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Abstract. In this work, we consider a diffusive SIR-B epidemic model with multiple
transmission pathways and saturating incidence rates. We first present the explicit
formula of the basic reproduction number R0. Then we show that if R0 > 1, there
exists a constant c∗ > 0 such that the system admits traveling wave solutions connecting
the disease-free equilibrium and endemic equilibrium with speed c if and only if c ≥ c∗.
Since the system does not admit the comparison principle, we appeal to the standard
Schauder’s fixed point theorem to prove the existence of traveling waves. Moreover, a
suitable Lyapunov function is constructed to prove the upward convergence of traveling
waves.

Keywords: reaction-diffusion equations, saturation incidence rates, upper-lower solu-
tions, traveling waves, minimum wave speed.

2010 Mathematics Subject Classification: 35B40, 35K57, 37N25, 92D25.

1 Introduction

There have been intensive studies about the existence of traveling waves and the minimum
wave speed for various epidemic models, which are of great importance for the prediction and
control of infectious diseases. For the transmission of communicable diseases, most of epi-
demic models are proposed based on the classic susceptible-infected-recovered (SIR) epidemic
model [13], whose basic assumption is that the disease is only transmitted directly by human-
to-human contacts. This assumption is reasonable for many viral diseases (e.g., measles, in-
fluenza). However, in addition to direct human-to-human transmission pathway, cholera and
many other waterborne diseases are mainly transmitted by indirect environment-to-human
contacts via ingestion of contaminated water or food [5, 8]. As a consequence, mathematical
modeling and dynamical analysis for infectious diseases with multiple transmission pathways
have attracted much attention of researchers. We refer to [6,8,17,18,22,25] for ordinary differ-
ential equations (ODE), and [26, 27, 33] for diffusive PDE models with multiple transmission
pathways.
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Based on the basic SIR model, Codeço proposes the following SIR-B epidemic model to
describe the transmission of cholera [3], which includes a fourth compartment for bacterial
concentration in water 

dS
dt

= µ(N0 − S)− β f (B)S,

dI
dt

= β f (B)S− (σ + µ)I,

dB
dt

= eI − (µB − πB)B,

dR
dt

= σI − µR,

(1.1)

where β f (B)S is the incidence function for indirect environment-to-human transmission. For
more generalizations of Codeço’s model, we refer readers to recent works [8, 21]. It is clear
that Codeço’s model ignores the direct human-to-human transmission pathway, which also
plays an important role in the transmission of waterborne diseases [4].

In this work, we intend to study the following diffusive SIR-B epidemic model, which
describes the transmission of waterborne disease with direct and indirect transmissions

∂S
∂t

= d1
∂2S
∂x2 + µH(N0 − S)− β1S f1(I)− β2S f2(B),

∂I
∂t

= d2
∂2 I
∂x2 + β1S f1(I) + β2S f2(B)− (σ + µH)I,

∂B
∂t

= d3
∂2B
∂x2 + η I − (µB − πB)B,

∂R
∂t

= d4
∂2R
∂x2 + σI − µHR.

(1.2)

Note that model (1.2) is an extension of Codeço’s model. The variables S(x, t), I(x, t), R(x, t),
and B(x, t) represent, respectively, the density of susceptible, infected, recovered individuals,
and the bacterial concentration in contaminated environment at location x ∈ (−∞, ∞) and
time t ∈ [0, ∞); the constant N0 is the total population size at time t = 0; di > 0, i = 1, 2, 3, 4
is the diffusion coefficient for populations; µH is the natural birth/death rate of humans; σ

is the recovery rate of populations; µB > πB are loss and growth rates of the bacteria; β1, β2

are the contact rate of the individual with the infectious and the contaminated environment,
respectively; η is the contribution rate of each infectious individual to the population of bac-
teria; β1S f1(I), β2S f2(B) are density-dependence incidence functions for direct and indirect
transmissions. For more details of the biological background of (1.2), we refer to [3,5,21,25,26]
and references therein.

To model the spread of an infectious disease with multiple transmission pathways, one of
crucial issues is how to model the incidence rates of the disease, which depend on both the
population behavior and the infectivity of the disease. Bilinear incidence rates β1SI and/or
β2SB have been frequently used, see for example [3, 17, 21, 22, 27]. However, nonlinearity in
the incidence rates has been observed in the transmission of many diseases. For example,
based on the careful study of the cholera epidemic spread in Bari in 1973, Capasso and Serio
[1] introduced a nonlinear saturated incidence rate SI

1+aI , a > 0, into epidemic models. The
saturation incidence rate is more realistic than the bilinear, which takes into account the sat-
uration phenomena in reality. Therefore, we will focus on the saturation incidence rates, and
hereafter we assume

f1(I) =
I

1 + aI
, f2(B) =

B
KB + B

,
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where constant KB > 0 is half saturation concentration of the bacteria in the contaminated
environment [3]. Another crucial issue is how to model the relative magnitude of the direct
contact rate to the indirect transmission rate. According to [5, 8], the waterborne disease is
mainly transmitted by indirect environment-to-human contacts, and clean water provision
may reduce, even stop, the disease transmission. Hence, in this work, we assume the direct
contact rate β1 < (σ + µH)/N0 relatively small such that the epidemic may not happen in the
absence of indirect waterborne transmission.

So far, many results have been done on the threshold dynamics of SIR-B models with
respect to the so-called basic reproduction number R0. For example, see [3, 21, 25] for ODE
systems, and recent works [26, 27, 35] for diffusive SIR-B models. However, due to the com-
plexity of the model, little work is to study the existence of traveling waves for the diffusive
SIR-B model with multiple transmission pathways. In the absence of bacterium (B(x, t) ≡ 0),
model (1.2) is the standard SIR epidemic model. For the existence of traveling wave solutions
for SIR models with standard or saturation incidence rates, we refer to [2, 7, 24, 28, 31]. Using
the Schauder’s fixed point theorem, the authors in [7, 31] proved the existence of traveling
waves for diffusive SIR models with time delay and saturation incidence rates. In the case
of β1 = 0 in (1.2), from a mathematical point of view, the system is essentially a diffusive
SEIR epidemic model. Based on Schauder’s fixed point theorem and Laplace transform, the
authors of recent works [20,32] establish the existence and nonexistence of traveling waves for
diffusive SEIR models with standard and saturation incidence rates, respectively.

