutions for the general derivative
dependent BVP subject to Stieltjes integral boundary conditions{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

au(0)− bu′(0) = α[u], cu(1) + du′(1) = β[u],
(1.3)

where a, b, c and d are nonnegative constants with ρ = ac + ad + bc > 0, α and β denote linear
functionals given by

α[u] =
∫ 1

0
u(t)dA(t), β[u] =

∫ 1

0
u(t)dB(t)

involving Stieltjes integrals with suitable functions A, B of bounded variation. The problem
(1.3) but with f not positive was studied by Webb in [11].

The features of the paper are stated in the following three aspects.
1. The method in [8] depends essentially on the zero boundary conditions u(0) = u(1) = 0,

and in [17] the problem is only considered under the boundary assumption u′(1) = 0. We
study the more general case with the terms α[u] and β[u] included in this paper.

2. The sign of the derivative with respect to t of the corresponding Green’s function does
not change in [17] so that the monotonicity is led into constructing the cones. However for
BVP (1.3) the derivative of the Green’s function may be sign-changing.

3. Not only is the general case investigated but a large range of coefficients can be chosen
to weaken the conditions in [8] for special cases, see Remarks 3.6, 3.9 and 4.3 behind. The
spectral radius conditions of associated linear operators are also used in [17] similar to the
ones here, but those operators involve the term u′ and are defined on the space C1 which are
different from here. Actually for BVP (1.2) the conditions in [17] do not be covered here, and
vice versa, see Remarks 3.10 and 3.11 for details.

We first apply the method due to Webb and Infante [13] to give the corresponding Green’s
function and discuss the inequalities about it and its derivative. Meanwhile two cones are con-
structed, the large one induces the partial ordering and the small is employed to compute the
fixed point index later. Then the theory of fixed point index is used to establish the existence
of positive solutions to BVP (1.3) under some inequality conditions on nonlinearity f and the
spectral radius condition of linear operator. Finally, two examples are provided to illustrate
the theorems under multi-point and integral boundary conditions with sign-changing coeffi-
cients. Some relevant articles are referred to for nonlocal boundary problems, for example,
[4, 9, 10, 13–15], and for BVPs with dependence on the first-order derivative in nonlinearities
such as [5, 6, 12].
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2 Preliminaries

Let C1[0, 1] denote the Banach space of all continuously differentiable functions on [0, 1] with
the norm

‖u‖C1 = max{‖u‖C, ‖u′‖C} = max
{

max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}

.

We first make the assumption:

(C1) f : [0, 1]×R+ ×R→ R+ is continuous, here R+ = [0, ∞).

As shown by Webb and Infante [13], BVP (1.3) has a solution if and only if there exists a
solution in C1[0, 1] for the following integral equation

u(t) = γ1(t)α[u] + γ2(t)β[u] +
∫ 1

0
k(t, s) f (s, u(s), u′(s))ds =: (Tu)(t), (2.1)

where

γ1(t) =
c(1− t) + d

ρ
, γ2(t) =

b + at
ρ

,

k(t, s) =
1
ρ

{
(as + b)(c + d− ct), 0 ≤ s ≤ t ≤ 1,

(at + b)(c + d− cs), 0 ≤ t ≤ s ≤ 1.
(2.2)

We also impose the following hypotheses:

(C2) A and B are of bounded variation and for s ∈ [0, 1],

KA(s) :=
∫ 1

0
k(t, s)dA(t) ≥ 0, KB(s) :=

∫ 1

0
k(t, s)dB(t) ≥ 0;

(C3) 0 ≤ α[γ1] < 1, β[γ1] ≥ 0, 0 ≤ β[γ2] < 1, α[γ2] ≥ 0, and

D := (1− α[γ1])(1− β[γ2])− α[γ2]β[γ1] > 0.

Adopting the notations and ideas in [13], define the operator S as

(Su)(t) =
γ1(t)

D

[
(1− β[γ2])

∫ 1

0
KA(s) f (s, u(s), u′(s))ds + α[γ2]

∫ 1

0
KB(s) f (s, u(s), u′(s))ds]

]
+

γ2(t)
D

[
β[γ1]

∫ 1

0
KA(s) f (s, u(s), u′(s))ds + (1− α[γ1])

∫ 1

0
KB(s) f (s, u(s), u′(s))ds

]
+
∫ 1

0
k(t, s) f

(
s, u(s), u′(s)

)
ds

=:
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds

i.e.,

(Su)(t) =
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds, (2.3)

where

kS(t, s) =
γ1(t)

