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Abstract. In this paper, we consider a general study of a recent proposed hematopoietic
stem cells model. This model is a combination of nonlocal diffusion equation and
difference equation with delay. We deal with the properties of traveling waves for this
system such as the existence and asymptotic behavior. By using the Schauder’s fixed
point theorem combined with the method based on the construction of upper and lower
solutions, we obtain the existence of traveling wave fronts for a speed c > c?. The case
c = c? is studied by using a limit argument. We prove also that c? is the critical value.
We finally prove that the nonlocality increases the minimal wave speed.
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1 Introduction

Propagation and invasion phenomena are often analyzed through the study of traveling wave.
A traveling wave is a solution of special form and it can be seen as an invariant function with
respect to spatial translation describing processes. Many researchers have used such solutions
to model the dynamics of biological invasions and the spread of population (see [25, 31] and
references therein). The theory of these solutions has been widely developed for the reaction-
diffusion equations and there has been some success studied for establishing the existence of
traveling wave for the reaction-diffusion equations with or without delayed local or nonlocal
nonlinearity (see [1, 5, 7, 11, 13, 15, 17, 23–26, 30, 34, 35] and references therein). On the other
hand, there have been studies about traveling waves for nonlocal diffusion systems where the
diffusion is described by integral, see [6, 8–10, 20, 21, 32, 33, 36].

Recently in [1], a new model (based on the model of Mackey [18]) describing hematopoiesis
was presented and discussed. This model is the following coupled reaction-diffusion and

BEmail: abdennasser.chekroun@mail.univ-tlemcen.dz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/286781859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14232/ejqtde.2019.1.85
https://www.math.u-szeged.hu/ejqtde/


2 A. Chekroun

difference system (see also [16] for a particular case)

∂N(t, x)
∂t

= D
∂2N(t, x)

∂x2 − (δ(N(t, x)) + β(N(t, x)))N(t, x)

+ 2(1− K)e−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy,

u(t, x) = β(N(t, x))N(t, x) + 2Ke−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy.

(1.1)

This system (1.1) describes mature-immature blood cells interaction. The blood cell population
is split into two compartments of mature and immature cells. Each compartment represents
the cells in resting phase and proliferating phase, respectively. In this system, N represents the
density of resting cells and u the density of new active or proliferating cells (see also [2–4,18]).
As mentioned, a special case of the above system is treated in [16] which corresponds to
K = 0. The one-dimensional domain was taken. The positive coefficients D and d represent
the diffusion rates in the quiescent and proliferating phase, respectively. The delay r > 0
describes the duration of the active phase and γ > 0 a programed cell death rate. The terms
2(1 − K)e−γr and 2Ke−γr, for 0 ≤ K < 1, describe the part of divided cells (coefficient 2
represents the division) that enter the quiescent and proliferating phase, respectively. The
nonlinearities are given by (δ(x) + β(x))x and β(x)x where δ is a natural death rate and β is
the rate of flux between the both phases (see [1] for more interpretations of parameters).

The system (1.1) shows the non-local effect that is caused by cells diffusing (with a rate d)
during proliferating phase where Γ denote the Green’s function given by

Γ(t, x) =
1

2
√

dπt
exp

(
− x2

4dt

)
, t > 0, x ∈ R.

We note that Γ satisfies ∫ +∞

−∞
Γ(t, x)dx = 1, t > 0. (1.2)

In the case where K = 0, the system (1.1) is equivalent to the following one dimensional
scalar delayed reaction-diffusion equation

∂N
∂t

(t, x) = D
∂2N(t, x)

∂x2 − (δ(N(t, x)) + β(N(t, x)))N(t, x)

+ 2e−γr
∫ +∞

−∞
Γ(r, x− y)β(N(t− r, y))N(t− r, y)dy.

(1.3)

When d 7→ 0+ and using the heat kernel property, the nonlocal term in (1.3) becomes the
following expression

β(N(t− r, x))N(t− r, x) = lim
d 7→0+

∫ +∞

−∞
Γ(r, x− y)β(N(t− r, y))N(t− r, y)dy.

This case corresponds to a problem with a local nonlinearity. Moreover, if r = 0 then the
system (1.3) is reduced to

∂N
∂t

(t, x) = D
∂2N(t, x)

∂x2 − δ(N(t, x))N(t, x) + β(N(t, x))N(t, x).

Considering δ(x) = x and β(x) = 1, we get the classical Fisher–KPP equation [12, 14, 22, 25].
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In [1], the authors considered a hematopoietic dynamics model that took into account
spatial diffusion of cells where the Laplacian operator ∆ := ∂2/∂x2 is local. This suggests that
the influence is caused by the neighborhood variations. As in many areas, when the density
of the considered population is not small, such as the dynamics of cells, the local diffusion
is not sufficiently accurate (see, [19]). Moreover, it is emphasized that the nonlocal operator
has some properties of the Laplacian one and is reduced in some cases to it (see, [21]). In
this work, we deal with the case of nonlocal diffusion which means that we replace the local
Laplacian operator by the following convolution nonlocal diffusion

(h ∗ v)(t, x)− v(t, x) :=
∫ +∞

−∞
h(x− y)[v(t, y)− v(t, x)]dy,

with h : R→ R is a nonnegative function satisfying

h(x) = h(−x) for x ∈ R,
∫ +∞

−∞
h(x)dx = 1,

and ∫ +∞

−∞
h(x)e−λxdx < +∞, for any λ > 0.

We shall focus on the following coupled nonlocal diffusion and difference system with delay,
for t > 0 and x ∈ R,

∂N(t, x)
∂t

= D[(h ∗ N)(t, x)− N(t, x)]− (δ(N(t, x)) + β(N(t, x)))N(t, x)

+ 2(1− K)e−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy,

u(t, x) = β(N(t, x))N(t, x) + 2Ke−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy.

(1.4)

Our purpose is to prove the existence of fronts of the above system.
This paper is organized as follows. In the next section, we start by some preliminaries

about the solution of the system. Section 3 is devoted to the proof of the existence of traveling
wave fronts when the speed is greater or equal to a threshold denoted c?. We also prove
the nonexistence when the speed is less than c?. We proceed by giving a result about the
monotonicity of the critical speed wave with respect to the diffusion parameters. Section 4 is
devoted to the discussion.

2 Preliminaries

Let X = BUC(R, R) be the Banach space of all bounded and uniformly continuous functions
from R to R with the usual supremum norm |·|X and X+ := {φ ∈ X : φ(x) ≥ 0, for all x ∈ R}.
The space X is a Banach lattice under the partial ordering induced by the closed cone X+.