However, in the case of βi 6= 0, i = 1, 2, system (1.2) becomes more complicated, and it
is essentially different with SIR or SEIR model. As far as we know, the existence of traveling
waves and the minimum wave speed of (1.2) has not been studied in literatures. Since the
solution semiflow associated with (1.2) does not admit the comparison principle, the powerful
theory [14,15] for monotone dynamical systems cannot be applied. To overcome the difficulty
due to the lack of monotonicity, we appeal to the standard Schauder’s fixed point theorem (see
e.g. [11, 16]) for an equivalent non-monotone solution operator, where upper-lower solutions
are constructed for the verification of a suitable invariant convex set for the solution operator.

Note that the spatially homogeneous system of (1.2) is given by the following ODE system:

dS
dt

= µH(N0 − S)− β1S f1(I)− β2S f2(B),

dI
dt

= β1S f1(I) + β2S f2(B)− (σ + µH)I,

dB
dt

= η I − (µB − πB)B,

dR
dt

= σI − µHR.

(1.3)

Using the linearization of (1.3) at disease-free equilibrium (N0, 0, 0, 0) and the next-generation
matrix theory given in [23], we can verify that the basic reproduction number R0 of (1.3) is
given by

R0 =
β1N0

σ + µH
+

β2N0η

(µB − πB)KB(σ + µH)
=: RI

0 +RB
0 ,

where

RI
0 =

β1N0

σ + µH

is the basic reproduction number induced by direct human-to-human transmission (β2 = 0),
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and
RB

0 =
β2N0η

(µB − πB)KB(σ + µH)

is the basic reproduction number induced by the indirect environment-to-human transmis-
sion (β1 = 0). Then by similar arguments as given in [25], we have the following threshold
dynamics for (1.3) with respect to R0.

Proposition 1.1. If R0 < 1, then system (1.3) admits only one non-negative disease-free equilibrium
(DFE), which is globally asymptotically stable. If R0 > 1, then the DFE becomes unstable, and system
(1.3) has a unique endemic equilibrium, which is locally asymptotically stable.

The main purpose of this work is to investigate the existence of traveling waves connecting
the DFE and endemic equilibrium. Hence, we further assume R0 > 1 in the remainder of this
paper. Our study is mainly motivated by recent works [7, 31, 32], where the Schauder’s fixed
point theorem is applied to determine the existence of traveling waves and the minimal wave
speed for SIR/SEIR model with saturation incidence rate. Note that our model (1.2) is more
complex than the standard SIR/SEIR model, hence the construction of upper-lower solutions
is different with that given in [7, 31, 32]. For the construction idea of such vector-value upper-
lower solutions, we refer to [29, 32] and other related works.

The rest of this paper is organized as follows. In Section 2, by solving an eigenvalue
problem, we establish the existence of the critical value c∗. Then we construct and verify a
pair of upper and lower solutions for the associated wave equations. In Section 3, we first
construct a closed and convex set, in which we apply the Schauder’s fixed point theorem
to an equivalent non-monotone solution operator to obtain the existence of traveling waves
with c > c∗. Moreover, a suitable Lyapunov function is constructed to prove the upward
convergence of traveling waves. The existence of traveling waves with c = c∗ also obtained by
a limiting argument. Finally, a short conclusion and discussion finishes this paper.

2 Upper and lower solutions

In this section, we first determine the existence of critical value c∗ by solving an eigenvalue
problem. Then we construct and verify a pair of upper and lower solutions for wave equations
with c > c∗, which is used to construct a closed and convex set for the Schauder’s fixed point
theorem.

Note that the variable R(x, t) in (1.2) does not appear in the first three equations. Thus, it
suffices to consider the closed subsystem for variables S, I, and B. Let (S, I, B) = (u1, u2, u3)

for the simplicity of notations, Then we have

∂u1

∂t
= d1

∂2u1

∂x2 + µH(N0 − u1)− β1u1 f1(u2)− β2u1 f2(u3),

∂u2

∂t
= d2

∂2u2

∂x2 + β1u1 f1(u2) + β2u1 f2(u3)− (σ + µH)u2,

∂u3

∂t
= d3

∂2u3

∂x2 + ηu2 − (µB − πB)u3.

(2.1)

From proposition 1.1, we know that, if R0 > 1, system (2.1) admits a DFE E0 := (N0, 0, 0),
and a unique endemic equilibrium E∗ = (u∗1 , u∗2 , u∗3). With the assumption of R0 > 1, we are
interested in the existence of monostable traveling waves connecting the disease-free equilib-
rium E0 and the endemic equilibrium E∗, which describe the propagation of the disease from
an initial disease-free steady state to the endemic steady state.
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Definition 2.1. A traveling wave solution of (2.1) connecting E0 to E∗ with speed c > 0 is a
nonnegative solution of (2.1) with the following form

(u1(x, t), u2(x, t), u3(x, t)) = (U1(s), U2(s), U3(s)) := U(s), s = x + ct,

and satisfies
U(−∞) = E0, U(+∞) = E∗. (2.2)

A constant c∗ > 0 is called the minimum wave speed if system (2.1) admits a traveling wave
solution with speed c if and only if c ≥ c∗.

Substituting the wave profile U(s) defined above to system (2.1), we get the following
second order wave equations:

cU′1 = d1U′′1 + µH(N0 −U1)− β1U1 f1(U2)− β2U1 f2(U3),

cU′2 = d2U′′2 + β1U1 f1(U2) + β2U1 f2(U3)− (σ + µH)U2,

cU′3 = d3U′′3 + ηU2 − (µB − πB)U3,

(2.3)

where ′ denotes the derivative with respect to variable s. Then the existence of traveling waves
of (2.1) is equivalent to the existence of the nonnegative solutions U of (2.3) with condition
(2.2). For the simplicity of notations, we define

G1(u1, u2, u3) := µH(N0 − u1)− β1u1 f1(u2)− β2u1 f2(u3),

G2(u1, u2, u3) := β1u1 f1(u2) + β2u1 f2(u3)− (σ + µH)u2,

G3(u1, u2, u3) := ηu2 − (µB − πB)u3.