D
[(1− β[γ2])KA(s) + α[γ2]KB(s)]

+
γ2(t)

D
[β[γ1]KA(s) + (1− α[γ1])KB(s)] + k(t, s). (2.4)

By direct calculation, we easily get the inequalities about Green’s function in Lemma 2.1.
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Lemma 2.1. If (C2) and (C3) hold, then there exists a nonnegative continuous function Φ(s) satisfying

c(t)Φ(s) ≤ kS(t, s) ≤ Φ(s) for t, s ∈ [0, 1],

where c(t) = min{t, 1− t} and

Φ(s) =
c + d
ρD

[(1− β[γ2])KA(s)+α[γ2]KB(s)]+
a + b
ρD

[β[γ1]KA(s)+(1− α[γ1])KB(s)]+k(s, s).

By (2.4)∣∣∣∣∂kS(t, s)
∂t

∣∣∣∣ ≤ ∣∣∣∣−c
ρD

[(1− β[γ2])KA(s) + α[γ2]KB(s)] +
a

ρD
[β[γ1]KA(s) + (1− α[γ1])KB(s)]

∣∣∣∣
+

∣∣∣∣∂k(t, s)
∂t

∣∣∣∣
≤
∣∣∣∣−c
ρD

[(1− β[γ2])KA(s) + α[γ2]KB(s)] +
a

ρD
[β[γ1]KA(s) + (1− α[γ1])KB(s)]

∣∣∣∣
+

1
ρ

max{a(c + d− cs), c(as + b)} =: Φ1(s), (2.5)

where
∂k(t, s)

∂t
=

1
ρ

{
−c(as + b), 0 ≤ s ≤ t ≤ 1,

a(c + d− cs), 0 ≤ t ≤ s ≤ 1.

Define two cones in C1[0, 1] and two linear operators in C[0, 1] as follow:

P =
{

u ∈ C1[0, 1] : u(t) ≥ 0, ∀t ∈ [0, 1]
}

, (2.6)

K =
{

u ∈ P : u(t) ≥ c(t)‖u‖C, ∀t ∈ [0, 1]; α[u] ≥ 0, β[u] ≥ 0
}

, (2.7)

(Lu)(t) =
∫ 1

0
kS(t, s)u(s)ds, u ∈ C[0, 1], (2.8)

(L∗u)(s) =
∫ 1

0
kS(t, s)u(t)dt, u ∈ C[0, 1]. (2.9)

We write u � v equivalently v � u if and only if v − u ∈ P, to denote the cone ordering
induced by P.

Lemma 2.2. If (C1)–(C3) hold, then S : P → K and L, L∗ : C[0, 1] → C[0, 1] are completely contin-
uous operators with L(P) ⊂ K.

Proof. From (2.3), (2.4) and (C1)–(C3) we have for u ∈ P that (Su)(t) ≥ 0. It is easy to see from
(C1) that S : P → C1[0, 1] is continuous. Let F be a bounded set in P, then there exists M > 0
such that ‖u‖C1 ≤ M for all u ∈ F. By (C1) and Lemma 2.1 we have that ∀u ∈ F and t ∈ [0, 1],

(Su)(t) ≤
(

max
(s,x,y)∈[0,1]×[0,M]×[−M,M]

f (s, x, y)
) ∫ 1

0
Φ(s)ds,

|(Su)′(t)| ≤
(

max
(s,x,y)∈[0,1]×[0,M]×[−M,M]

f (s, x, y)
) ∫ 1

0

∣∣∣∂kS(t, s)
∂t

∣∣∣ds

≤ max
(s,x,y)∈[0,1]×[0,M]×[−M,M]

f (s, x, y)
∫ 1

0
Φ1(s)ds,
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then S(F) is uniformly bounded in C1[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(Su)(t1)− (Su)(t2)| ≤
∫ 1

0
|kS(t1, s)− kS(t2, s)| f (s, u(s), u′(s))ds

≤
(

max
(s,x,y)∈[0,1]×[0,M]×[−M,M]

f (s, x, y)
) ∫ 1

0
|kS(t1, s)− kS(t2, s)|ds,

|(Su)′(t1)− (Su)′(t2)| ≤
∫ 1

0

∣∣k′S(t1, s)− k′S(t2, s)
∣∣ f (s, u(s), u′(s))ds

=
∫ t2

t1

∣∣k′S(t1, s)− k′S(t2, s)
∣∣ f (s, u(s), u′(s))ds

≤ 2
(

max
(s,x,y)∈[0,1]×[0,M]×[−M,M]

f (s, x, y)
) ∫ t2

t1

Φ1(s)ds,

thus S(F) and S′(F) =: {v′ : v′(t) = (Su)′(t), u ∈ F} are equicontinuous.
Therefore S : P→ C1[0, 1] is completely continuous by the Arzelà–Ascoli theorem.
For u ∈ P it follows from Lemma 2.1 that

