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Abstract. Recently a criterion has been given for determining the weakly formal
Weierstrass non-integrability of polynomial differential systems in C2. Here we ex-
tend this criterion for determining the strongly formal Weierstrass non-integrability
which includes the weakly formal Weierstrass non-integrability of polynomial differen-
tial systems in C2. The criterion is based on the solutions of the form y = f (x) with
f (x) ∈ C[[x]] of the differential system whose integrability we are studying. The results
are applied to a differential system that contains the famous force-free Duffing and the
Duffing–Van der Pol oscillators.
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1 Introduction and statement of the main result

One of the main problems in the qualitative theory of differential systems is the integrability
problem. For differential systems in C2 this problem consists in to determine if the system
has or not an explicit first integral. When this first integral can be expressed as quadratures of
elementary functions we have the so-called Liouville integrability, which is the most studied,
see for instance [16, 30, 31] and references therein. The Liouville integrability is based on the
cofactors of the invariant algebraic curves and the exponential factors (see definitions below).
Some generalizations of the Liouville integrability theory defining the generalized cofactors
have been obtained, see [7, 8, 10, 11, 19, 20, 30, 31].

Some differential systems have an explicit first integral that cannot be expressed as quadra-
tures of elementary functions. Hence these systems are not Liouville integrable. Sometimes
these first integrals can be expressed in terms of special functions, as for instance functions
that are solutions of second order linear differential equations (in [11,19,29] several examples
are given). To determine when a differential system is not Liouville integrable is an open
problem, see [25]. A partial answer to this question has been recently given in [23].
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In this work we present a criterion to detect the strongly formal Weierstrass non-
integrability which is a generalization of the criterion for detecting weakly formal Weierstrass
non-integrability given in [23]. Finally we apply this new criterion to some differential sys-
tems. Puiseux Weierstrass integrability is a generalization of formal Weierstrass integrability
which includes the Liouville integrability and is based on the Puiseux Weierstrass polynomi-
als, see again [23] and below.

First we provide some preliminary definitions and results.
In this paper we consider polynomial differential systems in the plane C2 that are given

by
ẋ = P(x, y), ẏ = Q(x, y), (1.1)

where the functions P and Q are polynomials in the complex variables x and y. We define by
m = max{deg P, deg Q} the degree of system (1.1) with P(0, 0) = Q(0, 0) = 0. Along the paper
we also consider the associated differential equation

dy
dx

=
Q(x, y)
P(x, y)

, (1.2)

and the associated vector field X = P(x, y)∂/∂x + Q(x, y)∂/∂y.
An invariant algebraic curve of system (1.1) is an invariant curve f = 0 with f ∈ C[x, y], such

that the orbital derivative ḟ = X f = P∂ f /∂x + Q∂ f /∂y vanishes on f = 0. This condition
implies that there exists a polynomial K(x, y) ∈ C[x, y] of degree less than or equal to m− 1
such that

X f = P
∂ f
∂x

+ Q
∂ f
∂y

= K f . (1.3)

This polynomial K is called the cofactor of the curve f (x, y) = 0.
A function of the form e f /g with f and g polynomials is called an exponential factor if there

is a polynomial L of degree at most m− 1 such that

X (e f /g) = P
∂e f /g

∂x
+ Q

∂e f /g

∂y
= L e f /g.

The polynomial L is called the cofactor of the exponential factor e f /g.
A non-locally constant function H : U ⊂ C2 → C is a first integral of system (1.1) in the

open set U if this function is constant on each solution (x(t), y(t)) of system (1.1) contained
in U. In fact if H ∈ C1(U) is a first integral of system (1.1) on U if and only if XH =

P∂H/∂x + Q∂H/∂y ≡ 0 on U. A non-constant function M : U ⊂ C2 → C is an integrating
factor in U if

P
∂M
∂x

+ Q
∂M
∂y

= −
(

∂P
∂x

+
∂Q
∂y

)
M = −div(X )M. (1.4)

This integrating factor M is associated to a first integral H when MP = −∂H/∂y and MQ =

∂H/∂x. Moreover V = 1/M is an inverse integrating factor in U \ {M = 0}.
A polynomial differential system (1.1) has a Liouville first integral H if its associated inte-

grating factor is of the form

M = exp
(

D
E

)
∏

i
Cαi

i , (1.5)

where D, E and the Ci are polynomials in C[x, y] and αi ∈ C, see [3, 17, 30, 31]. The curves
Ci = 0 and E = 0 are invariant algebraic curves of the differential system (1.1), and the
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exponential exp(D/E) is a product of some exponential factors associated to the multiple
invariant algebraic curves of system (1.1) or to the invariant straight line at infinity, see for
instance [2, 4, 5, 15] or Chapter 8 of [10].