We set
(T(t)ω)(x) :=

∫
R

Γ(t, x− y)ω(y)dy, t > 0, x ∈ R.

Then, we get (see for instance [29]) an analytic semigroup T(t) : X → X such that T(t)X+ ⊂
X+, for all t ≥ 0.

Throughout this paper, we make the following hypotheses on the functions β and δ.

The function N 7→ β(N) is continuously differentiable on R and decreasing on R+

with limN→+∞ β(N) = 0.
(2.1)
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The function N 7→ δ(N) is continuously differentiable on R and increasing on R+. (2.2)

In [1], the authors studied mainly the existence of traveling wave fronts by using the monotone
iteration technique coupled with the sub- and super-solutions method developed in [30]. For
the system (1.4), we shall use the same technique based on the construction of upper and
lower solutions. Recall that a traveling wave of (1.4) is a solution of special form

(N(t, x), u(t, x)) = (φ(x + ct), ψ(x + ct)),

where φ, ψ ∈ C1(R, R+) and c > 0 is a constant corresponding to the wave speed (see [19, 25,
29]). We consider the functions f , g : R+ → R+, defined by

f (s) = (δ(s) + β(s)) s and g(s) = β(s)s, s ∈ R+.

We set z = x + ct and substitute (N(t)(x), u(t)(x)) with (φ(z), ψ(z)) into (1.4). We obtain the
corresponding wave systemcφ′(z) = D[(h ∗ φ)(z)− φ(z)]− f (φ(z)) + 2(1− K)e−γr (T(r)ψ) (z− cr),

ψ(z) = g(φ(z)) + 2Ke−γr (T(r)ψ) (z− cr).
(2.3)

The following proposition ensures existence of positive constant steady state under additional
conditions. Recall that 0 ≤ K < 1, we suppose the following necessary condition,

2Ke−γr < 1. (2.4)

Proposition 2.1. Assume that δ(0) > 0. If

δ(0) + (1− 2e−γr)β(0)
2e−γrδ(0)

< K <
1

2e−γr , (2.5)

then (1.4) has two distinct steady states: (0, 0) and (N?, u?). If (2.5) does not hold, then (0, 0) is the
only equilibrium of (1.4).

It is shown in [1] that there exists c? > 0 such that the system (2.3), with local diffusion or
(1.1), has a monotone solution (φ, ψ) defined on R, for each c ≥ c?, subject to the following
asymptotic boundary condition

φ(−∞) = ψ(−∞) = 0, φ(+∞) = N? and ψ(+∞) = u?, (2.6)

where (N?, u?) is the only constant positive equilibrium of (1.1). In this case, the correspond-
ing solution (N(t, x), u(t, x)) = (φ(x + ct), ψ(x + ct)) is called a traveling wave front with
wave speed c > 0 of (1.1). Such result needs the following assumptions.

The function N 7→ g(N) := β(N)N is increasing on [0, N?], (2.7)

β(N) + δ(N) ≥ β(0) + δ(0), for all N ∈ [0, N?]. (2.8)

The main result of this paper is given in the following theorem where we show, under the
same conditions as in [1], that there exists a minimal wave speed (of course other than that in
[1]) for the existence of fronts for (1.4) (system with nonlocal diffusion).

Theorem 2.2. Assume that (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8) hold. Then, there exists c? > 0 such
that for every c ≥ c?, (1.4) has a traveling wave front which connects (0, 0) to the positive equilibrium
(N?, u?). Let c ∈ (0, c?). Then, there is no traveling front of (1.4).
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3 Existence of traveling wave fronts

In this section, we study the existence of traveling wave solutions of system (1.4). This is
treated mainly by the Schauder’s fixed point theorem with the notion of upper and lower
solutions and Laplace transform. Let A : X → X be the bounded linear operator defined by

(Aψ) (z) = 2Ke−γr (T(r)ψ) (z− cr), z ∈ R. (3.1)

A direct computation leads to |A|L(X) = 2Ke−γr < 1. Then, the operator A is a contrac-
tion. Thereby, ψ can be calculated explicitly according to φ by considering the inverse of the
operator Id−A. In fact, if we put, for z ∈ R, k ∈N,

ξk(z) =
(2Ke−γr)k

2(kdπr)1/2 exp
(
− (z− kcr)2

4kdr

)
, (3.2)

we have, for ϕ ∈ X,

(Id−A)−1(ϕ) =
+∞

∑
k=0

Ak ϕ = ξ ∗ ϕ,

where

ξ(z) =
+∞

∑
k=0

(2Ke−γr)kΓ(kr, z− kcr) =
+∞

∑
k=0

ξk(z), z ∈ R. (3.3)

The function ξk, k ∈N satisfies ∫ +∞

−∞
ξk(y)dy = (2Ke−γr)k.

The system (2.3) becomes an uncoupled system{
cφ′(z) = D[(h ∗ φ)(z)− φ(z)]− f (φ(z)) + 2(1− K)e−γr (T(r)ψ) (z− cr),

ψ(z) = (ξ ∗ g(φ))(z),
(3.4)

with ξ given by (3.3). We can then write (3.4) as a single differential equation

cφ′(z) = D[(h ∗ φ)(z)− φ(z)]− f (φ(z)) + 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr). (3.5)

It is clear that if (φ, ψ) is a monotonic solution of (2.3)–(2.6), then φ is a monotone solution
of (3.5) and

φ(−∞) = 0 and φ(+∞) = N?. (3.6)

Under (2.4) and (2.7) we prove easily that even if φ is a monotone solution of (3.5)-(3.6),
then (φ, ξ ∗ g(φ)) is a monotone solution of (2.3)–(2.6). Hence, we only need to consider the
solutions of (3.5) subject to boundary condition (3.6).

Our objective is to show the existence of traveling wave front solutions for the coupled
nonlocal diffusion and difference system (1.4). To this end, we use the method based on
the notion of an upper and a lower solutions combined with Schauder’s fixed point theorem
[21, 27].

Let
C[0,N?](R, R) = {φ ∈ C(R, R) : 0 ≤ φ(z) ≤ N?, z ∈ R} .

Define the operator H : C[0,N?](R, R)→ C(R, R) by

H(φ)(z) = D(h ∗ φ)(z) + (µ− D)φ(z)− f (φ(z)) + 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr),

where µ > D + maxs∈[0,N?] f ′(s) is a constant. Next, we show that H satisfies the condition
given in the following lemma.
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Lemma 3.1. Assume that (2.1), (2.2), (2.4), (2.5) and (2.7) hold. Then, H satisfies the following
property

H(φ1)(z)− H(φ2)(z) ≥ 0,

for all φ1, φ2 ∈ X+ such that 0 ≤ φ2(z) ≤ φ1(z) ≤ N?, for all z ∈ R.