‖Su‖C = max
0≤t≤1

(∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds

)
≤
∫ 1

0
Φ(s) f (s, u(s), u′(s))ds,

and hence for t ∈ [0, 1],

(Su)(t) =
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds ≥ c(t)

∫ 1

0
Φ(s) f (s, u(s), u′(s))ds ≥ c(t)‖Su‖C.

From (C1)–(C3) it can easily be checked that α[Su] ≥ 0 and β[Su] ≥ 0. Thus S : P→ K.
Similarly, L, L∗ : C[0, 1]→ C[0, 1] are completely continuous operators with L(P) ⊂ K.

Lemma 2.3 ([13]). If (C1)–(C3) hold, then S and T have the same fixed points in K. As a result, BVP
(1.3) has a solution if and only if S has a fixed point.

3 Main results

In order to prove the main theorems, we need the following properties of fixed point index,
see [1, 2, 7].

Lemma 3.1. Let Ω be a bounded open subset of X with 0 ∈ Ω and K be a cone in X. If A : K∩Ω→ K
is a completely continuous operator and µAu 6= u for u ∈ K ∩ ∂Ω and µ ∈ [0, 1], then the fixed point
index i(A, K ∩Ω, K) = 1.

Lemma 3.2. Let Ω be a bounded open subset of X and K be a cone in X. If A : K ∩Ω → K is a
completely continuous operator and there exists v0 ∈ K \ {0} such that u− Au 6= νv0 for u ∈ K∩ ∂Ω
and ν ≥ 0, then the fixed point index i(A, K ∩Ω, K) = 0.

Recall that a cone P in Banach space X is said to be total if X = P− P.

Lemma 3.3 (Krein–Rutman). Let P be a total cone in Banach space X and L : X → X be a completely
continuous linear operator with L(P) ⊂ P. If the spectral radius r(L) > 0, then there exists ϕ ∈
P \ {0} such that Lϕ = r(L)ϕ, where 0 denotes the zero element in X.
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The following lemma comes from [7, Theorem 2.5] and is useful for later calculations of
r(L).

Lemma 3.4. Let P be a cone in Banach space X and L : X → X be a completely continuous linear
operator with L(P) ⊂ P. If there exist v0 ∈ P \ {0} and λ0 > 0 such that Lv0 ≥ λ0v0 in the sense of
partial ordering induced by P, then there exist u0 ∈ P \ {0} and λ1 ≥ λ0 such that Lu0 = λ1u0.

In the sequel, let X = C1[0, 1] and denote Ωr = {u ∈ X : ‖u‖C1 < r} for r > 0.

Theorem 3.5. Under the hypotheses (C1)–(C3) suppose that

(F1) there exist nonnegative constants a1, b1, c1 satisfying

a1

∫ 1

0
Φ(s)ds + b1

∫ 1

0
Φ1(s)ds < 1 (3.1)

such that
f (t, x1, x2) ≤ a1x1 + b1|x2|+ c1, (3.2)

for all (t, x1, x2) ∈ [0, 1]×R+ ×R;

(F2) there exist constants a2 > 0 and r > 0 such that

f (t, x1, x2) ≥ a2x1, (3.3)

for all (t, x1, x2) ∈ [0, 1]× [0, r]× [−r, r], moreover the spectral radius r(L) ≥ 1/a2, where L
is defined by (2.8).

Then BVP (1.3) has at least one positive solution.

Proof. Let W = {u ∈ K : u = µSu, µ ∈ [0, 1]} where S and K are respectively defined in (2.3)
and (2.7).