The Liouville integrability is based on the existence of algebraic cofactors for the invariant
algebraic curves and for the exponential factors. The first generalization of this theory is to
consider non-algebraic invariant curves but still with algebraic cofactors, see [11]. In [12] a
method for detecting non-algebraic invariant curves for polynomial differential systems was
given. However there exist non-algebraic invariant curves without an algebraic cofactor, see
[20].

Now we are recall the definition of Puiseux Weierstrass integrability introduced in [23].
Let C((x))) be the set of series in fractionary powers in the variable x with coefficients in

C (these series are called Puiseux series), and C[y] the set of the polynomials in the variable y
with coefficients in the ring C. A function of the form

`

∑
i=0

ai(x)yi ∈ C((x))[y] (1.6)

is a Puiseux Weierstrass polynomial in y of degree `, i.e. a polynomial in the variable y with
coefficients in C((x)). Here we have privileged the variable y but of course we can privileged
the variable x instead of the y.

In the next result we provide the expression of the cofactor of an invariant curve y− g(x) =
0 with g(x) being a Puiseux series, for a proof see [23], see also [13].

Proposition 1.1. Let g(x) ∈ C((x)). An invariant curve of the form y− g(x) = 0 of a polynomial
differential system (1.1) of degree m has a Puiseux Weierstrass polynomial cofactor of the form

K(x, y) = km−1(x)ym−1 + · · ·+ k1(x)y + k0(x). (1.7)

A planar autonomous differential system is Puiseux Weierstrass integrable if admits an inte-
grating factor of the form (1.5) where D, E and the Ci’s are Puiseux Weierstrass polynomials.
This definition is a generalization of the Weierstrass integrability given in [19] and studied
in [21, 22, 24, 28]. We remark that by definition that all the Liouvillian integrable systems are
particular cases of the Puiseux Weierstrass integrable systems.

Let C[[x, y]] be the set of all formal power series in the variables x and y with coefficients
in C.

Theorem 1.2. If f ∈ C[[x, y]] then it has a unique decomposition of the form

f = uxs
`

∏
j=1

(y− gj(x)), (1.8)

where gj(x) are Puiseux series and s ∈ Z, s ≥ 0 and u ∈ C[[x, y]] is invertible inside the ring
C[[x, y]].

For a proof of Theorem 1.2 see Corollary 1.5.6 of [1].
We note that a Darboux integrating factor (1.5) is analytic function where it is defined

consequently by Theorem 1.2 it can be written into the form (1.8).
The first aim of this work was to give a necessary condition for detecting the Puiseux

Weierstrass integrability but when gj(x) ∈ C[[x]]] of a polynomial differential system (1.1).
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However this has been impossible using only the formal solutions of the form y = f (x) of the
associated differential equation for the reasons that we will see later on.

We say that a polynomial differential system (1.1) is strongly formal Weierstrass integrable if
it has an integrating factor of the form

M(x, y) = α(x)
`

∏
k=1

(y− gk(x))αk , (1.9)

where the functions α(x), gk(x) ∈ C[[x]] for i = 1, . . . , k. Note that the definition of strongly
formal Weierstrass integrability is a generalization of the definition of weakly formal Weier-
strass integrability given in [23], where that the functions α(x) is constant equal to one.

In this work we give a criterion for detecting when a polynomial differential system (1.1)
is not strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]]. This criterion is based
on the following result which provides a necessary condition in order that a polynomial dif-
ferential system (1.1) be strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]].

Our main result is the following one.

Theorem 1.3. Assume that a polynomial differential system (1.1) is strongly formal Weierstrass in-
tegrable with α(x), gk(x) ∈ C[[x]], and let H(x, y) be a first integral provided by the strongly formal
Weierstrass integrability.

(a) Let h(x) ∈ C[[x]] and y = h(x) be an invariant curve of the system such that H(x, y) is defined
on the curve y = h(x). Then there exists an integrating factor M(x, y) of the form (1.9) such
that M(x, h(x)) = 0.