2.1 Eigenvalues problem

Linearizing system (2.3) at E0 = (N0, 0, 0), we get the following linearization:
cφ′1(s) = d1φ′′1 (s)− µHφ1(s)− β1N0φ2(s)−

β2N0

KB
φ3(s),

cφ′2(s) = d2φ′′2 (s) + β1N0φ2(s) +
β2N0

KB
φ3(s)− (σ + µH)φ2(s),

cφ′3(s) = d3φ′′3 (s) + ηφ2(s)− (µB − πB)φ3(s).

(2.4)

Note that the last two equations of (2.4) are closed. Plugging (φ2, φ3) = eλs(κ2, κ3) into the last
two equations of (2.4), we get the following eigenvalue problem

AλK = 0,

where

Aλ =

[
p2(λ) β2N0/KB

η p3(λ)

]
, K =

[
κ2

κ3

]
,

p2(λ) = d2λ2 − cλ− (σ + µH − β1N0), p3(λ) = d3λ2 − cλ− (µB − πB).

Letting C(λ) := det (Aλ) = 0 be the characteristic equation, then we get the following equa-
tion:

Pc(λ)− β2N0η/KB = 0, (2.5)

where Pc(λ) = p2(λ)p3(λ). Now we need to consider the roots of the following fourth order
polynomial equation

Pc(λ) = β2N0η/KB. (2.6)
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Lemma 2.2. Let R0 > 1, then there exists a positive constant c∗ such that the following statements
are valid:

(i) If c > c∗, (2.6) has four distinct real roots, where one is negative, and the others are positive. Let
λ1 be the smallest positive one, then for ε > 0 small enough, we have

p2(λ1 + ε) < 0, p3(λ1 + ε) < 0, Pc(λ1 + ε) > β2N0η/KB.

(ii) If c = c∗, (2.6) has one negative and two positive real roots, where the smaller positive one is
repeated.

(iii) If 0 < c < c∗, (2.6) has two distinct real roots, and two conjugate complex roots.

Proof. Since R0 > 1, we have Pc(0) = (σ + µH − β1N0)(µB − πB) < β2N0η/KB, which implies
that zero is not a root of (2.6) for any c > 0. Denote the roots of Pc(λ) = 0 to be

λ±2 =
c±

√
c2 + 4d2(σ + µH − β1N0)

2d2
, λ±3 =

c±
√

c2 + 4d3(µB − πB)

2d3
,

then they are all real. Setting

λ±m = min{λ±2 , λ±3 }, λ±M = max{λ±2 , λ±3 },

then we have λ−M < 0 < λ+
m . Since Pc(±∞) = +∞, the mean value theorem implies that (2.6)

has one negative root in (−∞, λ−m), and one positive root in (λ+
M, ∞). Moreover, we can verify

that Pc(λ) < 0 < ηβ2N0/KB for all λ ∈ (λ−m , λ−M) ∪ (λ+
m , λ+

M). Now we consider the interval
I = (λ−M, λ+

m), in which Pc(λ) > 0 and pi(λ) < 0, i = 2, 3. It is easy to observe λ−M is strictly
decreasing and λ+

m is increasing with respect to c. For fixed λ ∈ I, we have

dPc(λ)

dc
= −λ(p2(λ) + p3(λ)),

which implies that Pc(λ) is strictly increasing with respect to c for fixed λ ∈ (0, λ+
m), and it is

decreasing for λ ∈ (λ−M, 0). Moreover, for c = 0, we can verify

max
λ∈I

P0(λ) = P0(0) = (σ + µH − β1N0)(µB − πB) < β2N0η/KB,

then the monotonicity of Pc(λ) with respect to c implies that (2.6) has no real root in (λ−M, 0)
for any c > 0. Denoting λ+

m to be λ+
m0 if c = 0, then for any λ ∈ (0, λ+

m0), we have

lim
c→+∞

Pc(λ) = +∞ > β2N0η/KB.

Then the monotonicity of Pc(λ) with respect to c for λ ∈ I implies that there exists a constant
c∗ > 0 such that (2.6) has two positive real roots in I for c > c∗, no real root in I for 0 < c < c∗,
and there is a positive repeated root in I for c = c∗, which implies statements (i)–(iii) hold.

To ensure the existence of positive solution U of (2.3) satisfying condition (2.2), it is neces-
sary to ask the eigenvalues of (2.5) are all real. Otherwise, a spiral solution near E0 will destroy
the positivity of the state variable Ui, i = 1, 2, 3. Then Lemma 2.2 (c) implies that system (2.1)
does not admit traveling wave solution for 0 < c < c∗. For the nonexistence of traveling waves
for 0 < c < c∗, a similar argument as given in [32, Theorem 3.3] also could be applied. Now
we mainly focus on the existence of traveling waves of (2.1) for c ≥ c∗.
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2.2 Construction of upper and lower solutions

To prove the existence of traveling waves for c > c∗, we need to construct suitable vector-value
upper and lower solutions for (2.3). Let λ1 be given in Lemma 2.2 and κ := −η/p3(λ1) > 0.
Then we define the following continuous functions:

U1(s) = N0, U1(s) = max{N0 − σ1eαs, 0},
U2(s) = min{eλ1s, N∗}, U2(s) = max{eλ1s(1− σ2eεs), 0},
U3(s) = min{κeλ1s, ωN∗}, U3(s) = max{κeλ1s(1− σ3eεs), 0},

where positive constants N∗, α, ω, ε, σi, i = 1, 2, 3 will be determined. The we have the follow-
ing lemmas.