We first assert that W is a bounded set. In fact, if u ∈W, then u = µSu for some µ ∈ [0, 1].
From Lemma 2.1 and (3.2) we have that

‖u‖C = µ max
0≤t≤1

(∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds

)
≤
∫ 1

0
Φ(s)

[
a1u(s) + b1|u′(s)|+ c1

]
ds

≤
(
a1‖u‖C + b1‖u′‖C + c1

) ∫ 1

0
Φ(s)ds,

‖u′‖C = µ max
0≤t≤1

∣∣∣∣∫ 1

0

∂kS(t, s)
∂t

f (s, u(s), u′(s))ds
∣∣∣∣

≤
∫ 1

0
Φ1(s)

[
a1u(s) + b1|u′(s)|+ c1

]
ds

≤
(
a1‖u‖C + b1‖u′‖C + c1

) ∫ 1

0
Φ1(s)ds,

thus

‖u‖C ≤
(

1− a1

∫ 1

0
Φ(s)ds

)−1(
b1‖u′‖C + c1

) ∫ 1

0
Φ(s)ds, (3.4)



Positive solutions of a derivative dependent second-order problem 7

‖u′‖C ≤
a1b1

1− a1
∫ 1

0 Φ(s)ds
‖u′‖C

( ∫ 1

0
Φ(s)ds

)( ∫ 1

0
Φ1(s)ds

)
+

a1c1

1− a1
∫ 1

0 Φ(s)ds

( ∫ 1

0
Φ(s)ds

)( ∫ 1

0
Φ1(s)ds

)
+ b1‖u′‖C

∫ 1

0
Φ1(s)ds + c1

∫ 1

0
Φ1(s)ds. (3.5)

From (3.1), (3.4) and (3.5) it follows that

‖u‖C ≤
c1
∫ 1

0 Φ(s)ds

1− a1
∫ 1

0 Φ(s)ds− b1
∫ 1

0 Φ1(s)ds
,

‖u′‖C ≤
c1
∫ 1

0 Φ1(s)ds

1− a1
∫ 1

0 Φ(s)ds− b1
∫ 1

0 Φ1(s)ds
,

and hence W is bounded.
Now select R > max{r, sup W}, then µSu 6= u for u ∈ K ∩ ∂ΩR and µ ∈ [0, 1], and

i(S, K ∩ΩR, K) = 1 follows from Lemma 3.1.
It is easy to see that L(C+[0, 1]) ⊂ P ⊂ C+[0, 1], where C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥

0, ∀t ∈ [0, 1]} is a total cone in C[0, 1]. Since r(L) ≥ 1/a2 > 0, it follows from Lemma 3.3 that
there exists ϕ0 ∈ C+[0, 1] \ {0} such that Lϕ0 = r(L)ϕ0. Furthermore, ϕ0 = (r(L))−1Lϕ0 ∈ K
by Lemma 2.2.

We may suppose that S has no fixed points in K ∩ ∂Ωr and will show that u− Su 6= νϕ0

for u ∈ K ∩ ∂Ωr and ν ≥ 0.
Otherwise, there exist u0 ∈ K ∩ ∂Ωr and ν0 ≥ 0 such that u0 − Su0 = ν0ϕ0, and it is clear

that ν0 > 0. Since u0 ∈ K ∩ ∂Ωr, we have 0 ≤ u0(t) ≤ r,−r ≤ u′0(t) ≤ r, ∀t ∈ [0, 1]. It follows
from (3.3) that (Su0)(t) ≥ a2(Lu0)(t) which implies that

u0 = ν0ϕ0 + Su0 � ν0ϕ0 + a2Lu0 � ν0ϕ0. (3.6)

Set ν∗ = sup{ν > 0 : u0 � νϕ0}, then ν0 ≤ ν∗ < +∞ and u0 � ν∗ϕ0. Thus it follows from (3.6)
that

u0 � ν0ϕ0 + a2Lu0 � ν0ϕ0 + a2ν∗Lϕ0 = ν0ϕ0 + a2ν∗r(L)ϕ0.

But r(L) ≥ 1/a2, so u0 � (ν0 + ν∗)ϕ0, which is a contradiction to the definition of ν∗. Therefore
u− Su 6= νϕ0 for u ∈ K ∩ ∂Ωr and ν ≥ 0.

From Lemma 3.2 it follows that i(S, K ∩Ωr, K) = 0.
Making use of the properties of fixed point index, we have that

i(S, K ∩ (ΩR \Ωr), K) = i(S, K ∩ΩR, K)− i(S, K ∩Ωr, K) = 1

and hence S has at least one fixed point in K. Therefore, BVP (1.3) has at least one positive
solution by Lemma 2.3.

Remark 3.6. For the case α[u] = β[u] = 0 and a = c = 1, b = d = 0 considered in [8], we
have that Φ(s) = s(1− s), Φ1(s) = max{1− s, s}, thus

∫ 1
0 Φ(s)ds = 1/6,

∫ 1
0 Φ1(s)ds = 3/4.