(b) Assume that the origin of system (1.1) is a singular point, and the first integral H(x, y) and
M(x, y) of statement (a) are well-defined at the origin. Then a linear combination of the formal
Weierstrass polynomial cofactors up to order r of the solutions of the form y = f (x) satisfying
Eq := ẋdy/dx− ẏ = 0 must be equal to minus the divergence of system (1.1) up to order r.

Theorem 1.3 is proved in Section 2.
Now we apply Theorem 1.3 to a differential system that contains the force-free Duffing

and Duffing–Van der Pol oscillators. Hence we consider the differential system

ẋ = y, ẏ = −(ζx2 + α)y− (εx3 + σx). (1.10)

This system contains the famous force-free Duffing (ζ = 0, ε 6= 0) and the Duffing–Van der
Pol (ζ 6= 0, ε 6= 0) oscillators that appear in several fields of mathematics, physics, biology,
see [18] and references therein. The Liouville integrability of system (1.10) was studied in [9]
where the following results were established.

Theorem 1.4. System (1.10) with ζ = 0 and ε 6= 0 is Liouvillian integrable if and only if either α = 0,
or σ = 2α2/9.

In the case ζ 6= 0 by a suitable rescaling of the variables for the Duffing–Van der Pol system
we can take ζ = 3 without loss of generality.

Theorem 1.5. System (1.10) with ζ = 3 and ε 6= 0 is Liouvillian integrable if and only if α = 4ε/3
and σ = ε2/3.

Applying Theorem 1.3 to system (1.10) we obtain the following result.
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Theorem 1.6. System (1.10) can be strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]]
if, and only if, one of the following cases holds:

(a) σ = 2α2/9,

(b) σ 6= 2α2/9, σ 6= 0 and 3αε− 4ζσ = 0,

(c) σ 6= 2α2/9, σ 6= 0 and −21αε2 + 6α2εζ + 24εζσ− 7αζ2σ = 0,

(d) σ 6= 2α2/9, σ = 0 and −6ε(7ε− 2αζ) = 0.

We can see that all the Liouvillian integrable cases given in Theorems 1.4 and 1.5 are
included in Theorem 1.6. In particular the case ζ = 3 with α = 4ε/3 and σ = ε2/3 vanish the
condition −21αε2 + 6α2εζ + 24εζσ− 7αζ2σ = 0.

Theorem 1.6 is proved in Section 3.
The following proposition shows that if a polynomial differential system has a Puiseux

Weierstrass first integral of the form (1.5) then it has an integrating factor of the same form.

Proposition 1.7. If system (1.1) has a Puiseux Weierstrass first integral of the form (1.5), then it has
a Puiseux Weierstrass integrating factor of the form (1.5).

The proof is straightforward because M = (∂H/∂y)/P(x, y) which has the form (1.5). This
proposition was generalized in [17] for non-Liouville integrable systems.

2 Proof of Theorem 1.3

Proof of statement (a) of Theorem 1.3. By assumptions the first integral H(x, y) is defined on the
invariant curve y = h(x). So H(x, h(x)) = c ∈ C, and the first integral H̄(x, y) = H(x, y)− c
satisfies H̄(x, h(x)) = 0. Now we consider the integrating factor M(x, y) associated to the
first integral H̄. Perhaps this inverse integrating factor does not vanish at y = h(x), but we
consider the function M̄ = MF(H̄) being F an arbitrary function of H̄ such that F(0) = 0.
This function M̄ is also an inverse integrating factor of system (1.1) because

X (M̄) = X (MF(H̄)) = X (M)F(H̄) + MX (F(H̄)) = F(H̄)X (M)

= −F(H̄)div(X ) M = −div(X ) MF(H̄) = −div(X ) M̄.

Hence we obtain that M̄(x, h(x)) = 0 because F(0) = 0.

We can repeat this process to obtain an integrating factor that vanish in a finite number of
the solutions of the form y = h(x) such H(x, h(x)) = c ∈ C.

In the proof of statement (b) of Theorem 1.3 we shall need the following result, for a proof
see for instance Proposition 8.4 of [10].

Proposition 2.1. Assume that f ∈ C[x, y] and let f = f n1
1 . . . f nr

r be its factorization into irreducible
factors over C[x, y]. Then for a polynomial system (1.1), f = 0 is an invariant algebraic curve with
cofactor K f if and only if fi = 0 is an invariant algebraic curve for each i = 1, . . . , r with cofactor K fi .
Moreover K f = n1K f1 + . . . + nrK fr .