Lemma 2.3. There exists a positive constant N∗ ( > 1, large enough) such that the functions U2 and
U3 satisfies inequalities

cU′2 ≥d2U′′2 + G2(N0, U2, U3), for s 6= s̄2, (2.7)

cU′3 ≥d3U′′3 + G3(N0, U2, U3), for s 6= s̄3, (2.8)

where s̄2 = ln N∗
λ1

and s̄3 =
ln ωN∗

κ
λ1

.

Proof. We may assume s̄2 ≤ s̄3. The case of s̄2 > s̄3 is similar. If s < s̄2, then U2(x) = eλ1x,
U3(x) = κeλ1x and

d2U′′2 − cU′2 + G2(N0, U2, U3)

= d2λ2
1eλ1x − cλ1eλ1x + β1N0 f1(U2) + β2 f2(U3)N0 − (σ + µH)U2

≤ eλ1x
[

d2λ2
1 − cλ1 + β1N0 − (σ + µH) + β2N0

κ

KB

]
+ β2N0 f2(U3)− β2N0

κ

KB
eλ1x

= β2N0 f2(U3)− β2N0
κ

KB
eλ1x ≤ 0.

(2.9)

Similar to (2.9), it can be concluded that

d3U′′3 − cU′3 + G3(N0, U2, U3) = d3κλ2
1eλ1x − cκλ1eλ1x + ηeλ1x − (µB − πB)κeλ1x

= [d3λ2
1 − cλ1 +

η

κ
− (µB − πB)]κeλ1x = 0.

If s > s̄3, then U2 = N∗, U3 = ωN∗, and

d2U′′2 − cU′2 + G2(N0, U2, U3) = β1N0
N∗

1 + aN∗
+ β2N0

ωN∗

KB + ωN∗
− (σ + µH)N∗

≤ β1N0/a + β2N0 − (σ + µH)N∗ ≤ 0,
(2.10)

where
N∗ >

β2N0 + β1N0/a
σ + µH

.

It is easy to see that

d3U′′3 − cU′3 + G3(N0, U2, U3) = ηN∗ − (µB − πB)ωN∗ = 0,

where ω = η
µB−πB

> 0.
If s̄2 ≤ s ≤ s̄3, it can be similarly shown that (2.7) and (2.8) hold. This completes the

proof.
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Lemma 2.4. For

0 < α <
1
2

min
{

c
d1

, λ1

}
, σ1 > max

{
N0,

β2N0
κ

KB
+ β1N0

(c− d1α)α

}
,

the function U1(s) satisfies inequality

cU′1 ≤ d1U′′1 + G1(U1, U2, U3)

for any s 6= s1 := 1
α ln N0

σ1
.

Proof. Without loss of generality, we may assume σ1 is large enough such that s1 < 0 and
s1 < s̄2 ≤ s̄3. If s > s1, then U1(s) = 0, the inequality holds.
If s < s1, then U1(s) = N0 − σ1eαs, U2(s) = eλ1s , U3(s) = κeλ1s. Hence we have

d1U′′1 − cU′1 + G1(U1, U2, U3)

= − d1σ1α2eαs + cσ1αeαs + µHσ1eαs − β1(N0 − σeαs) f1(U2)− β2(N0 − σeαs) f2(U3)

≥ (c− d1α)σ1αeαs − β1N0 f1(U2)− β2N0 f2(U3)

≥
[
(c− d1α)σ1α− [β1N0 +

β2N0κ

KB
]e(λ1−α)s

]
eαs ≥ 0,

(2.11)

where (λ1 − α)s < 0 and σ1 > max
{

N0,
β2 N0κ

KB
+β1 N0

(c−d1α)α

}
. This completes the proof.

Lemma 2.5. There exist positive constants ε (small enough), σ2 and σ3 (large enough) such that
functions U2(s) and U3(s) satisfy inequalities

cU′2 ≤d2U′′2 + G2(U1, U2, U3), for s 6= s2 := −1
ε

ln σ2, (2.12)

cU′3 ≤d3U′′3 + G3(U1, U2, U3), for s 6= s3 := −1
ε

ln σ3. (2.13)

Proof. Without loss of generality we suppose s3 < s2, which implies σ2 < σ3. It is clear that
(2.12) holds for s > s2 and (2.13) holds for s > s3. Since

lim
s→−∞

U1(s) = N0, lim
s→−∞

Ui(s) = 0, lim
ε→0+, σi→+∞

si = −∞, i = 2, 3,

we can set ε small enough and σ2, σ3 large enough such that s2 < 0 and s2 < s1. In the
remainder of this proof we assume s ≤ s2, which implies

U1(s) = N0 − σ1eαs, U2(s) = eλ1s(1− σ2eεs), U3(s) ≥ κeλ1s(1− σ3eεs) =: U3,

where U3 = U3 if and only if s ≤ s3. By Taylor’s theorem we have

G2(U1, U2, U3) = β1N0U2 + β1
(U1 − N0)U2
(1 + aθ2U2)

2 −
aβ1θ2U1(U2)

2

(1 + θ2aU2)
3 − (σ + µH)U2

+ β2
N0U3

KB
+ β2(U1 − N0)U3

KB

(KB + θ1U3)
2 −

β2θ1KBU1U3
2

(KB + θ1U3)
3 ,

(2.14)
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where 0 < θi < 1, i = 1, 2. Therefore

e−λ1s[d2U′′2 − cU′2 + G2(U1, U2, U3)]

≥ e−λ1s[d2U′′2 − cU′2 + G2(U1, U2, U3)]

≥ d2λ2
1 − cλ1 + β1N0 − (σ + µH) + β2N0

κ

KB
− [d2(λ1 + ε)2 − c(λ1 + ε)

− (σ + µH) + β1N0]σ2eεs − β2N0κσ3

KB
eεs − R1(s)σ1eαs − R2(s)eλ1s

= − [d2(λ1 + ε)2 − c(λ1 + ε)− (σ + µH) + β1N0]σ2eεs − β2N0κσ3

KB
eεs

− R1(s)σ1eαs − R2(s)eλ1s

= − p2(λ1 + ε)σ2eεs − β2N0

KB
κσ3eεs − R1(s)σ1eαs − R2(s)eλ1s,

(2.15)

where

R1(s) = κ(1− σ3eεs)
β2KB

(KB + θ1U3)
2 +

β1(1− σ2eεs)

(1 + aθ2U2)
2 ,

R2(s) = κ2(1− σ3eεs)2 β2KBθ1N0

(KB + θ1U3)
3 +

aβ1θ2N0(1− σ2eεs)2

(1 + aθ2U2)
3 .