Moreover, the spectral radius r(L) = 1/π2. Therefore, (3.1) and r(L) ≥ 1/a2 are satisfied
when a1 + b1 < 1 and a2 > π2 are required in [8]. This means that the result of Theorem 3.5
extends Theorem 1.2 of [8].
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Lemma 3.7 ([3, Lemma 5.1 of Chapter XII]). Let R > 0, and let ϕ : [0, ∞)→ (0, ∞) be continuous
and satisfy ∫ ∞

0

ρdρ

ϕ(ρ)
= ∞. (3.7)

Then there exists a number M > 0, depending only on ϕ, R such that if v ∈ C2[0, 1] which satisfies
‖v‖C ≤ R and |v′′(t)| ≤ ϕ(|v′(t)|), t ∈ [0, 1], then ‖v′‖C ≤ M.

Theorem 3.8. Under the hypotheses (C1)–(C3) suppose that

(F3) there exist nonnegative constants a1, b1 and r > 0 satisfying

(a1 + b1)max
{∫ 1

0
Φ(s)ds,

∫ 1

0
Φ1(s)ds

}
< 1 (3.8)

such that
f (t, x1, x2) ≤ a1x1 + b1|x2|, (3.9)

for all (t, x1, x2) ∈ [0, 1]× [0, r]× [−r, r];

(F4) there exist positive constants a2, c2 such that

f (t, x1, x2) ≥ a2x1 − c2, (3.10)

for all (t, x1, x2) ∈ [0, 1]×R+ ×R, moreover the spectral radii r(L) ≥ 1/a2, r(L∗) > 1/a2,
where L, L∗ are defined by (2.8) and (2.9) respectively;

(F5) for any M > 0 there is a positive continuous function ϕ(ρ) on R+ satisfying (3.7) such that

f (t, x, y) ≤ ϕ(|y|)− c2, ∀(t, x, y) ∈ [0, 1]× [0, M]×R, (3.11)

then BVP (1.3) has at least one positive solution.

Proof. (i) First we prove that µSu 6= u for u ∈ K ∩ ∂Ωr and µ ∈ [0, 1]. In fact, if there exist
u1 ∈ K ∩ ∂Ωr and µ0 ∈ [0, 1] such that u1 = µ0Su1, then we deduce from Lemma 2.1, (2.5),
(3.8), (3.9) and 0 ≤ u1(t) ≤ r, −r ≤ u′1(t) ≤ r, ∀t ∈ [0, 1] that

‖u1‖C = µ0 max
0≤t≤1

( ∫ 1

0
kS(t, s) f (s, u1(s), u′1(s))ds

)
≤
∫ 1

0
Φ(s)[a1u1(s) + b1|u′1(s)|]ds

≤ (a1 + b1)
( ∫ 1

0
Φ(s)ds

)
‖u1‖C1 < ‖u1‖C1 = r,

‖u′1‖C = µ0 max
0≤t≤1

∣∣∣ ∫ 1

0

∂kS(t, s)
∂t

f (s, u1(s), u′1(s))ds
∣∣∣

≤
∫ 1

0
Φ1(s)[a1u1(s) + b1|u′1(s)|]ds

≤ (a1 + b1)
( ∫ 1

0
Φ1(s)ds

)
‖u1‖C1 < ‖u1‖C1 = r.

Hnece ‖u1‖C1 < r which contradicts u1 ∈ K ∩ ∂Ωr.
Therefore, i(S, K ∩Ωr, K) = 1 follows from Lemma 3.1.
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(ii) It is easy to see that L∗(C+[0, 1]) ⊂ C+[0, 1]. Since r(L∗) ≥ 1/a2 > 0, it follows from
Lemma 3.3 that there exists ϕ∗ ∈ C+[0, 1] \ {0} such that L∗ϕ∗ = r(L∗)ϕ∗.

Let

M =
c2
∫ 1

0 ϕ∗(t)dt
∫ 1

0 kS(t, s)ds

(a2r(L∗)− 1)
∫ 1

0 c(t)ϕ∗(t)dt
, (3.12)

where c(t) comes from Lemma 2.1.
(iii) For u ∈ P define

(S1u)(t) =
∫ 1

0
kS(t, s)( f (s, u(s), u′(s)) + c2)ds. (3.13)

Similar to the proof in Lemma 2.2, we know that S1 : P→ K is completely continuous.
If there exist u2 ∈ K and λ0 ∈ [0, 1] such that

(1− λ0)Su2 + λ0S1u2 = u2, (3.14)

thus by (3.10) and (3.14) we obtain that∫ 1

0
ϕ∗(t)u2(t)dt = (1− λ0)