The proof of this lemma is easy to establish, so we omit the details here.
Now, it is easy to remark that (3.5) is equivalent to the following simplified equation,

cφ′(z) = −µφ(z) + H(φ)(z). (3.7)

Define the operator F : C[0,N?](R, R)→ C(R, R) by

F(φ)(z) =
1
c

∫ z

−∞
e−

µ
c (z−s)H(φ)(s)ds.

We can easily see that the operator F is well defined satisfying (3.7) and the existence of
solutions for (3.5) is changed into investigating the existence of a fixed point of operator F.
The following remark is a key to show the existence of such fixed point.

Remark 3.2. Lemma 3.1 implies that either H and also F are monotone for φ. Moreover, we
can deduce that H(φ)(z) and F(φ)(z) are both nondecreasing in z ∈ R with the assumption
that φ ∈ C[0,N?](R, R) is nondecreasing in z ∈ R.

For 0 < ν < µ
c , define

Bν(R, R) =
{

φ ∈ C(R, R) : supz∈R |φ(z)|e−ν|z| < +∞
}

.

and the exponential decay norm

|φ|ν = sup
z∈R

|φ(z)|e−ν|z|, for φ ∈ Bν(R, R).

It is easy to check that (Bν(R, R), | · |ν) is a Banach space.
Now, we define the meaning of an upper and lower solutions of (3.5).

Definition 3.3. A continuous function φ ∈ C[0,N∗](R, R) is called an upper solution of (3.5) if
φ
′ exists almost everywhere (a.e.) and satisfy

cφ
′
(z) ≥ D[(h ∗ φ)(z)− φ(z)]− f (φ(z))

+ 2(1− K)e−γr [T(r) (ξ ∗ g(φ)
)]

(z− cr), a.e. in R.

A lower solution φ of (3.5) is defined in a similar way but it satisfies the above differential
inequality in reversed order.

Existence of traveling wave front solutions need to find suitable upper φ and lower φ

solutions of (3.5). For this purpose, we consider the transcendental characteristic function for
the linearized problem of (3.5) near the zero solution. Let

λ+(c) =
c

2d

(
1 +

√
1 +

4d
rc2 ln

(
eγr

2K

))
.

For λ ∈ (0, λ+(c)), we have
1− 2Ke−γredrλ2−crλ > 0, (3.8)
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and define

∆c(λ) = −D
[∫ +∞

−∞
h(y)e−λydy− 1

]
+ cλ + δ(0) + β(0)− 2(1− K)β(0)e−γredrλ2−crλ

1− 2Ke−γredrλ2−crλ
. (3.9)

We have, for λ ∈ (0, λ+(c)),

1− 2Ke−γredrλ2−crλ > 0 and lim
λ→λ+(c)

∆c(λ) = −∞.

It is not difficult to see that

∆c(0) = δ(0) + β(0)− 2(1− K)β(0)e−γr

1− 2Ke−γr < 0.

Furthermore, the second derivative of the function λ 7→ ∆c(λ) satisfies, for all λ ∈ [0, λ+(c)),

∂2

∂λ2 ∆c(λ) < 0.

Moreover,
d
dc

[∆c (λ)] > 0 and lim
c→+∞

∆c (λ) = +∞.

We conclude that there exists a unique c? > 0 such that

∆c?(λ
?(c?)) = 0 and

∂

∂λ
∆c?(λ)

∣∣
λ=λ?(c?) = 0.

According to the above arguments, we have the following result.

Lemma 3.4. Assume that (2.4) and (2.5) hold. Then, there exists a unique c? > 0 and for each c > 0
there exists a unique λ?(c) such that

1. if c = c?, ∆c?(λ?(c?)) =
∂

∂λ
∆c?(λ)

∣∣
λ=λ?(c?) = 0,

2. if c > c?, there exist two real roots, λ1(c) and λ2(c), of the equation ∆c(λ) = 0 such that
0 < λ1(c) < λ2(c) < λ+(c) and ∆c(λ) > 0 for all λ ∈ (λ1(c), λ2(c)),

3. if 0 < c < c?, ∆c(λ) < 0 for all λ ∈ (0, λ+(c)).

Next, we fix c > c? and we put λ1 := λ1(c), λ2 := λ2(c). We putκ1(λ) = 1− 2Ke−γredrλ2−crλ,

κ2(λ) = 2(1− K)β(0)e−γredrλ2−crλ.

We need the following lemma.

Lemma 3.5. For z ∈ R and λ ∈ (0, λ+(c)), we have the following equality

T(r)
(

ξ ∗ eλ·
)
(z− cr) =

κ2(λ)

2(1− K)e−γrg′(0)κ1(λ)
eλz.
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Proof. We start by computing the following quantity(
ξ ∗ eλ·

)
(z− cr) =

∫ +∞

−∞
ξ(z− cr− y)eλydy,

= e−λcr
+∞

∑
k=0

(2Ke−γr)k
∫ +∞

−∞
Γ (kr, z− y− kcr) eλydy,

= e−λcreλz
+∞

∑
k=0

(2Ke−γr)kedrkλ2−crkλ,

=
e−λcr

1− 2Ke−γredrλ2−crλ
eλz.

Then,

T(r)
(

ξ ∗ eλ·
)
(z− cr) =

e−λcr

1− 2Ke−γredrλ2−crλ

∫ +∞

−∞
Γ (r, z− y) eλydy,

=
eλ2dr−λcr

1− 2Ke−γredrλ2−crλ
eλz.

The proof is completed.

We prove the existence of a continuous upper and lower solutions of (3.5).

Lemma 3.6. Assume that (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8) hold. Let c > c? be fixed, with c?

given in Lemma 3.4, and N? be the positive steady state. We put λ1 := λ1(c), λ2 := λ2(c), with λ1(c)
and λ2(c) defined in Lemma 3.4. Then, The function φ : R → R+ defined by φ(z) = min{N?, eλ1z}
is an upper solution of (3.5).

Proof. As λ1 > 0, for z1 = 1
λ1

ln (N?), we have

φ(z) =

N?, z ≥ z1,

eλ1z, z < z1.
(3.10)

Suppose that z ∈ [z1,+∞). Then, φ(z) = N?, φ
′
(z) = φ

′′
(z) = 0 and as g is an increasing

function on [0, N?], we have

[
T(r)

(
ξ ∗ g(φ)

)]
(z− cr) ≤ [T(r) (ξ ∗ g(N?))] (z− cr) =

g(N?)