For s < s2, it is easy to show that

0 ≤ 1− σ2eεs ≤ 1, 1− σ3

σ2
≤ 1− σ3eεs ≤ 1. (2.16)

Similar to (2.15), we have

e−λ1s[d3U′′3 − cU′3 + G3(U1, U2, U3)] = −ησ2eεs − P3(λ1 + ε)κσ3eεs (2.17)

for all s < s3. Consider the following inequalitiesp2(λ1 + ε)x2 +
β2N0

KB
x3 < 0,

ηx2 + p3(λ1 + ε)x3 < 0.
(2.18)

Remember that pi(λ1 + ε) < 0, i = 2, 3, and Pc(λ1 + ε) − β2 N0η
KB

> 0. Then [9, Lemma 3.2]
implies that there exist positive constant xi, i = 1, 2 such that inequalities (2.18) hold and
satisfy

lim
ε→0

x3

x2
= κ.

Note that for fixed xi, it is easy to check ζxi, i = 2, 3, still satisfy (2.18) for any positive constant
ζ > max{x2, κ/x3}. Setting

σ2 := ζx2, σ3 :=
ζx3

κ
,

then for small ε, we have
−1 < 1− σ3

σ2
≤ 1− σ3eεs ≤ 1.

This and (2.16) imply that there exists a positive constant M1 such that

|R1(s)| ≤ M1, |R2(s)| ≤ M1 (2.19)
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for all s < s2. It follows from (2.15) that

e−λ1s [d2U′′2 − cU′2 + G2(U1, U2, U3)
]

≥
[
−p2(λ1 + ε)σ2 −

β2N0

KB
κσ3

]
eεs − R1(s)σ1eαs − R2(s)eλ1s

= [ζLε − σ1R1(s)e(α−ε)s − R2(s)e(λ1−ε)s]eεs

≥ (ζLε − σ1M1 −M1)eεs > 0,

where

Lε = −P2(λ1 + ε)x2 −
β2N0

KB
x3 > 0, ζ >

(σ1 + 1)M1

Lε
, ε < min{α, λ1}.

Here we use inequalities in (2.18) and the fact s < s2 < 0. The inequality (2.13) can be proved
similarly.

3 Existence of traveling waves

Using the upper and lower solutions determined in above lemmas, we define the set

Γ = {(U1(·), U2(·), U3(·)) ∈ C(R, R3) : Ui(s) ≤ Ui(s) ≤ Ui(s), i = 1, 2, 3, s ∈ R}.

To apply Schauder’s fixed point theorem on Γ, we rewrite equations (2.3) as follows
− d1U′′1 + cU′1 + γ1U1 = H1[U(·)](s),
− d2U′′2 + cU′2 + γ2U2 = H2[U(·)](s),
− d3U′′3 + cU′3 + γ3U3 = H3[U(·)](s),

(3.1)

where

U(s) = (U1(s), U2(s), U3(s)),

H1[U(·)](s) = γ1U1(s) + G1(U(s)),

H2[U(·)](s) = γ2U2(s) + G2(U(s)),

H3[U(·)](s) = γ3U3(s) + G3(U(s)),

and positive constant γi, i = 1, 2, 3 is large enough such that each Hi[U(·)](s), i = 1, 2, 3, is
monotone increasing with respect to Ui(·). Actually, by the definition of functions Gi, i =

1, 2, 3, it is enough to choose

γ1 > sup
u∈Γ0

{
−∂G1(u)

∂u1

}
+ β1, γ2 > sup

u∈Γ0

{
−∂G2(u)

∂u2

}
, γ3 > sup

u∈Γ0

{
−∂G3(u)

∂u3

}
where

Γ0 := {(u1, u2, u3) : 0 < u1 ≤ N0, 0 < u2 ≤ N∗, 0 < u3 ≤ κN∗}.

Let Λi1 < 0 < Λi2, i = 1, 2, 3 be the roots of

diΛ2 − cΛ− γi = 0,

and define the operator F = (F1, F2, F3) : Γ→ C(R, R3) by

Fj[U(·)](s) = 1
djΛj

[∫ s

−∞
eΛj1(s−t)Hj[U(·)](t)dt +

∫ ∞

s
eΛj2(s−t)Hj[U(·)](t)dt

]
, (3.2)
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where Λj := Λj2 −Λj1 > 0, i = 1, 2, 3. Then we can check that a fixed point of operator F in Γ
is a nonnegative and bounded solution of (3.1). Therefore, to prove the existence of traveling
waves, it is enough to prove the existence of fixed points of operator F. Then we have the
following lemmas.

Lemma 3.1. The operator F maps Γ into Γ, i.e. F(Γ) ⊂ Γ.

Proof. Let U(·) ∈ Γ, that is, Ui(s) ≤ Ui(s) ≤ Ui(s) for any s ∈ R, i = 1, 2, 3. Then it suffices to
prove

Ui(s) ≤ F[Ui(s)] ≤ Ui(s)

for any s ∈ R, i = 1, 2, 3. Note that Hi[U(·)] is increasing with respect to Ui(·), and hence
Hi[U(·)] ≥ 0, i = 1, 2, 3 for s ∈ R.

If s ≥ s2, we have U2(s) = 0 and F2[U(·)](s) > 0 = U2(s) due to H2[U(·)](s) ≥ 0 and
H2[U(·)](s) 6≡ 0. Now suppose s ≤ s2, then we have

−d2U′′2 + cU′2 + γ2U2 ≤ γ2U2 + G2(U1, U2, U3)

≤ γ2U2 + G2(U1, U2, U3)

= H2[U(·)](s).