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s) f (s, u2(s), u′2(s))ds

+ λ0

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)( f (s, u2(s), u′2(s)) + c2)ds

=
∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)( f (s, u2(s), u′2(s)) + λ0c2)ds

≥
∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)(a2u2(s)− c2 + λ0c2)ds

≥ a2

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)u2(s)ds− c2

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)ds

= a2

∫ 1

0
u2(s)ds

∫ 1

0
kS(t, s)ϕ∗(t)dt− c2

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)ds

= a2

∫ 1

0
u2(s)(L∗ϕ∗)(s)ds− c2

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)ds

= a2r(L∗)
∫ 1

0
ϕ∗(s)u2(s)ds− c2

∫ 1

0
ϕ∗(t)dt

∫ 1

0
kS(t, s)ds,

which implies that

‖u2‖C

∫ 1

0
c(t)ϕ∗(t)dt ≤

∫ 1

0
ϕ∗(t)u2(t)dt ≤

c2
∫ 1

0 ϕ∗(t)dt
∫ 1

0 kS(t, s)ds
a2r(L∗)− 1

and thus

‖u2‖C ≤
c2
∫ 1

0 ϕ∗(t)dt
∫ 1

0 kS(t, s)ds

(a2r(L∗)− 1)
∫ 1

0 c(t)ϕ∗(t)dt
= M. (3.15)

We can derive from (3.11), (3.14) and (3.15) that

|u′′2 (t)| = (1− λ0) f (t, u2(t), u′2(t)) + λ0( f (t, u2(t), u′2(t)) + c2)

= f (t, u2(t), u′2(t)) + λ0c2 ≤ f (t, u2(t), u′2(t)) + c2

≤ ϕ(|u′2(t)|). (3.16)
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By Lemma 3.7, there exists a constant M1 > 0 such that ‖u′2‖C ≤ M1.
Let R > max{r, M, M1}, then

(1− λ)Su + λS1u 6= u, ∀u ∈ K ∩ ∂ΩR, λ ∈ [0, 1]. (3.17)

From (3.17) it follows that

i(S, K ∩ΩR, K) = i(S1, K ∩ΩR, K) (3.18)

by the homotopy invariance property of fixed point index.
(iv) Since L(C+[0, 1]) ⊂ P ⊂ C+[0, 1] and r(L) ≥ 1/a2 > 0, it follows from Lemma 3.3 that

there exists ϕ0 ∈ C+[0, 1] \ {0} such that Lϕ0 = r(L)ϕ0. Furthermore, ϕ0 = (r(L))−1Lϕ0 ∈ K
by Lemma 2.2. Now we prove that u− S1u 6= νϕ0 for u ∈ K ∩ ∂ΩR and ν ≥ 0 and hence

i(S1, K ∩ΩR, K) = 0 (3.19)

holds by Lemma 3.2.
If there exist u0 ∈ K ∩ ∂ΩR and ν0 ≥ 0 such that u0 − S1u0 = ν0ϕ0. Obviously ν0 > 0 by

(3.17) and
u0 = S1u0 + ν0ϕ0 � ν0ϕ0. (3.20)

Set
ν∗ = sup{ν > 0 : u0 � νϕ0},

then ν0 ≤ ν∗ < +∞ and u0 � ν∗ϕ0. From (3.10) and (3.20) we have

u0 = S1u0 + ν0ϕ0 � a2Lu0 + ν0ϕ0

� a2ν∗Lϕ0 + ν0ϕ0 = a2ν∗r(L)ϕ0 + ν0ϕ0.

But r(L) ≥ 1/a2, so u0 � (ν∗ + ν0)ϕ0, which is a contradiction to the definition of ν∗.
(vi) From (3.18) and (3.19) it follows that i(S, K ∩ΩR, K) = 0 and

i(S, K ∩ (ΩR \Ωr), K) = i(S, K ∩ΩR, K)− i(S, K ∩Ωr, K) = −1.

Hence S has at least one fixed point in K and BVP (1.3) has at least one positive solution by
Lemma 2.3.

Remark 3.9. For the case α[u] = β[u] = 0 and a = c = 1, b = d = 0 considered in [8], we have
that max{

∫ 1
0 Φ(s)ds,

∫ 1
0 Φ1(s)ds} = 3/4 and (3.8) is satisfied when a1 + b1 < 1 is required in

[8]. Moreover, since kS(t, s) = kS(s, t) is symmetric and L = L∗, we know that the spectral
radii r(L) = r(L∗) = 1/π2 and r(L) ≥ 1/a2, r(L∗) > 1/a2 are satisfied when a2 > π2 is
required in [8]. This means that the result of Theorem 3.8 extends Theorem 1.1 of [8].