1− 2Ke−γr .

Then, we obtain

cφ
′
(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr [T(r) (ξ ∗ g(φ)

)]
(z− cr)

≥ f (N?)− 2(1− K)e−γr
(

g(N?)

1− 2Ke−γr

)
= 0.

Suppose that z ∈ (−∞, z1). Then, φ(z) = eλ1z. Consequently,

cφ
′
(z)− D[(h ∗ φ)(z)− φ(z)] ≥

(
cλ1 − D

[∫ +∞

−∞
h(y)e−λ1ydy− 1

])
eλ1z

and due to (2.8)
f (φ(z)) ≥ f ′(0)φ(z) = f ′(0)eλ1z.
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Furthermore, we have[
T(r)

(
ξ ∗ g(φ)

)]
(z− cr) ≤ g′(0)

[
T(r)

(
ξ ∗ φ

)]
(z− cr)

≤ g′(0)
[

T(r)
(

ξ ∗ eλ1·
)]

(z− cr)

=
g′(0)edrλ2

1+(z−cr)λ1

1− 2Ke−γredrλ2
1−crλ1

.

Then,

cφ
′
(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))

− 2(1− K)e−γr [T(r) (ξ ∗ g(φ)
)]

(z− cr) ≥ ∆c(λ1)eλ1z = 0.

Lemma 3.7. Assume that the hypotheses of Lemma 3.6 hold. Then, the function φ : R→ R+ defined
by φ(z) = max{0, eλ1z − Meωλ1z}, with ω ∈ (1, min{2, λ2/λ1}) and M > 1 large enough, is a
lower solution of (3.5). Moreover, φ(z) ≤ φ(z), for all z ∈ R.

Proof. Let ν ∈ (ω− 1, min{2, λ2/λ1} − 1). It is clear that 0 < ν < 1. Recall that g(N) ≤ g′(0)N
and f (N) ≥ f ′(0)N for [0, N?]. Under the assumption δ and β are C1-function, there exists
α > 0 such that, for u ∈ [0, N?],

δ(u) + β(u)− (δ(0) + β(0)) ≤ αuν and β(0)− β(u) ≤ αuν. (3.11)

We will construct a lower solution φ of the form

φ(z) =

{
eλ1z −Meωλ1z, z < z2,

0, z ≥ z2,

with

z2 :=
1

(ω− 1)λ1
ln
(

1
M

)
,

and M > 1 is a constant. Then, z2 < 0. First, remark that to get φ ≤ φ, it suffices to choose
M > (N?)1−ω.

Let z ∈ [z2,+∞). Then, φ(z) = 0. Thus,

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr)

= −D(h ∗ φ)(z)− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr).

The function φ is nonnegative on R. We conclude that, for all z ∈ [z2,+∞),

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr) ≤ 0.

Let z ∈ (−∞, z2). Then, φ(z) = eλ1z −Meωλ1z. We have

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] ≤ cλ1eλ1z − cMωλ1eωλ1z + Deλ1z − DMeωλ1z.

− D
∫ +∞

−∞
h(y)[eλ1(z−y) −Meωλ1(z−y)]dy.
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Thanks to ∆c(λ1) = 0, we obtain

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] ≤ κ2(λ1)

κ1(λ1)
eλ1z − f ′(0)eλ1z − ∆c(ωλ1)Meωλ1z

− κ2(ωλ1)

κ1(ωλ1)
Meωλ1z + f ′(0)Meωλ1z.

We know that ω ∈ (1, min{2, λ2/λ1}), then

∆c(ωλ1) > 0 and 1− 2Ke−γredrω2λ2
1−crωλ1 > 0.

By Lemma 3.5, we get

κ2(λ1)

κ1(λ1)
eλ1z − κ2(ωλ1)

κ1(ωλ1)
Meωλ1z ≤ 2(1− K)e−γrg′(0)T(r)

(
ξ ∗ φ

)
(z− cr).

We conclude that

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))

≤ −∆c(ωλ1)Meωλ1z + αφ(ν+1)(z) + 2(1− K)e−γrg′(0)T(r)
(

ξ ∗ φ
)
(z− cr).

It is not difficult to see that

φ(ν+1)(s) ≤ e(ν+1)λ1s, for all s ∈ R.

Then,

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr)

≤ −∆c(ωλ1)Meωλ1z + αe(ν+1)λ1z + 2(1− K)e−γrαT(r)
(

ξ ∗ e(ν+1)λ1·
)
(z− cr).

Using lemma 3.5, we have

2(1− K)e−γrαT(r)(ξ ∗ e(ν+1)λ1·)(z− cr) =
ακ2((ν + 1)λ1)

g′(0)κ1((ν + 1)λ1)
e(ν+1)λ1z.

So,

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr)

≤ eωλ1z
[
−∆c(ωλ1)M + αe(ν+1−ω)λ1z

(
1 +

κ2((ν + 1)λ1)

g′(0)κ1((ν + 1)λ1)

)]
.

Recall that ν + 1−ω > 0, which implies that e(ν+1−ω)λ1z < 1, for all z < z2. Then, for z < z2,

cφ′(z)− D[(h ∗ φ)(z)− φ(z)] + f (φ(z))− 2(1− K)e−γr
[

T(r)
(

ξ ∗ g(φ)
)]

(z− cr)

≤ eωλ1z
[
−∆c(ωλ1)M + α

(
1 +

κ2((ν + 1)λ1)

g′(0)κ1((ν + 1)λ1)

)]
.

Finally, we can choose
M > max

{
1, (N?)1−ω, C̃ [∆c(ωλ1)]

−1
}

,

with

C̃ := α

(
1 +

κ2((ν + 1)λ1)

g′(0)κ1((ν + 1)λ1)

)
.

The proof is completed.
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We define the profile set of traveling wave fronts as

Θ =


φ ∈ C[0,N?](R, R) :

(i) φ(z) is nondecreasing on R,

(ii) φ(z) ≤ φ(z) ≤ φ(z), for all z ∈ R.


Next, we state two lemmas that ensure the existence of a fixed points of operator F. For

the set Θ, it is easy to see that the following lemma holds.

Lemma 3.8. The set Θ is nonempty, bounded, closed and convex subset of Bν(R, R) with respect to
the norm | · |ν.

The proof of the following result is similar to the proof of the corresponding results in
[21, 27].