Proof of statement (b) of Theorem 1.3. We assume that the system is strongly formal Weierstrass
integrable with α(x), gk(x) ∈ C[[x]] this means by definition that the system has an integrating
factor of the form (1.9). Hence we know that a first integral H and an integrating factor
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M of the form given in statement (a) can be found. We compute the solutions y = fi(x)
where fi(x) = ∑∞

j=0 ajxj with ai arbitrary coefficients that must satisfy the equation Eq :=
ẋdy/dx− ẏ = 0 up to certain order r. Note that these solutions satisfy that

either M(x, fi(x)) = O(xr), or M(x, fi(x)) = c2 +O(xr),

with c2 6= 0, this case appears when the integrating factor (1.8) has s = 0. The first ones
correspond to the fi(x) that approximate the invariant curves y = gk(x) that appear in the
integrating factor (1.9). For such fi(x) we compute the cofactor Ki up to certain order r though
the equation

X (y− fi(x)) = K̄i(y− fi(x)) +O(xr). (2.1)

Hence these cofactors K̄i of the solutions y− fi(x) are the approximations up to order r of the
cofactors Kk of the invariant curves y− gk(x) of the integrating factor (1.9).

The second ones satisfy

M(x, fi(x)) = α(x)
`

∏
k=1

( fi(x)− gk(x))αk = c2 +O(xr). (2.2)

Hence, since c2 6= 0, M(x, fi(x)) = c2 +O(xr), and from (1.9) we have that α(0) 6= 0. Then up
to order r we have

`

∏
k=1

( fi(x)− gk(x))αk =

[
c2

α(x)

]
r
+O(xr), (2.3)

where here [·]r means up to order r. Consequently y = fi(x) is an approximation up to order
r of the equation

`

∏
k=1

(y− gk(x))αk =
c2

α(x)
. (2.4)

We apply the vector field operator to (2.4) and we obtain

X
(

`

∏
k=1

(y− gk(x))αk

)
= X

(
c2

α(x)

)
= − c2α′(x)

α(x)2 P = −Kα
c2

α(x)
, (2.5)

because X (α(x)) = Kα(x, y)α(x) where Kα is a formal Weierstrass polynomial cofactor. This
happens because α(x) = 0 is an invariant algebraic curve of the vector field X . Indeed, α(x)
is a factor of the integrating factor M(x, y) given in (1.9), and M(x, y) = 0 is an invariant
curve because it satisfies (1.4), and the factors of an invariant curve are also invariant curves.
Moreover we have taken into account that X (α(x)) = α′(x)ẋ = α′(x)P(x, y) and then Kα =

α′(x)P(x, y)/α(x).
In summary from equations (2.4) and (2.5) we have

X
(

`

∏
k=1

(y− gk(x))αk

)
= −Kα

`

∏
k=1

(y− gk(x))αk . (2.6)

Now we apply the vector field operator to (2.3) and we obtain

X
(

`

∏
k=1

( fi(x)− gk(x))αk

)
= X

([
c2

α(x)

]
r

)
+O(xr), (2.7)
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where X (O(xr)) = O(xr−1) P(x, fi(x)) = O(xr). Taking into account equation (2.5) we define
the new cofactor K̃α through the equation

X
([

c2

α(x)

]
r

)
= −K̃α

([
c2

α(x)

]
r

)
(2.8)

which is equation (2.5) taking the lower terms up to r and where K̃α is an approximation up
to r of the cofactor Kα. Therefore from (2.3), (2.7) and (2.8) we obtain an approximation of the
cofactor of α(x) up to order r computing

X
(

∏`
k=1( fi(x)− gk(x))αk

)
∏`

k=1( fi(x)− gk(x))αk
= −K̃α +O(xr). (2.9)

By the definition of integrating factor (1.9) and from the extension of the Darboux theory
to Weierstrass functions, see for instance Theorem 3 of [23], we have that

X (M) = −div(X )M. (2.10)

In short the cofactors K̄i of the solutions y − fi(x) passing through the origin are the
approximations up to order r of the cofactors Ki of the solution y = gi(x). By Proposition 2.1
the other solutions y− fi(x) not passing through the origin with cofactor K̃i give by equation
(2.9) an approximation up to order r of the cofactor K̃α of α(x), i.e.

s

∑
i=1

µiK̃i = −K̃α. (2.11)

Therefore, from (2.2), (2.10) and (2.11) we obtain that

`

∑
i=1

λiK̄i +
s

∑
i=1

µiK̃i = −divr(X ) +O(xr+1). (2.12)

This proves statement (b) of the theorem.