Remark 3.10. In [17] the following two cones in C1[0, 1] and two linear operators are defined:

P̃ =
{

u ∈ C1[0, 1] : u(t) ≥ 0, u′(t) ≥ 0, ∀t ∈ [0, 1]
}

,

K̃ =
{

u ∈ P : u(t) ≥ t‖u‖C, ∀t ∈ [0, 1], α[u] ≥ 0, u′(1) = 0
}

,

(Liu)(t) =
∫ 1

0
kS(t, s)(aiu(s) + biu′(s))ds (i = 1, 2).

[17, Lemma 2.2] tells us that Li : C1[0, 1] → C1[0, 1] are completely continuous operators with
Li(P̃) ⊂ K̃ (i = 1, 2).
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Now we compare the conditions of Theorem 3.4 in [17] with ones in Theorem 3.5. In
[17, Theorem 3.4] a assumption is described as follows: There exist constants a2 > 0, b2 ≥ 0
and r > 0 such that

f (t, x1, x2) ≥ a2x1 + b2x2, (3.21)

for all (t, x1, x2) ∈ [0, 1]× [0, r]2, moreover it is assumed that the spectral radius r(L2) ≥ 1.
Note that L2 acts in C1[0, 1] and r(L2) is for that space, and it is for the BC u′(1) = 0 so in

the BC in (1.3) we have c = 0 and β[u] ≡ 0. In this special case ∂
∂t kS(t, s) ≥ 0 so for u ∈ K̃ we

get a2(Lu)(t) ≤ (L2u)(t) and a2(Lu)′(t) ≤ (L2u)′(t). Then taking ϕ to be the eigenfunction
in C[0, 1] of L corresponding to the eigenvalue r(L), since L : C[0, 1] → C1[0, 1] then ϕ ∈ K̃ in
this special case, and we get a2r(L)ϕ = a2Lϕ � L2ϕ [cone ordering of K̃] and Lemma 3.4 gives
r(L2) ≥ a2r(L). If the spectral radius r(L) ≥ 1/a2 (see Theorem 3.5), then r(L2) ≥ a2r(L) ≥ 1.
However (3.21) implies (3.3).

By comparing the conditions of [17, Theorem 3.4] and Theorem 3.5 in special case, we
show that the conditions of one of these two theorems cannot contain the conditions of the
other.

Remark 3.11. For the convenience of comparison let α[u] ≡ 0 in (1.2), then Φ(s) = s and
kS(t, s) = k(t, s) = min{t, s} in this case. In [17, Theorem 3.5] two assumptions are described
as follow:

I. There exist constants a1 > 0, b1 ≥ 0 and r > 0 such that f (t, x1, x2) ≤ a1x1 + b1x2 for all
(t, x1, x2) ∈ [0, 1]× [0, r]2, moreover the spectral radius r(L1) < 1.

II. There exist positive constants a2, c2 satisfying

a2

∫ 1

0
sΦ(s)ds > 1 (3.22)

such that f (t, x1, x2) ≥ a2x1 − c2 for all (t, x1, x2) ∈ [0, 1]×R+ ×R+.

If (3.8) holds, for u ∈ C1[0, 1] we have (L1u)(t) =
∫ 1

0 kS(t, s)(a1u(s) + b1u′(s))ds, then

|(L1u)(t)| ≤
∫ 1

0
Φ(s)(a1|u(s)|+ b1|u′(s)|)ds ≤ (a1 + b1)‖u‖C1

∫ 1

0
Φ(s)ds,

|(L1u)′(t)| ≤
∫ 1

0
Φ1(s)(a1|u(s)|+ b1|u′(s)|)ds ≤ (a1 + b1)‖u‖C1

∫ 1

0
Φ1(s)ds.

Therefore r(L1) ≤ ‖L1‖C1 < 1. However, (3.22) (i.e. a2 > 3) implies that r(L) ≥ 1/a2, r(L∗) >
1/a2. In fact, for u0(t) = t we have

(Lu0)(t) =
∫ 1

0
k(t, s)sds =

∫ t

0
s2ds + t

∫ 1

t
sds =

t
2
− t3

6
≥ t

3
,

i.e., Lu0 � u0/3. Consequently, r(L) ≥ 1/3 > 1/a2 by Lemma 3.4. Using the same method,
we have r(L∗) > 1/a2.