Lemma 3.9. Assume (2.1), (2.2), (2.4), (2.5) and (2.7) hold. Then, F(Θ) ⊂ Θ and F : Θ → Θ is
continuous and compact with respect to the norm | · |ν.

In conclusion, we get the following theorem that state the existence result.

Theorem 3.10. Assume that (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8) hold. Then, for every c > c?,
(1.4) has a traveling wave front which connects (0, 0) to the positive equilibrium (N?, u?).

Proof. From Lemmas 3.6, 3.7, 3.8 and 3.9, for c > c?, we obtain the existence of a fixed point φ

of F belonging to Θ, that is,

φ(z) =
1
c

∫ z

−∞
e−

µ
c (z−s)H(φ)(s)ds. (3.12)

On the other band, we have that φ(z) ≤ φ(z) ≤ φ(z) for all z ∈ R, which implies that
limz→−∞ φ(z) = 0. Moreover, φ(z) is a nondecreasing function bounded above by N?. Then,
there exists N0 such that limz→+∞ φ(z) = N0 ≤ N?. Recall that 0 ≤ φ(z) 6≡ 0 for all z ∈ R.
This implies that N0 ∈ (0, N?]. Using L’Hospital’s rule for (3.12), we obtain

N0 = lim
z→+∞

φ(z) = lim
z→+∞

1
µ

H(φ)(z),

=
1
µ

[
µN0 − f (N0) +

2(1− K)e−γr

1− 2Ke−γr g(N0)

]
.

We deduce that (1− 2Ke−γr) f (N0) = 2(1− K)e−γrg(N0). Since we have the uniqueness of the
positive steady state, we conclude that N0 = N?. As a consequence, we get the existence of
traveling wave front satisfying (3.6). The proof is complete.

The following theorem concerns the result for the critical velocity.

Theorem 3.11. Assume that (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8) hold and c = c∗. Then, Equation
(1.4) has a traveling wave front which connects (0, 0) to the positive equilibrium (N?, u?).

Proof. Let c = c?. We use some ideas developed in [24, 34, 35]. We consider a sequence
(cm)m≥1 ⊆ (c?,+∞) such that limm→+∞ cm = c?. For instance, we can choose cm = c? + 1/m.
It follows from Theorem 3.10 that for c = cm > c?, (1.4) has a solution in Θ. We denote by φm
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this solution. Without loss of generality, we may assume that φm(0) = N?/2. Furthermore,
φm is given by

φm(z) =
1

cm

∫ z

−∞
e−

µ
cm (z−s)H(φm)(s)ds.

We can verify the boundedness of φ′m on R by differentiating the above equality with respect
to z. It follows that φm is uniformly bounded and equicontinuous sequences of functions on
R. By Ascoli’s theorem there exists a subsequence of (cm)m≥1 (for simplicity, we preserve
the same sequence (cm)m≥1), such that limm→+∞ cm = c? and φm(z) converge uniformly on
every bounded interval. Then, they converge pointwise on R to φ(z). By using Lebesgue’s
dominated convergence theorem, we get

φ(z) =
1
c?

∫ z

−∞
e−

µ
c? (z−s)H(φ)(s)ds.

Then, φ is a solution of (3.5) with c = c?. It is not difficult to see that φ is nondecreasing on
R and satisfying φ(0) = N?/2 and 0 ≤ φ(z) ≤ N? for all z ∈ R. Then, limz→−∞ φ(z) and
limz→+∞ φ(z) exist. Obviously, limz→−∞ φ(z) = 0 and limz→+∞ φ(z) = N?. As a consequence,
we have that for c = c?, (3.5) has a solution in Θ. The proof is complete.

In the next results, we give some properties of the traveling wave fronts of (3.5).

Lemma 3.12. Let φ be a traveling wave front of (3.5) connecting 0 to the positive equilibrium N? and
let z ∈ R. Then, we have

1.
∫ z

−∞
|(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)|dy < +∞,

2. ϕ(z) :=
∫ z

−∞
φ(y)dy < +∞,

3.
∫ z

−∞
[T(r) (ξ ∗ φ)] (y− cr)dy = ((Γ ∗ ξ) ∗ ϕ) (z− cr),

4.
∫ z

−∞
|(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)|dy < +∞.

Proof. (1) The definition of convolution product implies, for t < z,∫ z

t
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy

=
∫ z

t
(1− 2Ke−γr)

∫ +∞

−∞
(Γ ∗ ξ) (l)φ(y− cr− l)dl − φ(y)dy.

We can check that (1− 2Ke−γr)
∫ +∞
−∞ (Γ ∗ ξ) (l)dl = 1. Then, we can write the following equal-

ity ∫ z

t
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy

= (1− 2Ke−γr)
∫ z

t

∫ +∞

−∞
(Γ ∗ ξ) (l) [φ(y− cr− l)− φ(y)] dldy.

Moreover, we have

φ(y− cr− l)− φ(y) = −
∫ y

y−cr−l
φ′(x)dx = −(l + cr)

∫ 1

0
φ′(y− η(l + cr))dη.
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Then, we get∫ z

t
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy

− (1− 2Ke−γr)
∫ z

t

∫ +∞

−∞
(l + cr)

[∫ 1

0
φ′(y− η(l + cr))dη

]
(Γ ∗ ξ) (l)dldy.

Fubini’s theorem with the dominated convergence theorem implies∫ z

−∞
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy

= −(1− 2Ke−γr)
∫ +∞

−∞
(l + cr)

∫ 1

0

[
lim

t→−∞

∫ z

t
φ′(y− η(l + cr))dy

]
dη (Γ ∗ ξ) (l)dl.

By using the fact that limx→−∞ φ(x) = 0, we get

lim
t→−∞

∫ z

t
φ′(y− η(l + cr))dy = φ(z− η(l + cr)).

This yields ∫ z

−∞
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy

= −(1− 2Ke−γr)
∫ +∞

−∞
(l + cr)

∫ 1

0
φ(z− η(l + cr))dη (Γ ∗ ξ) (l)dl.

The function (l, z) ∈ R × R 7−→
∫ 1

0 φ(z − η(l + cr))dη is bounded. We have also that∫ +∞
−∞ |l (Γ ∗ ξ) (l)|dl < +∞. Then, for z ∈ R,∫ z

−∞
|(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)|dy < +∞.

(2) The function φ is positive and satisfies

cφ′(z) = D[(h ∗ φ)(z)− φ(z)]− f (φ(z)) + 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr), (3.13)

with φ(−∞) = 0, φ(+∞) = N?. The continuity of β and δ implies that

lim
y→−∞

β(φ(y)) = β(0) and lim
y→−∞

δ(φ(y)) + β(φ(y)) = δ(0) + β(0).