Hence,

F2[U(·)](s) = 1
d2Λ2

[∫ s

−∞
eΛ21(s−t)H2[U(·)](t)dt +

∫ ∞

s
eΛ22(s−t)H2[U(·)](t)dt

]
≥ 1

d2Λ2

∫ s

−∞
eΛ21(s−t) [−d2U′′2 (t) + cU′2(t) + γ2U2(t)

]
dt

+
1

d2Λ2

∫ s2

s
eΛ22(s−t) [−d2U′′2 (t) + cU′2(t) + γ2U2(t)

]
dt

+
1

d2Λ2

∫ ∞

s2

eΛ22(s−t) [−d2U′′2 (t) + cU′2(t) + γ2U2(t)
]

dt

= U2(s) +
1

Λ2
eΛ22(s−s2)[U′2(s2 + 0)−U′2(s2 − 0)]

> U2(s) ≥ 0,

(3.3)

where the second inequality holds because of U′2(s2 + 0) = 0 and U′2(s2 − 0) < 0. Therefore

F2[U(·)](s) ≥ U2(s)

for any s ∈ R. Other cases can be proved similarly.

Choosing the positive number µ < min{−Λ21, Λ21}, then we define the functional space

Bµ(R, R3) := {Φ(s) = (φ1(s), φ2(s), φ3(s)) ∈ C(R, R3) : ‖Φ(s)‖ < ∞}

with the norm

‖Φ(s)‖ := max
{

sups∈R |φ1(s)|e−µ|s|, sups∈R |φ2(s)|e−µ|s|, sups∈R |φ3(s)|e−µ|s|
}

.

It is easy to see that Γ is a closed and convex subset of Bµ(R, R3).

Lemma 3.2. The operator F : Γ→ Γ is continuous with respect to the norm ‖ · ‖.
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Proof. Assume φ(s), ψ(s) ∈ Γ with φ(s) 6≡ ψ(s), where

φ(s) = (φ1(s), φ2(s), φ3(s)), ψ(s) = (ψ1(s), ψ2(s), ψ3(s)).

Note that∣∣∣∣φ1(s)
φ2(s)

1 + aφ2(s)
− ψ1(s)

ψ2(s)
1 + aψ2(s)

∣∣∣∣
=

∣∣∣∣φ1(s)
φ2(s)

1 + aφ2(s)
− ψ1(s)

φ2(s)
1 + aφ2(s)

+ ψ1(s)
φ2(s)

1 + aφ2(s)
− ψ1(s)

ψ2(s)
1 + aψ2(s)

∣∣∣∣
≤ N∗|φ1(s)− ψ1(s)|+ N0|φ2(s)− ψ2(s)|,

and ∣∣∣∣φ1(s)
φ3(s)

KB + φ3(s)
− ψ1(s)

ψ3(s)
KB + ψ3(s)

∣∣∣∣
=

∣∣∣∣φ1(s)
φ3(s)

KB + φ3(s)
− ψ1(s)

φ3(s)
KB + φ3(s)

+ ψ1(s)
φ3(s)

KB + φ3(s)
− ψ1(s)

ψ3(s)
KB + ψ3(s)

∣∣∣∣
≤ |φ1(s)− ψ1(s)|+

N0

KB
|φ3(s)− ψ3(s)|.

It follows from the definitions of Γ and G that

|H1[φ(·)](s)− H1[ψ(·)](s)|e−µ|s| ≤ M2‖φ(·)− ψ(·)‖,

where M2 = β2(N0/KB + 1) + β1(N0 + N∗) + µ + γ1. Further more, we have

|F1[φ(·)](s)− F1[ψ(·)](s)|e−µ|s|

≤ e−µ|s|

d1Λ1

[∫ s

−∞
eΛ11(s−t)+µ|t||H1[φ(·)](t)− H1[ψ(·)](t)|e−µ|t|dt

+
∫ ∞

s
eΛ12(s−t)+µ|t||H1[φ(·)](t)− H1[ψ(·)](t)|e−µ|t|dt

]
≤ M2e−µ|s|

d1Λ1

[∫ s

−∞
eΛ11(s−t)+µ|t|dt +

∫ ∞

s
eΛ12(s−t)+µ|t|dt

]
‖φ(·)− ψ(·)‖.

Now we assume µ < min{−Λ11, Λ12}. If s < 0, we have

|F1[φ(·)](s)− F1[ψ(·)](s)|e−µ|s|

≤ M2eµs

d1Λ1

[
eΛ11s

∫ s

−∞
e−(Λ11+µ)tdt + eΛ12s

∫ 0

s
e−(Λ12+µ)tdt + eΛ12s

∫ ∞

0
e(µ−Λ12)tdt

]
‖φ(·)− ψ(·)‖

=
M2

d1Λ1

[
−1

Λ11 + µ
+

1− e(Λ12+µ)s

Λ12 + µ
+

e(Λ12+µ)s

Λ12 − µ

]
‖φ(·)− ψ(·)‖

≤ M2

d1Λ1

(
−1

Λ11 + µ
+

1
Λ12 + µ

+
1

Λ12 − µ

)
‖φ(·)− ψ(·)‖.
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If s ≥ 0, we have

|F1[φ(·)](s)− F1[ψ(·)](s)|e−µ|s|

≤ M2e−µs

d1Λ1

[
eΛ11s

∫ s

−∞
e−(Λ11+µ)tdt + eΛ12s

∫ 0

s
e−(Λ12−µ)tdt + eΛ12s

∫ ∞

0
e(µ−Λ12)tdt

]
‖φ(·)− ψ(·)‖

=
M2

d1Λ1

[
−e(Λ11−µ)s

Λ11 + µ
+

1− e(Λ11−µ)s

µ−Λ11
+

1
Λ12 − µ

]
‖φ(·)− ψ(·)‖

≤ M2

d1Λ1

(
−1

Λ11 + µ
+

1
µ−Λ11

+
1

Λ12 − µ

)
‖φ(·)− ψ(·)‖.