In summary, if condition (2.12) is not satisfied then system (1.1) does not admit an inte-
grating factor of the form (1.9) and consequently is not strongly formal Weierstrass integrable.
Hence we have a necessary condition to have strongly formal Weierstrass integrability. Note
that if we have that ∑`

i=1 λiK̄i + ∑s
i=1 µiK̃i = O(xr+1) system (1.1) satisfies a necessary condi-

tion to have a first integral of the form (1.9), see for more details statement (i) of Theorem 8.7
of [10].

3 Proof of Theorem 1.6

We apply the criterion provided by statement (b) of Theorem 1.3 to detect if system (1.10) can
be strongly formal Weierstrass integrable, that is, if it can has an inverse integrating factor of
the form (1.9). We propose a solution curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdy/dx− ẏ = 0 we
get an infinite system of equations. First we have studied the case when a0 6= 0, and in this
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case it is easy to see that we find two solutions not passing through the origin but we do not
find any possible integrable case. So we consider the case a0 = 0. In order to determine the
first coefficients we fix up to certain order the developments of f (x) and Eq in power series of
the variable x. If we compute the solutions up to order 6 we obtain the following finite system
of equations

a2(3a1 + α) = 0, a2
1 + a1α + σ = 0,

2a2
2 + 4a1a3 + a3α + ε + a1ζ = 0, 7a3a4 + 7a2a5 + a4ζ = 0,

5a2a3 + 5a1a4 + a4α + a2ζ = 0, 3a2
3 + 6a2a4 + 6a1a5 + a5α + a3ζ = 0.

From the first equation we have two possibilities a2 = 0 or a1 = −α/3. First we take a2 = 0.
The obtained system is compatible and we get two solutions. We denote them y1 and y2 but
we do not write them here due to their long extensions. Now we study the case a1 = −α/3
with a2 6= 0. In this case the equation a2

1 + a1α + σ = 0 takes the form σ− 2α2/9 = 0. Hence
we must impose σ = 2α2/9 in order that the finite system of equations be compatible. Under
this condition we find four more solutions that we denote by y3, y4, y5 and y6, but again we do
not write them here due to their big extensions. We recall that all these solutions pass through
the origin, i.e., yi(0) = 0 for i = 1, . . . , 6. Now we compute their cofactors using equation (2.1),
that we denote by K̄i. Finally we verify if the equation

6

∑
i=1

λiK̄i = −div6X +O(x7),

has any solution, and since it has a solution statement (a) of the theorem follows.
Now we consider the case σ 6= 2α2/9. In this case the solutions yi for i = 3, . . . , 6 do not

exist and we only have the solutions y1 and y2. We compute their cofactors from equation
(2.1), that we denote by K̄1 and K̄2 and we verify if the equation

λ1K̄1 + λ2K̄2 = −div6X +O(x7),

is satisfied. This equation gives a system of three equations. The first one is

α(2 + λ1 + λ2)− (λ1 − λ2)
√

α2 − 4σ = 0. (3.1)

From this condition we can isolate λ1 if σ 6= 0 (we will consider σ = 0 below) and we have

λ1 =
α(2 + λ2) + λ2

√
α2 − 4σ

−α +
√

α2 − 4σ
.

From the second equation we obtain(
−α + 2

√
α2 − 4σ + λ2

√
α2 − 4σ

)
(3αε− 4ζσ) = 0.

Hence we have two possibilities: If 3αε− 4ζσ = 0 the third equation can vanish choosing the
value of λ2 and this proves statement (b) of the theorem. If −α+ 2

√
α2 − 4σ+ λ2

√
α2 − 4σ = 0

we isolate the value of λ2, i.e.

λ2 =
α− 2

√
α2 − 4σ√

α2 − 4σ
,

and the third equation provides the condition −21αε2 + 6α2εζ + 24εζσ − 7αζ2σ = 0, which
shows statement (c) of the theorem.
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Now we study the case σ = 0. In this case condition (3.1) becomes α(1 + λ2) = 0. Taking
into account that we are in the case σ 6= 2α2/9, we must take λ2 = −1. The second condition
is ε(3 + λ1) = 0. The case ε = 0 gives a trivial integrable case. Hence we must consider
λ1 = −3. In this case the third condition gives −6ε(7ε− 2αζ) = 0 which proves statement (d)
of the theorem. Hence this completes the proof of theorem.