Then, for ε > 0 small enough (ε < β(0)), there exists yε < 0 such that, for all y < yε, we have{
β(0)− ε < β(φ(y)) ≤ β(0) + ε,

δ(0) + β(0)− ε ≤ δ(φ(y)) + β(φ(y)) < δ(0) + β(0) + ε.

Then, (3.13) implies, for y < yε,

cφ′(y) ≥ D[(h ∗ φ)(z)− φ(z)]− (ε + δ(0) + β(0))φ(y)

+ 2(1− K)e−γr(β(0)− ε) [T(r) (ξ ∗ φ)] (z− cr).
(3.14)

Let us denote by

Jε =
2(1− K)e−γr

1− 2Ke−γr (β(0)− ε)− (ε + δ(0) + β(0)), with 0 < ε < β(0).
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We rewrite the inequality (3.14), for y < yε, in the form

Jεφ(y) ≤ cφ′(y)− D[(h ∗ φ)(z)− φ(z)]

− 2(1− K)e−γr

1− 2Ke−γr (β(0)− ε)[(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (z− cr)− φ(y)].

On the other hand, the condition for the existence of positive equilibrium can be written as

2(1− K)e−γr

1− 2Ke−γr β(0)− (δ(0) + β(0)) > 0.

Then, we can choose ε ∈ (0, β(0)) small enough such that

ε

(
2(1− K)e−γr

1− 2Ke−γr + 1
)
<

2(1− K)e−γr

1− 2Ke−γr β(0)− (δ(0) + β(0)).

Hence, Jε is positive. As a consequence, for z < yε,

0 ≤ Jε

∫ z

−∞
φ(y)dy ≤ cφ(z)− D

∫ z

−∞
[(h ∗ φ)(y)− φ(y)]dy

− 2(1− K)e−γr

1− 2Ke−γr (β(0)− ε)
∫ z

−∞
(1− 2Ke−γr) [T(r) (ξ ∗ φ)] (y− cr)− φ(y)dy < +∞.

(3.15)

Then, for all z ∈ R, 0 ≤
∫ z

−∞
φ(y)dy < +∞.

(3) By Fubini’s theorem, we can check that, for t < z,

∫ z

t
[T(r) (ξ ∗ φ)] (y− cr)dy =

∫ +∞

−∞
(Γ ∗ ξ) (z− cr− y)

∫ y

t
φ(s)dsdy.

By using the dominated convergence theorem, we obtain

∫ z

−∞
[T(r) (ξ ∗ φ)] (y− cr)dy =

∫ +∞

−∞
(Γ ∗ ξ) (x)

[
lim

t→−∞

∫ z

t
φ(y− cr− x)dy

]
dx,

=
∫ +∞

−∞
(Γ ∗ ξ) (x)

∫ z−cr−x

−∞
φ(s)dsdx,

= ((Γ ∗ ξ) ∗ ϕ) (z− cr).

(4) By the same techniques as in the proof of (1), we have∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy

= (1− 2Ke−γr)
∫ z

−∞

∫ +∞

−∞
(Γ ∗ ξ) (l) [ϕ(y− cr− l)− ϕ(y)] dldy.

Then, we get∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy

= −(1− 2Ke−γr)
∫ z

−∞

∫ +∞

−∞
(l + cr)

[∫ 1

0
ϕ′(y− η(l + cr))dη

]
(Γ ∗ ξ) (l)dldy.
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Then, we obtain∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy

= −(1− 2Ke−γr)
∫ +∞

−∞
(l + cr)

[∫ 1

0
ϕ(z− η(l + cr))dη

]
(Γ ∗ ξ) (l)dl.

(3.16)

We have proved ∫ z

−∞
|(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)|dy < +∞.

Now, let us consider φ solution of (3.5) satisfying (3.6). The next proposition establish the
asymptotic behavior of the profile φ(z) when z→ −∞.

Proposition 3.13. There exists a positive constant µ0 < λ+(c) such that φ(z) = O(eµ0z) as z→ −∞.
Moreover,

sup
z∈R

[
e−µ0zφ(z)

]
< +∞. (3.17)

Proof. From the Lemma 3.12 and the inequality (3.15), we have, for y < yε

0 ≤ Jε ϕ(y) ≤ cφ(y)− D
∫ y

−∞
[(h ∗ φ)(s)− φ(s)]ds

− 2(1− K)e−γr

1− 2Ke−γr (β(0)− ε)
[
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)

]
< +∞.

(3.18)

By integrating the both sides of (3.18), from −∞ to z ≤ yε, we obtain

Jε

∫ z

−∞
ϕ(y)dy ≤ cϕ(z)− D

∫ z

−∞

∫ y

−∞
[(h ∗ φ)(s)− φ(s)]dsdy

− 2(1− K)e−γr

1− 2Ke−γr (β(0)− ε)
∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy.

Thanks to (3.16), we have

−
∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy

= (1− 2Ke−γr)
∫ +∞

−∞
(l + cr)

[∫ 1

0
ϕ(z− η(l + cr))dη

]
(Γ ∗ ξ) (l)dl.

The function η ∈ [0, 1] 7→ (s + cr)ϕ(z− η(s + cr)) is decreasing. Then, we obtain

−
∫ z

−∞
(1− 2Ke−γr) ((Γ ∗ ξ) ∗ ϕ) (y− cr)− ϕ(y)dy

≤ (1− 2Ke−γr)ϕ(z)
∫ +∞

−∞
(l + cr) (Γ ∗ ξ) (l)dl.

Moreover, from the fact that φ′(z) ≥ 0 for z ∈ R, we have∫ z

−∞

∫ y

−∞
[(h ∗ φ)(s)− φ(s)]dsdy =

∫ z

−∞
(h ∗ ϕ)(y)− ϕ(y)]dy,

=
∫ z

−∞

∫ +∞

−∞
h(t)[ϕ(y− t)− ϕ(y)]dtdy,

=
∫ z

−∞

∫ +∞

0
h(t)[ϕ(y + t) + ϕ(y− t)− 2ϕ(y)]dtdy,

=
∫ z

−∞

∫ +∞

0
h(t)

∫ y

y−t
[φ(t + s)− φ(s)] dsdtdy,

≥ 0.
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Then,

Jε

∫ z

−∞
ϕ(y)dy ≤ cϕ(z) + 2(1− K)e−γr(β(0)− ε)

∫ +∞

−∞
(l + cr) (Γ ∗ ξ) (l)dlϕ(z).