In conclusion, we have shown that

‖F1[φ(·)](s)− F1[ψ(·)](s)‖ ≤ M3‖φ(·)− ψ(·)‖,

where

M3 =
M2

d1Λ1
max

{
−1

Λ11 + µ
+

1
Λ12 + µ

+
1

Λ12 − µ
,
−1

Λ11 + µ
+

1
µ−Λ11

+
1

Λ12 − µ

}
.

Therefore, we know that F1 : Γ → C(R, R) is continuous with respect to the norm ‖ · ‖.
Similarly, it can be proved that Fi : Γ → C(R, R), i = 2, 3 is continuous with respect to the
norm ‖ · ‖ as well.

Lemma 3.3. The operator F : Γ→ Γ is compact with respect to the norm ‖ · ‖.

Proof. Since Γ is a closed subset of Bµ(R, R3) and F(Γ) ⊂ Γ, it suffices to prove that F : Γ →
Bµ(R, R3) is compact with respect to the norm ‖ · ‖.

For any Φ = (U1(s), U2(s), U3(s)) ∈ Γ, there exists a positive constant M4 such that

|Hi[Φ](s)| = |γiUi(s) + Gi(U1(s), U2(s), U3(s))| ≤ M4, i = 1, 2, 3,

for all s ∈ R. Consequently, we have∣∣∣∣ d
ds

F1[Φ](s)
∣∣∣∣ = 1

d1Λ1

[
Λ11

∫ s

−∞
eΛ11(s−t)H1[Φ(·)](t)dt + Λ12

∫ +∞

s
eΛ12(s−t)H1[Φ(·)](t)dt

]
≤ M4

d1Λ1

[
|Λ11|

∫ s

−∞
eΛ11(s−t)dt + Λ12

∫ +∞

s
eΛ12(s−t)dt

]
=

2M4

d1Λ1

(3.4)

which implies ∥∥∥∥ d
ds

F1[Φ](·)
∥∥∥∥ ≤ 2M4

d1Λ1
.

Similarly, we can show that ‖ d
ds Fi[Φ](·)‖ ≤ 2M4

diΛi
, i = 2, 3. On the other hand, there exists a

constant M5 such that

|Fi[Φ](s)| ≤ M5, ∀ Φ ∈ Γ, ∀s ∈ R, i = 1, 2, 3.

Hence, for any ε > 0, letting N ∈N+ such that

3

∑
i=1
|Fi[Φ](s)|e−µ|s| < 3M5e−µN < ε, ∀ |s| > N. (3.5)
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Then by Arzelà–Ascoli theorem, we can choose finite elements in F(Γ) such that there exists a
finite ε−net of F(Γ)(s) in the sense of supremum norm if we restrict them on [−N, N], which
is also a finite ε−net of F(Γ)(s)(s ∈ R) in the space Bµ(R, R3). This implies that F is compact
with respect to the norm ‖ · ‖ in Bµ(R, R3).

Now we are in the position to state the main result of this section.

Theorem 3.4. Let R0 > 1, then for any c ≥ c∗, system (2.3) admits a positive solution U(s) =

(U1(s), U2(s), U3(s)) ∈ Γ satisfying condition (2.2). That is, system (2.1) has traveling wave solutions
connecting E0 to E∗ with minimum wave speed c∗.

Proof. Using the Schauder’s fixed point theorem, it follows from above lemmas that there
exists a nonnegative U(s) ∈ Γ satisfying U(s) = F(U(s)). Then U(s) is a nonnegative solution
of (2.3). Moreover, the inequality (3.3) implies that U2(s) > 0 for all s ∈ R. Similarly, we
can prove Ui(s) > 0, i = 1, 3. That is, U(s) is a positive solution of (2.3). Furthermore,
from the construction of upper-lower solutions, it is easy to check that U(−∞) = E0. Since
the determined wave solutions may not be monotone, it is not easy to observe the upward
convergence of wave profiles. In order to prove U(+∞) = E∗, we appeal to the Lyapunov
function method proposed in [19] (also see [7, 34]) to establish the upward convergence of
traveling waves.

Denote V1(s) := U′1(s), V2(s) := U′2(s), V3(s) := U′3(s), then U(s) also satisfies the following
ODE system: 

U′1(s) = V1(s),

d1V ′1(s) = cV1(s)− G1(U1, U2, U3),

U′2(s) = V2(s),

d2V ′2(s) = cV2(s)− G2(U1, U2, U3),

U′3(s) = V3(s),

d3V ′3(s) = cV3(s)− G3(U1, U2, U3).

Define a Lyapunov function as the following

L(s) := L1(s) + L2(s) +
β2u∗1 f2(u∗3)

ηu∗2
L3(s),

Li(s) := cUi(s)− diVi(s) +
u∗i diVi(s)

Ui(s)
− cu∗i ln Ui(s), i = 1, 2, 3.

Then we have

dLi(s)
ds

=
(

cVi(s)− diV ′i (s)
)Ui(s)− u∗i

Ui(s)
−

u∗i diV2
i (s)

(Ui(s))2

=: Ji1 −Ji2

where

Ji1 =
(

cVi(s)− diV ′i (s)
)Ui(s)− u∗i

Ui(s)
= Gi(U1, U2, U3)

Ui(s)− u∗i
Ui(s)

,

Ji2 =
u∗i diV2

i (s)
(Ui(s))2 ≥ 0.
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Therefore, dL(s)
ds = J1 −J2 with

J1 := J11 + J21 +
β2u∗1 f2(u∗3)

ηu∗2
J31, J2 := J12 + J22 +

β2u∗1 f2(u∗3)
ηu∗2

J32 ≥ 0.