4 Examples

Example 4.1. Consider the differential system

ẋ = y + xy + x2, ẏ = 2y(y + x). (4.1)

This system was studied in [14] where an algorithmic method to determine integrability was
given. Using the method developed in [14] it was shown that system (4.1) has an integrating
factor of the form M(x, y) = ex2/(2y)y−5/2 and the a Liouville first integral

H(x, y) =
e

x2
2y

√
y
+
√

2
∫ x/
√

2y

0
et2

dt.

Now we are going to apply the criterion provided by statement (b) of Theorem 1.3 for de-
tecting if system (4.1) can have an inverse integrating factor of the form (1.9). We propose a
solution curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdy/dx− ẏ = 0 we
get an infinite system of equations. In order to determine the first coefficients we fix up to
certain order the developments of f (x) and Eq in power series in variable x. If we do that up
to order 6 and we solve the finite system of equations we obtain the following solutions.

1) a6 = a5 = a4 = a3 = a2 = a1 = 0,

2) a6 = −1368989−4007
√

150829
607500 , a5 = 781+3

√
150829

750 , a4 = 173−
√

150829
900 ,

a3 = − 2
3 , a2 = 497−

√
150829

70 , a1 = 427−
√

150829
35 , a0 = 427−

√
150829

70 ,

3) a6 = −1368989+4007
√

150829)
607500 , a5 = 781−3

√
150829)

750 , a4 = 173+
√

150829)
900 ,

a3 = − 2
3 , a2 = 497+

√
150829

70 , a1 = 427+
√

150829
35 , a0 = 427+

√
150829

70 .

The solutions correspond to the solution curves

1) y1 = 0 +O(x7),

2) y2 = f2(x) = 427−
√

150829
70 + 427−

√
150829

35 x + 497−
√

150829
70 x2 − 3

2 x3

+ 173−
√

150829)
900 x4 + 781+3

√
150829

750 x5 − 1368989+4007
√

150829
607500 x6 +O(x7),

3) y3 = f3(x) = 427+
√

150829
70 + 427+

√
150829

35 x + 497+
√

150829
70 x2 − 3

2 x3

+ 173+
√

150829)
900 x4 + 781−3

√
150829

750 x5 − 1368989−4007
√

150829
607500 x6 +O(x7),
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respectively. The first one corresponds to the invariant algebraic curve y = 0 whose cofactor
is 2x + 2y. However, in general, we can have an approximation of a solution of the form y =

gk(x) and an approximation of its cofactor. To compute the approximation of the Weierstrass
polynomial cofactor of the solution curve y = 0, since the system is of degree 2, it must be of
the form K̄1 = k0(x) + k1(x)y. Hence we have the equation

∂(y− y1)

∂x
ẋ +

∂(y− y1)

∂y
ẏ = (k0(x) + k1(x)y)(y− y1) +O(x7),

From here we obtain k0 = 2x and k1 = 2.
For determining the cofactors of the other two solutions y = fi(x) for i = 2, 3 we use

equation (2.7) that in this case are

X (y2(x)− y1(x)) = K̃2(x)(y2(x)− y1(x)) +O(x7),

X (y3(x)− y1(x)) = K̃3(x)(y3(x)− y1(x)) +O(x7),

We do not write here the expressions of K̃2 and K̃3 due to their extension but the reader can
compute them straightforward. Now we study if the cofactors K̄1, K̄2 and K̄3 satisfy (2.12), i.e.

λ1K̄1 + µ1K̃2 + µ2K̃3 = −div6X +O(x7),

and this equation has not solution. Hence system (4.1) has not an integrating factor of the
form (1.9), this implies that system (4.1) is not strongly formal Weierstrass integrable.

If we try to see if there is a linear combination that gives zero, then the system has the
unique solution λ1 = µ2 = µ3 = 0. Therefore the system has not a first integral of the form
(1.9).

The conclusion is that system (4.1) is not strongly formal Weierstrass integrable in the
original coordinates (x, y). However we can ask if system (4.1) is strongly formal Weierstrass
integrable after a change of variable. The answer to this question is positive as we will see
below.

System (4.1) after doing the change of variables

z =
x√
2y

, u =
√

y,

takes the form
u̇ =
√

2u2 + 2uz, ż = 1.