We denote by

Lε = 2(1− K)e−γr(β(0)− ε)
∫ +∞

−∞
(l + cr) (Γ ∗ ξ) (l)dl.

Hence, for all z ≤ yε,

Jε

∫ z

−∞
ϕ(y)dy ≤ (c + Lε)ϕ(z). (3.19)

This implies that, for all z ≤ yε,

Jε

∫ 0

−∞
ϕ(z + y)dy ≤ (c + Lε)ϕ(z).

Then, for all z ≤ yε and all η > 0, we have

Jε

∫ 0

−η
ϕ(z + y)dy ≤ (c + Lε)ϕ(z).

By integration by parts, we get for all z ≤ yε and all η > 0,

Jεηϕ(z− η) ≤ Jε

[
ηϕ(z− η) +

∫ η

0
yφ(z− y)dy

]
≤ (c + Lε)ϕ(z).

We choose η0 > 0 large enough such that

θ0 :=
c + Lε

Jεη0
∈ (0, 1).

Then, for all z ≤ yε,
ϕ(z− η0) ≤ θ0ϕ(z).

We put
j(x) = e−µ0x ϕ(x), for x ∈ R,

with

µ0 =
1
η0

ln
(

1
θ0

)
=

1
η0

ln
(

Jεη0

c + Lε

)
.

We know that

lim
η0→+∞

1
η0

ln
(

Jεη0

c + Lε

)
= 0.

Then, we can choose η0 > 0 large enough such that µ0 < λ+(c). On the one hand, we have
ϕ(x) =

∫ x
−∞ φ(y)dy ≤

∫ 0
−∞ φ(y)dy + N?x, for x ≥ 0. Then, limx→+∞ j(x) = 0. On the other

hand, we have for z ≤ yε

j(z− η0) = e−µ0(z−η0)ϕ(z− η0) ≤ θ0eµ0η0 e−µ0z ϕ(z).

Recall that θ0eµ0η0 = 1. Then, j(z− η0) ≤ j(z), for all z ≤ yε. Consequently, there exists j0 > 0
such that

j(z) ≤ j0, for all z ∈ R.
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Thus,
ϕ(z) ≤ j0eµ0z, for all z ∈ R.

Thanks to (3.19), we have φ(z) ≤ c + Lε

d1
ϕ(z). Then, we conclude that there exists q0 > 0 such

that
φ(z) ≤ q0eµ0z, for all z ∈ R.

This means that ϕ(z) = O(eµ0z) as z → −∞. The same conclusion could be obtained from
the equation of the wave for φ(z) and we get φ(z) = O(eµ0z) as z → −∞. Moreover, since
z 7→ φ(z) and z 7→ e−µ0z are bounded on (0,+∞), we obtain

sup
z∈R

[
e−µ0zφ(z)

]
< +∞.

Remark 3.14. Proposition 3.13 implies that the Laplace transform
∫ +∞
−∞ e−λzφ(z)dz is well de-

fined for all λ ∈ C such that 0 < Re(λ) < µ0.

Now, we consider the case of non-existence of wave.

Theorem 3.15. Assume that (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8) hold and that f and g are twice
differentiable on [0, N?]. For c ∈ (0, c?), there exists no non-trivial traveling front of the equation
(1.4).

Proof. We prove this theorem by contradiction. Let c ∈ (0, c?) and assume that there exists a
non-trivial traveling wave front φ of the following equation

cφ′(z) = D[(h ∗ φ)(z)− φ(z)]− f (φ(z)) + 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr), (3.20)

with
φ(−∞) = 0, φ(+∞) = N?.

The remark 3.14 implies that the two sided Laplace transform on R of φ, for all λ ∈ C with
0 < Re(λ) < µ0, is well defined. We define

L(λ)(φ) =
∫

R
e−λzφ(z)dz.

We know from [28] (page 58) and since φ > 0 that λ 7→ L(λ)(φ) is analytic for 0 < Re(λ) < σ

with σ is a singularity of L(λ)(φ). From (3.20), we have

− cφ′(z) + D[(h ∗ φ)(z)− φ(z)]− f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

= − f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr) + f (φ(z))

− 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr).

(3.21)

Let λ ∈ C such that 0 < Re(λ) < µ0 < λ+(c). Fubini’s theorem implies the following identity∫
R

e−λz [T(r) (ξ ∗ φ)] (z− cr)dz =
∫

R
φ(z)

[
T(r)

(
ξ ∗ eλ·)

)]
(−z− cr)dz. (3.22)

We have the following expression

∫
R

e−λz [T(r) (ξ ∗ φ)] (z− cr)dz =
(1− 2Ke−γτ)edrλ2−crλ

1− 2Ke−γredrλ2−crλ
L(λ)(φ).
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By applying the two sided Laplace transform to the equation (3.21), we obtain, by means of
(3.22),

−∆c(λ)L(λ)(φ) =
∫

R
e−λz [ f (φ(z))− f ′(0)φ(z)

+2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

−2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr)
]

dz.

(3.23)

Recall that f (0) = g(0) = 0. Since,
lim

z→−∞
φ(z) = 0,

then, when z→ −∞, Taylor’s theorem implies that

f (φ(z))− f ′(0)φ(z) = O(φ2(z)),

and

g′(0) [T(r) (ξ ∗ φ)] (z− cr)− [T(r) (ξ ∗ g(φ))] (z− cr)

=
[
T(r)

(
ξ ∗
[
g′(0)φ− g(φ)

])]
(z− cr) = O(

[
T(r)

(
ξ ∗ φ2)] (z− cr)).

We add the both aboves equality and we obtain, when z→ −∞,

f (φ(z))− f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

− 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr) = O(φ2(z) +
[
T(r)

(
ξ ∗ φ2)] (z− cr)).

Since,
λ 7→ L(λ)(φ),

is well defined for 0 < Re(λ) < µ0, then the above equality implies that the right hand side of
the equation (3.23)∫

R
e−λz [ f (φ(z))− f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

−2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr)
]

dz,

is well defined for all λ with 0 < Re(λ) < 2µ0. We have by hypothesis that 0 < c < c?. So,
∆c(λ) has no real root in the interval (0, λ+(c)). This leads to the following observation

λ 7→ L(λ)(φ),

is well defined for 0 < Re(λ) < λ+(c) because L(λ) in the equality (3.23) has no singularity
for 0 < Re(λ) < λ+(c). In this way, we can arrive at a contradiction with the existence of
traveling wave from for 0 < c < c?. In, fact

lim
λ→λ+

<
(c)

∆c(λ) = −∞.