Then simple calculations yield that

J1 = µH(u∗1 −U1)(1−
u∗1
U1

) + β1u∗1 f1(u∗2)
[

2− u∗1
U1

+
U2(1 + au∗2)
u∗2(1 + aU2)

− U2

u∗2
− U1(1 + au∗2)

u∗1(1 + aU2)

]
+ β2u∗1 f2(u∗3)

[
3− u∗1

U1
+

U3(KB + u∗3)
u∗3(KB + U3)

− U1u∗2U3(KB + u∗3)
u∗1U2u∗3(KB + U3)

− U3

u∗3
− U2u∗3

u∗2U3

]
.

Note that

2− u∗1
U1

+
U2(1 + au∗2)
u∗2(1 + aU2)

− U2

u∗2
− U1(1 + au∗2)

u∗1(1 + aU2)

=

[
U2(1 + au∗2)
u∗2(1 + aU2)

− 1
] [

1− 1 + aU2

1 + au∗2

]
+ 3− u∗1

U1
− U1(1 + au∗2)

u∗1(1 + aU2)
− 1 + aU2

1 + au∗2

≤ − ln
u∗1
U1
− ln

U1(1 + au∗2)
u∗1(1 + aU2)

− ln
1 + aU2

1 + au∗2
= 0,

where we use the fact that 1− x ≤ − ln x for all x > 0 and the equality holds if and only if
x = 1. Similarly, we can show that[

3− u∗1
U1

+
U3(KB + u∗3)
u∗3(KB + U3)

− U1u∗2U3(KB + u∗3)
u∗1U2u∗3(KB + U3)

− U3

u∗3
− U2u∗3

u∗2U3

]
≤ 0,

and the equality holds if and only if U1 = u∗1 , U2 = u∗2 , U3 = u∗3 . In conclusion, we have J1 ≤ 0
and J1 = 0 if and only if U(s) = E1, which implies that dLi(s)

ds ≤ 0 and that dLi(s)
ds = 0 if and

only if (
U1(s), V1(s), U2(s), V2(s), U3(s), V3(s)

)
= (u∗1 , 0, u∗2 , 0, u∗3 , 0).

Then the Lyapunov–LaSalle’s invariance principle implies U(+∞) = E∗.
In the case of c = c∗, we use a limiting arguments as used in [9, 10] to prove the existence

of traveling waves of (2.1). Choosing a sequence cn ∈ (c∗, c∗ + 1] such that cn → c∗ as n → ∞,
then system (2.1) admits a traveling wave solution

Un(s) :=
(

U1,n(z), U2,n(z), U3,n(z)
)

connecting E0 to E∗ with speed cn. Note that Un satisfies (3.1) and the integral equations
(3.2). Then we can check that the sequences {Un(s)}, {U′n(s)}, and {U′′n (s)} are uniformly
bounded and equi-continuous on R. Then the Arzelà–Ascoli theorem implies that there exists
a subsequence of {cn}, denoted again by {cn} for simplicity, and function U∗ := (U1∗, U2∗, U3∗)

such that
cn → c∗, Un → U∗, U′n → U∗′, U′′n → U∗′′,

uniformly as n→ ∞ on any bounded and closed interval of R, and hence pointwise on R. As
n→ ∞, then we have 

− d1U′′1∗ + c∗U′1∗ + γ1U1∗ = H1[U∗(·)](s),
− d2U′′2∗ + c∗U′2∗ + γ2U2∗ = H2[U∗(·)](s),
− d3U′′3∗ + c∗U′3∗ + γ3U3∗ = H3[U∗(·)](s).
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Moreover, by the strong maximum principle, we can further verify that U1∗(s) > 0, U2∗(s) >
0, U3∗(s) > 0 for any s ∈ R. Thus, U∗ is a positive traveling wave solution of (2.1) with speed
c = c∗. Then the same Lyapunov function argument as used above for c > c∗ implies that U∗
satisfies condition (2.2). We complete the proof.

4 Conclusion and discussion

In this work, we establish the existence of traveling waves for a reaction-diffusion SIR-B epi-
demic model with direct and indirect transmission pathways. The model is an extension of
the standard SIR epidemic model to describe the transmission of cholera or other waterborne
diseases. Based on the mechanism of the transmission of waterborne diseases, we assume the
incidence rates are nonlinear and saturated. Since we are interested in the existence of trav-
eling wave solutions connecting the disease-free equilibrium and endemic equilibrium, we
assume the basic reproduction number R0 > 1, which is a threshold value for the existence
of endemic equilibrium. With given assumptions, we show that the system admits traveling
waves connecting the DFE and endemic equilibrium with speed c if and only if c ≥ c∗.

Since the solution semiflow associated with our system is non-monotone, we cannot use
the general theory for monotone dynamical systems to determine the existence of traveling
waves. By constructing suitable upper-lower solutions, we apply the Schauder’s fixed point
theorem to obtain the existence of traveling waves for c > c∗, then a limiting argument is
used to determine the existence of critical waves for c = c∗. Note that the determined wave
solutions may not be monotone, then it is tricky to determine the asymptotic states of waves.
In this work, a suitable Lyapunov function is employed to get the upward convergence of
wave solutions. Here we should emphasize that the skills we used here could work for more
general incidence functions with monotonicity and boundedness properties.

It is well known that the minimal wave speed may coincide with the asymptotic spreading
speed for many monotone dynamical systems [15]. Although we have no way to prove this fact
is true for our system, it can be expected that the minimal wave speed c∗ could approximate
the invasion speed of the disease. For the numerical calculation of c∗, we refer readers to a
similar procedure as given in [35]. We can verify that c∗ is the minimum wave speed of (2.1)
if and only if c∗ is the unique positive real root of a quartic equation with respect to c2. Then
the numerical value of c∗ can be calculated by the “roots” command in Matlab software for
given model parameters.

Finally, we should point out that the saturation incidence rates used in this work are
monotone and bounded. However, as mentioned in [30], the incidence rates may be non-
monotone due to the “psychological” effect. For example, the non-monotone incidence rates

SI
1+aI2 is proposed by Xiao and Ruan in [30], which is increasing when I is small and decreasing
when I is large. In such case, the construction and verification of vector-value upper-lower
solutions become much more difficult and challenging. We will consider this interesting topic
in our follow-up works.
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