First we rename the new variables of the form u := x and z := y. So the equation associated
to this differential system is the Bernoulli equation dx/dy =

√
2x2 + 2xy, and then its integra-

bility is straightforward. In fact an integrating factor is given by M(x, y) = e−y2
x2 and a first

integral is

H(x, y) =
ey2

x
+
√

2
∫ y

0
et2

dt.

Anyway we are going to apply the necessary condition of strongly formal Weierstrass inte-
grability to this system. Attending to the form of the integrating factor in this case the answer
must be positive.

Hence consider the system of the form

ẋ =
√

2x2 + 2xy, ẏ = 1. (4.2)
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Now we study if system (4.2) is strongly formal Weierstrass integrable. We propose a solution
curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the ordinary differential equation Eq := ẋdy/dx− ẏ = 0 we get
an infinite system of equations without any solution. Therefore privileging the variable y the
system has no solutions curves. Next we propose a solution curve of the form

x = f (y) = a0 + a1y + a2y2 + a3y3 + a4y4 + a5y5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdx/dy− ẋ = 0 we
get an infinite system of equations. We determine the first parameters fixing certain order in
the developments of f (y) and Eq in power series of the variable y. If we do that up to order 4
and we solve the finite system of equations we obtain the following solutions.

1) x1 = O(x5),

2) x2 = − i
15

√
225−15

√
15

2 + −15+
√

15
15
√

2
y− i

15

√
15−
√

15
2 y2 −

√
2

45 (6 +
√

15)y3

+ i
450

√
15−
√

15
2 (10 + 3

√
15)y4 +O(x5),

3) x3 = i
15

√
225−15

√
15

2 + −15+
√

15
15
√

2
y + i

15

√
15−
√

15
2 y2 −

√
2

45 (6 +
√

15)y3

− i
450

√
15−
√

15
2 (10 + 3

√
15)y4 +O(x5),

4) x4 = −i
√

15+
√

15
30 − 15+

√
15

15
√

2
y + i

15

√
15+
√

15
2 y2 −

√
2

45 (6−
√

15)y3

− i
450

√
15+
√

15
2 (10− 3

√
15)y4 +O(x5),

5) x5 = i
√

15+
√

15
30 − 15+

√
15

15
√

2
y− i

15

√
15+
√

15
2 y2 −

√
2

45 (6−
√

15)y3

+ i
450

√
15+
√

15
2 (10− 3

√
15)y4 +O(x5).

Next we compute their Weierstrass polynomial cofactor for the solution curve y1 through the
equation

∂(x− x1)

∂x
ẋ +

∂(x− x1)

∂y
ẏ = (k0(y) + k1(y)x)(x− x1) +O(x5),

which is K̄1 =
√

2x + 2y, and the cofactors of the other solutions through the equations

X (xi(x)− x1(x)) = K̃i(x)(xi(x)− x1(x)) +O(x5),

for i = 2, 3, 4, 5. We do not write here the expressions of these cofactors due to their extension.
Finally we try to see if there is a linear combination of these cofactors equals to minus the
divergence, that is,

λ1K̄1 + µ2K̃2 + µ3K̃3 + µ4K̃4 + µ5K̃5 = −div4X +O(x5),

and this system has the solution λ1 = −2, µ2 = 5/6−
√

5/3, µ3 = 5/6−
√

5/3, µ4 = 5/6 +√
5/3 and µ5 = 5/6 +

√
5/3. Hence system (4.2) satisfies the strongly formal Weierstrass

integrability condition and it can have an integrating factor of the form (1.9) as indeed it
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has. Moreover we can also study if the system has a first integral of the form (1.9) using the
equation

λ1K̄1 + µ2K̃2 + µ3K̃3 + µ4K̃4 + µ5K̃5 = O(x5),

and this system has the only solution λ1 = µ2 = µ3 = µ4 = µ5 = 0. Consequently system (4.2)
has not a first integral of the form (1.9).