Then, there exists A > 0 such that for λ ∈ R with A < λ < λ+(c), we have

∆c(λ)φ(z) + f (φ(z))− f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

− 2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr) < 0.
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Therefore, if we multiply this inequality by e−λz and integrate it, we obtain

∫
R

e−λz [∆c(λ)φ(z) + f (φ(z))− f ′(0)φ(z) + 2(1− K)e−γrg′(0) [T(r) (ξ ∗ φ)] (z− cr)

−2(1− K)e−γr [T(r) (ξ ∗ g(φ))] (z− cr)
]

dz < 0.

It is impossible with the fact that the equation (3.23) holds. The conclusion is that the equation
(1.4) has no fronts connecting the zero equilibrium and the positive equilibrium N? .

Let us now give some information about the monotonicity of c? with respect to D and d.

Proposition 3.16. Assume that (2.4) and (2.5) hold. Let c? > 0 the minimal wave speed. Then, c? is
nondecreasing with respect to D and d.

Proof. Let check the influence of D on the minimal speed c?. We consider c? := c?(D) as a
function of D. Using the implicit function theorem and Lemma 3.4, we have

∆c?(D)(D, λ?(D)) = 0 and
∂

∂λ
∆c?(D)(D, λ(D))

∣∣
λ(D)=λ?(D)

= 0.

The first equation implies that

∂

∂D
∆c?(D)(D, λ?(D)) +

d
dD

λ?(D)
∂

∂λ
∆c?(D)(D, λ(D))

∣∣
λ(D)=λ?(D)

+
d

dD
c?(D)

∂

∂c
∆c(D)(D, λ?(D))

∣∣
c(D)=c?(D)

= 0.

Then,
∂

∂D
∆c?(D)(D, λ?(D)) +

d
dD

c?(D)
∂

∂c
∆c(D)(D, λ?(D))

∣∣
c(D)=c?(D)

= 0.

Therefore,

d
dD

c?(D) =

[∫ +∞

−∞
h(y)e−λydy− 1

]
λ?(1 + η)

> 0,

with

η =
2r(1− K)e−γrβ(0)edrλ?2−λ?c?r

(1− 2Ke−γredrλ?2−λ?c?r)2
≥ 0.

As above, we can proceed for d. We consider c? := c?(d) as a function of d. We obtain

d
dd

c?(d) =
2λ?r(1− K)e−γrβ(0)edrλ?2−λ?c?r

(1 + η)(1− 2Ke−γredrλ?2−λ?c?r)2
≥ 0.

We finish by the following result.

Theorem 3.17. Assume that (2.1), (2.2), (2.4), (2.5) and (2.8) hold. Let (N, u) be a solution of (1.4).
If the initial condition (N0, u0) is such that 0 ≤ N0(x) < N?, 0 ≤ u0(θ, x) < u?, for x ∈ R and
θ ∈ [−r, 0], and (N0, u0) is null for x outside a bounded interval, then

lim
t→+∞

sup
|x|≥ct

[N(t, x) + u(t, x)] = 0, for c > c?.
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Proof. The idea of the proof is adapted from [35]. Let c > c?. We choose 0 < λ < λ+(c) such
that ∆c(λ)>0. We put N(t, x)= Meλ(ct−zx) and u(t, x)= Mβ(0)eλ(ct−zx)/(1− 2Ke−γredrλ2−crλ),
for some M > 0 and z = ±1. It is easy to check that

u(t, x) = β(0)N(t, x) + 2Ke−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy.

On the other hand, we have

∂N(t, x)
∂t

− D[(h ∗ N)(t, x)− N(t, x)] + (δ(0) + β(0))N(t, x)

− 2(1− K)e−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy

≥ N(t, x)∆c(λ) > 0.

So, (N, u) is an upper solution of the linear system

∂N(t, x)
∂t

= D[(h ∗ N)(t, x)− N(t, x)]− (δ(0) + β(0))N(t, x)

+ 2(1− K)e−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy,

u(t, x) = β(0)N(t, x) + 2Ke−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy.

(3.24)

We fix c̃ ∈ (c?, c). From Lemma 3.4, we ensure that there exists 0 < λ̃ < λ+(c) such that
∆c̃(λ̃) > 0. Using the fact that (N0, u0) has a compact support, we can choose M large enough
such that, for z = ±1 and (θ, x) ∈ [−r, 0]×R,

N0(x) ≤ Me−λ̃zx and u0(θ, x) ≤ Mβ(0)eλ̃(c̃θ−zx)

1− 2Ke−γredrλ̃2−c̃rλ̃
.

Furthermore, the solution (N, u) of the system (1.4) satisfies

∂N(t, x)
∂t

≤ D[(h ∗ N)(t, x)− N(t, x)]− (δ(0) + β(0))N(t, x)

+ 2(1− K)e−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy,

u(t, x) ≤ β(0)N(t, x) + 2Ke−γr
∫ +∞

−∞
Γ(r, x− y)u(t− r, y)dy.

Then, (N, u) is a lower solution of (3.24). By the comparison principle, we have, for all (t, x) ∈
[0,+∞)×R,

N(t, x) ≤ Meλ̃(c̃t−zx) and u(t, x) ≤ Mβ(0)eλ̃(c̃t−zx)

1− 2Ke−γredrλ̃2−c̃rλ̃
.

We put, for x 6= 0, z = x/|x| and we get

N(t, x) ≤ Meλ̃(c̃t−|x|) and u(t, x) ≤ Mβ(0)eλ̃(c̃t−|x|)

1− 2Ke−γredrλ̃2−c̃rλ̃
.

This proves the result.
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4 Summary

In this paper, we proposed and analyzed a new mathematical model describing a cell popu-
lation dynamics. The model is a coupled nonlocal diffusion and difference system, which is
a generalization of the model studied in [1] to a model with nonlocal diffusion. Our interest
was to deal with the properties of traveling waves of such system. The main difficulty was to
combine two different theories: the nonlocal diffusion equations and the difference equations
with delay theories. The problem of existence of traveling wave fronts was treated by using
the Schauder’s fixed point theorem with the method based on the construction of upper and
lower solutions. In conclusion, it was clarified that there exists a critical threshold c? for which
the existence of traveling wave fronts is guaranteed for a speed c ≥ c? and that no monotone
wave exists when c < c?. Moreover, we established an asymptotic behavior of the profile
of the wave near −∞. We proved also that the nonlocality, through the diffusions rates, can
increase the minimal wave speed. In the forthcoming works, we will continue to analyze the
influence of the parameters on the wave velocity. Future work will include also the stability
of wave either for the local or nonlocal diffusion.
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