These mean also that the conditions of one of [17, Theorem 3.5] and Theorem 3.8 cannot
contain the conditions of the other.
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4 Examples

We consider second-order problem under mixed boundary conditions involving multi-point
with coefficients of both signs and integral with sign-changing kernel

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = 1
4 u( 1

4 )−
1

12 u( 3
4 ),

u(1) =
∫ 1

0 u(t)
(

cos πt + 2
π

)
dt,

(4.1)

that is, α[u] = 1
4 u( 1

4 )−
1
12 u( 3

4 ), β[u] =
∫ 1

0 u(t)
(

cos πt + 2
π

)
dt and a = c = 1, b = d = 0. Hence

k(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

For s ∈ [0, 1],

0 ≤ KA(s) =
1
4

k
(1

4
, s
)
− 1

12
k
(3

4
, s
)

=


s
6 , 0 ≤ s ≤ 1

4 ,
3−4s

48 , 1
4 < s ≤ 3

4 ,

0, 3
4 < s ≤ 1,

KB(s) =
∫ 1

0
k(t, s)

(
cos πt +

2
π

)
dt =

cos(πs) + 2s− 1
π2 +

s− s2

π
≥ 0,

then (C2) is satisfied. Since

0 ≤ α [γ1] = α [1− t] =
1
6
< 1, α [γ2] = α [t] = 0,

β [γ1] = β [1− t] =
1
π
+

2
π2 ≥ 0, 0 ≤ β [γ2] = β [t] =

1
π
− 2

π2 < 1

and

D = (1− α [γ1]) (1− β [γ2])− α [γ2] β [γ1] =
5(π2 − π + 2)

6π2 > 0,

(C3) is also satisfied. Furthermore,

Φ(s) =
1
D

[
π2 + 4

π2 KA(s) +
5
6
KB(s)

]
+ s(1 + s),

Φ1(s) =
1
D

∣∣∣∣2− π

π
KA(s) +

5
6
KB(s)

∣∣∣∣+ max{s, 1− s}.

Example 4.1. If f (t, x1, x2) = (1 + t)x
1
3
1 + x

2
3
2 , take a1 = 2

3 , b1 = 1
2 and thus

a1

∫ 1

0
Φ(s)ds + b1

∫ 1

0
Φ1(s)ds =

2
3
× 89π2 + 196

480 (π2 − π + 2)
+

1
2
× 351π2 − 262π + 720

480 (π2 − π + 2)
< 1.

So (F1) holds for c1 large enough. In addition, take a2 = 15, r = 1
15
√

15
. From Lemma 2.1 and

Lemma 2.2 we have that c(t) ∈ C+[0, 1] and for t ∈ [0, 1],

Lc(t) ≥ c(t)
∫ 1

0
Φ(s)c(s)ds,
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then by Lemma 3.4, the spectral radius

r(L) ≥
∫ 1

0
Φ(s)c(s)ds =

111π2 + 244
1920 (π2 − π + 2)

>
1
a2

. (4.2)

Therefore, (F2) holds since (3.3) can be inferred easily. By Theorem 3.5 we know that BVP
(4.1) has at least one positive solution.

Example 4.2. If

f (t, x1, x2) =
(1 + t)x1

4 + 2x4
2

4(1 + x2
1 + x2

2)
,

take a1 = 2
3 , b1 = 1

2 and thus

(a1 + b1)
∫ 1

0
Φ(s)ds =

7
6
× 89π2 + 196

480 (π2 − π + 2)
< 1,

(a1 + b1)
∫ 1

0
Φ1(s)ds =

7
6
× 351π2 − 262π + 720

480 (π2 − π + 2)
< 1.

Therefore, (F3) holds since (3.9) can be inferred easily for r = 1.
Now take a2 = 15. From Lemma 2.1 and Lemma 2.2 we have that Φ ∈ C+[0, 1] and for

s ∈ [0, 1],

(L∗Φ)(s) ≥ Φ(s)
∫ 1

0
c(t)Φ(t)dt,

then by Lemma 3.4, the spectral radius

r(L∗) ≥
∫ 1

0
c(t)Φ(t)dt =

111π2 + 244
1920 (π2 − π + 2)

>
1
a2

.

It is easy to see that (3.10) holds for c2 large enough. Therefore, (F4) is satisfied if (4.2) is
combined with. As for (F5), one can let ϕ(ρ) = M2 + ρ2 + c2. By Theorem 3.8 we know that
BVP (4.1) has at least one positive solution.

Remark 4.3. Here we intentionally take a1 + b1 ≥ 1 in order to compare with the conditions
in [8].
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