Example 4.2. In 1944 Kukles [27] studied the following system

ẋ = y, ẏ = −x + Q(x, y), (4.3)

where Q(x, y) = a1x2 + a2xy + a3y2 + a4x3 + a5x2y + a6xy2 + a7y3, giving the conditions in
order that the origin of (4.3) be a center. However some decades later in [6, 26] was proved
that the conditions were uncompleted showing that the origin of the following system has
also a center. Consider the system

ẋ = y, ẏ = −x + x2 − x3

3
− x2y√

2
− 2y2 +

y3

3
√

2
. (4.4)

System (4.4) has an inverse integrating factor of the form

V(x, y) = e−x(1− x
2 )(3
√

2(1− x) + x(
√

2 x + y))3,

and the following first integral

H(x, y) =
y2(x + 1) + 2

√
2xy(x− 2) + 6(3x− 2) + 2x3 − 10x2

(x(y +
√

2x) + 3
√

2(1− x))2
ex(1− x

2 ) +
∫

ex(1− x
2 )dx .

The analyticity of this first integral around the origin implies that the origin is a center.
Now we are going to apply the criterion to detect if system (4.1) can have a strongly formal

Weierstrass first integral. We propose a solution curve of the form y = f (x) = ∑i=0 aixi and
substitute this solution into the differential equation Eq := ẋdy/dx − ẏ = 0 and we get an
infinite system of equations. If we develop up to order 3 and we solve the finite system of
equations we obtain the solutions curves.

1) y1 = ix− ix2 +O(x3),

2) y2 = −ix + ix2 +O(x3),

3) y3,4 = 3
√

2±
√

3(4−
√

6)− (
√

2 +
√

3)x + 1/12
(

6
√

2− 6
√

3±
√

3(4−
√

6)3/2

∓10
√

3(4−
√

6)
)

x2 +O(x3),

4) y5,6 = 3
√

2±
√

3(4∓
√

6) + (−
√

2 +
√

3)x + 1/12
(

6
√

2 + 6
√

3±
√

3(4 +
√

6)3/2

∓10
√

3(4 +
√

6)
)

x2 +O(x3).

Now we compute the Weierstrass polynomial cofactor of the first two solutions curves.
These cofactors, as the system is of degree 3 must be of the form K = k0(x) + k1(x)y +

k2(x)y2. Applying equation (2.1) to the solution curves y− f (x) = 0 we obtain the Weierstrass
polynomial cofactors up to order 3 in the variable x

1) K1 = −1/6(6i + 4(−3i +
√

2)x2)− 1/6(12−
√

2ix +
√

2ix2)y + 1/(3
√

2)y2 +O(x3),
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2) K2 = 1/6(6i− 4(3i +
√

2)x2)− 1/6(12 +
√

2ix−
√

2ix2))y + 1/(3
√

2)y2 +O(x3),

The cofactors of the other solutions must be computed through the equation (2.9) that in this
case are

X
(
(yi(x)− y1(x))(yi(x)− y2(x))

)
= K̃i(x)

(
(yi(x)− y1(x))(yi(x)− y2(x))

)
+O(x3),

for i = 3, 4, 5, 6. We do not write here the expressions of these cofactors due to their extension.
From statement (b) of Theorem 1.3 we study if system (4.4) has a strongly formal

Weierstrass first integral using the equation

λ1K1 + λ2K2 + µ3K3 + µ4K4 + µ5K5 + µ6K6 = O(x3),

and this system has the solution λ1 = λ2 = 0 and

µ6 =
µ5

(
6
√

10 + 5
√

15− 6
√

24− 6
√

6− 15
√

4−
√

6
)

6
√

10 + 5
√

15 + 6
√

24− 6
√

6 + 15
√

4−
√

6
,

µ3 =
µ5

D1

[
24
√

10 + 20
√

15 + 4
√

60− 15
√

6 + 5
√

40− 10
√

6

+ 129
√

24− 6
√

6 + 316
√

4−
√

6 + 8
√

4 +
√

6

+ 3
√

6(4 +
√

6)− 49
√

10(4 +
√

6)− 40
√

15(4 +
√

6)
]

,

µ4 =
µ5

D2

[
− 6
√

10− 4
√

15 +
√

60− 15
√

6 +
√

40− 10
√

6

− 29
√

24− 6
√

6− 71
√

4−
√

6 +
√

4 +
√

6 +
√

6(4 +
√

6)

+ 11
√

10(4 +
√

6) + 9
√

15(4 +
√

6)
]

,

where we have D1 = 372 + 152
√

6 + 80
√

60− 15
√

6 + 98
√

40− 10
√

6 and D2 = 84 + 34
√

6 +
18
√

60− 15
√

6 + 22
√

40− 10
√

6. Consequently system (4.4) can have a strong formal
Weierstrass first integral as indeed it has as we have seen before.
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